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Abstract

In this paper, we present a unified knowledge based approach
for sense disambiguation and semantic role labeling. Our ap-
proach performs both tasks through a single algorithm that
matches candidate semantic interpretations to background
knowledge to select the best matching candidate. We eval-
uate our approach on a corpus of sentences collected from
various domains and show how our approach performs well
on both sense disambiguation and semantic role labeling.

Introduction
One of the goals of AI is to build Natural Language Under-
standing (NLU) systems that can produce rich semantic rep-
resentations for tasks such as question answering, machine
translation, and information extraction.

A key requirement of NLU systems is mapping the syn-
tactic output from a parser to the corresponding semantic
representation. To produce, for example, the semantic rep-
resentation (see Figure 1 right) for a sentence like:

“The man’s hand hit the top of the table.”

most NLU systems first produce a syntactic representation
that captures the syntactic relationships (e.g. subject, direct
object, etc.) between the atomic constituents (i.e. nouns,
verbs, adjectives, and adverbs) in the sentence (see Fig-
ure 1 left). These systems then select from an ontology
the most appropriate concept and semantic relation for each
constituent and syntactic relationship respectively. Forex-
ample, Region may be the most appropriate concept for
“top” (given the context), andinstrument may be the most
appropriate semantic relation for “subject”.

In this paper, we report on our approach for selecting
the appropriate concepts and semantic relations. These
two tasks are forms of sense disambiguation and seman-
tic role labeling respectively and much research has been
conducted on each task individually. This has produced
many different solutions such as (Lesk 1986; Banerjee &
Pedersen 2002; Mihalcea & Moldovan 2000; Mihalcea, Ta-
rau, & Figa 2004; Patwardhan, Banerjee, & Pedersen 2003;
Vasilescu, Langlais, & Lapalme 2004; Gildea & Juraf-
sky 2002; Pradhanet al. 2003; 2005; Hacioglu 2004;
Swier & Stevenson 2005).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1:Left: The syntactic representation of our example
sentence which captures the syntactic relationships between
the constituents.Right: The semantic representation of the
sentence.

Unfortunately, research in sense disambiguation usually
focuses on determining just the meaning of a word within
a context, and research in semantic role labeling usually fo-
cuses on determining just the semantic relation between a
verb and its arguments. We have found it useful to combine
these two tasks in order to produce rich semantic represen-
tations.

Our approach performs these two tasks through a single
process – one of matching candidate semantic interpreta-
tions to background knowledge to select the interpretation
with the best match.

We evaluate our approach by embedding it in a con-
trolled (simplified) language system (Clarket al. 2002;
2005) to perform sense disambiguation and semantic role
labeling. We chose a corpus made up of sentences from four
domains – chemistry, pollution prevention, employee safety,
and nuclear deterrence – and show how our approach per-
forms well on both tasks.

Knowledge Requirements
Our approach requires a rich ontology to perform sense
disambiguation and semantic role labeling, but existing re-
sources provide limited semantics. The semantics of con-
cepts in WordNet (Fellbaum 1998), for example, are limited
mostly to hypernyms, meronyms, and synonyms. FrameNet
(Baker, Fillmore, & Lowe 1998), on the other hand, provides
richer semantics, but the focus is primarily on the semantic
roles played by the syntactic arguments of verbs.

We want an ontology which provides representations with



rich semantics that are linguistically motivated. Hence, we
chose theComponentLibrary (CLib) built by Barkeret al.
(Barker, Porter, & Clark 2001). At the core of the CLib is a
domain independent upper ontology with about 80 semantic
relations and about 500 generic concepts (i.e. events and en-
tities). These 500 concepts can be composed (and extended)
to build domain specific ones. The CLib has over 2500 do-
main specific concepts in the military, chemistry, biology,
and office domains.

Semantic Relations
One type of knowledge in the CLib is semantic relations –
the targets for semantic role labeling. These semantic rela-
tions fall into three general categories:

1. Relations between an event and an entity – e.g.agent,
instrument, object, destination, etc. These relations are
in the spirit of case roles proposed by Fillmore (Fillmore
1971) and others (Baker, Fillmore, & Lowe 1998).

