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Automated Modeling of Complex Systemsto Answer Prediction QuestionsPublication No.Je�rey Walter Rickel, Ph.D.The University of Texas at Austin, 1995Supervisor: Bruce W. PorterThe ability to answer prediction questions is crucial in science and engineering.A prediction question describes a physical system under hypothetical conditionsand asks for the resulting behavior of speci�ed variables. Prediction questions aretypically answered by analyzing (e.g., simulating) a mathematical model of thephysical system. To provide an adequate answer to a question, a model must besu�ciently accurate. However, the model must also be as simple as possible to ensuretractable analysis and comprehensible results. Ensuring a simple yet adequate modelis especially di�cult for complex systems, which include many phenomena that canbe described at many levels of detail. While tools exist for analysis, modeling is acreative, time-consuming task performed by humans.We have designed algorithms for automatically constructing models to answerprediction questions, implemented them in a program called tripel, and evaluatedthem in the domain of plant physiology. Given a prediction question and domainknowledge, tripel builds the simplest di�erential-equation model that can ade-quately answer it and automatically passes the model to a simulator to generate thedesired predictions. tripel uses knowledge of the time scales on which processesoperate to identify and ignore insigni�cant phenomena and choose quasi-static rep-resentations of fast phenomena. It also uses novel criteria and methods to choosea suitable system boundary, separating relevant subsystems from those that canbe ignored. Finally, it includes a novel algorithm for e�ciently searching throughalternative levels of detail in a vast space of possible models. tripel successfullyvii



answered plant physiology questions using a large, multipurpose, botany knowledgebase (covering 300 processes and 700 plant properties) independently developed bya domain expert. Because its methods are domain-independent, tripel should beequally useful in many areas of science and engineering.
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Chapter 1Introduction1.1 Prediction QuestionsOur long-term goal is a computer program that can answer prediction questionsabout physical systems. The following question, from the plant physiology domain,illustrates the general form of a prediction question: \How would decreasing soilmoisture a�ect a plant's transpiration1 rate?" A prediction question poses a hypo-thetical scenario (e.g., a plant whose soil moisture is decreasing) and asks for theresulting behaviors of speci�c variables of interest (e.g., transpiration rate). Eachvariable represents a property of the scenario. An answer to a prediction questionincludes the desired predictions (e.g., \Transpiration will initially remain constantbut will decrease as the plant begins to wilt."). Equally important, the answer mustexplain how domain principles justify the predictions. Therefore, our computerprogram must solve the following prediction task: Given a prediction question anddomain knowledge, produce the desired predictions as well as their explanations.Prediction is important for many tasks in science and engineering. A designengineer must predict how a design will respond to hypothetical conditions (e.g.,\How is power consumption a�ected as the fan speed is increased?"). A diagnosti-cian must predict the consequences of an hypothesized diagnosis and compare themwith observed symptoms (e.g., \How would the patient's sodium level be a�ected ifhis insulin level were dropping?"). A theorist evaluates theories by using them tomake predictions that can be experimentally tested (e.g., \How would the intervalbetween pulses be a�ected if the density of a pulsar were increasing?"). We areparticularly motivated by the use of prediction questions in tutoring, in which atutoring system teaches domain principles in the context of student questions (e.g.,the tutor uses the question about decreasing soil moisture to explain the role of1Transpiration is the process by which water evaporates from the leaves.1
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model predictionsFigure 1.1: The three steps needed to answer a prediction question.the aba hormone in regulating plant water loss through transpiration). Answeringprediction questions for these tasks requires people with special knowledge, and itcan be time consuming and error prone. Therefore, automation would be valuable.In each of these tasks, a comprehensible explanation of the predictions iscrucial. In the tutoring task, the main objective is to teach the domain principlesthat underlie the predictions. Even when the predictions themselves are the mainobjective, experience with expert systems shows clearly that humans accept theconclusions of computers much more readily when the computer can justify thoseconclusions [8]. Therefore, a computer program for answering prediction questionsmust be capable of making the desired predictions and explaining them well.1.2 ModelingScientists and engineers answer prediction questions by constructing and analyzing amathematical model of the scenario. A mathematical model uses a formal language,such as di�erential equations, to represent the physical phenomena that governthe scenario. Once the model is constructed, mathematical methods are used toanalyze it (e.g., solve the equations for the variables of interest), resulting in thedesired predictions. Finally, to answer the original question, scientists and engineersinterpret the mathematical predictions in physical terms and show how the physicalprinciples embodied in the model explain the predictions. Thus, as illustrated inFigure 1.1, there are three steps in answering a prediction question: construct amodel of the scenario, analyze the model, and explain the results.2



To automate this process, we must automate these three steps. There arealready a variety of methods that automate the analysis step. For example, toanalyze di�erential equation models, there are programs for solving the equationsanalytically (e.g., Mathematica [87]) and there are algorithms for simulating suchmodels (e.g., Runge-Kutta [6]). However, the other two steps, modeling and ex-planation, typically require humans. This dissertation addresses the �rst of these:automatically constructing models for answering prediction questions.More speci�cally, this dissertation provides methods for automatically con-structing models consisting of algebraic equations and ordinary di�erential equations.2Each variable in such a model represents a real-valued, continuous, time-varyingproperty of the scenario being modeled. Examples include the amount of water ina plant or its soil, the rate of a process (e.g., transpiration), and the pressure in aplant's cells. Each equation in such a model speci�es a variable, or its rate of change,as a function of other variables. These equations represent the physical phenomenathat govern the scenario. For example, the rate at which the amount of plant wa-ter changes is a function of the rate of water uptake from the soil and the rate ofwater loss through transpiration. Because many properties of physical systems canbe represented with such variables, and because many physical phenomena can berepresented with such equations, such models are widely used throughout scienceand engineering.In summary, this dissertation focuses on the following modeling task:� Given a prediction question and domain knowledge, produce a model of thescenario, consisting of algebraic equations and ordinary di�erential equations,that is suitable for answering the question.1.3 Multiple ModelsA modeler must balance two competing goals. First, the model must be su�cientlyaccurate. If the model omits some relevant phenomenon in the scenario, or fails torepresent it in su�cient detail, the predictions or their explanation may be incorrect.For instance, in the example given earlier, transpiration will appear una�ected bydecreasing soil moisture unless the model includes the e�ects of plant water regula-tion processes. This goal, accuracy, encourages detailed, comprehensive models.However, a model must also be as simple as possible. If the model includesirrelevant information, it will be more di�cult to analyze and explain. For example,2We show later that the methods are useful for building qualitative models [19, 28, 52, 54, 72]as well as quantitative ones. Although the methods are equally applicable to building quantitativemodels, our empirical evaluation has focused on qualitative models.3



a detailed model of the entire plant would include an enormous number of variables,making the model di�cult to simulate or solve analytically, and the excess detailswould obscure the simple reason that transpiration decreases.For complex systems (such as plants), no single model can satisfy both thesegoals for a wide variety of questions. Complex systems encompass many phenomenathat can be described at many di�erent levels of detail. Hence, if a model is compre-hensive enough to provide an accurate answer to a wide variety of questions, it willbe unnecessarily detailed for any particular question. Consequently, for complexsystems, a modeler must consider multiple models, choosing the simplest adequatemodel for each question.This introduces three requirements for any modeling program intended tohandle complex systems:� The modeling program must be able to construct multiple, alternative modelsthat di�er in accuracy and simplicity.� The modeling programmust have criteria for determining whether a candidatemodel is adequate (e.g., su�ciently accurate) for answering a given question.� The modeling program must have criteria for determining whether one candi-date model is simpler than another.1.4 Types of Modeling AlternativesFor a given scenario, human modelers are able to construct multiple, alternativemodels that di�er in accuracy and simplicity. A modeling program must considerthe same types of modeling alternatives that humans do, for two reasons. First,the experience of scientists and engineers in many di�erent domains has proventheir methods useful for representing physical phenomena. Second, to ensure com-prehensible explanations, the elements of a model must match the concepts usedby scientists and engineers. Therefore, it is important to understand how humanmodelers tailor the model of a scenario to the question it must answer.To construct a model, human modelers �rst determine which physical phe-nomena in the scenario are relevant. Of the many phenomena governing any complexsystem (such as a plant), only a handful are relevant to any particular question. Forexample, of the many processes at work in a plant, the question about decreas-ing soil moisture only requires modeling the e�ects of the plant's water regulationprocesses. The e�ects of some processes can be ignored because they are insignif-icant. For instance, in the decreasing soil moisture example, metabolic processesand mineral transport processes can be ignored because they do not signi�cantly4



in
uence the variable of interest, transpiration rate. The e�ects of other processescan be treated as exogenous (i.e., causally upstream from the input variables in themodel). For example, although the processes that regulate soil moisture (e.g., rainand evaporation) do signi�cantly in
uence the transpiration rate of a plant, they arenonetheless irrelevant to predicting the e�ects of decreasing soil moisture on tran-spiration rate. By omitting insigni�cant and exogenous phenomena from a model,a modeler simpli�es it.For those phenomena the modeler chooses to represent in the model, manylevels of detail are possible. For example, water in the plant can be treated as anaggregate, or the water in the roots, stem and leaves can be modeled individually.Similarly, processes can be aggregated. For example, the chemical formula for pho-tosynthesis summarizes the net e�ects of its many component reactions. For aneven simpler level of detail, the dynamics of a process can be summarized by itsequilibrium results. For example, when the level of solutes in a plant cell changes,the process of osmosis adjusts the cell's water to a new equilibrium level. If the dy-namics of this process are irrelevant, the modeler can simply treat the level of wateras an instantaneous function of the level of solutes. These types of alternatives areuseful in many areas of science and engineering.Human modelers have many criteria for choosing among such alternatives.Our objective is not to develop new criteria for humans to use. Rather, our objectiveis to develop a computer program that can choose among these types of alternatives.Therefore, we must develop a representation for the modeling alternatives and for theknowledge that humans use to choose among them, and we must develop methodsthat use that knowledge to construct models.1.5 Compositional ModelingTo answer prediction questions in domains like plant physiology, a large collectionof models is needed. A complex system like a plant is governed by a large number ofphenomena, and many of these can be described at multiple levels of detail. Addi-tionally, di�erent species of plants are governed by somewhat di�erent phenomena.Any particular question could concern any aspects of any species of plant, so almostany combination of plant physiology phenomena and their levels of detail might berelevant. Thus, the requirements for this modeling task | to answer a wide range ofquestions about complex systems and to use the simplest possible model to answereach question | make it impractical to construct an adequate library of modelsahead of time.Instead of selecting from a library of complete models, it is more practical5



for a modeler to construct models from available pieces. The modeler uses domainknowledge to identify the physical phenomena that govern the scenario and to pro-vide multiple levels of detail at which these phenomena can be described. Themodeler determines which phenomena are relevant to the question and, for eachrelevant phenomenon, chooses from among the available levels of detail. Thus, thedomain knowledge provides the building blocks for models, and the modeler con-structs a model by composing relevant building blocks. This approach is calledcompositional modeling [25].3For instance, in the decreasing soil moisture example, the domain knowledgewould provide ways of describing all the phenomena governing the plant and soil,including the e�ects of metabolic processes, mineral transport processes, plant waterregulation processes, and soil moisture regulation processes. The modeler wouldrecognize that only the plant water regulation processes are relevant, and it wouldconstruct a model from the available descriptions of these relevant processes.For complex systems, the domain knowledge needed for compositional mod-eling is much easier to provide than a library of complete models. The domainknowledge must provide a set of domain phenomena, ways of modeling each sepa-rate phenomenon, and ways of identifying these phenomena in scenarios | exactlythe sort of information found in textbooks in plant physiology or any other area ofscience or engineering.However, compositional modeling raises three new issues for the modeler:� What should serve as the building blocks for models? Is an equation an ap-propriate building block, or are smaller or larger building blocks required?� How should the modeler use the domain knowledge? Should the modeleridentify all phenomena in the scenario before selecting relevant ones, or canthe two steps be more e�ciently interleaved?� How should the modeler search for the simplest adequate model? Should itbuild all possible models, prune the inadequate ones, and choose the simplestof those remaining? Or can the modeler interleave construction of candidatemodels and selection of the simplest adequate one?The following three sections summarize our approach to these three issues.3We use the term \compositional modeling" to refer to this basic approach, not the particularmethod developed by Falkenhainer and Forbus. 6



1.6 The Building Blocks: In
uencesIn the compositional modeling approach, a model is constructed from building blocksthat are provided by domain knowledge. However, the approach does not specifythe appropriate size of the building blocks. Since an ordinary di�erential equation(ode) model is a set of equations, it might seem natural for the domain knowledgeto provide individual equations as building blocks. To understand this issue, we�rst examine the relationship between the physical phenomena in a scenario andthe equations in a model of that scenario.Each equation in an ode model represents all the physical phenomena thatin
uence one particular variable in the model (or its rate of change). In a di�erentialequation, the phenomena are typically the e�ects of processes. For example, therate at which the amount of sugars in a plant's leaves changes equals the rate ofproduction by photosynthesis minus the rate of consumption by respiration minusthe rate of transport to other plant parts. In an algebraic equation, the phenomenaare typically the factors that control the rate of a process.4 For example, the rate of achemical reaction equals the product of the concentrations of its reactants. Similarly,the rate of acceleration of a body equals the sum of forces on that body divided byits mass (Newton's Law). Thus, each equation in an ode model is a composition ofindividual physical phenomena in the scenario, typically either e�ects of processesor factors controlling their rate.Before constructing an equation, a modeler must make two types of decisions.First, the modeler must decide which of these phenomena is signi�cant and whichcan be ignored. In the examples above, photosynthesis might be negligible on acloudy day, the e�ect of some reactants on the reaction rate may be negligible ifthey are available in abundance, and the e�ect of some forces (e.g., friction) mightbe negligible. Second, the modeler must choose a suitable level of detail for eachsigni�cant phenomenon. For example, the modeler could treat photosynthesis as anaggregate process, or it could decompose photosynthesis into its component darkreactions (which produce sugars) and light reactions (which convert light energy tochemical energy).Because the modeler must reason about individual phenomena, it is not ap-propriate for the domain knowledge to provide equations as the building blocks formodels. Of the phenomena in
uencing a variable, the modeler might choose anysubset as signi�cant, and each signi�cant phenomenon can generally be representedat multiple levels of detail. Therefore, there may be a variety of useful combina-4Often, the algebraic equations in an ode model are eliminated by substitution into the di�er-ential equations. In this discussion, we ignore such algebraic simpli�cations in order to highlightthe di�erent types of phenomena that are represented in an ode model.7



tions of these phenomena and their levels of detail, and hence a variety of possibleequations for the variable. Rather than provide each of these equations, the domainknowledge can simply provide the individual pieces from which an equation can bebuilt; each piece is an in
uence representing one phenomenon at one level of detail.An in
uence is a causal relation between two variables, as in QualitativeProcess Theory [28]. Each variable represents a property of the scenario (e.g., soilmoisture or the plant's transpiration rate). Each in
uence speci�es that a variable,or its rate of change, is a function of another variable. For example, each of thefollowing is an in
uence:� the rate at which the amount of sugars in a plant's leaves changes is a functionof the rate of production by photosynthesis (and perhaps other things).� the rate of photosynthesis (a chemical reaction) is a function of the amount ofcarbon dioxide (one of its reactants) in the leaves (and perhaps other things).� the rate of acceleration of a rocket at lift-o� is a function of the force of gravity(and perhaps other things).Each in
uence represents one of the physical phenomena a�ecting a variable,as emphasized by the quali�cation \and perhaps other things." To construct anequation, the modeler uses the domain knowledge to identify all the in
uences on agiven variable, it chooses those in
uences that represent signi�cant phenomena at anappropriate level of detail, and it composes the chosen in
uences into an equation.Additional domain knowledge is needed to compose in
uences into equations.Forbus [28] developed methods for composing in
uences into qualitative equations,given the sign of the partial derivative of each in
uence. Such qualitative models[19, 28, 52, 54, 72] are useful when quantitative details are unavailable (as is oftenthe case in plant physiology) or irrelevant (as is often the case in tutoring). Farquhar[26] extended the methods to construct quantitative equations, given knowledge ofwhether each in
uence is an additive term, a multiplicative term, or some othertype of term. While some modeling decisions arise at this step | determining theform of the equation | this dissertation focuses on the more important decisionsinvolved in choosing the in
uences that make up each equation.The methods described in this dissertation base their modeling decisions onthe in
uences among variables, but not on the quantitative details of the in
uences.Therefore, the methods are useful in building qualitative models as well as quantita-tive models. The issues that the methods address are important in constructing bothtypes of models. However, to date, the methods have only been used to constructqualitative models. 8
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uences. For instance, in the decreasing soil moistureexample, the modeler would infer in
uences representing the e�ects of metabolicprocesses, plant water regulation processes, soil moisture regulation processes, andmany others. As another example, a modeler might use general knowledge of chem-ical engineering and a speci�c question about a Dow Chemical factory in Houstonto infer the in
uences representing the factory's many processes.In the model construction task, the modeler uses the goals of the question(e.g., predict the plant's rate of transpiration) to select relevant in
uences, and itcomposes the in
uences into a model of the scenario. For instance, in the decreasingsoil moisture example, the modeler would choose in
uences representing plant waterregulation processes at an appropriate level of detail. Thus, scenario elaborationgenerates the building blocks for models, and model construction selects relevantbuilding blocks.In principle, scenario elaboration could be run to completion before modelconstruction begins. Conceptually, scenario elaboration would identify all phenom-9



ena governing the scenario and all the levels of detail at which they could be de-scribed. However, for complex systems (such as a plant), this full description wouldbe enormous, and generating it would take a long time. Not only are there an enor-mous number of phenomena governing a plant, but scenario elaboration might haveto infer all the unstated anatomical details of the plant in order to recognize thegoverning phenomena. From this extensive description, the modeler will select onlya tiny fraction to serve as the model. Moreover, typically only a small fraction ofthe full description is needed in order to choose that model. Therefore, exhaustivelyelaborating the scenario before making modeling decisions is both impractical andunnecessary.To address this issue, our modeling methods use demand-driven scenarioelaboration. That is, scenario elaboration only generates missing elements of thescenario description as they are needed. The modeler, in constructing its model ofthe scenario, requests information such as the in
uences on a speci�c variable. If thescenario description lacks the requested information, the modeler uses the domainknowledge to infer it, and the information is added to the scenario description. Thus,scenario elaboration and model construction are e�ciently interleaved, and scenarioelaboration only generates those elements of the scenario description needed formodel construction.1.8 Searching Through Partial ModelsGiven a question, a modeler must �nd the simplest model that can adequatelyanswer it. Conceptually, there are three steps: construct candidate models, �lterout those that are inadequate, and choose the simplest from the remaining models.However, this generate-and-test approach is impractical. For complex systems, thespace of models is too large to generate. A modeler needs an e�cient strategy forsearching through the space of models while explicitly considering only a fraction ofthe models.Our model construction algorithm achieves this goal by searching throughthe space of partial models. Starting from an initially empty model, the algorithmrepeatedly identi�es relevant aspects of the scenario not yet included in the model.The domain knowledge provides the possible ways of extending the model to remedyeach omission. The algorithm extends the model in each possible way, resultingin new partial models, and the process is repeated. Conceptually, this algorithmconstructs a tree of partial models; each child is an extension of its parent.The key to this approach is the ability to eliminate partial models from fur-ther consideration. By pruning a partial model at an early stage, the algorithm10



prunes a large chunk from the space of possible models (i.e., all the model's futuredescendants in the tree). Our algorithm uses adequacy criteria to recognize partialmodels that cannot be extended into an adequate model of the scenario, and itprunes them. Furthermore, by extending simpler partial models before more com-plex ones, the algorithm �nds the simplest adequate model without ever trying toremedy the omissions in many of the partial models under construction. Chapter 6describes the algorithm in detail and proves that it always returns a simplest ade-quate model for a question when one exists, and the empirical evaluation describedin Chapter 9 indicates that it does so e�ciently.1.9 Related WorkThis dissertation builds on important previous work in compositional modeling. Ourresearch was particularly in
uenced by the earlier work of Forbus [28] and Falken-hainer and Forbus [25]. Forbus's Qualitative Process (QP) Theory uses in
uences asthe building blocks for models, and it shows how in
uences can be generated fromdomain knowledge. However, it does not provide methods for identifying relevantin
uences; in QP Theory, the complete scenario description is the model. Falken-hainer and Forbus extended the ideas in QP Theory to handle complex scenariodescriptions containing multiple levels of detail. Their methods address the task ofconstructing the simplest adequate model for answering a question. The objectivesof our research are also similar to more recent work that has progressed concurrentlywith our own, especially the work of Nayak [65] and Iwasaki and Levy [43].Each of these pieces of related work, and many others, addresses a variety ofissues. No single description of each previous modeling program can adequately de-scribe the many similarities and di�erences between that program and ours. There-fore, discussions of these programs are spread throughout the dissertation, organizedaround individual issues.In addition to previous work in automated modeling, our research has beenguided by the practices of human modelers in biology, ecology, economics, and engi-neering. While human modelers rarely o�er operational advice for automating theirtask, their textbooks (e.g., [4, 14, 31, 34, 45, 49, 59, 75, 76]) and journal articles(e.g., [32, 38, 39, 40, 50, 69, 78, 79, 82]) often reveal the modeling alternatives theyconsider and the criteria for their choices.11



1.10 Summary of Contributions and ResultsOur research provides three types of contributions. First, we formulated declarativecriteria that specify when a model is adequate for answering a prediction questionand when one model is simpler than another. Second, we designed algorithms forconstructing the simplest adequate model for a given question. Finally, we imple-mented these algorithms in a modeling program called tripel,5 and we evaluatedthe program, the algorithms, and the criteria in the plant physiology domain.The evaluation is especially signi�cant for three reasons. First, the domainknowledge was independently developed by a domain expert. Second, the domainknowledge was designed to support a wide range of tasks besides prediction; itconsists of fundamental textbook knowledge. Finally, the domain knowledge isextensive; it describes 700 plant properties and 1500 in
uences among them. Thesethree factors make the evaluation far more ambitious than any previous evaluationof an automated modeling program.To evaluate our contributions, we tested tripel on plant physiology ques-tions constructed by the domain expert. For each question, the expert assessedthe model tripel constructed. In addition, we evaluated the e�ciency with whichtripel constructed the models and the importance of key components in tripel.The results indicate that tripel is already an e�ective modeling program; it typ-ically constructs simple, adequate models, and it does so e�ciently. Furthermore,our experiments show that several key components of tripel play an importantrole in its success. Finally, the results suggest several natural extensions to tripelthat would remedy its limitations.The following list highlights the important features of tripel and the criteriaand algorithms that underlie it:� tripel uses a novel representation to encode the phenomena governing a sce-nario at multiple levels of detail. The dissertation illustrates how the represen-tation naturally supports a variety of types of abstractions and approximationsthat human modelers use throughout science and engineering. Our evaluationindicates that the representation is natural and e�ective for the plant physi-ology domain.� tripel uses demand-driven scenario elaboration to control the use of domainknowledge. This often obviates the need to generate many scenario in
uences.� In addition to choosing a level of detail that is adequate for answering a given5The name tripel is an acronym for \Tailoring Relevant In
uences for Predictive and Explana-tory Leverage." It is also a style of strong ale made by Trappist Monks in Belgium.12



question, tripel is sensitive to the user's level of knowledge and the desiredlevel of detail. When considering a decision on level of detail, it checks for in-formation indicating that a candidate level is inappropriate for the user. Suchinformation could be provided on demand from a user model, a pedagogicalplan, or the discourse context.� tripel can exploit a time scale of interest. The question can specify a timescale on which the predictions should be made (e.g., seconds, hours, days), andtripel uses this time scale to simplify the model. Speci�cally, a time scale ofinterest allows tripel to recognize and eliminate insigni�cant phenomena andto use simple, quasi-static representations of some phenomena. Furthermore,tripel includes a novel method for determining an appropriate time scale ofinterest when none is speci�ed. Empirical results show that many irrelevantdetails are eliminated from models by exploiting the time scale of interest.� tripel uses novel criteria and methods to choose exogenous variables, e�ec-tively eliminating exogenous phenomena from the model. Empirical resultsshow that these criteria and methods are e�ective in eliminating irrelevantphenomena while ensuring an adequate model.� tripel uses a novel, best-�rst search algorithm for constructing the simplestmodel that is adequate for answering a given question, as discussed brie
yin Section 1.8 and in more detail in Chapter 6. The algorithm is guaranteedto return a simplest adequate model when one exists, and empirical resultsindicate that it does so e�ciently.� tripel bases its modeling decisions on the in
uences among properties of ascenario, but not on the quantitative details of the in
uences. Therefore, itsmethods are useful in building qualitative models [19, 28, 52, 54, 72] as well asquantitative models. Qualitative models are useful when quantitative detailsare unavailable (as is often the case in plant physiology) or irrelevant (as isoften the case in tutoring). tripel has been used to construct qualitativemodels, which it passes automatically to the Qualitative Process Compiler(qpc) [27], a qualitative simulation program. From tripel's model, qpcgenerates the desired predictions.1.11 Reader's GuideThe remainder of the dissertation is organized as follows:13



� Chapter 2 describes the representation language tripel uses to describe sce-narios. A description of the scenario plays a central role in answering a pre-diction question: the question provides a partial description, the modeler usesdomain knowledge to elaborate that description, and the modeler constructsa model from relevant elements of the elaborated description.� Chapter 3 speci�es the elements of a prediction question.� Chapter 4 discusses demand-driven scenario elaboration, including the typesof information it contributes to the scenario description, the types of domainknowledge needed, and the required inference methods. We show that a stan-dard backward-chaining inference engine [12], coupled with the types of knowl-edge introduced in Qualitative Process Theory [28], is su�cient. The ideas inthis chapter are not a primary contribution of our research; the chapter simplyshows that the input required for the algorithms in the remaining chapters canbe generated e�ciently.� While Chapters 3 and 4 de�ne the inputs for model construction, Chapter 5de�nes the output, a simplest adequate model of a scenario. This chapterde�nes a model and speci�es the declarative criteria that determine whethera model is adequate and when one model is simpler than another.� Chapter 6 presents the algorithm for constructing a simplest adequate modelfor answering a given prediction question. This algorithm e�ciently searchesthrough the space of partial models. After presenting the algorithm, we proveits correctness: the algorithm is guaranteed to return a simplest adequatemodel, as de�ned in Chapter 5.� The algorithm for constructing a simplest adequate model has a subroutinethat decides when a variable in a model can be treated as exogenous. Chap-ter 7 describes the relevant issues and provides an algorithm for making thisdecision.� Chapter 8 provides an algorithm for automatically choosing an appropriatetime scale of interest for a prediction question. A time scale of interest is animportant source of power for a modeler, and the person posing a predictionquestion cannot always provide it, so this algorithm is an important componentof any modeling program for answering prediction questions.� Chapter 9 discusses an empirical evaluation of tripel in the domain of plantphysiology. The chapter discusses the details of the evaluation as well as theresults. The results address the quality of the models tripel constructs to14



answer questions, the e�ciency with which it constructs a model for eachquestion, and the importance of several key components of tripel.� Chapter 10 discusses areas for future work. The chapter discusses limitationsof tripel, it shows how tripel could incorporate ideas from related research,and it suggests short-term and long-term extensions. The chapter closes bydiscussing how tripel could be extended to answer questions other than pre-diction questions.� Finally, Chapter 11 summarizes the dissertation.Although some of tripel's limitations are discussed in earlier chapters, mostare postponed until Chapters 9 and 10. This places the limitations in the broadercontext of tripel's overall performance and the proposed extensions.1.12 Typographic ConventionsThis dissertation uses a few simple typographic conventions to aid the reader. Whena new term is introduced informally, it appears in italics (e.g., widget). When a for-mal term is de�ned, it appears in bold face (e.g., widget). Finally, variables, func-tions and relations used in algorithms appear in sans serif when they are mentionedin prose (e.g., relation).
15



Chapter 2Describing ScenariosA description of the scenario plays an important role in answering a prediction ques-tion. The question provides a partial description (e.g., a plant whose soil moistureis decreasing). The modeler uses domain knowledge to elaborate that description(e.g., to specify the in
uences governing the plant). From the elaborated descrip-tion, the modeler chooses relevant elements (e.g., the in
uences representing plantwater regulation processes) and composes them into a model of the scenario. Thelanguage for describing scenarios is an important part of any program that answersprediction questions.This chapter presents tripel's language for describing scenarios. The lan-guage combines elements from previous scenario description languages, and it alsointroduces some novel extensions. Subsequent chapters describe how this languageis used to pose a prediction question, elaborate a partial scenario description, andconstruct a scenario model. The concepts introduced here are required for thosechapters.2.1 Scenario Variables: Properties of EntitiesScientists and engineers use variables to represent dynamic properties of physicalsystems. Each variable in an ode model denotes a real-valued, continuous functionof time. Examples include the amount of water in a plant and the rate of transpi-ration. To provide the elements from which models can be constructed, a scenariodescription must include such variables.A variable in a scenario description is a scenario variable. To represent itsmeaning, the scenario description speci�es each scenario variable as a property ofsome conceptual entity in the scenario. For instance, the following types of propertiesand entities are useful in many areas of science and engineering:16



� A space is an entity. A plant is a simple example of a space. However, a spaceneed not be spatially continuous; the collection of leaves of a plant can alsobe treated as a space. Similarly, the stomates of a plant (i.e., the pores inits leaves) can be treated as a space. Examples of properties that apply tospaces include volume and cross-sectional area (an important property of thestomates, which serve as a conduit for water vapor and other gases).� A pool is an entity. A pool consists of the substance or energy of a particulartype in a particular space. Examples of pools include the glucose in a plant,the heat in its leaves, and the water in its roots. Examples of properties thatapply to pools include amount and concentration.� A process is an entity. A process is a mechanism of continuous change. Ex-amples include photosynthesis, osmosis, and growth. The state of a process isrepresented by its rate property.Entities, properties and variables in tripel's scenario description languageare written as ground terms in Predicate Calculus [33]. For example, photosyn-thesis in a plant, which is an entity, can be written as photosynthesis(plant). Therate of photosynthesis in a plant, which is a scenario variable, can be written asrate(photosynthesis(plant)). Similarly, the amount of water in a plant, another sce-nario variable, can be written as amount(pool(water, plant)), where pool is a functionthat maps a type of substance and a space to the corresponding pool. In this repre-sentation, a property (e.g., amount) is a function that maps an entity to a real-valued,continuous function of time (i.e., a scenario variable).2.2 Relations Among Entities: Entity EncapsulationOften, the entities in a scenario can be described at multiple levels of detail. Oneentity may represent an aggregation of other entities, summarizing their propertieswhile encapsulating their details. For example, the water in a plant could be treatedas an aggregate pool, or the water in the roots, stem and leaves could be treatedindividually. Analogously, photosynthesis summarizes the net e�ects of many chem-ical reactions. Similarly, in engineering, a system component is often treated as ablack box even though it is constructed from other components. These are all exam-ples of entity encapsulation, which is ubiquitous in science and engineering becauseit allows scientists and engineers to create abstract descriptions that hide irrelevantdetails.A full description of a scenario may include entities at multiple levels of de-tail, as in the examples above. In order to choose a suitable level of detail and17



ensure a coherent model, a modeler must understand the relationships among en-tities in the scenario description. Encapsulation relationships among entities arerepresented with the encapsulates relation. The pair (E1, E2) is an element ofthis relation if and only if the entity E1 encapsulates the entity E2. For example,encapsulates(pool(water, plant), pool(water, leaves(plant))) speci�es that the pool ofwater in the plant encapsulates the pool of water in the leaves; that is, these poolsare alternative levels of description. Of course, the pool of water in the plant alsoencapsulates the water in the stems and roots; each such relationship is a separatepair within the relation. The encapsulates relation is an ordering relation like <; itis irre
exive (no entity encapsulates itself), asymmetric (no two entities encapsulateeach other), and transitive (if E1 encapsulates E2 and E2 encapsulates E3 then E1encapsulates E3).For example, for pools and processes, the encapsulates relation could be de-�ned as follows:� A pool encapsulates its subpools and internal transport processes. A subpool isa pool consisting of a subset of the aggregate pool's contents. The aggregatepool might be decomposed based on taxonomic distinctions in its substancetype (e.g., glucose in the plant is a subpool of carbohydrates in the plant) aswell as by partonomic distinctions (e.g., glucose in the leaves is a subpool ofglucose in the plant). An internal transport process for a pool is a processthat transports substance from one subpool to another, with no net loss orgain in the pool. For instance, phloem sap distribution transports sucrose in aplant from the photosynthesizing leaves to fruits and other parts of the plantthat cannot produce sugars; this process is an internal transport process of thepool of sucrose in the plant. Thus, an aggregate pool encapsulates the detailsof its subpools and the processes that shift its contents among them.� Analogously, a process encapsulates its subprocesses and internal pools. Forexample, photosynthesis is actually an aggregate process representing the nete�ects of two subprocesses, the light reactions and dark reactions, and each ofthose is an aggregation of many other chemical reactions. A process's internalpools are those pools in
uenced by its subprocesses but not included in theprocess's net e�ects. For example, the net e�ect of photosynthesis is to convertcarbon dioxide, water and light into sugar and oxygen, but, in accomplishingthis conversion, it alternately produces and consumes from an internal pool ofphosphates in the leaves. Thus, an aggregate process encapsulates the detailsof its subprocesses and the internal pools they manipulate.Note that the encapsulates relation represents relationships among alternative18



levels of description, not spatial relationships. The relation is useful whenever anentity can be described as a black box or, alternatively, through its components.While spatial relations might form the basis of some such relationships (as withpools and subpools), this need not be the case (as with processes and subprocesses).In summary, when the scenario description includes multiple levels of detail,it must also represent the relationships among levels. Entity encapsulation is oneimportant way of creating multiple levels of detail, and the encapsulates relationde�nes the relationship among such levels. A modeler needs such information tochoose a suitable level of detail for describing the scenario and to ensure a coherent,comprehensible model.2.3 Behavioral ConditionsA prediction question poses hypothetical conditions and asks for the resulting be-havior of certain variables of interest. Often, the hypothetical conditions are statedin terms of scenario variables. There were several examples in the last chapter:\decreasing soil moisture," \increasing fan speed," and \decreasing insulin level."Scenario conditions that are stated in terms of scenario variables are called behavioralconditions.In prediction, there are two important types of behavioral conditions. First,a question may specify the initial state of certain variables. For example, the tem-perature may be below freezing, or the level of soil moisture may be at the saturationpoint. Second, a question may specify the behavior of certain variables. \Decreasingsoil moisture" is an example. For any scenario variable, the scenario description canspecify its initial state, its behavior, or both.The initial state of a variable is speci�ed as an (in)equality (i.e., equalityor inequality statement) comparing the variable or its �rst derivative to anothervariable or constant. For example, the initial temperature of a plant could be spec-i�ed precisely as temperature(plant) = 67�F or less precisely as temperature(plant)> 32�F or temperature(plant) > temperature(soil). Its initial rate of change couldsimilarly be speci�ed (using the di�erential operator D) as D(temperature(plant)) =zero (thermal equilibrium) or D(temperature(plant)) > zero (the plant is warmingup). The behavior of a variable describes its state throughout the scenario. Ascenario is not a static situation; it has temporal extent. For example, recall thequestion \How would decreasing soil moisture a�ect a plant's transpiration rate?"This question asks for the rate of transpiration over a period of time in which soilmoisture is decreasing. The language for specifying the initial state of a variable19



can also be used to specify its behavior. For example, as a speci�cation of behavior,D(amount(pool(water, soil))) < zero says that soil moisture is decreasing throughoutthe scenario. Our implementation also allows a behavior to be described as increas-ing or decreasing to a new equilibrium value (i.e., increasing or decreasing for anunspeci�ed amount of time and constant thereafter). Although not implemented,the scenario description language could allow behaviors to be speci�ed as arbitraryfunctions (e.g., a sine wave).2.4 Structural ConditionsSome scenario conditions cannot be stated in terms of scenario variables. Examplesinclude the existence of individuals like a plant and its soil, the species of plant,partonomic relations (e.g., a plant's parts include its roots, stem and leaves), andsome spatial relations (e.g., the plant's roots are surrounded by soil). Any scenariocondition that cannot be stated in terms of scenario variables is a structural con-dition. A structural condition is stated as a ground, atomic formula in PredicateCalculus [33]. For example, the formula Surrounded-by(roots,soil) represents the factthat the roots are surrounded by soil.Our work focuses on ode models. ode models predict scenario changes interms of scenario variables. For this reason, we assume that structural conditionsremain constant throughout the scenario (e.g., the roots do not get pulled out ofthe soil). Structural conditions encode those scenario facts for which the domainknowledge lacks a theory of dynamics.Our assumption that structural conditions remain constant is a matter ofconvenience, not necessity. The assumption simpli�es presentation and implemen-tation of the key ideas in our research. However, other alternatives are possible. Forinstance, Qualitative Process Theory [28] allows changes in structural conditionsto result from changes in behavioral conditions. Section 10.2.4 shows how tripelcould be extended to support such a representation.2.5 In
uencesAs discussed in Chapter 1, the phenomena governing a scenario are represented asin
uences, which serve as the building blocks for models. An in
uence is a causally-directed relation among two scenario variables, the in
uencer and the in
uencee.There are two types of in
uences: di�erential and functional.A di�erential in
uence speci�es that the rate of change (�rst derivative) ofthe in
uencee is a function of the in
uencer (and perhaps other variables). Typically,20



di�erential in
uences represent the e�ects of processes. For example, the process ofwater uptake transports water into the roots of a plant; thus, the amount of waterin the roots is di�erentially in
uenced by the rate of water uptake. Of course, avariable may be di�erentially in
uenced by more than one process; for example, theamount of water in the roots is also di�erentially in
uenced by the rate at whichwater is transported from the roots to the leaves. When the di�erential in
uenceson a variable are combined to form an equation, the result is a �rst-order di�erentialequation. A di�erential in
uence is written as V1 ) V2, where the variable V1 isthe in
uencer and the variable V2 is the in
uencee.In contrast, a functional in
uence speci�es that the in
uencee (rather thanits �rst derivative) is a function of the in
uencer (and perhaps other variables).As with di�erential in
uences, there may be multiple functional in
uences on avariable. When combined to form an equation, they result in an algebraic equation.A functional in
uence is written as V1! V2, where the variable V1 is the in
uencerand the variable V2 is the in
uencee.Typically, functional in
uences represent one of three types of phenomena.First, they are used to represent the factors that a�ect the rate of a process. Forexample, the rate of photosynthesis is functionally in
uenced by the amount of car-bon dioxide (one of its reactants) in the leaves. Second, they are used to representde�nitional relations. For example, concentration is de�ned as amount per unitvolume, so the concentration of sucrose in tree sap is functionally in
uenced by theamount of sucrose in the sap and by the volume occupied by the sap. Finally, afunctional in
uence may represent a quasi-static approximation. For example, whenthe level of solutes in a plant cell changes, the process of osmosis adjusts the cell'swater to a new equilibrium level. If the dynamics of this process are irrelevant,the modeler can simply treat the level of water as an instantaneous function of thelevel of solutes, and this functional dependence can be represented with a functionalin
uence. Quasi-static approximations are important in many branches of scienceand engineering [14, 46, 77, 78, 80, 82]. In fact, several branches of engineering,notably circuit theory and equilibrium thermodynamics, rest on such approxima-tions [13, 83]. A functional in
uence that represents a quasi-static approximation iscalled an equilibrium in
uence.An equilibrium in
uence summarizes the net e�ect of some set of processes onthe equilibrium state of the in
uencee. When the scenario description includes boththe equilibrium in
uence and the underlying processes, the relationship betweenthese two levels of detail must also be represented. To represent this relationship, anequilibrium in
uence can be associated with an aggregate process that encapsulatesthe underlying pools and processes that restore equilibrium. By representing the21



relationship between the two levels of detail, a modeler can choose a suitable leveland ensure that the model does not mix the two levels.2.6 Attributes of In
uencesAn in
uence represents some phenomenon at some level of detail. In addition tothe in
uencer, in
uencee, and type (i.e., di�erential or functional) of an in
uence,a modeler must know three other things: when the phenomenon is active, when thephenomenon is signi�cant, and when the in
uence is a valid approximation of thephenomenon. The following three sections discuss these attributes of in
uences.2.6.1 Activity PreconditionsSometimes one variable in
uences another only under certain behavioral conditions.For example, the amount of carbon dioxide in the leaves in
uences the rate ofphotosynthesis only if the amount of light energy in the leaves is greater than zero.The activity preconditions of an in
uence specify the behavioral conditions underwhich it is active.The activity preconditions of an in
uence are a (possibly empty) conjunc-tive set of behavioral conditions. At a given time in the scenario, an in
uence isactive if and only if each of its activity preconditions is satis�ed. (Hence, if it hasno activity preconditions, it is always active.)2.6.2 Signi�cance PreconditionsSometimes the e�ects of an in
uence are insigni�cant for purposes of answering aquestion. A model can often be greatly simpli�ed when insigni�cant in
uences arerecognized and omitted. While human modelers use many criteria to determinethe signi�cance of in
uences, knowledge of the time scale of di�erent processes isparticularly important.Processes cause signi�cant change on widely disparate time scales [4, 36, 68,76, 80]. For example, in a plant, water 
ows through membranes on a time scale ofseconds, solutes 
ow through membranes on a time scale of minutes, growth requireshours or days, and surrounding ecological processes may occur on a time scale ofmonths or years. Given the time scale of interest for a question, any in
uence thatcauses signi�cant change only on a slower time scale is insigni�cant. For example,to answer the question concerning the e�ect of decreasing soil moisture on a plant'stranspiration rate, a time scale of hours is most appropriate; since the e�ects of22



growth are signi�cant only on a time scale of days or longer, they are insigni�cantfor purposes of answering the question.To represent such knowledge, the signi�cance preconditions of an in-
uence are encoded as a time scale condition. A time scale condition is an(in)equality relating the time scale of interest and a speci�c time scale. For exam-ple, for an in
uence representing the e�ect of growth on the size of a plant, thesigni�cance preconditions would be encoded as the time scale condition time-scale-of-interest � days. An in
uence is signi�cant for purposes of answering a givenquestion if and only if the question's time scale of interest satis�es the time scalecondition in the in
uence's signi�cance preconditions.Typically, a di�erential in
uence represents an e�ect of a process, so its sig-ni�cance preconditions should specify the fastest time scale on which the e�ect issigni�cant, as in the growth example above. If the signi�cance preconditions of a dif-ferential in
uence are empty, the modeler must treat the in
uence as signi�cant forany question. Functional in
uences, being instantaneous, are signi�cant regardlessof the time scale of interest, so their signi�cance preconditions are always empty.In addition to biological and ecological domains, this type of time scale knowl-edge appears useful in engineering domains as well. Kokotovic, O'Malley, and San-nuti [50] and Saksena, O'Reilly, and Kokotovic [78] survey hundreds of applications,in many di�erent engineering �elds, in which models are simpli�ed using knowledgeof the disparate time scales of processes.2.6.3 Validity PreconditionsMany in
uences are approximations of the phenomena they represent, and theseapproximations typically have a limited range of validity. The validity preconditionsof an in
uence specify the conditions under which the in
uence is a valid modelof the phenomenon it represents. Contrast validity preconditions with activity andsigni�cance preconditions. The latter specify when a phenomenon is inactive orinsigni�cant, and hence need not be modeled at all. Validity preconditions, on theother hand, specify when one particular in
uence is an invalid approximation of itsphenomenon, but they don't obviate the need to model that phenomenon.As with signi�cance preconditions, human modelers use many criteria to as-sess the validity of in
uences, but the time scale of interest is particularly important.Therefore, the validity preconditions of an in
uence are encoded as a time scalecondition. Such a precondition might arise from cases like the following:� The behavior of an aggregate pool is often used as an approximation to thebehavior of one of its subpools. For example, the rate of photosynthesis isfunctionally in
uenced by the concentration of carbon dioxide in the mesophyll23



cells of the leaves. As an approximation, a modeler might say that the rateof photosynthesis is functionally in
uenced by the concentration of carbondioxide in the leaves. Such an approximation is reasonable when the subpoolsequilibrate on a time scale much faster than the time scale of interest [45, 82].For example, suppose that di�usion of carbon dioxide throughout the leavesachieves a uniform concentration on a time scale of minutes. Then, on a timescale of minutes or longer, the overall concentration of carbon dioxide in theleaves is approximately the same as the concentration in the mesophyll cells.Thus, the in
uence of carbon dioxide in the leaves on the rate of photosynthesisis a valid approximation to the true in
uence if the time scale of interest isminutes or longer.� An equilibrium in
uence is typically valid only if the underlying processesreach equilibrium on a time scale at least as fast as the time scale of interest.For example, when the level of solutes in a plant cell changes, the process ofosmosis adjusts the cell's water to a new equilibrium level. On a time scaleof minutes or longer, this process can be treated as instantaneous. Therefore,the equilibrium in
uence of solute level on water level is valid on a time scaleof minutes or longer.2.7 Relations Among In
uences: ExplanationA full description of a scenario may include multiple levels of detail. Section 2.2discussed how entities can be described at multiple levels of detail, and it showedhow the encapsulates relation represents the relationships among such levels. Simi-larly, since each in
uence in a scenario description represents a phenomenon in thescenario, di�erent in
uences may represent the same phenomenon at di�erent levelsof detail.To choose a suitable set of in
uences on a variable in a model, a modeler mustunderstand the relationships among all the in
uences in the scenario description onthat variable. Speci�cally, the modeler must determine which of them representindependent phenomena and which represent di�erent levels of detail for the samephenomenon.In
uences on a given scenario variable represent alternative levels of detailin cases like the following:� The in
uence of an aggregate process on a pool represents the aggregate e�ectof its subprocesses on that pool. For example, the in
uence of photosynthesison water in the leaves is due to the in
uence of one of its subprocesses, the24



light reactions, on water in the leaves. In turn, the in
uence of the lightreactions represents the aggregate e�ect of two of its subprocesses: the Hillreaction, in which light energy is used to split water molecules into hydrogenand oxygen, and photophosphorylation, in which light energy is converted tochemical energy and water. Thus, the in
uence of photosynthesis on water inthe leaves is explained by the in
uence of the light reactions, which is explainedby the in
uence of the Hill reaction and the in
uence of photophosphorylation.� The in
uence of an aggregate pool on a process represents the aggregate e�ectof its subpools on that process. For example, in many plants, the in
uence ofcarbon dioxide in the leaves on photosynthesis is due to the in
uences of twosubpools: the mesophyll cells and the bundle sheath cells.To generalize these cases, tripel's scenario language allows one in
uence tobe explained by other in
uences. The explanation for an in
uence, if it has one,relates it to other in
uences of the same type (i.e., di�erential or functional) thathave the same in
uencee. Speci�cally, the in
uence being explained represents thecollective e�ect on the in
uencee of the in
uences that explain it, and the in
uencesthat constitute the explanation fully explain the aggregate in
uence. In short, thein
uence being explained and the in
uences in its explanation represent the sameunderlying phenomena at di�erent levels of detail.The relationship between an in
uence and the in
uences that explain it isrepresented by the explanation relation. The pair (i1,i2) is an element of thisrelation if and only if in
uence i2 is an element of the set of in
uences that explainin
uence i1. The explanation relation is irre
exive and asymmetric. The transitiveclosure of the explanation relation is the explanation* relation, which provides anordering among in
uences.The explanation relation represents the relationships among in
uences of thesame type having the same in
uencee. While there may be similar relationshipsamong in
uences with di�erent types or in
uencees, tripel's modeling criteria andalgorithms do not require a representation of these relationships. The explanationrelation captures those relationships among in
uences that are relevant to tripel.2.8 Related WorkForbus's Qualitative Process (QP) Theory [28] provides the basis for our scenariodescription language. In QP Theory, scenario variables are called \quantities," andquantities are properties of entities. Di�erential in
uences are called \direct in-
uences" and functional in
uences are called \indirect in
uences." The activity25



preconditions of in
uences are called \quantity conditions." Our structural and be-havioral conditions also have close counterparts in QP Theory. However, becauseQP Theory was not designed to represent modeling alternatives, it does not in-clude a representation for signi�cance preconditions, encapsulation or explanationrelationships, or validity preconditions.Several researchers have addressed the issue of representing modeling alter-natives in a compositional modeling framework. For instance, entities in Zeigler's\system entity structure" [89] represent systems, and each entity can be decomposed(possibly in multiple ways, called \aspects") into other entities that represent itscomponents. Each entity has associated variables as well as models that describethe behavior of the variables.Our scenario description language was most in
uenced by the compositionalmodeling framework of Falkenhainer and Forbus [25], which combines and extendsideas from Forbus's QP Theory and Zeigler's system entity structure. Entities rep-resent systems, and each entity can be decomposed into component entities. \Modelfragments," the building blocks for models, pertain to entities or speci�c con�gura-tions of multiple entities; model fragments provide individual in
uences or completeequations for variables that represent properties of the entities. To allow di�erentmodel fragments to specify di�erent modeling alternatives, each model fragmenthas associated \assumptions," symbolic labels that characterize the phenomena itrepresents and its level of detail. To represent the relationships among model frag-ments, assumptions are organized into \assumption classes"; the assumptions in anassumption class represent mutually incompatible modeling alternatives for an en-tity or phenomenon. Several researchers [43, 65] de�ne interesting variants of thiscompositional modeling framework, but the basic ideas are widely used.While our early work adopted the representation introduced by Falkenhainerand Forbus, our representation gradually evolved into its current form for severalreasons. First, we chose to use individual in
uences as model fragments in orderto focus the modeler's reasoning at the level of individual phenomena. In
uencesserve a similar role in a variety of areas of science and engineering [10, 31, 55,72, 75]. Second, we chose to representationally distinguish activity preconditions,signi�cance preconditions, and validity preconditions, since each plays a distinct rolein our modeling algorithms. Third, the explanation relation among in
uences, whichplays an important role in our modeling algorithms, is awkward to represent usingassumptions and assumption classes.Still, on top of these extensions, we could allow in
uences to be tagged withassumptions, and we could allow assumption classes and rules to specify relationshipsamong these assumptions. However, from carefully studying the types of knowledge26



that researchers encode using assumptions, we believe that this use of assumptionswould not provide any important generality over our current representation. Manysuch types of knowledge, such as the relationships among alternative levels of detail,can be su�ciently encoded in our representation. Other types of knowledge, suchas the conditions under which an assumption class is relevant to a question, areunnecessary because our modeling algorithms have su�cient criteria for makingsuch decisions. Thus, although our modeling algorithms could exploit assumptionsand assumption classes with little modi�cation, we chose to avoid these featuresuntil their utility is clearly demonstrated.Throughout areas of science and engineering, time scale is used to determinesigni�cance of phenomena and validity of approximations. Yet few researchers inautomated modeling have exploited knowledge of time scales. Kuipers [53] showsthe utility of decomposing models by time scale, and he provides a simulation al-gorithm for coupling such models, but a human modeler is required to use theirknowledge of time scales to decompose the models. The modeling algorithm devel-oped by Yip [47] can be viewed as removing insigni�cant in
uences based on givenscale parameters, including the length, time, and velocity scales of interest. TheExtended Adiabatic Elimination method of Dieckmann and Williams [20] simpli�esa set of di�erential equations by using quasi-static approximations wherever possi-ble. Iwasaki [42] presents an approach to using time scale that is closest to ours;her modeling algorithm determines the time scale on which each scenario processoperates, and it ignores those that are slower than the time scale of interest whiletreating those that are faster as instantaneous.2.9 Summarytripel's scenario description language allows several important types of informationto be speci�ed. Scenario variables represent the dynamic properties of entities in thescenario. Behavioral conditions represent the initial state and behavior of variables.Structural conditions represent static properties of the scenario. In
uences representthe phenomena that govern the scenario. Activity preconditions specify when thesephenomena are active, signi�cance preconditions specify when they are signi�cant,and validity preconditions specify when an in
uence is a valid approximation ofthe phenomenon it represents. These types of information are all important inconstructing an adequate model of a scenario and in using that model to makepredictions.Additionally, the language allows a scenario to be described at multiple levelsof detail. In particular, some entities may encapsulate other entities, summarizing27



their properties while hiding their details. Similarly, one in
uence may represent thenet e�ect of several other in
uences. To ensure a coherent, comprehensible modelthat captures all relevant aspects of the scenario, a modeler needs to understand therelationships among di�erent levels of detail. For this purpose, the encapsulates rela-tion represents relationships among entities, and the explanation relation representsrelationships among in
uences.
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Chapter 3Causal Prediction QuestionsOur research addresses the task of automatically constructing models for answeringprediction questions. Informally, a prediction question poses a hypothetical scenarioand asks for the resulting behavior of particular variables of interest. More formally,there are two components of a prediction question: the scenario and the goals.3.1 ScenarioA prediction question provides a partial description of a scenario, expressed in thelanguage introduced in Chapter 2. Speci�cally, a prediction question speci�es struc-tural and behavioral conditions. As illustrated in Figure 3.1, the behavioral con-ditions speci�ed in a question can include initial conditions, behaviors of selectedvariables, or both. Additional elements of the scenario description, such as in
u-ences and unstated structural conditions, are added during scenario elaboration,which is the subject of Chapter 4.Behavioral conditions speci�ed in a prediction question are special, becausethe person posing the question is interested in the e�ect of these conditions on thevariables of interest. Therefore, we will refer to such conditions as driving conditions,and the scenario variables appearing in the driving conditions will be called drivingvariables.3.2 GoalsWhile the scenario speci�es the situation to be modeled, goals are needed to de-termine which aspects of the scenario are relevant. Di�erent types of questions aredistinguished by di�erent types of goals. The following sections describe the typesof goals that arise in prediction questions.29



Structural ConditionsPlant(plant1) hypothetical plantSoil(soil1) hypothetical soilHas-Part(plant1, roots1) the plant has rootsSurrounded-by(roots1, soil1) the roots are surrounded by the soilInitial conditionstemperature(plant1) > 32�F plant temperature is above freezingBehaviorsD(amount(pool(water,soil1))) < zero soil moisture is decreasingFigure 3.1: An example of a scenario description provided by a question.3.2.1 Variables of InterestThe primary goal in a prediction question is to predict the behavior of speci�edvariables of interest. This goal provides the necessary focus for modeling, enablinga distinction between relevant and irrelevant aspects of the scenario. For this reason,we require a prediction question to include at least one variable of interest.Furthermore, our research focuses on causal prediction questions, in whichthe person posing the question wants to know the causal e�ect of the driving condi-tions on the variables of interest. For example, the question \How would decreasingsoil moisture a�ect a plant's transpiration rate?" asks for the causal e�ect of de-creasing soil moisture on the rate of transpiration. In contrast, consider the question\What is the rate of in
ow into a bathtub if the level of water remains constantand the rate of out
ow is �ve gallons per minute?" This question has the basicelements of a prediction question | structural conditions, behavioral conditions,and a variable of interest | but it is not a causal prediction question. The rateof out
ow and the level of water do not cause the behavior of the in
ow rate (atleast not in my tub). Because our research addresses causal prediction questions,we require the question to include at least one driving condition.There are two reasons for focusing on causal prediction questions. First,many prediction questions in science and engineering are causal ones. Second,causality provides important guidance in modeling, as will be shown later. Through-out this dissertation, \question" and \prediction question" are merely shorthandsfor \causal prediction question." 30



3.2.2 Desired Level of DetailTo ensure a comprehensible model, a modeler must choose a level of detail that issuitable for the person posing the question. For example, a model suitable for a�rst-year botany student will be much simpler than a model suitable for a veteranplant physiologist. The level of detail might also be tailored to �t the discoursecontext. For example, a tutor might use a student's question to illustrate domainprinciples that were recently discussed. To guide the choice of a suitable level ofdetail, a question can include a desired level of detail.The desired level of detail is speci�ed through glass-box entities and black-boxentities. A glass-box entity is an entity (e.g., pool or process) that is too simple.If such an entity, or a simpler, encapsulating entity, is needed in the model, thedetailed entities that it encapsulates should be used instead. For example, if pho-tosynthesis is marked as a glass-box entity, the modeler must use its componentreactions in its place. In contrast, a black-box entity is an entity whose underlyingcomponent entities should not be used because they are too detailed. A black-boxentity prevents the modeler from using any entity that it encapsulates. For ex-ample, if photosynthesis is marked as a black-box entity, the modeler can includephotosynthesis in a model but cannot use any of its component reactions. Together,glass-box and black-box entities prevent the modeler from choosing a level of detailthat is inappropriate for the person posing the question.Although glass-box and black-box entities could be speci�ed explicitly in aquestion, they might come from a variety of sources. They might come from anoverlay user model [35]. For example, if a student understands photosynthesis butnot its component reactions, photosynthesis can be marked as a black-box entity.They might also come from a discourse history. For example, if a tutor has re-cently discussed the component reactions of photosynthesis, photosynthesis mightbe marked as a glass-box entity. Glass-box and black-box entities provide a simpleinterface to each of these information sources.3.2.3 Time Scale of InterestAs discussed in Chapter 2, a time scale of interest provides an important sourceof power in modeling. It allows the modeler to treat in
uences that operate on aslower time scale as insigni�cant. It allows the modeler to model the e�ects of fasterprocesses using equilibrium in
uences, based on a quasi-static approximation. Itallows the modeler to treat separate pools as a single aggregate when they equilibrateon a faster time scale. Thus, a time scale of interest allows many important modelsimpli�cations. 31



Although the person posing the question may specify a time scale of interest,often the modeler must determine it automatically. Chapter 8 provides an algorithmfor choosing an appropriate time scale of interest when none is speci�ed in thequestion. Whether the time scale of interest is chosen by the modeler or providedby the person posing the question, remaining chapters will treat it as part of thequestion.3.3 SummaryIn summary, our research addresses the task of automatically constructing modelsfor answering causal prediction questions. We de�ne a causal prediction question toconsist of the following elements:� structural conditions� driving conditions (at least one), consisting of initial conditions, behaviors orboth� variables of interest (at least one)� desired level of detail, speci�ed as glass-box and black-box entities� time scale of interest
32



Chapter 4Scenario Elaboration4.1 The Role of Scenario ElaborationGiven a prediction question, a modeler uses domain knowledge to elaborate the sce-nario description, in order to provide the building blocks for model construction.The prediction question provides a partial description of the scenario, consisting ofstructural and behavioral conditions. To this description, the domain knowledgeadds the in
uences that represent phenomena in the scenario, along with the re-lationships among di�erent levels of detail (i.e., the encapsulates and explanationrelations). From the resulting scenario description, the modeler constructs a modelof the scenario by selecting relevant in
uences. Thus, the process of scenario elabo-ration uses the domain knowledge to bridge the gap between the scenario descriptiongiven in the question and the needs of model construction.
Prediction
Question

  Scenario
Description

  Domain
Knowledge

  Scenario
Elaboration

description

partial scenarioFigure 4.1: The scenario elaboration task.33



De�ne-In
uence-Rulestructural preconditions:Plant(?plant)Has-Part(?plant, ?roots)Roots(?roots)Surrounded-by(?roots, ?soil)Soil(?soil)in
uence:rate(water-uptake(?soil, ?plant) ) amount(pool(water, ?plant))activity preconditions:Nonevalidity preconditions:Nonesigni�cance preconditions:time-scale-of-interest � hoursFigure 4.2: An example in
uence rule. This rule states \For any plant whose rootsare surrounded by soil, the amount of water in the plant is di�erentially in
uencedby the rate of water uptake from the soil into the plant. Terms that begin with \?"are universally quanti�ed, logical variables.4.2 Domain KnowledgeThis section describes the types of domain knowledge that are needed to elaboratea scenario description given in a question. The section shows that standard knowl-edge representation techniques, based on inference rules, can encode the necessaryknowledge. However, the speci�c representation language is not important, since avariety of similar alternatives will serve the same purpose.4.2.1 In
uence RulesStarting from a partial scenario description given in a question, a modeler mustuse domain knowledge to identify the in
uences that represent phenomena in thescenario. To support this task, the domain knowledge includes in
uence rules.As illustrated by the example in Figure 4.2, an in
uence rule consists ofstructural preconditions, which serve as the antecedent of the rule, and an in
uenceand its attributes (activity preconditions, validity preconditions, and signi�cancepreconditions), which serve as the consequent of the rule. For example, the rule in34



Figure 4.2 states \For any plant whose roots are surrounded by soil, the amountof water in the plant is di�erentially in
uenced by the rate of water uptake fromthe soil into the plant." It also states that this in
uence is always active (i.e., noactivity preconditions), always valid (i.e., no validity preconditions), and signi�canton a time scale of hours or longer. Structural preconditions consist of a conjunctionof structural conditions, and these conditions may contain universally quanti�ed,logical variables (shown as terms beginning with \?" in the example).1 A logicalvariable introduced in the structural preconditions may be referenced in the in
u-ence and its activity preconditions. Viewed as a logical implication, an in
uencerule states that the speci�ed in
uence, with its speci�ed attributes, can be used todescribe any scenario in which each structural precondition is satis�ed.4.2.2 Structural RulesTypically, a prediction question leaves many structural conditions unstated. Forexample, consider the question \How would decreasing soil moisture a�ect a plant'stranspiration rate?" The question does not mention that the plant has a source oflight, that its leaves are surrounded by the atmosphere, or that it has any anatomicalparts (e.g., leaves). Yet such structural conditions may serve as structural precon-ditions for important in
uences in the scenario. Therefore, in order to infer all thein
uences for a scenario, the domain knowledge must provide rules for inferringunstated structural conditions. Such rules are called structural rules.The antecedent of a structural rule is a conjunction of structural conditionsand the consequent is also a structural condition. Any logical variables appear-ing in the antecedent may also appear in the consequent, and they are universallyquanti�ed throughout the rule. For example, the ruleIf Tree(?t) Then Plant(?t)says \Every tree is also a plant."Structural rules can also infer the existence of unstated objects. For example,consider the logical implicationIf Plant(?p) Then 9 ?l: Leaves(?l) and Has-Part(?p, ?l)which says \For every plant, there exists a part of the plant, its leaves." Thisimplication can be encoded as the following logically equivalent structural rules:1Logical variables, which can only appear in the domain knowledge, should not be confusedwith scenario variables, such as the amount of water in a plant, which represent properties of thescenario. 35