2. Relations between entities – e.g.has-part, possesses, ma-
terial, etc.

3. Relations between events – e.g.caused-by, prevents, en-
ables, etc.

Each semantic relation also has information about its syn-
tactic realization (Barker 1998) – i.e. how the relation sur-
faces in a sentence. For example,agent can surface as a
prepositional phrase marked by the preposition “by” (e.g.
“A ball was hit by a man”), andinstrument can surface in the
same way (e.g. “A ball was hit by a stick”). From this infor-
mation, we can look up the possible semantic relations for
each syntactic one – e.g. some possible semantic relations
for “by” are agent, instrument, caused-by, andis-beside.

Events and Entities
A second type of knowledge in the CLib covers events and
entities – the targets for word sense disambiguation. Each
event is similar to the frames in FrameNet (Baker, Fillmore,
& Lowe 1998) and encodes knowledge about the partici-
pants in the event, where and when the event occurred, and
other events that are caused (or prevented). For example, the
Move event (see Figure 2) encodes knowledge about what is
moved (i.e. the object), the origin, the destination, etc. The
Transfer event (see Figure 2 also) encodes knowledge about
what is transferred (i.e. the object), the donor, the recipient,
etc.

Each entity encodes knowledge about its parts, its spatial
relationship to other entities, and the possible roles it can
play. For example, the representation ofCell (see Figure 2)
says a cell encloses a nucleus and is part of an organism.

Each concept in the CLib is annotated with appropriate
senses from WordNet 2.0 (Fellbaum 1998) to provide infor-
mation about the concept’s lexical realization. For exam-
ple, theMove event is annotated with the WordNet senses of
travel#1, go#1, move#1, etc.

Our approach
Our approach performs sense disambiguation and seman-
tic role labeling by generating candidate interpretationsand

Figure 2: Encodings for the concepts ofMove, Transfer, and
Cell. We draw the encodings for these concepts as concep-
tual graphs.

matching them against background knowledge to select the
best one.

Semantic Matcher
We start by describing briefly the semantic matcher used by
our approach – for a complete discussion see (Yeh, Porter,
& Barker 2003).

This semantic matcher takes two representations (en-
coded in a form similar to conceptual graphs (Sowa 1984))
and uses taxonomic knowledge (regarding both concepts
and relations) to find the largest connected subgraph in one
representation that is isomorphic to a subgraph of the other
(it ignores degenerate – i.e. single node – subgraphs). This
matcher then uses a library of about 200 transformation rules
to shift the representations to improve the match. This im-
provement might enable other (non-degenerate) subgraphs
to match isomorphically, which in turn might enable more
transformation rules, and so on until the match improves no
further.

This library of transformation rules is based on the CLib’s
upper ontology and has been used by Yehet al. to im-
prove matching in the domains of battle space planning
(Yeh, Porter, & Barker 2003) and office equipment purchas-
ing (Yeh, Porter, & Barker 2005). Each rule is an instance of
the pattern “transfers through” (Lenat & Guha 1990) which
has the following form:

C1
r1−→ C2

r2−→ C3 ⇒ C1
r1−→ C3

whereCi is a concept andrj is a relation. Example rules
include:

Event1
object
−→ Entity2

haspart
−→ Entity3

=⇒ Event1
object
−→ Entity3

Entity1
haspart
−→ Entity2

haspart
−→ Entity3

=⇒ Entity1
haspart
−→ Entity3

The first rule encodespart descension (i.e. acting on a whole
also acts on its parts), and the second rule encodes the tran-
sitivity of the has-part relation.



Figure 3:Top: The syntactic representation of our example
sentence.Bottom: Some of the candidate interpretations.

A transformation rule is applicable to a representation if
its antecedent subsumes a subgraph of the representation. A
rule is applied byjoining (Sowa 1984) the rule’s consequent
with the subgraph that matched the rule’s antecedent.

Generate Candidates
Our approach generates a set of possible candidate interpre-
tations from the syntactic representation of a sentence. To
generate, for example, the candidate interpretations for:

“A molecule is produced from an ion of an acid.”

our approach takes a shallow syntactic representation of this
sentence (see Figure 3 top) and looks up the possible CLib
concepts (i.e. senses) and relations for each constituent and
syntactic relationship respectively (see previous section).
The possible CLib concepts for “produce” areCreate, Pro-
duce, etc.; the possible CLib relations for “from” areorigin,
donor, raw-material, caused-by, etc.; and so on.