If Plant(?p) Then Leaves(leaves(?p))If Plant(?p) Then Has-Part(?p, leaves(?p))where leaves is a Skolem function [11]. Thus, structural rules can infer structuralconditions concerning unstated objects as well as objects mentioned in the question.Clearly, inferring unstated structural conditions is not a simple matter of de-duction. For example, a plant does not necessarily have a source of light, a surround-ing atmosphere, and leaves; yet without evidence otherwise, a person answering aprediction question will assume such conditions if they are unstated. Thus, struc-tural rules may be default rules (i.e., plausible, although not certain, inferences).However, the issues that arise when using default rules (e.g., detecting contradic-tions and retracting assumptions) are orthogonal to the issues addressed in thisdissertation, so they are ignored.4.2.3 Relationships Among Levels of DetailThe domain knowledge also needs rules that allow the modeler to infer the encap-sulates and explanation relations. These relations can be inferred with simple ruleswhose antecedents consist of structural conditions. For example, Figure 4.3 showsa rule for inferring that a pool encapsulates its subpools. This rule could be usedto conclude that the pool of sugar in a plant encapsulates the pool of glucose in theplant's leaves. Similarly, Figure 4.4 shows an example rule for inferring that onein
uence explains another. In our implementation, many elements of the explanationrelation are inferred through two general rules:� The in
uence of a process (e.g., photosynthesis) on a pool (e.g., water inthe leaves) is explained by the in
uence of its subprocesses (e.g., the lightreactions) on that pool.� The in
uence of a pool (e.g., carbon dioxide in the leaves) on a process (e.g.,photosynthesis) is explained by the in
uence of its subpools (e.g., carbon diox-ide in the mesophyll of the leaves) on that process.By providing rules for inferring the encapsulates and explanation relations, the do-main knowledge can specify relationships among di�erent levels of detail in thescenario description.4.2.4 Related WorkOur approach of generating in
uences from rules in the domain knowledge is basedon Forbus's Qualitative Process Theory [28]. Other researchers have used similar36



If Has-Part(?whole, ?part) and e.g., a plant has leavesContains(?whole, ?general) and e.g., the plant contains sugarContains(?part, ?speci�c) and e.g., the leaves contain glucoseIsa(?speci�c, ?general) e.g., glucose is a special type of sugarThen Encapsulates(pool(?general, ?whole), pool(?speci�c, ?part))Figure 4.3: An example rule for inferring the encapsulates relation. This rule saysthat a pool encapsulates its subpools (e.g., the pool of sugar in a plant encapsulatesthe pool of glucose in the plant's leaves).If Plant(?p) and Has-Part(?p, ?l) and Leaves(?l)Then Explanation(rate(photosynthesis(?l)) ) amount(pool(water, ?l)),rate(light-reactions(?l)) ) amount(pool(water, ?l)))Figure 4.4: An example rule for inferring the explanation relation. This rule saysthat the in
uence of photosynthesis on the water in the leaves is explained by thein
uence of its component reaction, the light reactions, on water in the leaves.approaches, and some have explored the issue of matching structural preconditionsto structural conditions in the scenario when a strict syntactic match is not possible.For instance, to construct models for solving textbook physics problems, Kook andNovak [51] propose model fragments called \physical models." Physical models canbe viewed as inference rules whose antecedent consists of structural preconditionsand whose consequent is a single principle or law of physics. However, the structuralpreconditions are stated in terms of \canonical objects" [67] (e.g., a point mass oran ideal spring), and additional knowledge is used to map scenario entities to appro-priate canonical objects. Similarly, applying knowledge in one domain to questionsin another domain may require analogical mapping between structural conditions inthe scenario and structural preconditions of in
uence rules [16, 22].4.3 Demand-Driven Scenario ElaborationFor complex systems such as a plant, exhaustive scenario elaboration is impractical.If all possible structural rules and in
uence rules were applied to a partial descriptionof a plant, the result would be a full anatomical and physiological description of theplant. This description would be enormous, and the time required to execute all the37



rules could be prohibitive.Moreover, exhaustive scenario elaboration is unnecessary. The modeler willselect only a tiny fraction of the full description to serve as the model. The modelermay need to examine a larger fraction in order to choose the appropriate model, butthat fraction will still be only a small portion of the full description.For these reasons, our modeling methods allow demand-driven scenario elab-oration. During model construction, the modeler requests information from thescenario description through a carefully designed interface. If the scenario descrip-tion lacks the requested information, the domain knowledge is used to infer it, andthe information is added to the scenario description. The interface cleanly sepa-rates model construction from scenario elaboration issues, and it allows the domainknowledge to be applied selectively.4.3.1 Scenario Description InterfaceDuring model construction, a modeler needs to know how scenario variables interact.There are two types of interaction. First, one variable can in
uence another. Second,one variable can enable an in
uence on another variable; that is, the �rst variableappears in the activity preconditions of an in
uence on the second variable. Toindex into these two types of interactions, the scenario description interface allowsthe following three requests:� Given a scenario variable v, return all in
uences in which v is the in
uencer(i.e., how does v in
uence other scenario variables?).� Given a scenario variable v, return all in
uences whose activity preconditionsreference v (i.e., which in
uences does v enable?).� Given a scenario variable v, return all in
uences in which v is the in
uencee(i.e., how do other variables in
uence v?).To specify the relationships among di�erent levels of detail, the scenariodescription interface provides the following two functions:� The function encapsulates? takes two entities, e1 and e2, and returns true ifand only if e1 encapsulates e2 (i.e., (e1,e2) is an element of the encapsulatesrelation).� The function explanation? takes two in
uences, i1 and i2, and returns true ifand only if i2 explains i1 (i.e., (i1,i2) is an element of the explanation relation).38



Thus, given any two entities in the scenario description, the modeler can determinewhether one encapsulates the other, and given any two in
uences in the scenariodescription, the modeler can determine whether one explains the other.4.3.2 Implementing the InterfaceDemand-driven scenario elaboration is implemented by backward chaining [12] throughthe inference rules provided by the domain knowledge. For example, suppose a pre-diction question speci�es one structural condition, a plant, and the modeler asksfor the in
uences on the amount of water in the plant. Figure 4.5 shows how thein
uence of transpiration can be found by backward chaining through one in
u-ence rule and two structural rules. First, the request is encoded as an in
uence(in this example, a di�erential in
uence) in which the in
uencer is unknown (i.e.,encoded as the logical variable ?in
uencer). Next, the request is uni�ed with theconsequent of an in
uence rule; this indicates that the in
uence rule is relevant tothe request. The in
uence rule applies to the scenario if its structural preconditionsare satis�ed, so backward chaining continues by trying to satisfy each precondition.A structural precondition is established in two ways: by unifying it with an existingstructural condition in the scenario description (e.g., Plant(plant1) in the example)or by backward chaining through structural rules (as shown for the second andthird structural preconditions in the example). In the example, backward chainingsuccessfully establishes all structural preconditions, resulting in the in
uencerate(transpiration(plant1, atmosphere(plant1))) amount(pool(water, plant1))which is returned as one of the requested in
uences. The attributes of the in
uence(its activity, validity, and signi�cance preconditions) are uniquely speci�ed by theground instance of the in
uence rule. Thus, backward chaining allows new facts (e.g.,in
uences and structural conditions) to be inferred from the domain knowledge andadded to the scenario description as they are needed during model construction.The interface speci�ed earlier is implemented through backward chaining asfollows:� To �nd all in
uences in which a given scenario variable v is the in
uencer,backward chain on the query v) ?in
uencee to �nd di�erential in
uences andon the query v ! ?in
uencee to �nd functional in
uences. For these queries,v is �xed and backward chaining establishes bindings for ?in
uencee.� To �nd all in
uences that a given scenario variable v enables, unify v withscenario variables appearing in the activity preconditions of in
uence rules,and backward chain on the structural preconditions of these rules.39



rate(transpiration(?plant, ?atm))  =>  amount(pool(water, ?plant))

?influencer  =>  amount(pool(water, plant1))

Surrounded−by(?plant, ?atm) Atmosphere(?atm)Plant(?plant)

Plant(plant1) Surrounded−by(?plant, atmosphere(?plant)) Atmosphere(atmosphere(?plant))

Plant(?plant)Plant(?plant)

Plant(plant1)Plant(plant1)Figure 4.5: Demand-driven scenario elaboration, as implemented by backward chain-ing. The initial query, shown at the top of the �gure, requests a variable that di�er-entially in
uences the amount of water in the speci�ed plant. Dashed lines representuni�cation. For example, the initial request for a di�erential in
uence is uni�ed withthe consequent of the in
uence rule. Arrows represent inference rules; they pointfrom antecedents to consequents. Underlined facts are those given in the predictionquestion. This example shows how the in
uence of transpiration on the amount ofwater in the plant is found by backward chaining through one in
uence rule andtwo structural rules. 40



� To �nd all in
uences in which a given scenario variable v is the in
uencee,backward chain on the query ?in
uencer ) v to �nd di�erential in
uences andon the query ?in
uencer ! v to �nd functional in
uences. For these queries,v is �xed and backward chaining establishes bindings for ?in
uencer.� To answer requests of the form encapsulates?(e1, e2), backward chain on thequery encapsulates(e1, e2), where e1 and e2 are constants (the names of par-ticular entities).� To answer requests of the form explanation?(i1, i2), backward chain on thequery explanation(i1, i2), where i1 and i2 are constants (particular in
uences).4.3.3 Related WorkPrevious automated modeling programs have used demand-driven scenario elabo-ration to varying degrees. Some programs (e.g., those of Falkenhainer and Forbus[25] and Lee [56]) exhaustively elaborate the scenario before starting model con-struction. Other programs (e.g., those of Nayak [66] and Iwasaki and Levy [43])allow some interleaving of scenario elaboration and model construction. Williams'sprogram [85] automatically generates some equations (the building blocks for hismodels) via algebraic simpli�cation as they are needed during model construction.Finally, Amsterdam's program [5] uses a model's de�ciencies to enable selected rulesfor adding elements to the model, e�ectively interleaving some aspects of scenarioelaboration with model construction.4.4 SummaryScenario elaboration uses the domain knowledge to bridge the gap between thepartial scenario description given in a question and the needs of model construction.This chapter speci�ed the scenario description interface with which the needs ofmodel construction are communicated, it discussed the types of domain knowledgethat are required, and it presented a simple method, backward chaining, for inferringthe requested information on demand. Demand-driven scenario elaboration allowsscenario elaboration and model construction to be interleaved, which is far moree�cient than performing them serially.While the notion of demand-driven scenario elaboration is important, theunderlying details are not. Backward chaining is a standard method of inference inarti�cial intelligence, and the types of domain knowledge we propose are similar tothose proposed by other researchers. Many variants of backward chaining and ofthese types of domain knowledge would serve the same purpose. The point of this41



chapter is that demand-driven scenario elaboration is important and that it can beimplemented using standard techniques.The remainder of the dissertation does not depend on the details of scenarioelaboration. The remaining methods only depend on the details of the scenariodescription language speci�ed in Chapter 2 and the details of the scenario descriptioninterface speci�ed in this chapter.
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Chapter 5The Model Construction Task5.1 IntroductionGiven the background provided by previous chapters, we are �nally prepared to dis-cuss the main focus of this dissertation: the model construction task. As illustratedin Figure 5.1, this task has two inputs:� a causal prediction question, which provides variables of interest, driving con-ditions, a desired level of detail, and a time scale of interest, and� a scenario description (the output of scenario elaboration), which providesin
uences and relationships among di�erent levels of detail (i.e., encapsulatesand explanation relations).While these inputs were de�ned in previous chapters, this chapter de�nesthe output, a simplest adequate scenario model. Section 5.2 de�nes a scenariomodel. Section 5.3 speci�es the criteria for judging one model as simpler than
encapsulates relation
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Figure 5.1: The model construction task.43



another. Section 5.4 speci�es the criteria for determining whether a scenario modelis adequate for answering a question. The criteria in this chapter allow a modeler tochoose the simplest adequate scenario model from among a set of candidate modelsfor answering a question. The algorithm for generating candidate models will bediscussed in Chapter 6.The criteria in this chapter, especially those that de�ne an adequate model,are an important contribution of our research. These criteria address several issuesnot addressed in previous research. Furthermore, because the criteria are stateddeclaratively, they can be evaluated independent of any modeling algorithms thatuse them, and they serve as the correctness standard for such modeling algorithms.Thus, this chapter serves as an independent contribution of our research as well asa foundation for subsequent chapters.5.2 Scenario ModelsFrom the elements of a scenario description, a modeler constructs a scenario model.A scenario model consists of the following:� a set of variables (a subset of the scenario variables) partitioned into exogenousvariables, whose behavior is determined by in
uences external to the model,and dependent variables, whose behavior is determined by the model� a set of in
uences (a subset of the scenario in
uences), each of whose in
uenceeis a dependent variable in the model and whose in
uencer is another variablein the model (exogenous or dependent)For example, the scenario model in Figure 5.2 shows how a plant regulatesthe abscisic acid hormone (aba) in response to changes in turgor pressure (hydraulicpressure) in its leaves (e.g., when it begins wilting). Leaf turgor pressure is the onlyexogenous variable; all the others are dependent. The model shows that aba issynthesized and consumed in the leaf mesophyll cells and transported to the guardcells, where it helps limit the amount of water lost through transpiration.A scenario model is intended to support analysis (e.g., simulation) regardlessof particular behavioral conditions. To make predictions from a particular state ofthe scenario, the analysis module must determine which in
uences in the scenariomodel are active in that state. For example, turgor pressure only in
uences abasynthesis when the pressure drops below a threshold. The activity preconditions ofthe in
uence would represent that fact. To simulate a healthy plant whose turgorpressure is dropping, the simulator would omit this in
uence until turgor pressuredrops below the threshold. A variety of simulators are capable of simulating scenario44
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models in this way [27, 28, 30]. Using this approach, the modeler need only buildone scenario model to answer a question, rather than building a di�erent model fordi�erent states of the scenario.5.3 SimplicityTo answer a prediction question, a modeler should construct the simplest adequatescenario model, minimizing irrelevant phenomena and details. If the model includesirrelevant information, it will be more di�cult to analyze and explain. Thus, amodeler requires criteria for determining whether one candidate model is simplerthan another.While not infallible, the number of variables in a model is a good heuristicmeasure of the model's complexity. Simulation complexity tends to increase with thenumber of variables in the model, and a model with more variables is generally moredi�cult to understand and explain. Furthermore, most simpli�cation techniquesused by human modelers reduce the number of variables in a model. Thus, wede�ne one model as simpler than another as follows:� For any two scenario models M1 and M2, M1 is simpler than M2 if and onlyif M1 has fewer variables than M2.Human modelers probably use a combination of many criteria to determinethe complexity of a model. For example, for some purposes, a large linear modelis preferable to a small nonlinear one. For tutoring purposes, one model might besimpler than another if it relies on concepts that are simpler to explain. Nevertheless,the number of variables in a model is a simple measure that correlates well with mostother measures of complexity, and it has proven to be an e�ective heuristic in ourexperience.Other researchers have proposed di�erent measures of simplicity. Nayak [65]and Iwasaki and Levy [43] de�ne one scenario model as simpler than another if, forevery model fragment in the �rst, either that model fragment or a more-detailedalternative is in the second.1 This is a reasonable criterion when it holds, but itleaves too many models incomparable. For example, consider two models, one withonly a few variables and in
uences (i.e., representing a few phenomena), and onewith many variables and in
uences (i.e., representing many phenomena, some ingreat detail); if the �rst model treats some aspect of the scenario in more detailthan the second model, the two models are incomparable under their criterion.1Actually, Iwasaki and Levy's de�nition is in terms of \composite model fragments" rather thanmodel fragments, but the distinction is irrelevant to our discussion.46



Thus, although the �rst model is intuitively simpler, a modeling algorithm basedon their simplicity criterion would be content to choose the second model as thesimplest adequate model.Falkenhainer and Forbus [25] de�ne one model as simpler than another ifthe �rst includes fewer scenario entities. If two models include the same numberof entities, one is simpler than the other if its sum of indices of assumption classchoices is smaller. An assumption class represents a set of modeling alternatives,and one alternative has a lower index if it is simpler. Our representation does notuse assumption classes, so this approach is not feasible.Amsterdam [5] uses a simplicity criterion very similar to ours. Bond graphelements [48] are the building blocks for his models, and he de�nes one model assimpler than another if it contains fewer elements.5.4 Adequate Scenario ModelIntuitively, a scenario model is adequate for answering a given prediction questionif it can make the desired predictions with su�cient accuracy. Additionally, toensure a comprehensible explanation, the model must be a coherent description ofthe scenario at the desired level of detail. To automate modeling, we must formalizethese two intuitive criteria.To formalize the criteria, this section provides a set of adequacy constraints.Each constraint is a predicate of three arguments: a scenario description, a causalprediction question, and a scenario model. These constraints are individually neces-sary and collectively su�cient conditions for adequacy; that is, a scenario model isadequate for a given scenario description and question if and only if every adequacyconstraint is satis�ed.In formulating adequacy constraints, we have two objectives. First, theyshould capture the two intuitive criteria for adequacy. Second, they must be op-erational; that is, an automated modeling program must be able to e�ciently testthem to decide whether a given model is adequate. The second objective requiresthe adequacy constraints to reference only information that is available to a mod-eler. For example, we cannot require a model's predictions to match the \correct"behavior if the correct behavior is unknown.Mathematicians, such as systems theorists, have invested considerable workinto formalizing the notions of adequate model and valid simpli�cation. However,their criteria su�er from two limitations: they typically apply to restricted classesof systems, and they typically are not operational. For instance, the notion of avalid simpli�cation is usually de�ned relative to a known base model (i.e., most47



detailed and accurate model); for complex systems such as a plant, constructing abase model is impractical.Thus, rather than seek mathematically valid principles, our approach is toformalize the intuitive criteria that human modelers use to achieve su�ciently ac-curate, coherent models. But formulating operational constraints that capture thetwo intuitive criteria for adequacy is di�cult also. Ultimately, some constraints mayprove to be overly restrictive, pruning intuitively adequate models. Equally likely,some scenario models may satisfy all the constraints without being intuitively ade-quate. Progress in automated modeling requires iteratively formulating and testingadequacy constraints. For the adequacy constraints we propose, this chapter ex-plains why each is intuitively necessary, and Chapter 9 empirically evaluates theconstraints in the domain of plant physiology.5.4.1 Variables in a ModelA model is only adequate if it can make the desired predictions. Clearly, the behaviorof a variable of interest cannot be predicted if the variable is not in the model. Thismotivates the following constraint.Adequacy constraint 1 (include variables of interest)A scenario model is adequate only if it includes every variable of interest.During analysis (e.g., simulation), a model must be able to determine whichof its in
uences is active. This requires the ability to evaluate any relevant ac-tivity preconditions. The following constraint ensures that the model has enoughinformation to do so.Adequacy constraint 2 (include variables in activity preconditions)A scenario model is adequate only if it includes every variable appearing in anactivity precondition of an in
uence in the model.5.4.2 Exogenous VariablesOnce a variable is included in a model, the modeler must determine how to modelit. The �rst decision is whether to model it as exogenous or dependent.While the phenomena governing a dependent variable are represented byin
uences in the model, the phenomena governing an exogenous variable are outsidethe scope of the model. Conceptually, the model represents a system, and theexogenous variables represent the system boundary, the interface between the systemand its surrounding environment. Thus, by choosing to model some variables asexogenous, a modeler partitions the scenario description into two parts: the system48



that is relevant to answering the given question, and its environment (which isirrelevant).To ensure that a model is adequate and as simple as possible, a suitablesystem boundary is crucial. Yet despite the importance of this issue, previousautomated modeling programs cannot adequately choose exogenous variables forprediction questions. Some programs require exogenous variables to be speci�edin the question or the domain knowledge, thus shifting responsibility to humans.That approach is impractical when the domain knowledge is extensive. Of the fewprograms that choose exogenous variables automatically, we explain at the end ofthis section that their criteria are too weak and can result in either inadequate orunnecessarily complex models.Human modelers treat a variable as exogenous only if it is approximatelyindependent of the other variables in the model. For example, the rate of precipita-tion can be treated as exogenous in a model of a single plant; while the behavior ofthe plant depends critically on the rate of precipitation, the phenomena that governprecipitation do not depend signi�cantly on the behavior of the plant. Thus, todecide which scenario variables can be treated as exogenous, a modeler must beable to determine whether one scenario variable signi�cantly a�ects another.The in
uences in a scenario description determine which variables a�ect eachother. Clearly, one variable a�ects another if there is an in
uence from the �rstvariable to the second. One variable can also a�ect another by enabling or disablingthe in
uences on it; that is, one variable a�ects another if there is an in
uence onthe second variable whose activity preconditions reference the �rst variable.Therefore, we de�ne the scenario in
uence graph as follows. The nodesof the graph are the scenario variables. There is a directed edge from one variableto another if and only if there is an in
uence whose in
uencee is the second variableand either� the �rst variable is the in
uencer or� the �rst variable appears in the activity preconditions.An in
uence path is a path of non-zero length in the scenario in
uence graph.One scenario variable a�ects another when there is an in
uence path leading fromthe �rst variable to the second.A time scale of interest permits stronger criteria for determining whether onescenario variable a�ects another. For any particular time scale, only some in
uencesare valid and signi�cant. Thus, one scenario variable signi�cantly in
uencesanother on a given time scale if and only if there is an in
uence path leading from49
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uence graphs. Part A shows a set of in
uences, alongwith their signi�cance preconditions and activity preconditions. Part B shows thecorresponding scenario in
uence graph.the �rst variable to the second and every in
uence in the path is valid and signi�canton that time scale.Figure 5.3 illustrates these concepts. Part A shows a set of in
uences. Part Bshows the corresponding scenario in
uence graph. On a time scale of seconds, onlyv3 signi�cantly in
uences v4. However, on a time scale of hours, v4 is signi�cantlyin
uenced by v0, v1, v2 and v3.Given the de�nitions above, the following constraint formalizes the intuitionthat an exogenous variable is approximately independent of all other variables inthe model.Adequacy constraint 3 (exogenous variables independent of model)A scenario model is adequate only if none of its exogenous variables is signi�cantlyin
uenced in the scenario description, on the time scale of interest, by anothervariable in the model.While the previous constraint on exogenous variables ensures that they areappropriate for the model that contains them, the next constraint ensures that theyare appropriate for the given question. Recall that a causal prediction questionasks for the e�ects of driving conditions on variables of interest, where the drivingconditions are those behavioral conditions speci�ed in the question. To answer aprediction question, a modeler includes in the model those variables whose behavioris relevant to determining the behavior of the variables of interest. Therefore, ifa variable in the model is signi�cantly in
uenced by a driving variable (a variablein a driving condition), the model should re
ect this so the e�ects of the drivingvariable's behavior on that variable can be determined. Thus, to ensure that theexogenous variables do not disconnect the model from relevant driving conditions, a50



variable cannot be exogenous unless it is approximately independent of the drivingvariables.Adequacy constraint 4 (exogenous variables independent of question)A scenario model is adequate only if none of its exogenous variables is signi�cantlyin
uenced in the scenario description, on the time scale of interest, by a drivingvariable (other than itself if it is a driving variable).Together, these two constraints specify whether a variable in a model canbe exogenous. If the exogenous variables in a scenario model satisfy these twoconstraints, the model's system boundary is adequate.To illustrate these criteria for choosing exogenous variables, consider thequestion \What happens to the amount of aba in a plant's guard cells when theturgor pressure in its leaves decreases?" This question is important because plantssend aba to the guard cells to combat dehydration. As will be discussed in Chap-ter 8, the appropriate time scale of interest for this question is minutes. Part Aof Figure 5.4 shows a portion of the elaborated scenario description for the ques-tion; the driving variable (leaf turgor pressure) and variable of interest (guard cellaba amount) are shown in bold. Part B shows the simplest adequate model foranswering the question. In this model, none of the dependent variables could beexogenous, because each one is signi�cantly in
uenced (on a time scale of minutes)by the driving variable, leaf turgor pressure (thus violating adequacy constraint 4).Leaf turgor pressure can be exogenous in the model because it satis�es adequacyconstraints 3 and 4; that is, as shown in Part A, leaf turgor pressure is not signif-icantly in
uenced (on a time scale of minutes) by any other variable in the modelnor by any other driving variable (there are no others). On a time scale of hours,however, leaf turgor pressure could not be treated as exogenous, because it wouldbe signi�cantly in
uenced by guard cell aba amount on that time scale via a pathpassing through guard cell water amount and transpiration. Thus, the time scale ofinterest allows a tighter system boundary than would otherwise be possible.Related WorkDespite its importance, no previous work in automated modeling has provided ex-plicit criteria for choosing exogenous variables. Typically, work in automated mod-eling assumes that either the domain knowledge or the question speci�es those vari-ables that can be exogenous. For instance, the modeling algorithms of Williams [85]and Iwasaki and Levy [43] require, as input, the variables that can be exogenous forthe question. Although these algorithms can determine which exogenous variablesmust be included in the scenario model, neither algorithm can determine exogenous51
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(A)  Scenario Description

(B)  Simplest Adequate Scenario ModelFigure 5.4: (A) A portion of the elaborated scenario description for the question\What happens to the amount of aba in a plant's guard cells when the turgor pres-sure in its leaves decreases?" The driving variable and variable of interest are shownin bold. Ellipses indicate connections to the remainder of the scenario variables andin
uences. Alternative levels of detail are not shown. (B) The simplest adequatescenario model for answering the question.52



variables automatically. For complex systems, this approach is impractical.The modeling algorithm of Nayak [65] can choose exogenous variables, butit does not have special criteria for doing so. His adequacy criteria are suitable forhis modeling task, explaining a speci�ed causal relation, but they are too weak forprediction questions. For instance, his criteria would allow the chosen scenario modelto include an exogenous variable that, in the scenario description, is signi�cantlyin
uenced by another variable in the model.The modeling algorithm of Falkenhainer and Forbus [25] largely determinesthe system boundary by determining relevant scenario objects. The algorithm re-quires, as input, a system decomposition. That is, each scenario object is assumedto be a system, and each object can have component objects that represent its sub-systems. To determine the objects that are relevant to a question, the algorithmidenti�es the smallest set of objects that must be modeled to include the imme-diate in
uences on the variables of interest; these objects are marked as relevant.Next, to ensure that interactions among these objects are modeled, the algorithmdetermines a \minimal covering system," the lowest object down the system de-composition that subsumes the relevant objects. That object and its subsystems(down to the level of the initially relevant objects) are relevant. Any variable thatis a property of a relevant object, but is only in
uenced by properties of irrelevantobjects, is exogenous.Their approach has several limitations. While their modeling algorithm re-quires a system decomposition for the scenario, our criteria for choosing a systemboundary only require knowledge of the in
uences. Furthermore, Falkenhainer andForbus assume that the system decomposition is based on partonomic structure;however, O'Neill et al. [68] argue that approximate system boundaries in naturalsystems arise from di�erences in process rates (i.e., their time scales) and that theseboundaries may not correspond to standard structural decompositions. Even in en-gineered systems, designed system boundaries cannot be trusted when consideringfaults or unintended interactions [18]. Reasoning at the level of in
uences providesmore 
exibility and overcomes the di�culty of specifying an a priori system decom-position. Additionally, by specifying the criteria for choosing exogenous variablesin terms of in
uence paths, we ensure that the chosen system boundary will besu�ciently sensitive to the connections between driving conditions and variables ofinterest.5.4.3 In
uences on a Dependent VariableExogenous variables, which lie on the system boundary, are governed by phenomenaoutside the scope of the model. In contrast, for every dependent variable in a model,53



amount(pool(water, guard-cells)) ( rate(osmosis(accessory-cells, guard-cells))amount(pool(water, guard-cells))  amount(pool(aba, guard-cells))validity preconditions: time-scale-of-interest � hoursamount(pool(water, guard-cells))  amount(pool(co2, guard-cells))validity preconditions: time-scale-of-interest � hoursFigure 5.5: In
uences on the amount of water in a plant's guard cells.the modeler must choose a set of in
uences to represent the phenomena that governit. The constraints in this section ensure that every dependent variable in a modelhas an adequate set of in
uences.For analysis of a model, the in
uences on a variable are combined to form anequation. Human modelers use two types of equations: algebraic equations, com-posed of functional in
uences, and di�erential equations, composed of di�erentialin
uences. The following constraint ensures that the in
uences on every dependentvariable correspond to one of these two types.Adequacy constraint 5 (in
uences homogeneous)A scenario model is adequate only if the in
uences on any given dependent variableare all the same type (i.e., di�erential or functional).For example, Figure 5.5 shows a set of in
uences on the amount of waterin a plant's guard cells. The �rst in
uence represents the fact that the amount ofwater is regulated by osmosis from neighboring accessory cells. The remaining twoin
uences are equilibrium in
uences; changes in the levels of aba or carbon dioxidecause osmosis to adjust the level of water to a new equilibrium. The amount ofguard cell water can be modeled by the di�erential in
uence or the two functionalin
uences, but it would be incoherent to mix them.A model must also be su�ciently accurate. For this reason, each of its in
u-ences must be a valid approximation of the phenomenon the in
uence represents.In tripel's scenario description language, an in
uence's validity preconditions (ifit has any) are encoded as a time scale condition. Thus, the following constraintensures that each in
uence is valid for purposes of answering a given question.Adequacy constraint 6 (in
uences valid)A scenario model is adequate only if each of its in
uences is valid on the time scaleof interest. 54



For example, the two equilibrium in
uences in Figure 5.5 are only valid on atime scale of hours, since the mechanisms that restore equilibrium operate on a timescale of minutes. Therefore, for any question whose time scale of interest is less thanhours (e.g., seconds or minutes), a scenario model that includes these in
uences isinadequate.To further ensure that a model is su�ciently accurate, the in
uences on eachdependent variable should represent all the phenomena that a�ect the variable. Sucha set of in
uences is complete. Given a scenario description, a scenario variable, anda type of in
uence (i.e., functional or di�erential), we de�ne a complete set ofin
uences as follows:� The set of most-aggregate in
uences of the speci�ed type on the variable (i.e.,those that do not explain any other in
uence) is complete.� The result of replacing an in
uence in a complete set with the set of in
uencesthat explain it (as speci�ed by the explanation relation) is a complete set.For example, Figure 5.6 shows a set of in
uences on the amount of carbondioxide in a plant's leaves. As shown, the in
uence of photosynthesis is explainedby the in
uence of the dark reactions (and not by any other in
uences). The �rsttwo in
uences in the �gure constitute a complete set because they are the most-aggregate in
uences. Also, the �rst and third in
uences constitute a complete set,since the photosynthesis in
uence is fully explained by the more-detailed in
uenceof the dark reactions.Of course, the model need only be su�ciently accurate for the time scale ofinterest. Therefore, the in
uences on each dependent variable need only representall the signi�cant phenomena that a�ect the variable. For a given time scale ofinterest, a set of in
uences on a variable is approximately complete if and onlyif it is a subset of a complete set of in
uences and none of the omitted in
uencesis signi�cant on the given time scale. For example, in Figure 5.6, the �rst in
uencealone constitutes an approximately complete set on a time scale of seconds. However,on a time scale of minutes or longer, either the second or third in
uence must beadditionally included.Given these de�nitions, the following constraint ensures that the model rep-resents all phenomena that signi�cantly a�ect each dependent variable.Adequacy constraint 7 (in
uences complete)A scenario model is adequate only if the set of in
uences on each dependent variableis approximately complete for the time scale of interest.55



amount(pool(co2, leaves)) ( rate(co2-di�usion(atmosphere, leaves))signi�cance preconditions: time-scale-of-interest � secondsamount(pool(co2, leaves)) ( rate(photosynthesis(leaves))signi�cance preconditions: time-scale-of-interest � minutesamount(pool(co2, leaves)) ( rate(dark-reactions(leaves))signi�cance preconditions: time-scale-of-interest � minutesExplanation(amount(pool(co2, leaves)) ( rate(photosynthesis(leaves)),amount(pool(co2, leaves)) ( rate(dark-reactions(leaves)))Figure 5.6: In
uences on the amount of carbon dioxide in a plant's leaves. The �rsttwo are the most-aggregate in
uences. The in
uence of photosynthesis is explainedby the in
uence of the dark reactions (and not by any other in
uences).Finally, to ensure that the in
uences on a dependent variable are coherent, amodeler must avoid mixing di�erent levels of detail for the same phenomenon. Thefollowing constraint enforces this requirement.Adequacy constraint 8 (in
uences not redundant)A scenario model is adequate only if the in
uences on each dependent variable donot include two in
uences related by the explanation* relation).If a model's in
uences on a dependent variable satisfy the four constraintsin this section, we say that the in
uences are adequate. Constraints 6 (in
uencesvalid) and 7 (in
uences complete) ensure that the in
uences provide a su�cientlyaccurate representation of the governing phenomena, and constraints 5 (in
uenceshomogeneous) and 8 (in
uences not redundant) ensure that the representation iscoherent.Related WorkMost previous work in automated modeling does not enforce explicit constraintslike these for the in
uences on a dependent variable. Typically, each alternativeset of in
uences on a variable resides in a separate model fragment, and each suchmodel fragment has preconditions governing its inclusion in a model. Less typically,each model fragment could include one of the in
uences, and the assumptions thatlabel these model fragments, along with the compatibility constraints among these56



assumptions provided by the domain knowledge, are used to �nd compatible combi-nations of in
uences. The person encoding the domain knowledge is responsible forensuring that each compatible combination of model fragments yields an adequateset of in
uences.Some previous modeling programs are given a complete equation for a de-pendent variable and they identify and discard negligible terms in the equation[24, 86, 47]. This is analogous to identifying an approximately complete set of in
u-ences. However, these programs do not consider alternative levels of detail for theelements of the equation.5.4.4 Entities in a ModelA scenario model is a model of selected entities in the scenario. The entities in ascenario model consist of the following:� Each variable in a model is a property of an entity. Thus, the entities in amodel include all the entities whose properties are represented by the model'svariables.� As discussed in Section 2.5, an equilibrium in
uence can be associated withan aggregate process that encapsulates the underlying pools and processesthat restore equilibrium. Thus, the entities in a model include any processassociated with an equilibrium in
uence in the model.The entities in a model are important because they indicate the model's viewof the scenario. To ensure consistent predictions and a comprehensible explanation,that view must be coherent. That is, although scenario entities can typically be de-scribed at multiple levels of detail, a modeler must avoid mixing levels. An entity ina model represents a black box whose internal details are irrelevant to the modeler'sobjectives. Alternatively, when the internal details are relevant, that entity shouldbe represented in the model in terms of its component entities. For example, a hu-man modeler might treat plant water as an aggregate or might individually modelthe water in the roots, stems and leaves. Similarly, a human modeler might treatphotosynthesis as an aggregate process or might individually model its componentreactions. The following constraint ensures that models do not mix levels of detailfor the same entity.Adequacy constraint 9 (entities coherent)A scenario model is adequate only if it does not include two entities related by theencapsulates relation). 57



Besides being coherent, the entities in a scenario model must be consistentwith the desired level of detail. As discussed in Section 3.2.2, the desired level ofdetail is speci�ed as black-box and glass-box entities. A black-box entity preventsthe modeler from including too much detail, while a glass-box entity prevents themodeler from using too little detail. The following two constraints ensure that themodel is consistent with the desired level of detail.Adequacy constraint 10 (entities consistent with black-box entities)A scenario model is adequate only if it does not include an entity that is encapsulatedby a black-box entity of the question.Adequacy constraint 11 (entities consistent with glass-box entities)A scenario model is adequate only if it does not include a glass-box entity of thequestion or any entity that encapsulates a glass-box entity.The driving variables of a question also constrain the choice of entities in amodel. A scenario model need not necessarily include all driving variables, becausesome may be irrelevant to the variables of interest. However, the model shouldrespect the level of aggregation speci�ed in the driving variables, for two reasons.First, these variables indicate the level of detail in which the user is interested.Second, if the modeler encapsulates these variables or chooses variables at a lowerlevel of detail, the given information will be lost.2 The following constraint ensuresthat the model respects the level of aggregation speci�ed in the driving variables.Adequacy constraint 12 (entities compatible with driving variables)A scenario model is adequate only if it does not include an entity that encapsulatesan entity of a driving variable and it does not include an entity that is encapsulatedby an entity of a driving variable.For example, consider the question \How is the rate of transpiration a�ectedwhen the amount of water in the leaves decreases?" For this question, the amount ofwater in the leaves is the driving variable. Therefore, it would be inappropriate forthe model to treat plant water as an aggregate (encapsulating water in the leaves)or to include detailed pools of water within the leaves.If the entities in a model satisfy constraints 9, 10, 11, and 12, we say thatthe model's level of detail is adequate.2It may be possible to infer behavioral conditions at the abstract or more-detailed levels fromthe given driving conditions, but we have no general method for making such inferences.58



Related WorkMost previous compositional modeling programs either include a variant of adequacyconstraint 9 (entities coherent) or provide a representation language in which thedomain knowledge can provide such a constraint for particular entities. However,the other three constraints are novel.5.4.5 In
uence Paths in a ModelA causal prediction question asks for the causal e�ect of driving conditions on vari-ables of interest. Therefore, a scenario model is adequate for answering the questiononly if, on the time scale of interest, the variables of interest are signi�cantly in
u-enced by the driving variables. Additionally, in order to predict the behavior of thevariables of interest beyond the initial state, the in
uence paths relating the drivingvariables to the variables of interest must be capable of predicting changes in thevariables of interest.Through an individual in
uence, one variable can cause change in anothervariable in two ways: (1) with a di�erential in
uence, a speci�ed value for thein
uencing variable (along with values for other in
uencing variables) provides therate of change of the in
uenced variable; (2) in contrast, a functional in
uence cancause change only if the in
uencing variable is changing [28]. Thus, a model canpredict the changes in a variable of interest caused by a driving variable only ifthe in
uence path connecting them contains a di�erential in
uence or the drivingconditions specify how the driving variable is changing (in which case a path offunctional in
uences will propagate the change). If either case is satis�ed, thein
uence path is a di�erential in
uence path.For example, the question \What happens to the amount of aba in a plant'sguard cells when the turgor pressure in its leaves decreases?" speci�es that turgorpressure is decreasing, so any in
uence path from turgor pressure to another vari-able is a di�erential in
uence path, capable of causing change. In contrast, if thequestion only speci�ed that turgor pressure is above the \yield point" (above whichthe pressure causes cell growth), an in
uence path leading from turgor pressure isdi�erential only if it contains a di�erential in
uence (as is the case with the in
uenceof turgor pressure on cell growth).Motivated by the above discussion, the following constraint ensures that amodel can predict the e�ect of the driving conditions on the variables of interest.Adequacy constraint 13 (variables of interest di�erentially in
uenced)A scenario model is adequate only if, for every variable of interest, the model includesa di�erential in
uence path leading to it from some driving variable such that every59



in
uence in the path is valid and signi�cant on the time scale of interest.Related WorkThe requirement that a scenario model relate driving variables to variables of interestis not new. Several people have recognized its importance. However, none of thesepeople require an adequate model to include di�erential in
uence paths. Nayak[65] requires an adequate model to provide a causal path linking a single speci�eddriving variable to a single speci�ed variable of interest. Amsterdam [5] requires anadequate model to provide \interaction" paths (i.e., not necessarily causal) linkingevery variable of interest to some driving variable. Williams's method for generatinga \critical abstraction" [85] is designed to ensure that the chosen scenario modelcausally links the driving variables (in his framework, the exogenous variables ofthe system) to the variables of interest. While each of these is similar to adequacyconstraint 13, our particular formulation is novel. For prediction questions, therequirement of di�erential in
uence paths is crucial.5.5 Other Related WorkSome previous automated modeling programs address tasks in which the correctbehavior of the variables of interest is known [3, 84]. In these programs, a modelis adequate only if its predictions match the correct behavior (within a speci�edtolerance). Because a prediction question does not provide the correct behavior, wedo not use such an adequacy constraint. However, tripel could be extended toaddress such questions, in which case this constraint could be added. Section 10.6.2discusses this issue further.Some previous automated modeling programs assume that the approximateerror introduced by di�erent approximations is known or can be estimated [21, 23,24, 81]. In these programs, a model is adequate only if the error in its predictionsis within a speci�ed tolerance. In the application domain we explored, plant phys-iology, the approximate error introduced by approximations is not available, so weexcluded this constraint. We expect that tripel could be extended to use suchknowledge, in which case this constraint could be added.5.6 SummaryThe model construction task takes a causal prediction question and a scenario de-scription as input and returns a simplest adequate scenario model. Intuitively, ascenario model is adequate if it provides a coherent, su�ciently accurate description60



of the scenario at the desired level of detail. To formalize these criteria, we de�ne ascenario model as adequate for a causal prediction question if and only if the modelsatis�es the following constraints:� Its variables include every variable of interest (adequacy constraint 1) andevery variable appearing in an activity precondition of its in
uences (adequacyconstraint 2).� Its system boundary is adequate (adequacy constraints 3 and 4).� Its in
uences on each dependent variable are adequate (adequacy constraints 5,6, 7, and 8).� Its level of detail is adequate (adequacy constraints 9, 10, 11, and 12).� It relates the driving variables of the question to the variables of interest(adequacy constraint 13).Among the adequate scenario models for a question, those with the fewestvariables are the simplest, and the modeler's objective is to �nd one of these simplestadequate models.
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Chapter 6The Model ConstructionAlgorithm6.1 IntroductionChapter 5 de�ned tripel's model construction task, shown in Figure 6.1. The cur-rent chapter describes tripel's model construction algorithm. The algorithm canbe viewed as conducting a search through a space of partial models (models underconstruction); Section 6.2 describes the search space. Sections 6.3, 6.4, and 6.5 de-scribe tripel's model construction algorithm, which e�ciently searches this spacefor the simplest adequate model. Finally, Section 6.6 proves several important prop-erties of the algorithm; most importantly, the algorithm is guaranteed to return asimplest adequate scenario model if one exists.
encapsulates relation

explanation relation

variables of interest

driving conditions

desired level of detail

time scale of interest

Scenario
Description

Prediction
Question

      Model
Construction

Simplest Adequate
  Scenario Model

 influences

Figure 6.1: The model construction task.62



6.2 The Search Space: Partial ModelsA naive algorithm might �nd the simplest adequate model as follows:1. Generate all possible models of the scenario.2. Filter out the inadequate models using the adequacy constraints of Chapter 5.3. Order the remaining adequate models by simplicity.4. Choose one of the simplest adequate models.However, for complex systems, there are a vast number of possible models for a sce-nario, so this generate-and-test algorithm is impractical. Instead, tripel searchesthe space of partial models of the scenario, so it can rule out most models withoutever generating or considering them.A partial model satis�es the de�nition of a scenario model with one possibleexception: in addition to exogenous and dependent variables, it may contain freevariables. After a modeler has chosen to include a variable in a model, but beforethe modeler has decided whether to treat it as exogenous or dependent, the variableis free. Thus, a partial model with free variables represents a model still underconstruction.Formally, a partial model consists of the following:� a set of variables (a subset of the scenario variables) partitioned into exogenousvariables, dependent variables, and free variables� a set of in
uences (a subset of the scenario in
uences), each of whose in
uenceeis a dependent variable in the model and whose in
uencer is another variablein the model (exogenous, dependent or free)Note that a scenario model is simply a special type of partial model, one with nofree variables.Partial models are ordered by an extension relation. Intuitively, a partialmodel M' is an extension of a partial model M if and only if M' can be constructedfrom M by making additional modeling decisions. More precisely, M' is an exten-sion of M if and only ifM andM' are not identical and all of the following conditionsare satis�ed:� every variable in M is also in M'� every exogenous variable in M is an exogenous variable in M'� every dependent variable in M is a dependent variable in M'63
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(A)  A Partial Model

(B)  An ExtensionFigure 6.2: The extension relation. Part A shows a partial model in which thevariable leaf mesophyll aba amount is free. Part B shows an extension of thatpartial model in which the variables aba synthesis rate and aba consumption rateare free.� the set of in
uences on the dependent variables of M are identical in M andM'These conditions allow a partial model to be extended by adding variables,by deciding to treat a free variable as exogenous or dependent, and by addingin
uences on free variables or new variables. For example, Part A of Figure 6.2shows a partial model in which the amount of leaf mesophyll aba is a free variable,and Part B shows an extension. In the extension, the amount of leaf mesophyll abais a dependent variable, the in
uences on it are included, and two new free variables(the in
uencers) are included.The extension relation is an ordering relation like <. That is, it is irre
exive(no partial model is an extension of itself), asymmetric (no two partial models areextensions of each other), and transitive (if m1 is an extension of m2 and m2 is anextension of m3 then m1 is an extension of m3). The de�nition of simplicity used64



for scenario models applies to partial models as well, so a partial model is at least assimple as any of its extensions, because any extension has at least as many variables.One key to e�cient model construction is the ability to recognize that a givenpartial model cannot be extended into an adequate scenario model. The adequacyconstraints in Chapter 5, although de�ned in terms of scenario models, can be testedin a partial model as well. A partial model that violates an adequacy constraintcan sometimes be extended to remedy the violation; for example, if a partial modelviolates adequacy constraint 1 (include variables of interest), it can be extended toinclude the variables of interest. However, a partial model can be eliminated fromconsideration when it violates a monotonic constraint. Amonotonic constraint isan adequacy constraint which, when violated for a partial model, is violated for eachof its extensions. For instance, when a partial model includes mutually incoherententities, so will all its extensions. By pruning such a partial model from consid-eration, tripel avoids generating any of its extensions, e�ectively pruning a largechunk from the search space. The next section shows how tripel exploits mono-tonic constraints during model construction, and Section 6.5 lists those adequacyconstraints that are monotonic.6.3 The Model Construction Algorithm: Extending Par-tial ModelsWe illustrate tripel's model construction algorithm using the familiar question\What happens to the amount of aba in a plant's guard cells when the turgorpressure in its leaves decreases?" For convenience, Figure 6.3 repeats the portionof the scenario description for this question that was shown in Chapter 5. As willbe discussed in Chapter 8, the appropriate time scale of interest for this question isminutes.To construct an adequate scenario model, tripel starts with a partial modelconsisting only of the variables of interest, and it incrementally extends this modeluntil it satis�es all the adequacy constraints. At each step, there may be alternativeways of extending the model, so it must search through the possibilities.The model construction algorithm can be viewed as graph search. Each nodein the search graph is a partial model. The initial node in the search is a partialmodel consisting only of the variables of interest, each a free variable. For instance,the initial node for the example is a partial model consisting of one free variable,guard cell aba amount. As will be described below, a partial model's successors inthe search graph consist of some of its extensions. The goal of the search is to �nda simplest adequate scenario model for the question. (Unlike some graph search65
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problems, the path by which a goal node is found is irrelevant.)A best-�rst strategy guides the search, using the simplicity criterion as theevaluation function. That is, tripel always extends the search by removing thesimplest partial model (i.e., the one with the fewest variables) from the searchagenda. If this partial model is an adequate scenario model, it is returned as thesimplest adequate scenario model; every other partial model on the agenda has asmany or more variables, so they and their extensions cannot be simpler. In theexample, the initial partial model is the simplest one on the agenda (in fact, theonly one), so it is removed. Because it contains a free variable, it is not a scenariomodel, hence it is not an adequate scenario model.If the partial model is not an adequate scenario model, its successors replaceit on the search agenda. The function Extend-model returns the successors of agiven partial model m. To generate these successors, the function extends m withalternative ways of modeling one of m's free variables.To accomplish this, Extend-model �rst asks the System Boundary Selector(discussed in Chapter 7) whether all of m's free variables can be exogenous (i.e.,whether they satisfy adequacy constraints 3 and 4). If so, Extend-model marks eachfree variable as exogenous, and it returns the resulting scenario model as the onlysuccessor. In our example, this is not the case. The free variable in the initial partialmodel (guard cell aba amount) cannot be exogenous because it violates adequacyconstraint 4; speci�cally, it is signi�cantly in
uenced by the driving variable (leafturgor pressure) on the time scale of interest (minutes).When the System Boundary Selector's response is \no", it also tells Extend-model which variable v must be dependent (in the example, guard cell aba amount).In this case, Extend-model asks the function Dv-models (described in Section 6.4)for those combinations of in
uences on v that might be adequate for the question(i.e., satisfy adequacy constraints 5, 6, 7, and 8). In our example, Dv-models simplyreturns the only in
uence on guard cell aba amount, the in
uence of the abatransport rate. In general, Extend-model returns a set of new partial models, eachthe result of extending m with one of these combinations of in
uences.To extend m with a combination of in
uences, Extend-model marks v asdependent, adds the in
uences on v to the model, and adds any new free variables.A free variable is added in the following cases:� If the in
uencer of a new in
uence is not already in m, it is added as a freevariable.� If a variable in the activity preconditions of a new in
uence is not already inm, it is added as a free variable (to satisfy adequacy constraint 2).67
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uences on leaf mesophyll aba amount: the �rst includes thein
uence of aba consumption, and the second includes the in
uences of aba bindingand aba degradation that explain it (for simplicity, those in
uences were not shownin Figure 6.3).Figure 6.6 summarizes the model construction algorithm, Find-adequate-model, as well as the successor function Extend-model.6.4 In
uences on Dependent VariablesA modeler must choose an adequate set of in
uences on each dependent variable in amodel. In tripel, this task is performed by the function Dv-models. The task arisesin the function Extend-model, which was described in Section 6.3. After decidingto model a variable as dependent, Extend-model asks Dv-models for an adequate setof in
uences on the variable. As illustrated in Figure 6.7, the inputs to Dv-modelsinclude a scenario description, a question, and the scenario variable whose in
uencesare desired.There may be more than one adequate set of in
uences for a dependentvariable. For instance, it may be possible to use either equilibrium in
uences ordi�erential in
uences. Also, one adequate set may contain the in
uences that explain68
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Find-adequate-model (Q, S)agenda  ;let initial be a partial model consisting of the variables of interest, each freeif initial satis�es all monotonic constraintsthen add initial to agendawhile agenda is not emptyremove the simplest partial model m from agendaif m is an adequate scenario modelthen return melse for each partial model m' in Extend-model(m, Q, S)if m' satis�es all monotonic constraintsthen add m' to agendareturn failureExtend-model (m, Q, S)if all free variables in m can be exogenousthen mark all free variables in m as exogenousreturn fmgelse let v be a free variable in m that must be dependentmodels  ;for each mv in Dv-models(v, Q, S)m'  extend m with mvadd m' to modelsreturn modelsFigure 6.6: tripel's model construction algorithm
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an in
uence in another adequate set. Dv-models must return each alternative set ofin
uences for consideration by the model constructor. Extend-model creates a newpartial model for each one, and the function Find-adequate-model tests each newpartial model to see which ones represent a potentially adequate extension of thecurrent partial model.Chapter 5 speci�ed the criteria for determining whether a set of in
uenceson a dependent variable is adequate:� The in
uences must be approximately complete; that is, they must repre-sent all signi�cant in
uencing phenomena at some level of detail (adequacyconstraint 7).� The in
uences must represent valid approximations (adequacy constraint 6).� The in
uences must be mutually coherent (adequacy constraints 5 and 8).Adequacy constraint 5, which requires the in
uences on a dependent variableto have the same type (i.e., di�erential or functional), allows Dv-models to separatelyconsider sets of functional in
uences and sets of di�erential in
uences. Dv-modelsseparately generates the adequate sets of in
uences that contain only di�erentialin
uences and those that contain only functional in
uences, and it returns the unionof these two sets. The remainder of this section presents the algorithm for generatingthe adequate sets of in
uences for a given in
uence type (either one).Given a scenario description, a prediction question, a dependent variableto be modeled, and the type of in
uences desired (i.e., functional or di�erential),Dv-models generates the adequate sets of in
uences as follows:1. It generates every complete set of in
uences (of the speci�ed type) on the de-pendent variable (i.e., those sets of in
uences that represent all the phenomenathat a�ect the variable). Section 5.4.3 de�nes these as follows:� The set of most-aggregate in
uences of the speci�ed type on the variable(i.e., those that do not explain any other in
uence) is complete.� The result of replacing an in
uence in a complete set with the set ofin
uences that explain it (as speci�ed by the explanation relation) is acomplete set.2. It removes from these sets any in
uences that are insigni�cant on the timescale of interest. Each resulting set is approximately complete (as de�ned inSection 5.4.3), so each satis�es adequacy constraint 7.71



amount(pool(CO2, leaves)) ( rate(CO2-di�usion(atmosphere, leaves))signi�cance preconditions: time-scale-of-interest � secondsamount(pool(CO2, leaves)) ( rate(photosynthesis(leaves))signi�cance preconditions: time-scale-of-interest � minutesamount(pool(CO2, leaves)) ( rate(dark-reactions(leaves))signi�cance preconditions: time-scale-of-interest � minutesExplanation(amount(pool(CO2, leaves)) ( rate(photosynthesis(leaves)),amount(pool(CO2, leaves)) ( rate(dark-reactions(leaves)))Figure 6.8: In
uences on the amount of carbon dioxide in a plant's leaves. The �rsttwo are the most-aggregate in
uences. The in
uence of photosynthesis is explainedby the in
uence of the dark reactions (and not by any other in
uences).3. It discards any set that contains an in
uence that is invalid on the time scale ofinterest. Any such set of in
uences is inadequate because it violates adequacyconstraint 6.4. It discards any set that is incoherent. A set is incoherent if it violates ade-quacy constraint 8 (i.e., it includes two in
uences related by the explanation*relation).For example, consider the in
uences shown in Figure 6.8 (previously shownas Figure 5.6) and assume that seconds is the time scale of interest. The algorithmproceeds as follows:1. As discussed in Section 5.4.3, there are two complete sets: (1) the �rst andsecond in
uences and (2) the �rst and third in
uences.2. From the �rst set, remove the insigni�cant photosynthesis in
uence. From thesecond set, remove the insigni�cant dark reactions in
uence. This leaves twoidentical sets, each of which includes only the di�usion in
uence. Because thesets are identical, one is pruned and the other is passed to step 3.3. The set does not include an invalid in
uence, so it is not discarded.4. The set is coherent, so it is not discarded. Therefore, it is returned by Dv-models.As another example, consider the in
uences shown in Figure 6.9 and assumethat hours is the time scale of interest. The algorithm proceeds as follows:72



cross-section-area(stomates) amount(pool(water, guard-cells))cross-section-area(stomates) amount(pool(aba, guard-cells))validity preconditions: time-scale-of-interest � hourscross-section-area(stomates) amount(pool(CO2, guard-cells))validity preconditions: time-scale-of-interest � hoursExplanation(cross-section-area(stomates)  amount(pool(aba, guard-cells)),cross-section-area(stomates)  amount(pool(water, guard-cells)))Explanation(cross-section-area(stomates)  amount(pool(CO2, guard-cells)),cross-section-area(stomates)  amount(pool(water, guard-cells)))Figure 6.9: In
uences on the cross sectional area of a plant's stomates. The secondand third in
uences are each explained by the �rst in
uence.1. The algorithm generates four complete sets: the second and third in
uences(the most-aggregate in
uences), the �rst and third in
uences (since the �rstexplains the second), the �rst and second in
uences (since the �rst explainsthe third), and the �rst in
uence alone (generated from either of the previoustwo).2. None of the in
uences is insigni�cant, so no set is changed.3. None of the in
uences is invalid, so no set is changed. However, if the time scaleof interest were less than hours (e.g., seconds or minutes), any set containingthe second or third in
uence would be discarded.4. Two of the four sets are incoherent (i.e., they violate adequacy constraint 8):the one that includes the �rst and second in
uences, and the one that includesthe �rst and third in
uences. These two sets are discarded, and Dv-modelsreturns the two surviving sets: the one that includes the second and thirdin
uences, and the one that includes only the �rst in
uence.Dv-models can recognize when there are no adequate sets of in
uences on avariable. For example, consider the in
uences shown in Figure 6.9, but suppose the�rst in
uence is not in the scenario description (because the domain knowledge ismissing that level of detail). If the time scale of interest is less than hours (e.g.,seconds or minutes), no set will survive step 3, so Dv-models will return the emptyset (i.e., no adequate sets of in
uences). Thus, Extend-model will return the emptyset (i.e., no successors); the partial model under consideration cannot be adequately73



extended. The key is that each in
uence represents a phenomenon to be modeled;if the phenomenon is signi�cant, Dv-models must �nd a valid way of modeling it,either with that in
uence or an alternative level of detail.6.5 The Role of Each Adequacy ConstraintEach adequacy constraint from Chapter 5 plays an important role in the modelconstruction algorithm. This section describes the role of each constraint, showingthat each is implemented in one of four ways:� Some monotonic constraints serve as �lters. Before a partial model is added tothe agenda, these constraints are tested. If any is violated, the partial modelis pruned from the search.� Some non-monotonic constraints are used to extend partial models. Thesepropagation constraints, when violated in a partial model, specify the elementsthat must be added for the constraint to be satis�ed (analogous to constraintpropagation).� Some constraints are folded into the function Dv-models.� Some constraints are folded into the System Boundary Selector.Adequacy constraint 1 (include variables of interest) is used to construct theinitial partial model on the agenda. The initial model includes every variable ofinterest (as a free variable) because any model without these variables would violatethis constraint. Thus, this constraint can be viewed as a propagation constraintapplied to the empty model.Adequacy constraint 2 (include variables in activity preconditions) is usedby Extend-model to identify new free variables for a partial model being extended.When an in
uence is added to a partial model, this constraint requires the model toinclude any variable in the in
uence's activity preconditions. If the model lacks oneof these variables, the variable is added as a free variable. Since every extension ofthe partial model must include the in
uence, any extension that lacks one of thesevariables will violate this constraint. Thus, this constraint serves as a propagationconstraint.Adequacy constraints 3 (exogenous variables independent of model) and 4(exogenous variables independent of question) are tested by the System BoundarySelector. They are both monotonic, as shown by the following lemma.Lemma 1 Adequacy constraints 3 and 4 are monotonic constraints.74



Proof: If an exogenous variable v in a partial model M violates adequacyconstraint 4, there must be an in
uence path in the scenario description, leadingto v from a driving variable of the question, consisting of in
uences that are eachvalid and signi�cant on the time scale of interest (by de�nition of the constraint).Since every extension of M contains v as an exogenous variable (by de�nition of anextension), every extension violates the constraint as well. Similarly, if v violatesadequacy constraint 3, there must be an in
uence path in the scenario description,leading to v from another variable v' in M, consisting of in
uences that are eachvalid and signi�cant on the time scale of interest (by de�nition of the constraint).Since every extension of M also contains v' and contains v as an exogenous variable(by de�nition of an extension), every extension violates the constraint as well. 2Although these two constraints are monotonic, they are not used as �lters.Rather, they are used by the System Boundary Selector to decide whether a givenfree variable can be exogenous. This is more e�cient than using them as �lters.Chapter 7 explains how the System Boundary Selector uses them.Adequacy constraints 5 (in
uences homogeneous), 6 (in
uences valid), 7 (in-
uences complete), and 8 (in
uences not redundant) are tested by the functionDv-models. They are all monotonic, as shown by the following lemma.Lemma 2 Adequacy constraints 5, 6, 7, and 8 are monotonic constraints.Proof: Any in
uence in a partial model is also in each of its extensions(by de�nition of an extension). Therefore, if an in
uence in a partial model violatesconstraint 6, or a pair of in
uences violates constraint 5 or 8, the constraint will alsobe violated in every extension. Similarly, if the in
uences on a dependent variablein a partial model violate constraint 7, the constraint will also be violated in everyextension, because an extension cannot change the in
uences on a partial model'sdependent variables (by de�nition of an extension). 2Although these four constraints are monotonic, they are not used to �lterpartial models. Instead, as described in Section 6.4, the function Dv-models usesconstraints 5 and 7 to generate potentially adequate sets of in
uences on a dependentvariable, and it uses constraints 6 and 8 to �lter these sets.Adequacy constraints 9 (entities coherent), 10 (entities consistent with black-box entities), 11 (entities consistent with glass-box entities), and 12 (entities com-patible with driving variables) are all monotonic, as shown by the following lemma.Lemma 3 Adequacy constraints 9, 10, 11 and 12 are monotonic constraints.Proof: As discussed in Section 5.4.4 (p. 57), the entities in a partial modelare determined by the model's variables and equilibrium in
uences. Therefore, every75



entity in a partial model is also in each of the model's extensions, since the variablesand in
uences in each extension are a superset of those in the partial model (byde�nition of an extension). Thus, if a partial model includes entities that violateone of these constraints, every extension will also violate the constraint. 2These four constraints are used to �lter partial models. They are testedbefore a new partial model is added to the search agenda.Adequacy constraint 13 (variables of interest di�erentially in
uenced) ismonotonic when applied to models that have no free variables, as shown by thefollowing lemma.Lemma 4 For a given scenario description and causal prediction question, let Mbe a scenario model that satis�es adequacy constraints 1 (include variables of in-terest) and 2 (include variables in activity preconditions). If M violates adequacyconstraint 13, every extension of M also violates the constraint.Proof: Assume that E is an extension of M that satis�es constraint 13. Weshow by contradiction that such an extension cannot exist.1. M violates constraint 13 (given). Therefore, for some variable of interest v,there is no di�erential in
uence path in M, leading to it from a driving variableof the question, such that every in
uence in the path is valid and signi�canton the time scale of interest.2. E satis�es adequacy constraint 13 (by assumption). Therefore, there is a di�er-ential in
uence path in E from a driving variable to v, consisting of in
uencesthat are valid and signi�cant on the time scale of interest.3. Let i be the last in
uence in this in
uence path that is not in M. There must besuch an in
uence because if every in
uence in the path were in M, all the vari-ables in the path would also be in M (since M satis�es adequacy constraint 2),and hence the in
uence path would be in M, which contradicts step 1.4. The in
uencee of i must be in M. If i is the last in
uence in the path, itsin
uencee is the variable of interest v. Since M satis�es adequacy constraint 1,v is in M. If i is not the last in
uence, the next in
uence in the path is in M(by de�nition of i), and so i's in
uencee is in M (since M satis�es adequacyconstraint 2).5. The in
uencee of i cannot be an exogenous variable in M. If it were, it wouldalso be exogenous in E (by de�nition of an extension). But then E could notinclude any in
uences on it (by de�nition of a partial model), and hence icould not be in E. 76



Constraint Description Role1 include variables of interest propagation2 include variables in activity preconditions propagation3 exogenous variables independent of model System Boundary Selector4 exogenous variables independent of question System Boundary Selector5 in
uences homogeneous Dv-models6 in
uences valid Dv-models7 in
uences complete Dv-models8 in
uences not redundant Dv-models9 entities coherent �lter10 entities consistent with black-box entities �lter11 entities consistent with glass-box entities �lter12 entities compatible with driving variables �lter13 variables of interest di�erentially in
uenced �lterTable 6.1: The role of adequacy constraints in model construction.6. The in
uencee of i cannot be a dependent variable in M. An extension cannotchange the in
uences on a partial model's dependent variables (by de�nitionof an extension), so i could be in E only if it was also in M (which contradictsthe de�nition of i).7. Since the in
uencee of i cannot be dependent or exogenous in M, and sinceM has no free variables (given), the in
uencee of i cannot be a variable in M.This contradicts step 4. That step follows from the assumption that E satis�esadequacy constraint 13. Therefore, that assumption is false.2 This lemma allows adequacy constraint 13 to be used as a �lter. Before amodel with no free variables is placed on the search agenda, the constraint is tested.Every partial model to be placed on the agenda, whether the initial model or theresult of Extend-model, satis�es adequacy constraints 1 and 2, so the antecedent ofthe lemma is satis�ed. Therefore, if the model violates constraint 13, it is prunedfrom the search.For extensibility, tripel is designed to easily accommodate new monotonicconstraints and propagation constraints. This allows tripel to incorporate addi-tional sophistication in its modeling criteria, such as new criteria for determiningwhether models are coherent, without changes in its model construction algorithm.Table 6.1 summarizes the information in this section.77