Our approach generates all possible combinations from
the resulting CLib concepts and relations. The concepts
and relations in each combination replace their syntactic
counterparts to produce a candidate semantic interpretation
(which is in a form similar to conceptual graphs). Figure 3
(bottom) shows some of the candidate interpretations for our
example sentence.

To reduce the number of candidate interpretations, our ap-
proach removes any that are invalid. A candidate interpreta-
tion is invalid if any of its semantic relations relate concepts
outside the relations’ scope. For example,caused-by relates
Produce to Ion in some of the candidate interpretations for
our example sentence, butIon is outside the scope ofcaused-
by because it is not an event.

Match Candidates
Each candidate interpretationG is matched to concepts in
the ontology referenced in the interpretation. We will call
this list of referenced conceptsC. The concept inC that
best matchesG is removed fromC, and the score for this
match is added to the overall match score forG. This score

Figure 4: Top: The first candidate interpretationG for our
example sentence.Bottom: Encodings for two of the con-
cepts (i.e. Produce and Acid) referenced in this candidate
interpretation.

is based on the semantic similarity between the candidate
interpretation and the referenced concept and is computed
using:
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 ÷ |G| (1)

where(ni, nj) is a pair of matched concepts (or relations),
d is the taxonomic distance (i.e. minimum number of steps)
between two concepts (or relations) in an ontology, and|G|
is the total number of concepts (and relations) inG.

If G has unmatched information left, then our approach
repeats the above step, but information (i.e. concepts and re-
lations) in G that were matched previously are discarded.
This process is repeated until all the information inG is
matched or the match improves no further.

After all candidate interpretations have been processed,
our approach selects the candidate with the best match score
as the final interpretation of the sentence.

Continuing with our previous example, our approach
matches the first candidate interpretationG – shown at the
top of Figure 4 – to the concepts ofProduce, Ion, Molecule,
and Acid (see Figure 4 bottom).G best matchesProduce
(see Figure 5 top) with a score of 0.49. In the CLib,
d(Molecule, Tangible-Entity) = 4, d(Ion, Tangible-
Entity) = 4, and the remaining matches forG (i.e. Pro-
duce, raw-material, andobject) have a taxonomic distance
of 0 because they are matched to the same concepts (and
relations).

G still has unmatched information – i.e. theIon is part of
theAcid. So, our approach will matchG with the remaining
concepts inC – i.e. Ion, Molecule, andAcid. Acid would be
a good match, butAcid has part anIonic-Compound which
has part anIon – see Figure 5 bottom. This mismatch be-
tween what is said and what is represented in the ontology
is very common, but our semantic matcher can resolve these
mismatches using its library of transforms. For example, the
transitivity of parts rule (given previously) will transform the



Figure 5: Top: The matches betweenG and Produce are
shown inbold. Bottom: The matches betweenG andAcid
are shown inbold. The dashed edge resulted from applying
a transformation. Note,is-part-of is the inverse ofhas-part,
so this edge can be reversed.

Acid concept by adding ahas-part relation connecting the
Acid to theIon, and this transformation allows the remain-
ing information inG to be matched – see Figure 5 bottom.

This is the best match with a score of 0.29 –
d(Acid,Acid) = 0 andd(has-part, has-part) = 0. The
match for Ion is discarded because it was matched previ-
ously, so the overall score forG is 0.78.

Evaluation
We evaluate the performance of our approach on the tasks
of sense disambiguation and semantic role labeling. We em-
bed our approach in a controlled language system (Clarket
al. 2002; 2005) – the natural language interface for a ques-
tion answering system that requires rich representations for
reasoning. This system is similar to the ones described in
(Friedland & others 2004).

Corpus
Our corpus contains 196 sentences collected from human
subjects from four domains – chemistry, pollution preven-
tion, employee safety, and nuclear deterrence. Example sen-
tences from each domain include:

1. “An acid reacts with a base to transfer a proton to the
base.”

2. “The narrator on a beach says people cause water pollu-
tion.”

3. “The tool injured the employee’s right thumb.”

4. “Musharraf said Pakistan expected India will test mis-
siles.”

These sentences are written in controlled (simplified) En-
glish which differs from unrestricted English in the follow-
ing ways: there are no pronouns, there is a default preference

for how prepositional phrases are attached, and only simple
clauses and sentence structures are allowed.