6.6 Properties of the Model Construction Algorithm6.6.1 The Model Construction Algorithm Avoids RedundancyTo ensure an e�cient search for a solution, a search algorithm must avoid redun-dancy. Typically, a graph search algorithm avoids redundancy by maintaining arecord of nodes it has visited. However, Find-adequate-model does not keep a recordof partial models that it has visited because of the following theorem.Theorem 1 (Search is not redundant) In the search graph constructed by Find-adequate-model, a given partial model cannot be reached via more than one path fromthe initial partial model.Proof: A partial model has multiple successors only when one of its freevariables is chosen as dependent (by de�nition of Extend-model). Each successor inthis case contains a di�erent set of in
uences on that variable. Since an extension ofa partial model cannot change the in
uences on that model's dependent variables,no two successors of a partial model can share a common extension. Thus, if apartial model is viewed as representing itself and all its extensions, its successorsrepresent disjoint subsets of its extensions. Viewed this way, Find-adequate-modelstarts with a single set (the initial partial model) and repeatedly splits one set intodisjoint subsets. Therefore, it is not possible for any two partial models in the searchgraph to have a common descendant. 2Thus, Find-adequate-model is a version of the well-known \split and prune"search algorithm [70], and the search graph it constructs is a tree.6.6.2 The Model Construction Algorithm Always TerminatesConceptually, Find-adequate-model operates by repeatedly pruning parts of the searchspace from consideration. When each iteration of the while loop begins, part of thesearch space has been pruned from consideration and part remains. Speci�cally,the partial models on the agenda, along with all their extensions, are still underconsideration. This set of partial models is the consideration set. Since everypartial model is an extension of the empty one (i.e., no variables or in
uences),the consideration set includes the entire search space when the agenda includes theempty model. Otherwise, it includes only a subset of the search space.The following theorem ensures that the search will always terminate by show-ing that the initial consideration set is �nite and that each iteration of the while loopdecreases the size of the consideration set. Termination is an important property ofany algorithm. It is also an important step in proving subsequent theorems.78



Theorem 2 If the scenario description is �nite, Find-adequate-model will termi-nate. Proof:1. Every individual step in the algorithm always terminates. Each adequacyconstraint can be checked in �nite time because (1) there are only a �nitenumber of variables and in
uences (and hence entities) in a partial model and(2) there are only a �nite number of glass-box entities, black-box entities, anddriving variables in a question (because the scenario description is �nite). Thefunction Dv-models terminates in �nite time because there are a �nite numberof in
uences on a scenario variable. Finally, as will be shown in Chapter 7, theSystem Boundary Selector simply checks a �nite number of entries in a matrixto decide whether a variable can be exogenous. Thus, Find-adequate-modelwill terminate if its while loop terminates, which we now show.2. The search space is �nite. Given a scenario description, the search spaceconsists of all partial models of that scenario. A �nite scenario description hasonly a �nite set of partial models. To see this, note that a partial model isuniquely determined by four sets: its exogenous variables, dependent variables,free variables, and in
uences. Each of the �rst three sets is a subset of thescenario variables, and the in
uences are a subset of the scenario in
uences.In a �nite scenario description, these sets are �nite, so there are only a �niteset of unique partial models.3. Since the search space is �nite, the initial consideration set is �nite.4. Every iteration of the while loop prunes the simplest partial model on theagenda from the consideration set. That is, the simplest partial model on theagenda is replaced by, if anything, its successors. A partial model cannot bean extension of any of its successors, and it cannot be an extension of anyother partial model on the agenda (from Theorem 1), so it is no longer in theconsideration set.5. The consideration set never increases in size. Every extension of a partialmodel's successors is also an extension of the partial model.6. Therefore, since the consideration set is initially �nite, and every iteration ofthe while loop decreases the size of the consideration set, the while loop musteventually terminate.2 79



6.6.3 The Model Construction Algorithm is AdmissibleFind-adequate-model is an admissible search algorithm. A search algorithm is ad-missible if it is guaranteed to return an optimal solution whenever a solution exists[70]. Find-adequate-model is admissible because it is guaranteed to return a simplestadequate scenario model whenever an adequate scenario model exists. Conceptually,the algorithm is admissible because it uses the following strategy:� From the space of all partial models of the scenario (including all scenariomodels), it repeatedly prunes away models until only a single scenario model(if any) remains.� It never prunes a scenario model unless either (1) the model is inadequate forthe question or (2) if the model is adequate, there is an adequate scenariomodel still under consideration that is at least as simple.The remainder of this section proves that Find-adequate-model is admissibleby proving that it follows this strategy. The following seven subsections list theseven ways that Find-adequate-model prunes models, and they prove that each isjusti�ed. Finally, the lemmas from these subsections are combined to prove thatFind-adequate-model is admissible.Pruning Models Without The Variables Of InterestFind-adequate-model does not start with the empty model on the agenda, so theinitial consideration set does not contain all partial models of the scenario. Initially,the agenda contains a partial model consisting of the variables of interest, each afree variable. The following lemma ensures that every adequate scenario model isan extension of this initial model.Lemma 5 For a given scenario description and causal prediction question, anyscenario model that does not contain the variables of interest is inadequate.Proof: Any scenario model that does not contain the variables of interestviolates adequacy constraint 1 (include variables of interest), so it is not adequatefor the question. 2Pruning Models that Violate Monotonic ConstraintsIf a partial model violates a monotonic constraint, it is not added to the agenda,thereby pruning it and its extensions. The following lemma ensures that a partialmodel that violates a monotonic constraint can be discarded.80



Lemma 6 Given a scenario description and a causal prediction question, if a partialmodel violates a monotonic constraint, it is inadequate for the question, and so iseach of its extensions.Proof: The partial model itself is inadequate because it violates the con-straint. By de�nition, a monotonic constraint, when violated for a partial model,is violated for any extension of that model. Thus, each extension is inadequate forthe question as well. 2Pruning Models in which a Variable is DependentWhen the System Boundary Selector says that all remaining variables in a partialmodel can be exogenous, Extend-model marks the variables exogenous and returnsthe resulting scenario model. This e�ectively prunes any extension in which one ofthese variables is dependent. The following two lemmas justify this approach; the�rst lemma simply establishes one of the antecedents of the second lemma.Lemma 7 Every partial model that Find-adequate-model passes to Extend-modelsatis�es all adequacy constraints except perhaps adequacy constraint 13 (variablesof interest di�erentially in
uenced).Proof: Adequacy constraint 1 (include variables of interest) is satis�edbecause the partial model is an extension of the initial partial model. Adequacyconstraint 2 (include variables in activity preconditions) is satis�ed because, when-ever Extend-model adds an in
uence to a partial model, it also adds any variablesappearing in the in
uence's activity preconditions. Adequacy constraints 3 (exoge-nous variables independent of model) and 4 (exogenous variables independent ofquestion) are satis�ed because no model passed to Extend-model has any exogenousvariables. Adequacy constraints 5 (in
uences homogeneous), 6 (in
uences valid), 7(in
uences complete), and 8 (in
uences not redundant) are satis�ed because (1) Dv-models only returns in
uences that satisfy these constraints and (2) if the in
uenceson a variable in a partial model satisfy these constraints, they will in any extensionas well (i.e., the constraints are independent of the rest of the model). Finally,adequacy constraints 9 (entities coherent), 10 (entities consistent with black-boxentities), 11 (entities consistent with glass-box entities), and 12 (entities compatiblewith driving variables) are satis�ed because a partial model is only added to theagenda if it satis�es these constraints. 2Lemma 8 Let P be a partial model for a given scenario description. For a givencausal prediction question Q, suppose P satis�es all adequacy constraints except per-haps adequacy constraint 13 (variables of interest di�erentially in
uenced). Suppose81



that all free variables in P can be treated as exogenous (i.e., they satisfy adequacyconstraints 3 and 4). Let E be the scenario model that results from making eachfree variable in P an exogenous variable. Then there is an extension of P that isa simplest adequate scenario model for Q only if E is a simplest adequate scenariomodel for Q.Proof: The extension E has the same number of variables as the partialmodel P, so E is at least as simple as any other extension of P (by the de�nitionof an extension). Therefore, if E is adequate and some other extension of P is asimplest adequate scenario model, E must be a simplest adequate scenario model aswell. We complete the proof by showing that if E is not adequate, none of the otherextensions of P is adequate.1. E must satisfy all adequacy constraints except perhaps adequacy constraint 13because (a) P satis�es all these constraints (given), (b) the new exogenousvariables satisfy adequacy constraints 3 and 4 (given), and (c) E has the samevariables and in
uences as P.2. Thus, if E is inadequate, it violates adequacy constraint 13. That is, for somevariable of interest v, there is no di�erential in
uence path in E, leading to itfrom a driving variable of the question, such that every in
uence in the pathis valid and signi�cant on the time scale of interest.3. Assume there is an extension E' of P that is an adequate scenario model. ThenE' satis�es adequacy constraint 13, and hence there is a di�erential in
uencepath in E' from a driving variable to v, consisting of in
uences that are validand signi�cant on the time scale of interest.4. Let i be the last in
uence in this in
uence path that is not in E. There must besuch an in
uence because if every in
uence in the path were in E, all the vari-ables in the path would also be in E (since E satis�es adequacy constraint 2),and hence the in
uence path would be in E, which contradicts step 2.5. The in
uencee of i must be in E. If i is the last in
uence in the path, itsin
uencee is the variable of interest v. If not, the next in
uence in the path isin E (by de�nition of i), and so i's in
uencee is in E (since E satis�es adequacyconstraint 2).6. The in
uencee of i must be a free variable in P. Otherwise, no extension of Pcan add an in
uence on it, and i would have to be in both P and E.82



7. However, all the free variables in P can be exogenous (given), so there is noin
uence path from a driving variable to any of these free variables consistingof in
uences that are valid and signi�cant on the time scale of interest.8. Thus, the in
uence path implied by the assumption in step 3 cannot exist,so E' cannot be an adequate scenario model. Thus, if E is not an adequatescenario model, no other extension of P is an adequate scenario model.2Pruning Models in which a Variable is ExogenousWhen the System Boundary Selector says that a variable in a partial model mustbe dependent, Extend-model e�ectively prunes any extension in which the variableis exogenous. This is justi�ed by the following lemma.Lemma 9 For a given scenario description and causal prediction question, if avariable v in a partial model M cannot be exogenous in M, (i.e., if it were, it wouldviolate adequacy constraint 3 or adequacy constraint 4), then any extension of M inwhich v is exogenous is inadequate for answering the question.Proof: This follows directly from the fact that these two constraints aremonotonic (Lemma 1). 2Pruning Models Based on Dv-modelsGiven a partial model with a variable v that must be dependent, Extend-model onlyconsiders those sets of in
uences on v returned by the function Dv-models, therebypruning any extension with a di�erent set of in
uences on v. The following twolemmas justify this approach. The �rst lemma ensures that every other set of in
u-ences is either inadequate or simply adds some insigni�cant in
uences. The secondlemma ensures that those sets containing insigni�cant in
uences can be discarded.Lemma 10 For a given scenario description and causal prediction question, if aset of in
uences on a variable is not returned by the function Dv-models, the setis either inadequate (i.e., violates adequacy constraint 5, 6, 7 or 8) or simply addsinsigni�cant in
uences to a set that is returned.Proof: Step 1 in the function Dv-models generates every complete setof in
uences, and step 2 discards any insigni�cant in
uences from these sets. Aset of in
uences will not make it past these steps in two cases: (1) the set is notapproximately complete, or (2) the set is identical to one that makes it past these83



steps except it includes some insigni�cant in
uences. In the �rst case, the set violatesadequacy constraint 7 (in
uences complete). The second case satis�es the lemmaif we can show that the remaining steps of the algorithm only discard inadequatesets of in
uences. Step 3 only discards sets that violate adequacy constraint 6, andstep 4 only discards sets that violate adequacy constraint 8. Therefore, the lemmaholds. 2Lemma 11 Given a scenario description and a causal prediction question, let Mbe a partial model with a variable v. Suppose the in
uences on v in M include somethat are insigni�cant on the time scale of interest. Let M' be a partial model thatis the same as M except it does not include the insigni�cant in
uences on v. Thenif M or one of its extensions is an adequate scenario model, either M' or one of itsextensions is also an adequate scenario model and is at least as simple.Proof: If M or one if its extensions is an adequate scenario model, call thatpartial model A. We show by construction that M' or one of its extensions is alsoadequate and is at least as simple. Construct A' from A by simply removing theinsigni�cant in
uences on v. If A = M, then A' = M'. Otherwise, A' is an extensionof M'. A' is at least as simple as A because it has the same variables. Furthermore,A' is an adequate scenario model because it contains no free variables (since A isadequate) and it satis�es all adequacy constraints:� Constraints 1 and 2 are satis�ed because the variables in A' are the same asthose in A and the in
uences in A' are a subset of those in A.� Constraints 3 and 4 are satis�ed because the variables in A' are the same asthose in A and the exogenous variables in A' are the same as those in A.� Constraints 5, 6 and 8 are satis�ed because the in
uences in A' are a subsetof those in A.� Constraint 7 is satis�ed because A' contains all in
uences from A except in-signi�cant ones.� Constraints 9, 10, 11, and 12 are satis�ed because the variables in A' are thesame as those in A and the in
uences in A' are a subset of those in A, so theentities in A' are a subset of the entities in A.� Constraint 13 is satis�ed for the following reasons. A is adequate, so it satis�esthis constraint. Therefore, for every variable of interest, there is an in
uencepath in A leading from a driving variable to the variable of interest, and everyin
uence in the path is valid and signi�cant on the time scale of interest. A'84



includes all the variables and in
uences in E except some in
uences that areinsigni�cant on the time scale of interest. Thus, A' must include every suchin
uence path that A does, and hence A' must satisfy adequacy constraint 13.2Pruning Models that Violate Propagation ConstraintsFor each partial model to be returned, Extend-model adds variables that are requiredby adequacy constraint 2 (include variables in activity preconditions). This e�ec-tively prunes those extensions without the variables. The following lemma ensuresthat the pruned extensions are all inadequate.Lemma 12 For a given scenario description and causal prediction question, if apartial model M includes an in
uence, any extension of M that does not include allthe variables appearing in that in
uence's activity preconditions is not an adequatescenario model.Proof: Every extension of M will include the in
uence (by the de�nition ofan extension). Thus, any extension without all the variables will violate adequacyconstraint 2. 2Pruning Models When an Adequate Model is FoundFind-adequate-model returns the �rst adequate model it �nds, e�ectively pruningthe remainder of the consideration set. The following lemma justi�es this approach.Lemma 13 When Find-adequate-model returns an adequate scenario model M, noother scenario model in the consideration set is a simplest adequate scenario modelunless M is also.Proof: Find-adequate-model always removes the simplest partial modelfrom the agenda, so no other model on the agenda is simpler than M. Hence, sincethe de�nition of an extension ensures that M is as simple as any of its extensionsand that every model on the agenda is as simple as any of their extensions, no modelin the consideration set is simpler than M. Thus, since M is an adequate scenariomodel, no other scenario model in the consideration set can be a simplest adequatemodel unless M is also. 2 85



Admissibility TheoremThe following lemma summarizes all the previous lemmas in this section. Recallthat the search space initially consists of all partial models (including all scenariomodels) for the given scenario description.Lemma 14 For a given scenario description and causal prediction question, Find-adequate-model never prunes a scenario model from the search space unless either(1) the model is inadequate or (2) there is an adequate scenario model still in theconsideration set that is at least as simple.Proof: Follows directly from Lemmas 5, 6, 7, 8, 9, 10, 11, 12, and 13 aswell as the fact that these are the only ways in which Find-adequate-model prunesmodels from the search space. 2Finally, building on all the previous lemmas, the following theorem provesthat the model construction algorithm is admissible.Theorem 3 (Model construction algorithm is admissible) Given a �nite sce-nario description and a causal prediction question for which some scenario model isadequate, Find-adequate-model will return a simplest adequate scenario model.Proof: Lemma 14 ensures that Find-adequate-model never prunes an ad-equate scenario model unless another adequate scenario model, at least as simple,remains in the consideration set. If there is an adequate scenario model, then thelemma ensures that the consideration set cannot become empty. Furthermore, ifthere is an adequate scenario model and the consideration set is reduced to a singleadequate scenario model, that model must be a simplest adequate scenario model.Theorem 2 ensures that Find-adequate-model eventually terminates. Upontermination, either the agenda (and hence consideration set) is empty or the consid-eration set consists of a single adequate scenario model (which is returned). If thereis an adequate scenario model for the question, the previous paragraph ensures thatthe �rst case cannot arise, and it ensures that the model in the second case must bea simplest adequate scenario model. 26.7 Related WorkFalkenhainer and Forbus [25] take a knowledge-based approach to model construc-tion. Each model fragment has associated \assumptions," symbolic labels that char-acterize the phenomena it represents and its level of detail. The domain knowledgeprovides constraints on the use of assumptions:86



� Assumptions are organized into \assumption classes." The assumptions in anassumption class represent mutually incompatible modeling alternatives.� The domain knowledge can provide domain-speci�c constraints among as-sumptions, such as that one assumption requires another.� For each assumption class, the domain knowledge must specify the scenarioconditions under which it is relevant. An adequate scenario model must includeone alternative from each relevant assumption class.In their modeling task, a question speci�es terms (e.g., variables) of interest.Their objective is to �nd a minimal set of assumptions that satisfy all the domainconstraints and ensure that the model includes the terms of interest. They accom-plish this with a constraint satisfaction algorithm (\dynamic constraint satisfaction"[62]). In their framework, most criteria for model adequacy are speci�ed in thedomain knowledge. Their model fragments are analogous to in
uences, and theirassumption classes are similar to tripel's encapsulates and explanation relations.However, we do not require the domain knowledge to provide relevance conditionsor domain-speci�c constraints among modeling alternatives; our modeling criteriaand algorithm obviate the need for that extra \modeling knowledge." Formulatingthe modeling knowledge so that it ensures an adequate model could be a di�cult,time-consuming, error-prone task. In addition, it is not clear how to encode someconstraints, such as adequacy constraint 13 (variables of interest di�erentially in
u-enced), in their language. Removing the need for modeling knowledge has been adriving motivation for our work.A second approach to model construction is to start with a detailed modeland repeatedly simplify it. Williams's method for generating a \critical abstrac-tion" [85] starts with a detailed model of the scenario and simpli�es it in threeways: (1) the method removes in
uences on which the variables of interest do notcausally depend (such in
uences are never introduced into a scenario model by ouralgorithm), (2) the method algebraically eliminates certain intermediate variables ifthey are neither driving variables nor variables of interest, and (3) the method alge-braically abstracts quantitative details that are not needed to answer the question.Yip's modeling algorithm starts with a detailed model and repeatedly simpli�es itby removing insigni�cant terms in the equations (analogous to eliminating insignif-icant in
uences). Nayak's modeling algorithm [65] starts with a detailed model andrepeatedly simpli�es it by (1) eliminating irrelevant phenomena or (2) replacingone model fragment with another that represents a \causal approximation" of it(typically, this corresponds to omitting some of the in
uences in the original model87



fragment).For complex systems, which include many phenomena that can be describedat many levels of detail, the approach of repeatedly simplifying a detailed modelis impractical. First, it may be di�cult to �nd an initial conservative (i.e., overlycomplex) model that is su�ciently close to the simplest adequate model. Second, thesimpli�cation operators must be �ne-grained enough not to skip over the simplestadequate model, but if they are too �ne-grained it will take a long time to reach thesimplest adequate model.Nayak [65] proves that his algorithm will reach the simplest adequate modelin time polynomial in the size of the scenario description. However, his results donot apply to our task, for several reasons. First, as discussed in Section 5.3, his sim-plicity criteria leave many models incomparable, even though some of these modelsare intuitively much simpler than others. His algorithm exploits his simplicity crite-ria by using a hill-climbing search. If more of the models were comparable, as theyare under our simplicity criterion, this search strategy would not be guaranteed to�nd a simplest adequate model. Second, his hill-climbing search strategy relies ona restrictive assumption: he assumes that every phenomenon in the scenario has itsown set of modeling alternatives and that the modeler can choose an alternative formodeling one phenomenon independent of how the other phenomena are modeled.However, our modeling framework is built around aggregation of phenomena. Oneentity can aggregate several other entities, and one in
uence can aggregate severalother in
uences. Aggregation hierarchies are crucial to achieving simple models ofcomplex systems, but they violate Nayak's assumption. We investigated the pos-sibility of extending Nayak's approach to handle aggregation, but it would requireassuming that, for every level of description for a phenomenon, there is a compatiblelevel of description for every related phenomenon; this requires a level of complete-ness in the scenario description that seems impractical. Finally, his proofs currentlyplace restrictions on the use of in
uences in model fragments, and these restrictionswould seriously diminish the advantages of using in
uences as the building blocksfor models.1tripel's algorithm for model construction is very similar to the one used byIwasaki and Levy [43]. Their algorithm starts with a partial model consisting of thevariables of interest, and it repeatedly extends the model to include the in
uences onfree variables. There are two major di�erences between the two algorithms. First,they have no method for automatically choosing exogenous variables. (Chapter 7describes our method.) Second, like Nayak [65], their simplicity criteria leave many1Nayak (personal communication) believes that the proofs could be extended to accommodateour use of in
uences. 88



models incomparable, even though some of these models are intuitively much simplerthan others. If more of the models were comparable, as they are under our simplicitycriterion, their search strategy would not necessarily �nd a simplest adequate model.In addition to these primary di�erences, there are other smaller di�erences:� They allow the activity preconditions of a model fragment to include predicatesas well as behavioral conditions. Correspondingly, while tripel's algorithmalways extends a model by considering the in
uences on a free variable, theiralgorithm can also extend a model to include in
uences on these predicates.This is a natural and useful extension of tripel's approach.� In their representation, in
uences in the scenario description do not have acausal direction. The direction of causality is only assigned after the model iscomplete, using a causal ordering algorithm [44]. This causes their algorithmto extend models to include all variables that could \possibly in
uence" thechosen free variable, which will generally result in larger models with moreirrelevant phenomena. The question of whether in
uences can be given acausal direction before the scenario model is built is an open question [29].However, our approach has worked well in the plant physiology domain, andwe expect similar success in many other domains. Section 10.2.2 discusses thisissue further.� Their algorithm relies on a strong assumption about the domain knowledge(the \library coherence assumption") to guarantee that the equations in anadequate scenario model are complete (i.e., have the same number of equationsas dependent variables). In contrast, our modeling algorithm is designed toensure that.� Their algorithm is guaranteed to run in time polynomial in the size of thescenario description [58]. However, that result does not apply to our tasksince it relies on the same assumptions as the similar result of Nayak [65]discussed earlier.The mecho program for solving physics problems [61] is also similar totripel's model constructor. It starts with the unknowns of the problem (analogousto the variables of interest) and searches backward through alternative equations un-til it �nds an adequate model. A model is adequate if it can predict the value of theunknowns from the given information. Beyond these similarities, there are impor-tant di�erences between mecho and tripel. First, there is no issue of coherence formecho to address; alternative equations represent di�erent physics principles, notalternative levels of detail. Second, mecho does not distinguish between signi�cant89



and insigni�cant phenomena, and it does not consider the validity of approxima-tions. Finally, for the textbook physics problems mecho solves, a much simplercriterion for choosing exogenous variables is su�cient; a variable can be exogenousif and only if its value is given.Several people have explored an approach to model construction called \dis-crepancy-driven re�nement" [3, 5, 84]. After constructing an initial model, themodeler compares its predictions against the known behavior of the system. Dis-crepancies suggest re�nements to the model, and the process is repeated until asu�ciently close match is obtained. We have not used this approach because we donot assume that the correct behavior is known. However, when it is, these algorithmsare complementary to tripel; tripel provides a more sophisticated approach toconstructing the initial model than these algorithms currently use. Section 10.6.2discusses this issue further.
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Chapter 7Choosing Exogenous VariablesThe exogenous variables of a scenario model constitute its system boundary. Thesystem boundary separates those aspects of the scenario that are modeled fromthose that are ignored. Consequently, the system boundary must be chosen so thatrelevant aspects of the scenario are included in the model while irrelevant aspectslie outside the boundary.Previous chapters introduced the system boundary selection task. Chapter 5explained the crucial role of exogenous variables in modeling and speci�ed the cri-teria for choosing them. Chapter 6 explained the role of system boundary selectionin tripel's model construction algorithm. The current chapter explains the designof the System Boundary Selector, which makes system boundary decisions whenthey are required during model construction. Because tripel's criteria for choosingexogenous variables are novel (as explained in Chapter 5), the design of the SystemBoundary Selector (which implements those criteria) is novel as well.7.1 The Role of System Boundary SelectionDuring model construction, system boundary decisions arise in the successor func-tion Extend-model, described in Chapter 6. Given a scenario description, a causalprediction question, a partial model and one of its free variables, Extend-model asksthe System Boundary Selector whether the variable can be exogenous. Such deci-sions are important; if the variable must be dependent, the model must be extendedto include additional in
uences (on that variable) and variables (referenced by thosein
uences).The System Boundary Selector's response is either \yes" (the variable canbe exogenous) or \no" (the variable must be dependent), interpreted as follows:� If the response is \yes," then the variable can be exogenous in any extension91
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uenced in the scenario description, on the time scale ofinterest, by another variable in the model.� Adequacy constraint 4 | A variable in a scenario model cannot be exogenousif it is signi�cantly in
uenced in the scenario description, on the time scale ofinterest, by a driving variable (other than itself if it is a driving variable).92



Although these constraints are stated in terms of scenario models, they applyto partial models as well. Lemma 1 in Chapter 6 shows that both constraints aremonotonic. That is, if a variable in a partial model violates one of the constraints,the variable cannot be exogenous in any extension of the partial model either. Inthis case, the System Boundary Selector can answer \no" (the variable cannot beexogenous). On the other hand, if a variable in a partial model satis�es both con-straints, it can be exogenous in any extension with the same variables. (The variablemight not satisfy adequacy constraint 3 in an extension with additional variables.)In this case, the System Boundary Selector can answer \yes" (the variable can beexogenous). Thus, the system boundary selection task simply requires the abilityto test these two constraints.These constraints can be tested by a graph connectivity algorithm. Recallfrom Section 5.4.2 that one scenario variable signi�cantly in
uences another onthe time scale of interest if and only if there is an in
uence path (in the scenariodescription) leading from the �rst variable to the second and every in
uence in thepath is valid and signi�cant on that time scale. Thus, a free variable in a partialmodel can be exogenous if and only if the graph algorithm �nds no such path leadingto the variable from any driving variable of the question or any other variable in themodel. However, it would be ine�cient to run the graph algorithm anew for eachsystem boundary decision. Each run of the graph algorithm will repeat much of thesearch that previous runs did. To avoid this problem, tripel performs a systemboundary analysis before beginning the search for an adequate scenario model. Thesystem boundary analysis determines all variables and in
uences that might berelevant to the question, and it computes and caches connectivity relations amongthe variables. These potentially relevant variables and in
uences constitute thespace that would be repeatedly searched by the graph algorithm. The algorithm forsystem boundary analysis is given in Section 7.2.2.The result of the system boundary analysis is a Boolean connectivity matrix.This matrix records the connectivity between every pair of potentially relevant vari-ables. That is, the ith variable signi�cantly in
uences the jth variable on the timescale of interest if and only if the (i,j) cell of the matrix contains a 1.Once system boundary analysis is complete, tripel begins its search for thesimplest adequate scenario model as described in Chapter 6. Using the connectivitymatrix, system boundary decisions that arise during model construction are trivial.A free variable in a partial model must be dependent if, according to the connectivitymatrix, the variable violates adequacy constraint 3 or 4. In this case, the SystemBoundary Selector returns \no" (the variable cannot be exogenous). Otherwise, it93



returns \yes."7.2.2 System Boundary AnalysisPotentially Relevant VariablesThe variables in the connectivity matrix are called the potentially relevant variablesbecause they include all variables that might be relevant to answering the question.More precisely, they include any variable that might be added to a partial modelduring model construction. Similarly, the potentially relevant in
uences include anyin
uence that might be added to a partial model during model construction. tripelde�nes the potentially relevant variables and in
uences as follows:� The variables of interest are each potentially relevant.� If a variable is potentially relevant, any in
uence on it that is valid and sig-ni�cant (on the time scale of interest) is a potentially relevant in
uence.� The in
uencer of every potentially relevant in
uence is potentially relevant.� Any variable appearing in the activity preconditions of a potentially relevantin
uence is potentially relevant.This de�nition mirrors the steps that add variables and in
uences to partial modelsduring model construction.The System Boundary Selector �nds the potentially relevant variables andin
uences using a breadth-�rst search through the scenario in
uence graph. First,each of the variables of interest is marked as potentially relevant and placed onthe search agenda. On each iteration of the search, a variable is removed from theagenda, and each valid, signi�cant in
uence on that variable is marked as potentiallyrelevant. For each such in
uence, its in
uencer and the variables in its activitypreconditions are marked as potentially relevant. Each newly marked variable isplaced on the agenda unless it had previously appeared on it. The search ends whenthe agenda is empty; the terminal variables in the search are those that are notsigni�cantly in
uenced on the time scale of interest and those that are signi�cantlyin
uenced only by variables discovered earlier in the search (i.e., through feedbackloops). When the search ends, all potentially relevant variables and in
uences willhave been marked.To illustrate this algorithm, consider the familiar question \What happensto the amount of aba in a plant's guard cells when the turgor pressure in its leavesdecreases?" For convenience, Part A of Figure 7.2 repeats a portion of the sce-nario description for this question. The search for potentially relevant variables and94



in
uences begins with the in
uences on guard cell aba amount. The in
uencesof transpiration on leaf mesophyll water (middle of left side) and water uptake onxylem water (lower left) are insigni�cant on the time scale of interest (minutes);removing these two in
uences disconnects the potentially relevant variables fromthe remainder of the scenario variables and in
uences, including the feedback loopthrough transpiration. Part B shows the result, the potentially relevant variablesand in
uences for the example. For comparison, Part C shows the simplest adequatemodel for the question (as described in Chapter 6).As illustrated by the example, the search for potentially relevant variablesand in
uences will typically have to traverse only a fraction of the variables andin
uences of a scenario. In natural systems, like plants, animals, and ecosystems,modularity arises from the widely disparate time scales at which processes causechange [4, 53, 68, 76, 80]. The result is a hierarchy of nearly decomposable subsys-tems; processes acting within a subsystem cause signi�cant change quickly, whileprocesses acting across subsystems cause change more slowly [4, 53, 68, 82]. Thetime scale of interest �lters out in
uences that are signi�cant only on slower timescales, thus isolating the variables of interest in their own nearly decomposable sub-system. The search for potentially relevant variables and in
uences is con�ned tothis subsystem because the in
uences from other subsystems are insigni�cant.Computing the Connectivity MatrixAfter determining the graph of potentially relevant variables and in
uences, the Sys-tem Boundary Selector constructs the connectivity matrix. First, it constructs thesubgraph of the scenario in
uence graph corresponding to the potentially relevantvariables and in
uences. Analogous to the de�nition in Section 5.4.2, the nodes ofthis subgraph are the potentially relevant variables, and there is a directed edge fromone variable to another if there is a potentially relevant in
uence whose in
uenceeis the second variable and for which the �rst variable is the in
uencer or appears inthe activity preconditions. The connectivity matrix is simply the adjacency matrixfor the transitive closure of this subgraph. Given the subgraph, the connectivitymatrix can be computed e�ciently; the Floyd-Warshall algorithm computes it in�(n3) time, where n is the number of nodes (potentially relevant variables) in thesubgraph [17].Properties of the Connectivity MatrixAs discussed earlier, the System Boundary Selector decides whether a variable ina partial model can be exogenous by checking cells in the connectivity matrix.95
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Therefore, the connectivity matrix must include every variable for which a systemboundary decision might be required. The following theorem ensures this.Theorem 4 (Connectivity matrix is complete) For a given scenario descrip-tion and causal prediction question, the connectivity matrix constructed by the Sys-tem Boundary Selector contains every variable for which a system boundary decisionmight be required by tripel's model construction algorithm.Proof: A system boundary decision is only required for variables added topartial models during model construction. The connectivity matrix includes everysuch variable because the de�nition of potentially relevant variables and in
uencesmirrors the steps that add variables and in
uences during model construction:� The initial partial model for model construction only contains the variables ofinterest.� The function Dv-models only adds in
uences that are valid and signi�cant onthe time scale of interest.� The function Extend-model only adds a variable if it is the in
uencer of a newlyadded in
uence or it appears in the activity preconditions of a newly addedin
uence.2 The System Boundary Selector uses the connectivity matrix to determinewhether one scenario variable signi�cantly in
uences another. The following theo-rem ensures that the connectivity matrix can provide this information.Theorem 5 (Connectivity matrix is correct) For a given scenario descriptionand causal prediction question, cell (i,j) of the connectivity matrix contains a 1 ifand only if the ith scenario variable signi�cantly in
uences the jth variable on thetime scale of interest.Proof: The \only if" follows directly from the de�nition of the connectivitymatrix. To prove the \if," suppose that p is the in
uence path by which i (the ithvariable) signi�cantly in
uences j (the jth variable). If p consists only of variablesand in
uences that are potentially relevant, cell (i,j) will contain a 1 (by de�nitionof the connectivity matrix). Otherwise, let e be the last in
uence in the paththat is not potentially relevant. There must be such an in
uence because if everyin
uence in the path were potentially relevant, all the variables in the path wouldalso be potentially relevant (by de�nition of the potentially relevant variables andin
uences). 97



The in
uencee of emust be potentially relevant. If e is the last in
uence in thepath, its in
uencee is j, which is in the connectivity matrix and hence is potentiallyrelevant. Otherwise, if e is not the last in
uence, the next in
uence in the path ispotentially relevant (by de�nition of e), so e's in
uencee is potentially relevant (byde�nition of the potentially relevant variables and in
uences). But since e is a validand signi�cant in
uence on a potentially relevant variable, it must be potentiallyrelevant (by de�nition of the potentially relevant variables and in
uences). Thiscontradicts the de�nition of e. Therefore, p must consist only of variables andin
uences that are potentially relevant, and the theorem must hold. 2To determine whether a variable can be exogenous, the System BoundarySelector must ensure that the variable is not signi�cantly in
uenced by any drivingvariable (as discussed in Section 7.2.1). However, the de�nition of potentially rel-evant variables does not ensure that every driving variable is potentially relevant,so some driving variables may not appear in the connectivity matrix. Nevertheless,variables in the connectivity matrix are only signi�cantly in
uenced by other vari-ables in the matrix. Therefore, when deciding whether a variable can be exogenous,the System Boundary Selector knows that the variable is not signi�cantly in
uencedby any driving variable that is not in the matrix.7.3 SummaryIn summary, tripel chooses exogenous variables by using a graph connectivity al-gorithm to test adequacy constraints 3 and 4. For e�ciency, tripel computes andcaches a Boolean connectivity matrix before it begins model construction. tripeluses the matrix to determine whether a variable in a partial model is signi�cantlyin
uenced by another variable of the model or by a driving variable. The connectiv-ity matrix can be computed e�ciently, and it allows tripel to e�ciently determinewhich variables can be exogenous.The algorithms in this chapter do not depend on the particular criteria fordetermining whether an in
uence is valid and signi�cant. tripel uses a time scaleof interest, but other criteria could be used instead or in addition. For complex sys-tems, in which scenario variables are highly interconnected, the ability to recognizeinsigni�cant in
uences is crucial to achieving a suitable system boundary. This abil-ity is also required to keep the number of potentially relevant variables (and hencethe size of the connectivity matrix) small. Therefore, the most important area forfuture work is improving tripel's ability to recognize insigni�cant in
uences, whichis discussed in Chapter 10. 98



Chapter 8Choosing a Time Scale ofInterest8.1 MotivationA time scale of interest provides an important focus for modeling. Processes thatoperate on slower time scales can be ignored, and processes that operate on fastertime scales can be modeled as instantaneous (through equilibrium in
uences). Anaggregate pool can be used in place of its subpools when they equilibrate on a fastertime scale. These modeling techniques are useful, and often necessary, to achieveconceptual clarity, to enable analytic solutions to a model's equations, and evento enable practical numerical or qualitative simulation. The techniques are widelyused in many �elds, including economics [82], biology [34, 45, 77, 80, 88], ecology[4, 46, 68, 79] and many areas of engineering [14, 50, 78].However, a person asking a prediction question cannot be expected to providethe time scale of interest. Typically, the person will not know which in
uences linkthe driving conditions to the variables of interest, much less the time scales on whichthe in
uences operate. The modeler must choose, as the time scale of interest, atime scale that is adequate for answering the question.Despite the importance of a time scale of interest, no previous work hasprovided methods for choosing one. This chapter describes tripel's criteria andalgorithm for choosing a time scale of interest when none is speci�ed in the question.tripel executes the algorithm before performing any other steps. That is,time scale selection precedes system boundary analysis and model construction.However, it is interleaved with scenario elaboration; it requests information fromthe scenario description just as model construction does.99



8.2 Adequate Time ScaleA causal prediction question asks for the causal e�ect of driving conditions on vari-ables of interest. Section 5.4.5 argued that a scenario model is adequate for answer-ing a causal prediction question only if adequacy constraint 13 is satis�ed; that is,for every variable of interest, the model must include a di�erential in
uence pathleading to it from some driving variable such that every in
uence in the path isvalid and signi�cant on the time scale of interest. Thus, for a given time scale, anadequate model exists only if, for every variable of interest, the scenario descriptionincludes such an in
uence path. This suggests the following criterion for choosinga time scale on which the question can be adequately answered: A time scale isadequate for answering a causal prediction question only if, for every variable ofinterest, the scenario description includes a di�erential in
uence path leading to itfrom some driving variable such that every in
uence in the path is valid and sig-ni�cant on that time scale. Intuitively, this simply states that the modeler shouldchoose a time scale on which the driving conditions of the question are capable ofcausing signi�cant change in the variables of interest.8.3 Finding an Adequate Time ScaleTo �nd a time scale that satis�es this criterion, a modeler must search for therequired in
uence paths. The search for in
uence paths during system boundaryselection is kept manageable by the time scale of interest, but no such focus isavailable when searching for an adequate time scale of interest. The complete setof in
uences for a scenario could be enormous, so generating that set and searchingthrough it for in
uence paths could be prohibitively expensive. E�cient time scaleselection requires the ability to generate and search through only a fraction of thein
uences.tripel gains e�ciency by starting with the fastest possible time scale andtesting successively slower time scales until it �nds one that is adequate. Whentripel tests a time scale, it can ignore all in
uences that are signi�cant only onslower time scales, so each test operates on a manageable fraction of the scenarioin
uences. By testing faster time scales before slower ones, tripel performs theinexpensive tests before the more expensive ones, because the set of signi�cant in-
uences grows monotonically as tripel considers slower time scales. tripel choosesthe �rst adequate time scale it �nds as the time scale of interest.To determine whether a candidate time scale is adequate, tripel conducts abreadth-�rst search, starting from the driving variables, for scenario variables thatare reachable via signi�cant (on that time scale) in
uence paths. For each reachable100



variable, tripel records whether it is reachable via a di�erential in
uence path ora functional one. The actual in
uence paths need not be recorded. The search endswhen every variable of interest is reachable by a di�erential in
uence path (in whichcase the time scale is adequate) or when the set of variables reachable at that timescale is exhausted (in which case the time scale is not adequate).For example, Part A of Figure 7.2 (page 96) shows some of the in
uences forthe question \What happens to the amount of aba in a plant's guard cells when theturgor pressure in its leaves decreases?" To �nd an adequate time scale, tripel �rsttests a time scale of seconds. The �gure illustrates that only the aba synthesis rateis signi�cantly in
uenced by leaf turgor pressure on this time scale. Next, tripeltests a time scale of minutes. On this time scale, there is a di�erential in
uence pathfrom leaf turgor pressure to guard cell aba amount (along the top of the �gure), sothis time scale is chosen.8.4 Practical Time ScaleIf a time scale does not satisfy the criterion in Section 8.2, there is no scenariomodel on that time scale that is adequate for answering the given question. For ifthe required in
uence paths do not exist in the scenario description on that timescale, no scenario model will include them, and hence no scenario model will satisfyadequacy constraint 13. Thus, tripel is justi�ed in discarding any candidate timescale that does not satisfy the adequacy criterion.However, the criterion is not su�cient to ensure that there is an adequatescenario model. While the criterion suggests that the question can be meaningfullyanswered on any time scale judged adequate, the domain knowledge (and thus thescenario description) may lack certain levels of detail that are required. For example,on that time scale, there may not be a scenario model that satis�es the desired levelof detail.In general, there is probably no way to guarantee that an adequate scenariomodel exists on a given time scale short of building one. However, trying to buildan adequate scenario model is a potentially expensive process. The following simpletest can often recognize a time scale that satis�es the adequacy criterion even thoughno adequate scenario model exists on that time scale.Although the previous section stated that tripel chooses the fastest ade-quate time scale as the time scale of interest, it does not. Instead, after �nding anadequate time scale, tripel tests that time scale using a slightly stronger version ofthe adequacy criterion. Speci�cally, while searching for di�erential in
uence pathsrelating the driving variables to the variables of interest, tripel prunes any path101



that passes through a scenario variable that could not appear in an adequate sce-nario model. This includes variables whose entity violates adequacy constraints 10(entities consistent with black-box entities), 11 (entities consistent with glass-boxentities), or 12 (entities compatible with driving variables). It also includes vari-ables whose entity is incompatible with the variables of interest (via constraint 9).If a variable cannot appear in an adequate scenario model, any di�erential in
u-ence path that passes through it cannot be included in an adequate scenario model.tripel tests successively slower time scales, starting with the fastest adequate one,until one of them satis�es the test. The �rst time scale to satisfy the test is chosenas the time scale of interest.Since this stronger test is ultimately used to choose the time scale of interest,it would be possible to skip the earlier, weaker test. However, by using both tests asdescribed, tripel provides valuable information. If a time scale passes the �rst test,it is likely that the question is meaningful on that time scale. If that time scale doesnot satisfy the stronger test, it is likely that the domain knowledge is simply missingsome important level of detail. Thus, to provide feedback on possible inadequaciesin the domain knowledge, as well as to indicate that the question is meaningful on atime scale faster than the chosen time scale of interest, tripel uses both tests andwarns the user whenever the tests suggest two di�erent time scales.8.5 Discussiontripel's method for time scale selection has several limitations. First, it assumesthat a single time scale will su�ce for answering a question. However, some questionsare best answered by combining the results of several models, each with a di�erenttime scale [7, 42, 53, 59]. Also, the fastest adequate time scale may not be thebest one for answering some questions; there may be more important connectionsbetween driving variables and variables of interest on slower time scales.Another limitation results from using signi�cance preconditions for bothmodel construction and time scale selection. For model construction, an in
uence'ssigni�cance preconditions should specify the fastest time scale on which the in
uencecan be signi�cant. This will cause tripel to include the in
uence in cases where itmight be insigni�cant, but that is better than ignoring it in cases where it might besigni�cant. However, if the domain knowledge uses that convention for signi�cancepreconditions, tripel might choose a time scale of interest that is faster than itreally should be. Then, when using the fast time scale of interest during modelconstruction, tripel may prune in
uences that are actually signi�cant on the ap-propriate time scale of interest. Thus, signi�cance preconditions that are encoded102



to prevent tripel from omitting signi�cant in
uences can cause tripel to omitsigni�cant in
uences! This limitation could be remedied with additional knowledge;if tripel knew the fastest time scale on which an in
uence might be signi�cant andthe time scale on which the in
uence is typically signi�cant, it could use the formerduring model construction and the latter for time scale selection.Another limitation results from tripel's use of driving variables rather thandriving conditions. To illustrate the problem, consider the amount of glucose ina plant's leaves. The amount of glucose is in
uenced by photosynthesis (whichmanufactures glucose), and this in
uence is sometimes signi�cant on a time scaleof minutes (e.g., during a sunny day). The amount of glucose is also in
uencedby respiration (which burns it to release energy), and respiration is signi�cant ona time scale of hours under most conditions. Suppose the question to be answeredis \When the rate of respiration exceeds the rate of photosynthesis (e.g., at night),what happens to the amount of glucose?" The variable of interest (amount ofglucose) is signi�cantly in
uenced by some driving variable (rate of photosynthesis)on a time scale of minutes, so tripel chooses that as the time scale of interest.However, on that time scale, respiration is insigni�cant, so it is not included in themodel. Thus, the relevant driving condition cannot even be expressed in terms ofthe model.There are two possible remedies for this limitation. The �rst is simply torequire tripel to �nd a relevant driving condition (rather than driving variable)for each variable of interest, where a driving condition is relevant only if each of itsdriving variables signi�cantly in
uences the variable of interest. The other, morecomplicated, remedy would be for tripel to be more sensitive to the details of thedriving conditions. If tripel knew that respiration exceeds photosynthesis onlywhen photosynthesis is operating very slowly, it could choose a more appropriatetime scale. I think the �rst solution could be implemented easily, but the secondsolution would require more research.Despite these limitations, tripel's method for selecting a time scale of inter-est has proven quite successful in practice. The limitations only arise in relativelyrare cases. As will be shown in Chapter 9, tripel typically chooses the most ap-propriate time scale as the time scale of interest, and it does so e�ciently.
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Chapter 9Empirical Evaluation9.1 IntroductionThere are two important issues that must be empirically evaluated. The �rst issueconcerns the quality of the models tripel constructs. Chapter 6 proved that tripelalways returns a simplest adequate model when there is one. However, the proofsays nothing about whether the de�nition of a simplest adequate model matchesour intuitive notions of simplicity and adequacy. To address this issue, we testedtripel on plant physiology questions. Section 9.2 describes the knowledge basethat provided the plant physiology knowledge, and Section 9.3 describes an assess-ment of tripel's performance by an expert in plant physiology. In addition, todemonstrate the importance of several elements of tripel, Section 9.4 shows howtripel's performance degrades as these elements are weakened.The second issue concerns tripel's e�ciency. For complex systems, the fullscenario description and the space of possible models are very large. tripel willonly be practical if it can cope with such complexity. As described in Section 9.2, theplant physiology knowledge base provides an excellent test bed, because it describesmany plant phenomena at many levels of detail. Section 9.6 evaluates the e�ciencywith which tripel constructs models from this knowledge base.9.2 The Botany Knowledge BaseThis dissertation addresses the task of automatically constructing models of com-plex systems. Speci�cally, our methods were developed to handle large scenariodescriptions that include many phenomena and many levels of detail. Therefore, toempirically evaluate these methods, we require domain knowledge capable of cre-ating such extensive scenario descriptions. For this purpose, we used the Botany104



Knowledge Base (bkb) [71].The bkb is an ideal test bed for evaluating tripel for three reasons. First,its knowledge is extensive. The knowledge base currently contains about 200,000facts covering plant anatomy, physiology, and development. Its knowledge rangesover many phenomena and levels of detail. Second, it was independently developedby a domain expert whose main objective was a faithful and unbiased representationof botany knowledge. Finally, it was developed to support a wide range of tasksbesides prediction; that is, the bkb encodes fundamental, textbook knowledge, andthe representation of that knowledge was not chosen to facilitate its use for anysingle task such as prediction.It was not di�cult to implement demand-driven scenario elaboration for thebkb. The bkb includes inference methods, speci�cally rules and taxonomic inher-itance, that can be used in a backward-chaining fashion. The types of knowledgerequired by tripel (described in Chapters 2 and 4) can all be provided by the bkb,either directly or through inference methods. Thus, given a question regarding aplant, scenario elaboration can use the bkb to generate missing elements of thescenario description, including the in
uences that govern the plant.However, while the bkb can provide the knowledge tripel needs, we soondiscovered a number of errors in its knowledge. The bkb has been used to sup-port a variety of research projects, including machine learning [63, 64], explanationgeneration [1, 2, 57], and natural language generation [9]. However, none of theseprojects required the types of knowledge that tripel needs, so the knowledge grewwithout being tested, and errors accumulated over the years. As the �rst consumerof these types of knowledge, tripel was the �rst to uncover the errors.In order to use the bkb to evaluate tripel, we had to eliminate as manyerrors as possible. It would be di�cult to evaluate tripel if its performance waspoor due to faulty knowledge. To uncover errors, we used scenario elaboration togenerate the in
uences governing a prototypical plant, and we showed the resultsto the expert. He identi�ed erroneous and missing in
uences, he �xed the bkb, andwe repeated the process.While a considerable number of problems were �xed this way, we eventuallyreached a point of diminishing returns. It is di�cult to anticipate how di�erentpieces of knowledge in the bkb will interact during inference. A change in the bkbwould often correct the targeted inference but introduce other unwanted inferences(or eliminate desired inferences). When we reached this point of diminishing returns,we switched to a more predictable method for eliminating the remaining errors. Weused the scenario elaboration methods to exhaustively elaborate the description ofa prototypical plant, storing this description as facts in the bkb, and the domain105



expert �xed errors in this description directly. With the help of a variety of simpletools, the expert uncovered and �xed the remaining errors.The result is a complete scenario description covering a prototypical plantand its environment (soil and atmosphere), all stored in the bkb. This scenariodescription includes 691 scenario variables and 1507 in
uences among them. Itincludes 47 di�erent spaces (e.g., roots, stems, leaves) and 172 di�erent pools ofsubstances in those spaces (e.g., oxygen in the leaves). It includes 313 processes,covering water regulation, metabolic processes like photosynthesis and respiration,temperature regulation, and transportation of gases and solutes. Additionally, thevariables, in
uences, pools and processes cover many di�erent levels of detail fordescribing a plant. Thus, this description meets the most important requirementfor evaluating tripel: it includes many phenomena at many levels of detail.Although the scenario description is stored explicitly in the bkb, eliminatingthe problem of errors due to faulty inferences, another problem remains: retriev-ing knowledge from the bkb, even without inference, is currently slow. Withoutunbundling tripel's computations from the retrieval of bkb facts, it would be dif-�cult to assess tripel's e�ciency, and experiments would be unnecessarily slow.To alleviate this problem, we ran a program to extract all the elements of the sce-nario description and store them in simple Lisp data structures. This version of thescenario description was used to empirically evaluate tripel, as described in theremaining sections.9.3 Evaluation by a Plant Physiology Expert9.3.1 ExperimentTo test tripel, we asked the domain expert to construct a set of questions thathe thought the bkb could answer. To generate a large number of questions, heconstructed a set of question templates . For example, Figure 9.1 shows a questiontemplate and a question that was generated from it. Because properties of a plantcan be described at many levels of detail (e.g., aba in the plant versus aba in theleaves), question templates allowed the expert to generate many variations of eachbasic question.From the question templates, a random number generator was used to select16 questions. That is, random numbers were used to select question templates andchoose from among the alternatives within each template. tripel was tested onthese questions, and the results were informally evaluated by the domain expert. Theresults showed that tripel performed well, indicating that no changes to tripelor the scenario description were needed.106



Question template:� How does an increase/decrease in plant/leaf aba level a�ect plant/leaf waterpotential?Question generated from it:� How does an increase in leaf aba level a�ect leaf water potential?Figure 9.1: A question template (above) and a question generated from it (below).Items separated by \/" represent alternatives. Italicized choices indicate that thesame choice must be made in all places. For instance, in this example, either \plant"or \leaf" must be chosen in both places.However, to ensure that the results were not a�ected by the evaluation pro-cedure, we devised the following procedure for evaluating tripel's performance onsubsequent questions:1. The domain expert generates his answer (model and predictions) for a questionbefore looking at tripel's results. This prevents him from being in
uencedby tripel's choices.2. The domain expert evaluates tripel's model for the question by comparingit to his own.3. After the expert has evaluated tripel's performance on all questions, hepresents his assessment, and we discuss the knowledge he uses to reach hisconclusions.To formally evaluate tripel, another 15 questions were chosen randomly, andthe above procedure was followed. Only these 15 questions were evaluated carefullyand in great detail, so they form the basis of our evaluation. However, the informalevaluation suggests that tripel's performance on these 15 is representative of itsperformance on the entire 31. For this reason, we will sometimes present statisticsfor all 31 to provide a broader picture.Of the 15 questions used in the formal evaluation, one had to be thrown out.The expert found the question odd, and he was not sure how to answer it. Therefore,he could not, with con�dence, determine which elements of the scenario descriptionwere relevant to answering it. In the following sections, all formal evaluation resultsare based on the remaining 14 questions. Appendix A lists all 31 questions; the �rst14 are those used for the formal evaluation. Appendix B shows the models tripelconstructed in the formal evaluation. 107



Instantaneous Seconds Minutes Hours Days None3 2 12 11 1 2Table 9.1: The distribution of time scales chosen by tripel as the time scale ofinterest. The top row lists the di�erent time scales it chose, and the bottom rowlists the number of times it chose each time scale as the time scale of interest. Thelast column indicates cases where tripel could not �nd a practical time scale.9.3.2 Does tripel choose an appropriate time scale of interest?Table 9.1 shows the distribution of time scales that tripel chose as the time scaleof interest over the entire 31 questions. A time scale of \instantaneous" is chosenwhen the causal e�ect is purely functional. For example, the question \How wouldan increase in carbon dioxide in the leaves a�ect the rate of photosynthesis?" canbe answered on an instantaneous time scale; carbon dioxide is one of the reactantsof photosynthesis, so the e�ect is essentially immediate. The last column in thetable indicates cases where tripel found no practical time scale for answering thequestion. The distribution indicates that tripel made use of a variety of time scalesin answering the questions.Of the 14 questions that were formally evaluated, the expert judged tripel'schosen time scale of interest appropriate in nine. In eight cases, tripel's choice wasthe same as the expert's. In the other case, tripel's choice was di�erent thanthe expert's but nonetheless appropriate. tripel's model for this case captured ane�ect that is signi�cant and more immediate than the one captured by the expert'smodel. The e�ect modeled by the expert is less common but more dramatic whenit occurs. The expert believes both e�ects are important and that either one is anadequate answer to the question.Of the �ve cases where tripel chose an inappropriate time scale, three weredue to errors in the scenario description. In the �rst case, tripel chose a time scalefaster than the expert's because an equilibrium in
uence in the scenario descrip-tion was missing a validity precondition. Thus, tripel thought this in
uence wasvalid and signi�cant instantaneously, while in actuality it represents an e�ect thatoperates on a time scale of minutes. In the second case, tripel chose a time scaleslower than the expert's because the e�ect captured by the expert's model could notbe represented using in
uences from the scenario description. The expert's modelcrossed levels of detail; he used an \in
uence" to show that a change in the amountof sucrose in a plant's shoot system suggests that the amount in a speci�c subpartis likely to be changing similarly. However, the scenario description does not con-108



tain any such in
uence, and in fact tripel could not �nd any adequate model forthis question precisely because the question requires this ability to cross levels ofdetail. Similarly, in the third case, tripel found no practical time scale because theexpert's model crossed levels of detail using an in
uence that is not in the scenariodescription.In the remaining two cases, tripel chose an inappropriate time scale be-cause it erroneously judged an insigni�cant in
uence path as signi�cant. In the �rstcase, tripel actually chose the same time scale, based on the same e�ect, as theexpert. However, while the expert acknowledged that this was the most reasonableconnection between the driving variable and variable of interest, he said that theconnection is probably insigni�cant. Therefore, the proper answer was that there isno adequate time scale and no adequate model. In the second case, tripel founda long in
uence path on a time scale of interest faster than the expert's; the expertsaid the path was in fact insigni�cant.These last two cases are the most interesting, because they indicate thattripel's criterion for determining whether an in
uence path is signi�cant is toosimplistic. As de�ned in Chapter 5, an in
uence path is signi�cant on a given timescale if each of its in
uences is valid and signi�cant on that time scale. However,the expert's reasoning indicates that an in
uence path might be signi�cant only ona slower time scale; the expert reasons about extra time lags due to the length ofthe path or the spatial distance it covers. As we will see, this limitation of tripelalso causes problems during model construction.9.3.3 Does tripel construct adequate models?Of the 14 questions that were formally evaluated, the expert judged tripel's chosenmodel adequate in ten. That is, in the expert's judgement, these ten models includeall the variables and in
uences needed to generate the right predictions and expla-nations. For example, Figure 9.2 shows the adequate model tripel constructed toanswer the question \How does a decreasing amount of water in a plant a�ect theamount of K+ in its guard cells?" In nine of the ten, the models included all theelements of the expert's model. tripel's model for the remaining one captures ane�ect that is signi�cant and more immediate than the one captured by the expert'smodel, as discussed in Section 9.3.2. It may seem strange that tripel constructedan adequate model in one case where it chose an inappropriate time scale. However,this was the case where a relevant in
uence was missing its validity preconditions,as discussed in Section 9.3.2. tripel constructed the right model, but it erroneouslythought the model operates on a faster time scale than it does.For two of the remaining four questions, tripel could not �nd any adequate109



leaf
mesophyll
ABA
concentration

leaf
mesophyll
ABA
amount

ABA
synthesis
rate

plant 
water
amount

ABA
inactivation
rate

plant
turgor
pressure

guard
cell ABA
concentration

ABA
transport
rate

guard
cell ABA
amount

guard 
cell CO
amount

2
guard
cell K
amount

+

+

   −

+

   −

+ +

−

+

   −

+

−

+

− −

Figure 9.2: The model tripel constructed to answer the question \How does adecreasing amount of water in a plant a�ect the amount of K+ in its guard cells?"(The �gures in this chapter use the conventions introduced in Chapter 5.)model. In both these cases, the expert's model crosses levels of detail using anin
uence not in the scenario description, as discussed in Section 9.3.2.The remaining two failures, which are the most interesting, were alreadyanalyzed in Section 9.3.2. Speci�cally, they are the two cases in which tripelfound a connection between the driving variable and variable of interest that is infact insigni�cant. As discussed in that section, the problem is that tripel's criterionfor determining whether an in
uence path is signi�cant is too simplistic.9.3.4 Why does tripel sometimes fail to �nd an adequate model?tripel determined that there is no adequate model for eight of the 31 questions.(For two questions, it could not even �nd a practical time scale of interest.) Ineach case, the problem lies with the scenario description. Conceptually, each suchquestion requires a model of several aspects of the plant, and the available levels ofdetail for these aspects are not compatible. For example, the scenario descriptioncannot provide an adequate model for the question \What is the e�ect of an increas-ing amount of co2 in the symplast of a plant's leaves on the rate of photosynthesisin the leaves?" The problem is that the scenario description does not relate prop-erties of the leaves' symplast to properties of the leaves as a whole. In each suchcase, a close variant of the question can be successfully answered. For example, thescenario description can provide an adequate model for the question \What is thee�ect of an increasing amount of co2 in the symplast of a plant's leaves on the rate110



of photosynthesis there?" In this question, both the driving variable and variable ofinterest concern the symplast. There were more questions without adequate modelsin the �rst set of questions (six) than the second set (two) because generation of the�rst set erroneously ignored coherence constraints in the question templates (e.g.,the italicized elements in Figure 9.1).9.3.5 Do the models tripel constructs include irrelevant elements?Across the 23 questions for which tripel found an adequate model, the size of thesimplest adequate model it found varied considerably. Table 9.2 shows the size of thesimplest adequate model it found for each of these questions. The table shows that,on average, there are about 2 in
uences on each variable in these models. Almostall variables in these models represent rates of processes and amounts and concen-trations of pools; the table shows how many pools and processes are represented ineach model.For the ten (out of 14) questions for which the expert judged tripel's modeladequate, Table 9.3 compares the size of the model with its number of irrelevant ele-ments (according to the expert). These numbers are somewhat misleading, though;one error in tripel's judgement typically forces it to include many irrelevant ele-ments. For this reason, the types of errors it made are more interesting. Most ofthe irrelevant elements in these models (as well as the models that were only infor-mally evaluated) were included because tripel erroneously thought an in
uence orin
uence path was signi�cant. Most of tripel's errors result from three di�erencesbetween tripel's criteria for signi�cance and the expert's criteria:� The expert uses a �ner gradation of time scales than those in the scenariodescription. For each time scale in the scenario description (e.g., minutes orhours), the expert considers a variety of more speci�c time scales (e.g., a fewminutes versus many minutes). When the expert chooses \few minutes" as thetime scale of interest, he ignores processes operating on a time scale of manyminutes. Because the scenario description does not distinguish these two timescales, tripel treats the slower processes as signi�cant.� As discussed in Section 9.3.2, tripel's criterion for determining whether anin
uence path is signi�cant is too simplistic. Therefore, tripel sometimesincludes a feedback loop that the expert can tell is insigni�cant.� tripel does not consider behavioral conditions when assessing an in
uence'ssigni�cance, because it attempts to build models that will cover any behavioralconditions that might arise. In contrast, the expert sometimes determines111



# tsoi Variables In
uences Pools Processes16 instantaneous 3 2 2 01 instantaneous 6 5 4 12 hours 6 7 3 23 instantaneous 7 6 5 117 minutes 7 7 3 24 minutes 8 10 3 218 seconds 10 14 2 25 minutes 11 14 5 319 seconds 12 16 3 26 hours 16 25 6 620 hours 16 25 6 621 hours 18 27 6 67 minutes 19 28 7 78 minutes 25 41 9 922 hours 26 41 8 1023 hours 37 66 14 149 minutes 41 70 14 1524 hours 59 111 18 2525 hours 74 131 23 3310 minutes 78 145 23 3211 minutes 82 147 23 3115 minutes 82 148 23 3112 days 93 173 27 39Table 9.2: The size of the simplest adequate model tripel found for those questionswhere it found an adequate model. Each row represents a question. The �rst columnshows the question number. The second column shows the time scale of interest(tsoi) that tripel chose. The remaining columns show the number of variables,in
uences, pools and processes in the simplest adequate model tripel found. Therows are ordered by the size of the models.112



# tripel's Model Irrelevant Elements1 6, 5, 4, 1 none2 6, 7, 3, 2 none3 7, 6, 5, 1 none4 8, 10, 3, 2 none5 11, 14, 5, 3 none6 16, 25, 6, 6 5, 8, 2, 17 19, 28, 7, 7 6, 9, 2, 28 25, 41, 9, 9 none9 41, 70, 14, 15 29, 55, 10, 1011 82, 147, 23, 31 64, 121, 17, 28Table 9.3: The number of irrelevant elements in the models tripel constructed.Each row represents a question. The �rst column shows the question number. Thesecond column shows the number of variables, in
uences, pools and processes in thesimplest adequate model found by tripel. The third column shows the number ofthese variables, in
uences, pools and processes that are not relevant to answeringthe question. The rows are ordered by the size of the models.that an in
uence is insigni�cant because it is signi�cant only under behavioralconditions that will not arise in the scenario. For example, oxygen is rarely alimiting reactant for respiration; therefore, when the expert can see that thedriving conditions of a question will not cause oxygen to become limiting, heomits the in
uence of oxygen on respiration.In summary, most of tripel's models do not include irrelevant elements, andmost of the irrelevant elements that it includes could be eliminated by extensionsto its criteria for identifying signi�cant in
uences and in
uence paths.9.4 Ablation ExperimentsThe preceding sections suggest that tripel is relatively successful at building simple,adequate models from a large scenario description. However, while those sectionspoint out speci�c weaknesses, they do not identify the keys to tripel's successes.This section quanti�es the importance of two key elements of tripel: its systemboundary criteria and its use of a time scale of interest.113