These simplifications, however, do not make the task of
selecting the appropriate senses and semantic relations for a
sentence any easier. The average length of each sentence is
8.95 words. The total number of sense choices is 798, and
each choice has on average 4.86 sense options. The total
number of semantic relation choices is 608, and each choice
has on average 6.98 semantic relation options.

To form the answer key, we asked two human subjects to
select the appropriate senses and semantic relations. Each
subject was given the syntactic representation for each sen-
tence along with the possible CLib concepts (i.e. senses)
and relations for each constituent and syntactic relationship
respectively. The subjects were then asked to pick the ap-
propriate semantic concepts and relations for each syntactic
one. The kappa (Carletta 1996) agreement for sense and
relation selection are 85.59% (1/5 chance agreement) and
89.44% (1/7 chance agreement) respectively.

Evaluation: Sense Disambiguation
To establish a baseline for comparison, we constructed a sys-
tem which always picks the most frequent sense (given by
WordNet) for each word. Further, we compare our approach
to a well established knowledge based algorithm for word
sense disambiguation – the Lesk algorithm (Lesk 1986).
Recent adaptations of this algorithm (Banerjee & Peder-
sen 2002) disambiguate a word by comparing its WordNet
glosses with those of its neighbors and selecting the sense
with the most overlap. For our implementation, we have
Lesk select the most frequent sense when there is no overlap
to improve recall, and we map the WordNet senses selected
by Lesk to the corresponding CLib concepts using the Word-
Net annotations in the CLib.

Our Approach Lesk Baseline
Grader1
Precision 86.59 75.69 74.06
Recall 84.96 75.69 74.06
Grader2
Precision 93.87 78.70 77.07
Recall 92.11 78.70 77.07

Table 1: Each system’s performance (given as percentages)
on sense disambiguation for graders 1 and 2. N = 798. Pre-
cision and recall were the same for Lesk because it selected
a sense for all 798 words. The Baseline had the same preci-
sion and recall for the same reason.

The systems were tested on our corpus. Their sense
choices were compared against our answer key and graded
using precision (i.e. the number of correct answers over the
total number of answers given by a system) and recall (i.e.
the number of correct answers over the total number of an-
swers given by the gold standard) – see Table 1.

Our approach performed significantly better than Lesk
and the baseline for both precision and recall across both
graders (p < 0.01 for the X 2 test in each case). We be-



lieve our approach performed better because it uses transfor-
mations to resolve mismatches, performs both sense disam-
biguation and semantic role labeling concurrently, and uses
a rich ontology.

To verify this hypothesis, we constructed three additional
systems. The first system (called NoXForm) is just like our
approach except it does not use transformations. The sec-
ond system (called NoReln) is just like our approach ex-
cept we ablate information about semantic relations by re-
placing them withrelation (the most general relation in the
CLib) for all candidate interpretations. The final system
(called Lesk+CLib) is like the Lesk algorithm except it looks
for overlaps between CLib concepts instead of WordNet
glosses. The performance of these three systems is shown
in Table 2.

NoXForm NoReln Lesk+CLib
Grader1
Precision 86.21 78.21 75.81
Recall 75.19 75.56 75.81
Grader2
Precision 93.39 84.18 79.70
Recall 81.45 81.33 79.70

Table 2: The three additional systems’ performance on sense
disambiguation for graders 1 and 2.

As expected, removing transformations causes recall to
drop significantly because many mismatches between can-
didate interpretations and concepts in the ontology could
not be resolved. Ablating information about the semantic
relations not only reduces recall, but precision also. This
shows that performing sense disambiguation and semantic
role labeling concurrently better guides interpretation.Sur-
prisingly, adapting the Lesk algorithm to use the CLib (in-
stead of WordNet) has little affect on either precision or re-
call. Hence, these results show that the difference in perfor-
mance is not in the background knowledge used, but in the
algorithms themselves.

Evaluation: Semantic Role Labeling
We could not make a direct comparison between our ap-
proach and the state of the art (Gildea & Jurafsky 2002;
Pradhanet al. 2003; 2005; Hacioglu 2004; Swier & Steven-
son 2005) on the task of semantic role labeling. Exist-
ing approaches use different background knowledge (e.g.
FrameNet, VerbNet, etc.) – each with its own unique set
of semantic relations. Furthermore, existing approaches fo-
cus more on verb-argument roles and less on semantic rela-
tions among other constituents (such as intra-phrasal roles
and inter-clausal roles). Our approach focuses on these re-
lations as well. Finally, existing approaches require a large
corpus to train on, but we have insufficient data to train such
systems. This is because our approach is a knowledge based
one which requires background knowledge not training ex-
amples.