9.4.1 Weakening the System Boundary Criteriatripel's criteria for choosing exogenous variables are an important source of itspower. A model's exogenous variables constitute its system boundary, and ev-erything outside the boundary is deemed irrelevant. Suitable criteria for choosingexogenous variables help a modeler include relevant phenomena while omitting irrel-evant ones. In contrast, if the modeler's criteria are 
awed, the model may includeirrelevant phenomena or, worse yet, exclude relevant phenomena. Chapter 5 pro-posed the following two criteria for choosing exogenous variables, which are used bytripel (adequacy constraints 3 and 4):� A scenario model is adequate only if none of its exogenous variables is signi�-cantly in
uenced in the scenario description, on the time scale of interest, byanother variable in the model.� A scenario model is adequate only if none of its exogenous variables is signi�-cantly in
uenced in the scenario description, on the time scale of interest, bya driving variable (other than itself if it is a driving variable).To evaluate the validity of these criteria, as well as determine their role intripel's success, we replaced the criteria with the following alternative: A scenariomodel is adequate only if none of its exogenous variables is signi�cantly in
uencedin the scenario description, on the time scale of interest, by any other variable inthe scenario description (regardless of whether that other variable is in the model oris a driving variable). Intuitively, a variable can be exogenous under this criteriononly if it is regulated on a time scale slower than the time scale of interest. Forexample, on a time scale of minutes, growth processes are insigni�cant, so the sizeof a plant can be exogenous.This criterion provides a good comparison for several reasons. First, it isintuitively reasonable. Second, it is more conservative than tripel's criteria; anyvariable that can be exogenous under this criterion can also be exogenous undertripel's criteria. Finally, this criterion is simpler conceptually as well as simpler toimplement.We modi�ed tripel to use this conservative criterion for choosing exogenousvariables, and we tested the resulting program on all 31 questions. The conservativeprogram found an adequate model for exactly those questions that tripel did. Forthose questions, Table 9.4 compares the sizes of the models found by tripel (shownearlier in Table 9.2) with the sizes of the models found by the conservative program.This table illustrates two points. First, the conservative criterion typicallyresults in a signi�cantly larger model. Second, the model found using the conserva-tive criterion typically includes all the variables and in
uences in tripel's model.114



# tsoi tripel Conservative Variables/In
uences in Common16 instantaneous 3/2 3/2 3/21 instantaneous 6/5 11/11 6/52 hours 6/7 13/15 6/73 instantaneous 7/6 10/9 7/617 minutes 7/7 8/8 7/74 minutes 8/10 9/11 8/1018 seconds 10/14 14/18 10/145 minutes 11/14 55/84 10/1319 seconds 12/16 14/18 12/166 hours 16/25 35/50 16/2520 hours 16/25 35/50 16/2521 hours 18/27 35/50 18/277 minutes 19/28 34/50 19/288 minutes 25/41 43/67 25/4122 hours 26/41 39/59 26/3923 hours 37/66 63/103 37/669 minutes 41/70 67/109 41/7024 hours 59/111 85/148 59/11125 hours 74/131 98/168 74/13110 minutes 78/145 120/207 78/14511 minutes 82/147 105/183 81/14015 minutes 82/148 105/183 81/14412 days 93/173 106/190 92/172Table 9.4: The sizes of the models constructed by tripel and by a variant that usesa more conservative criterion for choosing exogenous variables. Each row representsa question. The �rst column shows the question number. The second column showsthe time scale of interest that tripel chose for the question. The third columnshows the number of variables and in
uences in the simplest adequate model thattripel found. The fourth column shows the number of variables and in
uences inthe simplest adequate model found by the conservative variant. The last columnshows the number of variables and in
uences that the two models have in common.The rows are ordered by the size of the models.115



(The conservative model sometimes excludes a few variables and in
uences thatare in tripel's model because the conservative model includes alternatives in theirplace.) For every question evaluated by the domain expert, the extra elements in theconservative models are all irrelevant (according to the expert). This suggests thattripel's criteria for choosing exogenous variables are e�ective in retaining relevantphenomena while excluding irrelevant phenomena. The di�erence in size betweentripel's models and the conservative models shows the extra power tripel's cri-teria provide for achieving simple models.9.4.2 The Importance of a Time Scale of InterestAs discussed throughout this dissertation, a time scale of interest is an importantsource of tripel's power. A time scale of interest allows tripel to treat in
uencesthat operate on a slower time scale as insigni�cant. It allows tripel to modelthe e�ects of faster processes using equilibrium in
uences, based on a quasi-staticapproximation. It allows tripel to treat separate pools as a single aggregate whenthey equilibrate on a faster time scale. If tripel did not use a time scale of interest,the simplest adequate model for a question would be much more complex than itcurrently is.To test this claim, we ran tripel on each of the 31 questions without usinga time scale of interest. Without a time scale of interest, tripel cannot recognizeinsigni�cant in
uences, and it cannot use in
uences whose validity depends on thetime scale of interest. For those questions where tripel originally found no adequatemodel, the modi�ed version of tripel also found no adequate model (because thesequestions expose gaps in the scenario description). For those questions on whichtripel did originally �nd an adequate model, Table 9.5 compares the size of thatmodel against the size of the model constructed when tripel does not use a timescale of interest.This table illustrates two points. First, when tripel does not exploit a timescale of interest, it constructs a model that is signi�cantly larger, and the e�ectis even more dramatic than it was using the conservative criterion for choosingexogenous variables. Second, tripel often cannot construct an adequate modeleven though it could when using a time scale of interest. Without using a timescale of interest, tripel is forced to model more phenomena, and it is more likely toneed two phenomena for which the scenario description does not include compatiblelevels of detail. Thus, a time scale of interest not only results in smaller models, butalso makes tripel less sensitive to gaps in the scenario description.For every question evaluated by the domain expert, the models built without116



# tsoi tripel No tsoi16 instantaneous 3/2 97/1811 instantaneous 6/5 116/2182 hours 6/7 13/183 instantaneous 7/6 116/21817 minutes 7/7 64/1144 minutes 8/10 116/21818 seconds 10/14 na5 minutes 11/14 na19 seconds 12/16 na6 hours 16/25 64/11420 hours 16/25 64/11421 hours 18/27 64/1147 minutes 19/28 99/1858 minutes 25/41 65/11522 hours 26/41 116/21823 hours 37/66 64/1149 minutes 41/70 na24 hours 59/111 na25 hours 74/131 116/21810 minutes 78/145 139/26911 minutes 82/147 168/30715 minutes 82/148 168/30612 days 93/173 97/181Table 9.5: The sizes of the models constructed by tripel and by a variant thatdoes not exploit a time scale of interest. Each row represents a question. The �rstcolumn shows the question number. The second column shows the time scale ofinterest that tripel chose for the question. The third column shows the numberof variables and in
uences in the simplest adequate model that tripel found. Thefourth column shows the number of variables and in
uences in the simplest adequatemodel found by the variant; \na" means that no adequate model was found. Therows are ordered by the size of the models.117



using a time scale of interest are strictly inferior to the models tripel originallyconstructed. That is, in every case, they add irrelevant elements without addingany missing relevant elements (according to the expert).9.4.3 Combining the AblationsTo see the result of combining the two variants of tripel | ignoring the timescale of interest and using the conservative criterion for choosing exogenous vari-ables | we created a third variant of tripel and tested it on all 31 questions.Table 9.6 combines the results of this new variant with the results shown in Ta-bles 9.4 and 9.5. The last two columns show the new results: the simplest andmost-detailed adequate models constructed by the new variant for each question.These columns are interesting for two reasons. First, the size of the simplest modelsit found shows how models degrade when the previous two variants are combined.Second, the most-detailed models constructed by the new variant are in fact themost-detailed adequate models (from the scenario description) for the questions, sothe last column provides a useful comparison with the size of the models tripeloriginally constructed.19.5 Simulation ExperimentsSo far, the dissertation has focused entirely on modeling. However, as stated inChapter 1, our long-term goal is a computer program that can answer predictionquestions, not just a program that builds models. A program for answering predic-tion questions must pass the model constructed by tripel to an analysis programthat can generate the predictions. The issues that tripel addresses are importantregardless of the method of analysis. This section describes the result of integratingtripel with one particular analysis program, the Qualitative Process Compiler [27].Integrating tripel with an analysis program serves two purposes. First, itprovides further evaluation of the models that tripel constructs. At this earlystage of research in automated modeling, an expert's evaluation is crucial, becausean expert is able to assess whether a model will make the right predictions andwhether it makes them for the right reasons. However, humans are prone to er-rors in generating predictions from formal models, so a formal analysis program isvaluable in catching such errors. Second, although tripel supports many meth-1Although most of the detailed models are quite large, notice that the detailed model for onequestion is small. That question speci�cally asks about a process, plant water distribution, thattreats the entire plant as a conduit for water transport from the soil to the atmosphere. Thus,every adequate model for answering the question abstracts all the internal details of the plant.118



# tsoi tripel Conservative No tsoi Combined (simplest) Combined (detailed)16 instant. 3/2 3/2 97/181 106/193 195/3541 instant. 6/5 11/11 116/218 129/234 159/2962 hours 6/7 13/15 13/18 14/19 14/193 instant. 7/6 10/9 116/218 129/234 156/29017 minutes 7/7 8/8 64/114 71/122 72/1244 minutes 8/10 9/11 116/218 129/234 137/24718 seconds 10/14 14/18 na na na5 minutes 11/14 55/84 na na na19 seconds 12/16 14/18 na na na6 hours 16/25 35/50 64/114 71/122 76/13220 hours 16/25 35/50 64/114 71/122 76/13221 hours 18/27 35/50 64/114 71/122 76/1327 minutes 19/28 34/50 99/185 106/193 195/3548 minutes 25/41 43/67 65/115 71/122 75/13022 hours 26/41 39/59 116/218 129/234 160/29823 hours 37/66 63/103 64/114 71/122 72/1249 minutes 41/70 67/109 na na na24 hours 59/111 85/148 na na na25 hours 74/131 98/168 116/218 129/234 159/29610 minutes 78/145 120/207 139/269 152/285 160/29811 minutes 82/147 105/183 168/307 177/319 195/35415 minutes 82/148 105/183 168/306 177/318 195/35412 days 93/173 106/190 97/181 106/193 195/354Table 9.6: A summary of the ablation experiments. Each row represents a question.The �rst column shows the question number. The second column shows the timescale of interest that tripel chose for the question. The other columns show thesizes (number of variables and in
uences) of the models constructed by tripel,the conservative variant, the variant that ignores the time scale of interest, and thevariant that combines these two ablations (the simplest and most-detailed modelsit constructed). The rows are ordered by the size of the models.
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ods of analysis in principle, each method may require some additional issues to beaddressed. Integration of tripel with an analysis program will expose these issues.Models constructed from the bkb cannot be numerically simulated becauseit contains few quantitative details. It is designed to cover a wide variety of plantspecies; while di�erent species are governed by similar phenomena, they di�er greatlyin their quantitative details. Furthermore, in its current stage of development,the bkb is primarily intended for tutoring. For that task, quantitative details aretypically irrelevant. Thus, generating predictions using models constructed from thebkb requires qualitative simulation.Qualitative SimulationTo perform qualitative simulations using the models tripel constructs, I integratedtripel with the Qualitative Process Compiler (qpc) [27], a qualitative simulationprogram. After tripel constructs a scenario model, it passes the model to qpc.Starting from the initial state of the speci�ed scenario, qpc identi�es the activein
uences in the scenario model (i.e., those in
uences whose activity preconditionsare satis�ed), and it uses them to generate a set of qualitative di�erential equations(qdes). qpc simulates the equations using the qsim program [52, 54]. As the stateof the scenario changes during simulation, the set of active in
uences in the scenariomodel may change, so qpc repeatedly formulates a set of qdes and simulates themuntil simulation is complete.Qualitative di�erential equations are an abstraction of ordinary di�erentialequations. Figure 9.3 shows a simple model consisting of in
uences (Part A) andthe corresponding qdes (Part B). This �gure illustrates two points. First, di�er-ential in
uences are combined in a stronger way than functional in
uences: eachdi�erential in
uence is assumed to be an additive term (although it is possible tospecify otherwise). Second, the information about the function f lacks quantitativedetails.The output of qpc is a qualitative behavior for the scenario. For example,Figure 9.4 shows the qualitative behavior of one variable, the amount of water in abathtub, as the water in the tub drains out. The �gure illustrates two importantaspects of qualitative predictions. First, the magnitude of a variable is representedonly by its relationship to �xed \landmarks"; in this example, the landmarks arethe amount corresponding to a full tub and the amount corresponding to an emptytub. The dotted lines indicate the transition from one qualitative state to another,not the quantitative trajectory. Second, a variable's rate of change is representedas the sign of its �rst derivative: zero (steady, shown as �), negative (decreasing,shown as #), and positive (increasing, typically shown as ", but not shown in the120
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uences representing a simple model of a bathtub. Thevariable a represents the amount of water in the tub, i is the rate of in
ow fromthe faucet, o is the rate of out
ow through the drain, and d is the size of the drain.The variables i and d are exogenous. (B) The corresponding qualitative di�erentialequations.example).For some domains and tasks, qualitative predictions are appropriate. Forplant physiology, di�erent species di�er signi�cantly in their quantitative details.For this reason, plant physiology books often describe only the qualitative behaviorof plants and the mechanisms responsible for that behavior. Thus, the combinationof tripel and qpc could provide a valuable foundation for a tutoring system inplant physiology or similar domains.Unlike numerical simulations, qpc does not necessarily predict a unique be-havior for the physical system described by a scenario model. Often, due to lack ofquantitative details, there are multiple behaviors for the system that are consistentwith the qdes. This is because a qde model is an abstraction of many di�erent odemodels, each with di�erent quantitative details. Thus, each qualitative behavior ofa qde model is an abstraction of the quantitative behaviors resulting from some ofthe underlying ode models.Integrating tripel and qpcIntegrating tripel with qpc required solutions to several problems:� For each variable in a scenario model, tripel must specify the range of thevariable and any important landmarks. To address this issue, I manuallyadded, for each variable in the elaborated scenario description, its range for121
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amount of waterFigure 9.4: The qualitative behavior of the amount of water in a bathtub as thewater drains out. This behavior includes three qualitative states: the amount is fulland decreasing at the initial time instant t0, it is between full and empty and isdecreasing in the time interval between t0 and t1, and it is empty and steady at the�nal time instant t2.a prototypical plant under typical daytime conditions. For example, amountvariables are all positive (e.g., a plant without any water would not look muchlike a plant). When tripel passes a scenario model to qpc it also passesrange constraints for every variable in the model.� tripel must specify an initial state for variables whose initial state is notspeci�ed in the question and cannot be determined using the model. To ad-dress this issue, I modi�ed qpc as follows. After qpc generates all the initialstates of the scenario that are consistent with the model and question, it callsa subroutine that selects the initial state that is closest to equilibrium. Thatis, it selects the initial state with the greatest number of steady variables.� tripel must specify the qualitative behavior for exogenous variables whosebehavior is not speci�ed in the question. Currently, qpc assumes that exoge-nous variables are constant unless otherwise speci�ed. Such an assumption istypically appropriate, so tripel simply allows qpc to make such assumptions.� Finally, qualitative simulation often produces multiple behaviors whose di�er-ence is irrelevant to answering the given question. It is typically di�cult toidentify the di�erences among multiple behaviors to determine whether thosedi�erences are relevant. To address this issue, I allowed qpc to use a tooldeveloped by Dan Clancy [15]. This tool collapses certain di�erences amongbehaviors and represents the ambiguity as part of a single behavior (e.g., the122



symbol l indicates that a variable may be increasing or decreasing). In ourexperience using qpc to answer plant physiology questions, this tool has beeninvaluable in collapsing irrelevant distinctions.These solutions have worked well in practice. The domain expert typicallyassumes that the initial state of a plant is as close to equilibrium as possible, hetypically assumes that exogenous variables are constant unless otherwise speci�ed,and the range constraints include the range of interest for all the questions we havesimulated. However, although these solutions su�ced for the simulation experimentsto be described shortly, they are not intended as general solutions. Chapter 10describes some limitations of these solutions and areas for future work.Experiment and ResultsFor each of the ten models that the expert judged adequate, tripel passed the modelto qpc for simulation. Those �ve models with the fewest variables (correspondingto question 1{5) all generated a single, unique behavior. Four of these behaviors(for questions 1, 2, 3, and 5) matched the expert's predictions exactly. (The expertdescribed all his predictions in qualitative terms.)From the model for question 4, qpc predicted a di�erent behavior than theexpert. The question asks \What happens to turgor pressure in a plant's leavesas root water absorption decreases?" Figure 9.5 shows the model that tripelconstructed to answer the question. The problem with the model is that it doesnot include the in
uence of transpiration on leaf water amount. tripel omittedthis in
uence because transpiration operates on a time scale of hours, while tripelchose minutes as the time scale of interest. Without transpiration, there is anin
ow of water into the leaves but no out
ow, so the amount of leaf water increases.In contrast, the expert assumed that the plant starts out with transpiration andwater absorption balanced, so a decrease in water absorption causes leaf water todecrease. tripel's model is inadequate for generating that prediction, but theexpert overlooked the inadequacy because transpiration plays an indirect role inanswering the question.tripel's error in this question is a result of the time scales in the scenariodescription. As discussed in Section 9.3.5, the expert uses a �ner gradation of timescales than those in the scenario description. To the expert, root water absorptionoperates on a time scale of many minutes, while transpiration operates on a timescale of one to two hours. Therefore, to the expert, these two processes are closelycomparable, and they cannot be separated under most conditions. Yet the scenariodescription tells tripel that the processes operate on time scales of minutes andhours, respectively, so tripel erroneously separates them.123
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Figure 9.5: The model tripel constructed to answer the question \What happensto turgor pressure in a plant's leaves as root water absorption decreases?"
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Figure 9.6: The model tripel constructed to answer the question \What happensto a plant's water potential as the temperature of the environment decreases?"While qpc generated a single, unique behavior for the �ve models with thefewest variables, it generated a number of possible behaviors for the next simplestmodel (for question 6). However, the ambiguity is due only to the in
uences onone variable, transpiration rate. Figure 9.6 shows the model for question 6. Givenqualitative information alone, qpc cannot tell whether a change in plant temper-ature will cause a corresponding change in transpiration (through the immediatein
uence) or an opposite change (via stomata size). However, if I assert to qpcthat the in
uence of plant temperature on transpiration dominates the in
uenceof stomata size (i.e., that transpiration behaves as if it is only a function of planttemperature while plant temperature is changing), qpc generates a single, uniquebehavior for this question, the one predicted by the expert. The in
uence of temper-ature dominates the in
uence of stomata size because temperature is a driving forcefor transpiration, while stomata size merely controls the resistance. This exampledemonstrates three things: the in
uences in the model are adequate for answeringthe question, qualitative information alone is insu�cient to generate the requiredprediction, and knowledge of dominant in
uences eliminates the ambiguity.For the remaining four models (questions 7{10), qpc also generated a numberof possible behaviors. However, unlike the model for question 6, there are manysources of ambiguity in these models. As with question 6, the problem does not liewith tripel's choice of in
uences. The problem is that the qualitative informationprovided by the bkb is not su�cient to uniquely determine the behavior of the125



variables of interest.The ambiguity in the predictions could be reduced in several ways. Onesolution would be to incorporate some quantitative information into the bkb. qpccan incorporate varying amounts of quantitative information into its qualitativesimulation, and the extra information typically reduces ambiguity. Alternatively,the bkb could provide information as to which in
uences tend to dominate otherin
uences. qpc could use this information to reduce ambiguity, as it did for question6 (described earlier). Along with a colleague, I have begun exploring the secondapproach as an extension to qpc, but more work remains.In summary, the simulation experiments show that those models judged ad-equate by the domain expert result in a unique, correct qualitative prediction inabout half the cases. In one other case, simulation showed an inadequacy in amodel that the expert overlooked. Finally, for the remaining models, qpc generatesmany possible behaviors, showing that qualitative information alone is insu�cientfor predicting the behavior of larger models.9.6 E�ciencyFor each of the domain expert's questions, we evaluated the e�ciency with whichtripel constructs the simplest adequate model. We separately evaluated the threeprimary steps that tripel performs: time scale selection, system boundary analysis,and model construction. Note that the timing data reported in this section doesnot include the time required for scenario elaboration, since scenario elaborationwas run to completion before tripel was run, as described in Section 9.2. Thetiming data pertains to Harlequin Lispworks 3.2 Common Lisp running on a DEC3000/500 workstation.9.6.1 Time Scale SelectionOf the three steps we evaluated, time scale selection is by far the most e�cient.The time required for time scale selection is a small fraction of the time required forsystem boundary analysis and model construction. Across all the domain expert'squestions, Table 9.7 shows the number of seconds tripel took, in the worst case,to choose a particular time scale as the time scale of interest.It takes longer to choose a slower time scale of interest for two reasons. First,the set of signi�cant in
uences grows monotonically as tripel considers slower timescales. Thus, there are fewer in
uences to search through on a time scale of secondsthan there are on a time scale of hours. Second, tripel starts with the fastestpossible time scale and tests successively slower time scales until it �nds one that is126



Instantaneous Seconds Minutes Hours Days None.003 .01 .39 .82 .95 1.9Table 9.7: The time required by tripel to choose a time scale of interest. For eachtime scale, the table shows the number of seconds required for time scale selection,in the worst case, when that time scale was chosen as the time scale of interest. Thelast column indicates the number of seconds required during time scale selection,in the worst case, to determine that no practical time scale exists for the givenquestion. The times do not include the time required for scenario elaboration.adequate. For example, to choose hours as the time scale of interest, tripel musttest four time scales: instantaneous, seconds, minutes and hours. Thus, the timerequired to choose a slow time scale of interest includes the time required to testfaster time scales.9.6.2 System Boundary AnalysisRecall from Chapter 7 that system boundary analysis consists of two steps. First,tripel uses a breadth-�rst search to identify the potentially relevant variables andin
uences. Second, it uses the Floyd-Warshall transitive closure algorithm to com-pute a connectivity matrix. The time required to perform the system boundaryanalysis is dominated by the transitive closure algorithm. The Floyd-Warshall algo-rithm requires �(n3) time, where n is the number of potentially relevant variables[17]. (Of course, this complexity analysis ignores the cost of scenario elaboration.)One of the biggest surprises during the empirical evaluation was the numberof potentially relevant variables tripel found for each of the expert's questions.The number was nearly independent of the question; it depended primarily on thetime scale of interest. When the time scale of interest was instantaneous or seconds,there were one or two dozen potentially relevant variables, and system boundaryanalysis �nished in less than one second. However, when the time scale of interestwas minutes, there were always about 450 potentially relevant variables, and therewere always about 650 on a time scale of hours. Since the entire scenario descriptionincludes 691 variables, these numbers represent a signi�cant fraction.There is a high cost to identifying this many potentially relevant variables.First, it will cause demand-driven scenario elaboration to generate a signi�cantfraction of the complete scenario description, which could be very costly. Second, itmakes the transitive closure algorithm expensive; the algorithm requires about 30minutes to handle 450 variables and about two hours to handle 650. Even though127



we could expect signi�cant improvements from an optimized implementation in amore e�cient language, this situation is unacceptable.The root of the problem is tripel's criteria for determining whether an in-
uence path is signi�cant, as already discussed in Sections 9.3.2 and 9.3.5. As longas every in
uence in a path is valid and signi�cant, tripel considers the path signif-icant. When identifying potentially relevant variables and in
uences, this criterioncauses tripel to include variables that in
uence the variables of interest throughvery long paths. The expert can tell that these paths are insigni�cant from theirglobal properties, such as length, spatial distance covered, and cumulative delaysalong the path. Thus, the same problem that causes tripel to err in time scale se-lection and to include irrelevant elements in models causes ine�ciency during systemboundary analysis.There is a simple solution to the problem for some cases. Sometimes, a widevariety of questions can be answered from the same basic scenario description. Thatis, the complete scenario description for each question includes the same in
uences;each question is distinguished simply by di�erent driving conditions and variablesof interest. This is the case with all the expert's questions concerning a prototypicalplant. It would also be the case for a chemical processing facility; from domainknowledge of chemical engineering, the complete set of in
uences could be gener-ated and used to answer a wide variety of questions. While exhaustive scenarioelaboration may be expensive (e.g., for the bkb it takes about 24 hours), it may beworthwhile in such cases. Given a complete scenario description, tripel can gen-erate a complete connectivity matrix (i.e., including all scenario variables) for eachpossible time scale. For the scenario description generated from the bkb, this alsotakes about a day. Then, to answer a question, system boundary analysis simplyselects the matrix corresponding to the time scale of interest. We have implementedthis strategy, and it allows plant physiology questions to be answered very quickly.Nevertheless, the long-term solution is clear. To make system boundaryanalysis e�cient, as well as to improve other areas of tripel's performance, we mustimprove tripel's criteria for determining whether an in
uence path is signi�cant.9.6.3 Model ConstructionAfter time scale selection and system boundary analysis, tripel executes its modelconstruction algorithm, Find-adequate-model. For the expert's questions, the timerequired for model construction is quite reasonable, as shown by Table 9.8. Thistable shows the time required for model construction on 29 of the expert's questions;in the remaining two questions, tripel �nds no practical time scale, so it neverperforms model construction. For most questions, model construction takes less128



than one minute, often less than one second. Of the questions where it found anadequate model, the longest it took was about three minutes. The longest it took torecognize that no adequate model exists for a question was less than eight minutes.To appreciate tripel's e�ciency, consider the size of the search space. Anycombination of in
uences de�nes a legal scenario model: the model's dependentvariables are the in
uencees of the in
uences, and all other variables referencedby the in
uences are exogenous. Furthermore, each of these scenario models isdi�erent since they include di�erent in
uences. Thus, since the scenario descriptionfor a prototypical plant includes over 1500 in
uences, the search space includes over21500 possible scenario models.tripel searches this space e�ciently because it avoids generating most ofthese models. By pruning a partial model, tripel avoids generating any of itsextensions. Therefore, one way to measure the e�ciency of model construction is todetermine how many partial models tripel explicitly generates and considers foreach question.tripel performs a best-�rst search for the simplest adequate model. Whentripel �nds an adequate model, it is the simplest, so the search terminates. Thus,all the partial models that tripel generates fall in one of three classes: the simplestadequate model, models that were pruned by monotonic constraints, and modelsleft on the agenda at termination.For each of the 29 questions that required model construction, the \Best-�rstSearch" column in Table 9.9 shows how many partial models were pruned by mono-tonic constraints and how many were left on the agenda. The numbers indicate thattripel only generates a manageable number of partial models, especially comparedto the size of the search space. Even when there is no adequate scenario model,tripel can recognize this fact by explicitly generating only a small fraction of thesearch space.To determine how much of tripel's e�ciency is due to its best-�rst searchstrategy, we modi�ed tripel to perform an exhaustive search. Thus, model con-struction terminates only when the search agenda is empty. With this search strat-egy, all the partial models that tripel generates fall in one of two classes: modelspruned by monotonic constraints, and adequate models that tripel �nds. For eachof the 29 questions, the \Exhaustive Search" column in Table 9.9 shows how manypartial models were pruned by monotonic constraints and how many adequate sce-nario models were found. In many cases, the exhaustive search strategy causedtripel to consider many more partial models than it did using a best-�rst search,indicating the importance of its best-�rst strategy.129



# tsoi Model Size (variables) Time (seconds)26 hours na .0327 minutes na 428 minutes na 229 hours na 1913 hours na 20230 minutes na 44916 instantaneous 3 .041 instantaneous 6 .012 hours 6 .0417 minutes 7 .033 instantaneous 7 .064 minutes 8 .0918 seconds 10 .035 minutes 11 .119 seconds 12 .046 hours 16 .220 hours 16 .221 hours 18 27 minutes 19 .68 minutes 25 .822 hours 26 523 hours 37 59 minutes 41 224 hours 59 6925 hours 74 5110 minutes 78 19211 minutes 82 8015 minutes 82 9212 days 93 130Table 9.8: The time required for model construction. Each row represents a question.The �rst column shows the question number. The second column shows the timescale of interest tripel chose. The third column shows the number of variables inthe model tripel constructed (or \na" if tripel found no adequate model). Thefourth column shows the amount of time (in seconds) that tripel spent duringmodel construction (i.e., the amount of time to execute the function Find-adequate-model). The times do not include the time required for scenario elaboration. Therows are ordered by the size of the models.130



# tsoi Simplest Adequate Model Best-�rst Search Exhaustive Search26 hours na 2, 0 2 (na)28 minutes na 61, 0 61 (na)27 minutes na 186, 0 186 (na)29 hours na 306, 0 306 (na)13 hours na 751, 0 751 (na)30 minutes na 1536, 0 1536 (na)16 instantaneous 3 11, 4 13 (3)1 instantaneous 6 1, 0 1 (1)2 hours 6 4, 0 4 (1)17 minutes 7 4, 0 4 (1)3 instantaneous 7 13, 2 13 (3)4 minutes 8 8, 3 16 (2)18 seconds 10 1, 0 1 (1)5 minutes 11 13, 3 71 (10)19 seconds 12 1, 0 1 (1)6 hours 16 11, 9 269 (37)20 hours 16 11, 9 269 (37)21 hours 18 25, 36 2359 (101)7 minutes 19 14, 18 7947 (732)8 minutes 25 10, 9 101 (9)22 hours 26 76, 58 10624 (816)23 hours 37 98, 20 147 (21)9 minutes 41 45, 14 652 (120)24 hours 59 234, 67 956 (64)25 hours 74 188, 72 13272 (1008)10 minutes 78 828, 196 4638 (36)15 minutes 82 684, 41 3726 (324)11 minutes 82 740, 121 6132 (1296)12 days 93 476, 69 14157 (1560)Table 9.9: The number of partial models pruned during model construction. Eachrow represents a question. The �rst column shows the question number. The secondcolumn shows the time scale of interest tripel chose. The third column shows thenumber of variables in the simplest adequate model tripel constructed. The fourthcolumn shows how many partial models tripel pruned during model construction:the �rst number shows how many were pruned by monotonic constraints, while thesecond number shows how many were still on the agenda when tripel found thesimplest adequate model. The last column shows the results when tripel uses anexhaustive search strategy: the �rst number is the number of models pruned withmonotonic constraints, and the second number (in parentheses) is the number ofadequate models it found. 131