Instead, we compared our approach to a variant with
transformations ablated (called NoXForm) and a baseline

that always picks the most common semantic relation as-
sociated with a syntactic one. Each approach was tested on
our corpus. Their semantic relation choices were compared
against the answer key and graded using precision and recall
– see Table 3.

Our approach performed significantly better than the
baseline for both precision and recall across both graders
(p < 0.01 for theX 2 test). Our approach performed signif-
icantly better than NoXForm on recall across both graders
(p < 0.01 for theX 2 test). We attribute this improvement
to the only difference between our approach and NoXForm
– the use of transformations to resolve mismatches.

Our Approach NoXForm Baseline
Grader1
Precision 85.18 80.89 41.78
Recall 82.24 66.12 41.78
Grader2
Precision 92.16 87.73 42.43
Recall 88.98 71.71 42.43

Table 3: Each system’s performance (given as percentages)
on semantic role labeling for graders 1 and 2. N = 608.

Future Work
The results we observed are encouraging, but there are sev-
eral issues and open questions that need to be addressed.

We evaluated our approach on a corpus of controlled En-
glish sentences, but our approach should work for unre-
stricted English also. The syntactic representations for unre-
stricted English sentences are more complex, but the process
of interpreting them should be the same – i.e. matching can-
didate interpretations to background knowledge. We plan to
investigate this problem in the near future using off the shelf,
state of the art parsing techniques for unrestricted English.

We used the CLib as background knowledge, but our ap-
proach should be able to use other ontologies – provided
the ontology has information about how its concepts (and
relations) are realized syntactically. The CLib provides
background knowledge for candidate interpretations to be
matched against, but there is no reason why other ontologies
cannot serve this same purpose. We plan to conduct addi-
tional studies to investigate the effect of using differenton-
tologies such as FrameNet (Baker, Fillmore, & Lowe 1998)
or Cyc (Lenat & Guha 1990).

We found that generating possible candidate interpreta-
tions (even just valid ones) can still pose a problem for effi-
ciency. Some sentences in our corpus had thousands of valid
candidates and took over 20 seconds to interpret. We plan
to investigate ways to alleviate this problem. For example,
we might use a greedy strategy to terminate the search when
a complete match is found or a memory model to eliminate
weak candidates based on prior interpretations.

We also observed that our approach prefers interpretations
based on complete theories in the ontology as opposed to
incomplete ones. For example, the possible CLib concepts
for “strike” areCollide andAttack-by-Fire, but the encoding



for Attack-by-Fire is less elaborate in the CLib. Hence, our
approach prefers to interpret sentences like:

“The minister ordered the missile strike Pakistan.”

as the “missile” colliding with Pakistan becauseCollide re-
sults in a better match. This interpretation is still sensible,
but it is suboptimal. We plan to study how much our system
can “accommodate” an interpretation (in the presence of in-
complete knowledge) before inappropriate results are given.

Finally, we plan to compare our approach to the state
of the art in semantic parsing (Ge & Mooney 2005; Kate,
Wong, & Mooney 2005). Like our approach, semantic pars-
ing performs both sense disambiguation and semantic role
labeling, but it is a data driven approach. Our approach is
a knowledge based alternative that requires rich background
knowledge but does not need to be trained. Although back-
ground knowledge is expensive to build also, it supports
other tasks such as reasoning, explanation generation, etc.
We want to compare these two approaches to evaluate each
one’s strengths and weaknesses.

Conclusion
In this paper, we presented a unified knowledge based ap-
proach for sense disambiguation and semantic role labeling.
Our approach performs both tasks through a single process
– one of matching candidate interpretations to background
knowledge to select the best match.

We evaluated our approach on a corpus of sentences from
various domains, and showed how our approach performed
well on both sense disambiguation and semantic role label-
ing. We also proposed reasons why our approach performed
well – 1) it uses transformations to resolve mismatches be-
tween what is said and what is encoded in background
knowledge, and 2) it performs both sense disambiguation
and semantic role labeling concurrently which better guides
the interpretation process.
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