9.7 SummaryTo evaluate our criteria and algorithms for automatically constructing models, weevaluated tripel in the plant physiology domain. The plant physiology knowledgewas provided by the Botany Knowledge Base (bkb). The bkb is an ideal test bed fortripel because it is a large, multi-purpose knowledge base that was independentlydeveloped by a domain expert. It describes many phenomena at many levels ofdetail, so constructing simple, adequate models from it is a di�cult task. Using thebkb, tripel constructed models to answer plant physiology questions that weregenerated by the domain expert. For these questions, we evaluated the quality ofthe models tripel constructed, the e�ciency with which it constructed them, andthe importance of several of tripel's key components.The evaluation supports the following conclusions:� tripel is already an e�ective modeling program. From a large knowledge base,it typically generates simple, adequate models. The knowledge it requires isavailable as fundamental plant physiology knowledge that is natural for adomain expert to encode.� tripel's criteria for selecting exogenous variables and its ability to choose andexploit a time scale of interest, both important contributions of our research,play an important role in tripel's ability to construct simple yet adequatemodels.� tripel's algorithms for time scale selection and model construction are verye�cient. Despite the enormous number of possible models, tripel �nds asimplest adequate model quickly by generating and considering only a smallfraction of the possible models.� Several extensions could signi�cantly improve tripel's performance. Mostimportantly, its criterion for determining whether an in
uence path is signif-icant is too simplistic. Currently, it treats an in
uence path as signi�cant ifevery in
uence in the path is valid and signi�cant on the time scale of interest.The evaluation suggests that tripel should also consider extra time lags dueto the length of the path or the spatial distance it covers. This limitationcauses three problems: tripel sometimes chooses a time scale of interest thatis too fast, it sometimes includes irrelevant elements in models, and it iden-ti�es too many variables and in
uences as potentially relevant during systemboundary analysis. Section 10.1.2 discusses the necessary extension.132



Chapter 10Future Worktripel provides an excellent foundation for future work. It was designed to beextensible so that progress in particular areas can be easily incorporated. Thischapter discusses a variety of ways that tripel could be extended. The chaptershows how tripel could incorporate ideas from related research, it suggests severalsimple, short-term extensions, and it discusses important areas where signi�cantresearch will be required.While the subsections are largely independent and can be read in any or-der, they are grouped into sections to highlight the type of issue they address.Section 10.1 discusses extensions to tripel's criteria for determining whether an in-
uence or in
uence path is signi�cant and whether a model is coherent. Section 10.2discusses extensions to tripel's language for describing scenarios and to the typesof domain knowledge tripel requires. Section 10.3 discusses future work in sce-nario elaboration. Section 10.4 discusses future work in using models to generatepredictions. Finally, Section 10.5 brie
y discusses testing tripel in domains otherthan plant physiology, and Section 10.6 discusses using tripel to answer questionsother than causal prediction questions.10.1 Modeling Criteria10.1.1 Signi�cant In
uenceThe ability to recognize insigni�cant in
uences is an important source of power forany modeler, including tripel. Currently, tripel uses a time scale of interest todetermine whether an in
uence is signi�cant. However, tripel's algorithms do notdepend on this particular criterion in any fundamental way. In principle, tripelcould be extended to include other criteria for recognizing insigni�cant in
uences.133



The evaluation suggests that these additional criteria would make tripel moree�cient and would reduce the number of irrelevant elements in its models.In addition to time scale, human modelers use other criteria to recognizeinsigni�cant in
uences:� Some in
uences are signi�cant only under certain behavioral conditions. Forexample, the concentration of a reactant signi�cantly in
uences the rate of achemical reaction only if the reactant is limiting (i.e., not available in abun-dance). Similarly, according to relativity, the velocity of a body in
uences itsmass, but that in
uence is insigni�cant if the body is moving much slowerthan the speed of light.� Some in
uences are insigni�cant because they are dominated by other in
u-ences. For example, there are three in
uences on the amount of water in aplant's apoplast:1 uptake from the soil, evaporation from the leaves (tran-spiration), and osmosis into the symplast. However, the e�ect of osmosis istypically overshadowed by the e�ects of uptake and transpiration, so it is aninsigni�cant in
uence on the amount of apoplast water.Ultimately, tripel should take into account the time scale of interest, desired accu-racy, behavioral conditions, and dominance relations to determine which in
uencesare signi�cant. Similar comments apply to the problem of determining whether anin
uence is valid.Applied mathematicians have developed some formal (albeit heuristic) meth-ods for recognizing insigni�cant terms (i.e., in
uences) in equations [49, 59]. Thesemethods are interesting because they combine the considerations mentioned above.In these methods, the modeler �rst \scales" the equations; that is, he uses scalesof interest (e.g., a time scale of interest) to put the equations in nondimensionalform so that the order of magnitude of each term is apparent. Next, the modelerdrops terms whose order of magnitude is very small. Finally, the modeler solves theequations and checks whether the discarded terms are in fact negligible. Yip [47] hasdesigned an automated modeling program that uses these methods. Yip's programdoes not address many of the issues addressed by tripel, so a combination of thetwo programs would be worth exploring.1Roughly speaking, the apoplast of a plant is its network of dead parts. In contrast, the symplastof a plant is its network of living parts. For example, cell walls are part of the apoplast, while thecontents of cells are part of the symplast. 134



10.1.2 Signi�cant In
uence PathAs discussed in Chapter 9, tripel's criterion for determining whether an in
uencepath is signi�cant is too simplistic. Currently, it treats an in
uence path as sig-ni�cant if every in
uence in the path is valid and signi�cant on the time scale ofinterest. The evaluation suggests that tripel should also consider extra time lagsdue to the length of the path or the spatial distance it covers. This limitation causesthree important problems: tripel sometimes chooses a time scale of interest thatis too fast, it sometimes includes irrelevant elements in models, and it identi�estoo many variables and in
uences as potentially relevant during system boundaryanalysis.tripel can easily be extended to use more sophisticated criteria in assessingthe signi�cance of an in
uence path. The graph algorithms that tripel uses donot record each path from one variable to another. However, they can record thelength of the shortest path from one variable to another, so tripel could use thatinformation to assess whether one variable signi�cantly in
uences another. Thealgorithms could also record the minimum spatial distance covered by the in
uencepaths from one variable to another. Therefore, tripel could be extended to considerthese factors in assessing the signi�cance of in
uence paths. Determining how thesefactors should be used in the assessment is an important area for future work.10.1.3 Mixing Levels of Detailtripel is careful to avoid mixing levels of detail. Adequacy constraint 9 (entitiescoherent) ensures that tripel's models never include two entities that are relatedby the encapsulates relation. For example, tripel would never include, in the samemodel, both the pool of water in a plant and the pool of water in its leaves. Ourexperience suggests that this constraint is very useful; by ensuring a consistent levelof detail, it results in coherent, comprehensible models. A survey of the modelingliterature for biology and ecology suggests that human modelers obey this constraintwhen constructing formal models.However, the evaluation described in Chapter 9 suggests that human mod-elers sometimes mix levels of detail. The domain expert sometimes included inhis models an in
uence that bridges two levels of detail. For example, considerthe question \How would decreasing solar irradiation to a plant's leaves a�ect theplant's carbon dioxide absorption?" To answer this question, the domain expertconstructed a model at the leaves level. This model shows how solar irradiation ofthe leaves a�ects their absorption of carbon dioxide. In addition, since the questionasks about carbon dioxide absorption at the plant level, the expert added the fol-135



lowing in
uence to the model: carbon dioxide absorption into the plant is a functionof carbon dioxide absorption into the leaves. This in
uence bridges the gap betweenthe variable of interest (at the plant level) and the rest of the model (at the leaveslevel). Such mixing of levels of detail certainly does not make the model incoherentor incomprehensible. Therefore, tripel should be extended to allow cases like this.However, future work is required to determine when it is acceptable to mix levelsof detail. Such an extension would not have helped tripel during our evaluation,because the domain knowledge does not provide in
uences that cross levels of detail.Therefore, to allow tripel to use such in
uences, they must be included in thedomain knowledge.10.2 Domain Knowledge and Scenario Descriptions10.2.1 Multiple Decompositionstripel uses the encapsulates relation to determine whether entities in a scenariomodel are mutually coherent. For example, the pool of water in a plant encap-sulates the pool of water in its leaves, so a scenario model should include one orthe other but not both. However, when an entity can be decomposed in multipleways, the encapsulates relation may be insu�cient for recognizing incoherent com-binations. For example, a plant can be decomposed into roots, stems and leaves or,alternatively, into apoplast (roughly, the network of dead parts of the plant) andsymplast (roughly, the network of living parts of the plant). The pool of water in theroots and the pool of water in the symplast are not comparable by the encapsulatesrelation, since neither encapsulates the other, yet they seem mutually incoherent.A similar problem arises with in
uences; two in
uences may represent overlappingphenomena, yet neither explains the other.It would not be di�cult to devise a representation for multiple decomposi-tions of entities and in
uences. Some previous work addresses this issue; for instance,Zeigler [89] developed a representation that allows an entity to be decomposed inmultiple ways. Given a method for recognizing that two entities or two in
uencesin a model come from incompatible decompositions, monotonic constraints could beimplemented to prune such models. As stated in Section 6.5, tripel can incorporatenew monotonic constraints without changes in its model construction algorithm.136



10.2.2 CausalityAs proposed by Forbus in his Qualitative Process Theory [28], in
uences in tripelhave a �xed causal direction (i.e., a designated in
uencer and in
uencee). Assigningcausality to in
uences has proven easy and appropriate in the plant physiologydomain, and we expect similar success in many other domains.However, there is some debate as to when in
uences can be assigned a causaldirection [29]. In contrast to Forbus's approach, some researchers believe that in-
uences cannot be given a causal direction until after a model is complete [44].Given a model with non-causal equations, these researchers use a \causal ordering"algorithm to assign a causal direction to the equations (and hence the individualin
uences that make up the equations) [44, 65]. Thus, modeling algorithms thatfollow this approach cannot exploit causality until a model is already constructed[43, 65].tripel exploits the causal direction of in
uences in several ways. Duringtime scale selection, it uses the directions to �nd causal paths from driving variablesto variables of interest. During model construction, it uses the directions to chooseadequate sets of in
uences on free variables. The System Boundary Selector usesthe causal direction of in
uences to determine whether a variable can be exogenous.Finally, testing adequacy constraint 13 (variables of interest di�erentially in
uenced)requires a causal direction for in
uences. Of all these ways that tripel exploits thecausal direction of in
uences, only the last could be done if causal directions werenot speci�ed until after a model is complete. The others exploit causality at anearlier stage.Waiting until a model is complete to assign causal directions is overly cau-tious; most in
uences can be given a �xed causal direction before a model is con-structed. Causal ordering algorithms for mixed sets of di�erential and algebraicequations [41, 44, 65] almost always orient di�erential in
uences the way they arecausally oriented in tripel. (Iwasaki and Simon [44] discuss some rare exceptions.)Therefore, the only real restriction is tripel's assumption that functional in
uenceshave a �xed causal direction. However, Iwasaki [41] shows that equilibrium in
u-ences should be causally oriented based on their underlying dynamic details. If thisis so, the person encoding the domain knowledge can often provide a causal directionfor equilibrium in
uences. Thus, most in
uences can be given a causal direction inthe domain knowledge.Even if in
uences cannot be given a causal direction in the domain knowl-edge, I believe they can, and should, be given a causal direction during scenarioelaboration. A physical understanding of the scenario should precede modeling de-cisions, and causality is an integral component of physical understanding.137



Nevertheless, tripel could be extended to allow non-causal in
uences. tripelwould have to treat each non-causal in
uence as if it could be causally directed ei-ther way. In general, this will cause tripel to include more irrelevant elements inmodels, because it will have to include all variables thatmight signi�cantly in
uencethe variables of interest (depending on the unknown causal directions). The numberof irrelevant elements in models is likely to depend on the fraction of in
uences with-out a causal direction. Once the model is complete and a causal ordering algorithmassigns causality to the in
uences, tripel could further simplify the model.10.2.3 Model FragmentsIn compositional modeling, models are constructed from building blocks provided bythe domain knowledge. The building blocks are often called \model fragments" [25].In tripel, the building blocks are in
uences. However, some other researchers allowa model fragment to contain multiple in
uences on a variable, or even a completeequation.It would be simple to extend tripel to handle such model fragments. Ifa model fragment provides multiple in
uences on a variable, this would simplyconstrain Dv-models. Speci�cally, Dv-models should only consider combinations ofin
uences that include all or none of the in
uences in each model fragment. Evensimpler, if a model fragment contains a complete equation (i.e., all relevant in
u-ences) for a variable, Dv-models is not needed at all.10.2.4 Dynamic Structural Conditionstripel assumes that structural conditions are constant throughout the scenario.This assumption simpli�es presentation and implementation of the key ideas intripel. However, it is not an important assumption.Qualitative Process (QP) Theory [28] provides a reasonable alternative. Intripel, a structural condition can be inferred from a structural rule whose an-tecedent is a conjunction of structural conditions. In contrast, QP theory allows theantecedents of structural rules to include behavioral conditions. Thus, structuralconditions can change during a scenario as a consequence of changes in behavioralconditions. Let's call these structural conditions \derivable" to distinguish themfrom \primitive" structural conditions, for which the domain knowledge has no wayof predicting change.The primary advantage of derivable structural conditions is representationalconvenience and comprehensibility. Although they add no expressive power to theunderlying behavioral conditions and primitive structural conditions, they provide a138



higher level of description that is valuable in building, maintaining, and explaininga knowledge base.tripel could be extended to handle derivable structural conditions. Duringscenario elaboration, tripel generates the in
uences in a scenario by backwardchaining on in
uence rules and structural rules. If the antecedents of structuralrules can include behavioral conditions, this process would be identical except forone change: rather than backward chaining on behavioral conditions, tripel wouldcollect the behavioral conditions encountered during backward chaining and addthem to the activity preconditions of the resulting in
uence. In e�ect, this processconverts derivable structural conditions into their underlying primitive structuralconditions (which must be established during backward chaining) and behavioralconditions (which become activity preconditions of in
uences).Alternatively, tripel could retain derivable structural conditions for use dur-ing explanation. To accomplish this, tripel could allow the activity preconditionsof in
uences to include derivable structural conditions, and it could include in themodel those structural rules that can conclude these conditions. This is the approachtaken by Iwasaki and Levy [43], and it would be a natural and useful extension totripel.10.2.5 Inferring Time Scale of Signi�canceThe time scale on which a di�erential in
uence is signi�cant bundles two pieces ofknowledge: the rates at which the in
uencing process operates, and the level ofchange in the in
uenced variable that is considered signi�cant. Sometimes, the timescale can be encoded directly in the domain knowledge (i.e., stored in an in
uencerule). Other times, it may be more practical to infer the time scale from thesetwo pieces of knowledge. The latter approach is especially useful when the level ofsigni�cant change depends on the question. Iwasaki [42] has explored this approach.It does not matter to tripel whether signi�cance preconditions come from in
uencerules or are inferred from other information.10.2.6 Building Large Knowledge BasesOur evaluation showed clearly that building large knowledge bases is a di�cult,error-prone task. The Botany Knowledge Base (bkb) is very large, and it wasconstructed over many years. This poses two problems. First, it is di�cult to ensurethat knowledge is represented consistently throughout. Changes in terminology andrepresentation conventions over time cause the same things to be represented indi�erent ways, and relationships among the alternative representations are often139



left out. Second, individual pieces of knowledge often interact in unexpected waysduring inference even though they seem reasonable in isolation.To address these problems, a variety of tools are needed. During our de-bugging of the bkb, we developed a number of simple tools to catch problems.These tools incorporated a variety of \consistency principles" that allow one pieceof knowledge to suggest errors in another. For example, if a scenario variable hasboth di�erential and functional in
uences on it, the functional in
uences are proba-bly equilibrium in
uences, and hence they should have validity preconditions. Suchsimple tools proved invaluable in identifying problems in the bkb. However, morefundamentally, the knowledge base must take a more active role in its development.It must relate each new piece of knowledge to existing knowledge, including identify-ing inferential consequences of new knowledge that con
ict with existing knowledge.There has been some important work in this area [64], but much work remains.The evaluation described in Chapter 9 suggests that tripel itself mightbe a valuable tool for debugging a knowledge base. When tripel cannot �nd anadequate model for answering a question, there are gaps in the domain knowledge.tripel could be extended to pinpoint its reasons for failure and suggest the typesof knowledge that are missing.10.3 Scenario Elaboration: Elaborating Behavioral Con-ditionsAnalysis (e.g., simulation) requires methods for elaborating the behavioral condi-tions speci�ed in the question. The question may not provide initial values for allvariables in the model, and it may not provide behaviors for all exogenous variables,but this information is typically required for analysis.There are two considerations when elaborating behavioral conditions. First,some conditions are more likely than others, and humans often assume these likelyconditions without stating them explicitly. Second, the question may be more mean-ingful under some conditions than others. That is, behavioral conditions should bechosen so that the driving variables signi�cantly a�ect the variables of interest.There may be a con
ict between these two considerations; the conditionsunder which the question is most meaningful may be atypical. For example, considerthe question \How does decreasing soil moisture a�ect the level of oxygen in a plant'sroots?" This question is best answered assuming that the soil is initially saturatedwith water, because the roots are starved for oxygen under such conditions. Undermore typical conditions, decreasing soil moisture would have little e�ect on theoxygen in the roots. Thus, just as tripel chooses a time scale of interest on which140



the driving conditions signi�cantly a�ect the variables of interest, a modeler mustchoose behavioral conditions using the same consideration.10.4 Numerical ModelsThe work described in this dissertation should provide a foundation for buildingnumerical ode models as well as qualitative models that lack numerical details.The issues addressed in the dissertation arise in both cases. However, while tripelhas been used to generate qualitative models, it has not been used to generatenumerical models.There are two possible ways to generate numerical equations from in
uences.First, the domain knowledge can provide a numerical equation for each useful com-bination of in
uences on a variable. Forbus and Falkenhainer [30] have successfullyused that approach. Second, each in
uence can specify how it combines with otherin
uences, such as whether it is an additive term, a multiplicative term, or oth-erwise. After the model is constructed, equations can be generated using thesespeci�cations. Farquhar [26] has successfully used this approach for limited typesof equations, and it appears feasible for other types as well. Thus, there are noapparent limitations that prevent tripel from constructing numerical models, butno such application has been attempted.10.5 Other DomainsAlthough tripel has only been tested in the domain of plant physiology, it wasdesigned to handle many domains within science and engineering. To test the gen-erality of its modeling criteria and the knowledge it requires, it should be evaluatedin new domains. Because its representation is particularly suitable for reasoningabout pools and processes, it should be especially e�ective in the domains of ecol-ogy, human physiology, and chemical engineering.10.6 Other Types of QuestionsThis dissertation has focused on one type of question: causal prediction questions.However, while tripel was speci�cally designed for causal prediction questions,many of the issues tripel addresses arise in other types of questions as well. Inthis section, we discuss how tripel could be extended to handle two other types ofquestions: non-causal prediction questions and explanation questions.141



10.6.1 Non-Causal Prediction QuestionsIn a causal prediction question, the person posing the question wants to know thecausal e�ect of driving conditions on variables of interest. In contrast, consider thequestion \What is the rate of in
ow into a bathtub if the level of water remainsconstant and the rate of out
ow is �ve gallons per minute?" This question has thebasic elements of a prediction question | structural conditions, behavioral condi-tions, and a variable of interest | but it is not a causal prediction question. Therate of out
ow and the level of water do not cause the behavior of the in
ow rate.Nevertheless, the given information is su�cient to make the desired prediction.tripel exploits causal prediction questions in several ways. To choose a timescale of interest, it looks for causal in
uence paths from driving variables to variablesof interest. To construct models, it begins with a partial model consisting only ofthe variables of interest, and it repeatedly extends models to include variables thatcausally in
uence free variables. The System Boundary Selector searches for causalpaths from driving variables to variables in a model. Finally, adequacy constraint 13(variables of interest di�erentially in
uenced) requires causal paths from drivingvariables to variables of interest. Each of these steps is predicated on the questionbeing a causal prediction question.However, as the bathtub example illustrates, these steps must be modi�ed tohandle non-causal prediction questions. In general, it is possible to draw inferencesfrom in
uences in either direction, regardless of causality. Therefore, to answer non-causal prediction questions, tripel must treat the in
uence graph as an undirectedgraph, the \interaction graph." To choose a time scale of interest, tripel wouldlook for an \interaction path" (path in the interaction graph) relating the drivingvariables and variables of interest. When extending models, tripel would add anyvariables that \interact" with (i.e., in
uence or are in
uenced by) free variables.The System Boundary Selector must ensure that a variable is not exogenous if itsigni�cantly interacts with (via an interaction path) a driving variable or anothervariable in the model. Finally, adequacy constraint 13 would only require interac-tion paths, rather than in
uence paths, relating driving variables and variables ofinterest.In order to handle non-causal prediction questions, an earlier version oftripel took this approach [73]. The approach showed great promise, but it wasless e�ective than the current version of tripel in two areas. First, it tended toinclude more irrelevant elements in models, because more variables are related byinteraction paths than by causal in
uence paths. Second, the program sometimesbuilt models around interaction paths that were not the most important ones. Themost important area for future research on this approach is the ability to distinguish142



important interaction paths from unimportant ones.10.6.2 Explanation QuestionsOther than prediction questions, explanation questions are the most important typeof question in science and engineering. An explanation question is identical to aprediction question except it speci�es the behavior of the variables of interest, andthe goal is to construct a model that will predict the speci�ed behaviors from theother structural and behavioral conditions given in the question.Explanation questions arise in many tasks. Monitoring and diagnosing thebehavior of physical systems requires constructing a model that explains observa-tions so as to recognize when faults arise and pinpoint their origin. Theory formationrequires constructing a model that explains observations in order to identify the un-derlying causal mechanisms. In tutoring, a student might be told that a physicalsystem behaves in a certain way (e.g., \When a plant begins to wilt, aba builds upin its guard cells") and the student may ask why.There has been a lot of important work on answering explanation questions[3, 5, 37, 84]. The most common technique is called \discrepancy-driven re�ne-ment." In this technique, the modeler constructs an initial model of the scenarioand compares its predictions against the known behavior of the variables of interest.Discrepancies suggest particular changes to the model that will reduce or eliminatethem. This process is repeated until the predictions of the model are su�cientlyclose to the behaviors to be explained.The most important role of tripel in answering explanation questions isin constructing the initial model. Work in discrepancy-driven re�nement has con-centrated on techniques for revising models to eliminate discrepancies, not on con-structing the initial model. An initial model constructed by tripel would be morelikely to contain all and only the relevant aspects of the scenario. Furthermore,by recording the insigni�cant in
uences that were pruned, and why, tripel couldprovide important guidance for model revision.While the theory formation task can be viewed as answering explanationquestions, it introduces one additional requirement: the domain knowledge is notsu�cient to construct an adequate model. In theory formation, the objective is toextend the domain knowledge so that it can provide an explanation. However, thistask also �ts into the framework described in this dissertation. The new require-ment can be satis�ed by adding additional sophistication to the scenario elaborationmodule. For example, rather than simply instantiating general principles, scenarioelaboration might generate in
uences by analogy to other, more familiar domains[22]. 143



10.7 SummaryIn summary, the methods in this dissertation provide an important foundation forfurther research in automated modeling. Many valuable improvements can be in-corporated into tripel as modular extensions. Nevertheless, experience with othertypes of questions and other domains is needed to determine the generality of ourmethods.
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Chapter 11ConclusionThis dissertation addresses the task of automatically constructing models to answercausal prediction questions. Such questions pose a hypothetical scenario and ask forthe causal e�ect of driving conditions on variables of interest. Given a question anddomain knowledge, the objective is to construct the simplest model of the scenariothat is adequate for answering the question. The dissertation focuses on buildingmodels that consist of algebraic equations and ordinary di�erential equations (orqualitative counterparts). Such questions and models are ubiquitous in science andengineering.In
uences are the building blocks for models. Each in
uence represents somephenomenon in the scenario at some level of detail. In
uences are appropriate build-ing blocks for models because they allow a modeler to select relevant phenomena andchoose a relevant level of detail for each. The in
uences in a model are combinedto form its equations.The process of scenario elaboration generates missing elements of the sce-nario description, including in
uences, from a question and domain knowledge. Inaddition to the in
uences that govern the scenario, a complete scenario descriptionincludes scenario variables, which represent properties of entities in the scenario,behavioral conditions, which represent the initial state and behavior of scenario vari-ables, structural conditions, which represent static properties of the scenario, andattributes of in
uences, including activity preconditions, signi�cance preconditions,and validity preconditions. The encapsulates and explanation relations represent re-lationships among di�erent levels of detail for describing the scenario. Because thecomplete scenario description for a complex system may be extensive, elements areonly generated as needed during model construction, using a method called demand-driven scenario elaboration.To operationalize the notion of a simple, adequate scenario model, this dis-145



sertation proposes a novel de�nition of simplicity and a novel set of adequacy con-straints. The constraints specify variables that must be included in an adequatemodel, they specify when a variable can be treated as exogenous, they de�ne anadequate set of in
uences on a dependent variable, they ensure that an adequatemodel is coherent and that it includes an appropriate level of detail, and they ensurethat the model relates driving variables to variables of interest.The dissertation provides a model construction algorithm for e�ciently con-structing the simplest adequate model for a given causal prediction question. Forcomplex systems, the space of possible models is enormous, but the algorithmsearches this space e�ciently by searching the space of partial models. By prun-ing a partial model at an early stage, the algorithm prunes a large chunk from thespace of possible models. Because the model construction algorithm prunes modelsjudiciously, it is guaranteed to return a simplest adequate model if one exists. Inaddition to providing the basic model construction algorithm, the dissertation alsoprovides novel algorithms for choosing the in
uences on dependent variables and forchoosing exogenous variables.A time scale of interest provides an important focus for modeling. Thedissertation shows how a time scale of interest allows insigni�cant phenomena andinvalid levels of detail to be recognized. Because it is typically di�cult for a personposing a question to specify a time scale of interest, and because a suitable timescale of interest is crucial for eliminating irrelevant details, the dissertation providesan algorithm for choosing a suitable time scale of interest for a causal predictionquestion automatically.Many of the claims in this dissertation are empirical. To evaluate the crite-ria and algorithms presented in this dissertation, I implemented them in a programcalled tripel and evaluated the program in the plant physiology domain. Using alarge, multipurpose knowledge base independently developed by a domain expert,tripel constructed models to answer questions that were also constructed by theexpert. According to the expert, tripel typically generates simple, adequate mod-els. The use of a time scale of interest and tripel's novel criteria for choosingexogenous variables play an important role in its success. The evaluation also sug-gests the most important area for future work: tripel's criterion for determiningwhether an in
uence path is signi�cant is too simplistic. The evaluation suggests ex-tensions to this criterion that should allow tripel to consistently construct simple,adequate models e�ciently.There are many important areas for future work. Automated modeling pro-grams will require more sophisticated criteria for recognizing insigni�cant in
uencesand in
uence paths. Representing domain knowledge is a di�cult, error-prone task;146



developing knowledge bases with extensive coverage in areas of science and engineer-ing will require new tools and techniques. Finally, this dissertation only focuses onone type of question, causal prediction questions, and it only describes an empiricalevaluation in one domain, plant physiology; further progress in automated modelingwill require a similar study of other types of questions and other domains.
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Appendix APlant Physiology QuestionsThis appendix lists all the plant physiology questions, constructed by the expert,on which tripel was tested (as described in Chapter 9). The �rst 14 formed thebasis of the formal evaluation.1. How would an increasing amount of co2 in a plant's leaves a�ect the rate ofphotosynthesis in the leaves?2. How does increasing soil water potential a�ect a plant's water distributionrate?3. How does an increasing level of aba in a plant's leaves a�ect transpirationfrom the leaves?4. What happens to turgor pressure in a plant's leaves as root water absorptiondecreases?5. How does a decreasing amount of water in a plant a�ect the amount of K+ inits guard cells?6. What happens to a plant's water potential as the temperature of the environ-ment decreases?7. How would an increasing rate of solar irradiation to a plant's leaves a�ect thetemperature of the leaves?8. How would a decreasing amount of water in the earth's atmosphere a�ect aplant's photosynthesis rate?9. How does increasing water potential in a plant's leaves a�ect the rate of K+e�ux from the guard cells in the leaves?148



10. How does an increasing rate of di�usion of heat from the stems of a plant to theatmosphere surrounding the stems a�ect the water potential of the symplastin the stems?11. How does an increasing amount of aba in the guard cells of a plant's leavesa�ect osmosis to the leaves' accessory cells from the leaves' guard cells?12. How does a decreasing rate of evaporation from a plant's leaves a�ect theamount of co2 in the atmosphere surrounding the leaves?13. How does a decreasing rate of photosynthesis in a plant's shoot system a�ectthe pressure potential in the phloem of its leaves?14. As the amount of water in a plant's cell walls increases, what happens to theplant's turgor pressure?15. How does an increasing amount of water in the accessory cells of a plant'sleaves a�ect the rate of K+ in
ux to the guard cells in the leaves?16. How does an increasing amount of co2 in a plant's guard cells a�ect the sizeof the stomates in its leaves?17. How does increasing water potential in a plant a�ect the plant's aba amount?18. How does decreasing water potential in a plant's accessory cells a�ect theamount of water in its guard cells?19. How does an increasing amount of K+ in a plant's accessory cells a�ect theamount of water in its guard cells?20. How does decreasing soil water potential a�ect a plant's transpiration rate?21. What happens to the size of a plant's stomates as soil moisture increases?22. What happens to the water potential of a plant's leaves as the soil dries out?23. How does a rising level of aba in a plant a�ect the plant's water potential?24. What happens to a plant's apoplast water potential as the temperature of theenvironment decreases?25. How does decreasing photosynthesis in a plant's leaves a�ect the amount ofglucose in its root system? 149



26. How does increasing temperature in the atmosphere surrounding a plant a�ectthe plant's photosynthesis rate?27. How does increasing transpiration from a plant's shoot system a�ect theplant's carbon dioxide absorption?28. How would decreasing solar irradiation to a plant's leaves a�ect the plant'scarbon dioxide absorption?29. What is the e�ect on plant temperature of an increasing di�usion of heat fromthe atmosphere surrounding the shoot system to the earth's atmosphere?30. What is the e�ect of an increasing amount of co2 in the symplast of a plant'sleaves on the rate of photosynthesis in the leaves?31. How does a decreasing amount of water in a plant's leaves a�ect osmosis fromthe guard cells to the accessory cells?

150



Appendix BThe Models tripel ConstructedThis appendix shows the models that tripel constructed for the formal evaluationquestions, as discussed in Chapter 9. The section numbers indicate the questionnumbers. The conventions are the same as in earlier �gures:� Arrows with solid tips represent di�erential in
uences.� Arrows without solid tips represent functional in
uences.� Exogenous variables are underlined.� Di�erential in
uences are labeled with the time scale on which they becomesigni�cant. For example, \mins" is a shorthand for the signi�cance precondi-tion time-scale-of-interest � minutes.� In
uences are labeled with the sign of their partial derivative.� Activity preconditions of in
uences are not shown.� Driving variables and variables of interest are shown in bold.
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B.1 How would an increasing amount of co2 in a plant'sleaves a�ect the rate of photosynthesis in the leaves?
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B.3 How does an increasing level of aba in a plant'sleaves a�ect transpiration from the leaves?
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2B.4 What happens to turgor pressure in a plant's leavesas root water absorption decreases?
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B.5 How does a decreasing amount of water in a planta�ect the amount of K+ in its guard cells?
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B.6 What happens to a plant's water potential as thetemperature of the environment decreases?
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B.7 How would an increasing rate of solar irradiationto a plant's leaves a�ect the temperature of theleaves?
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B.8 How would a decreasing amount of water in theearth's atmosphere a�ect a plant's photosynthesisrate?
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B.9 How does increasing water potential in a plant'sleaves a�ect the rate of K+ e�ux from the guardcells in the leaves?
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B.10 How does an increasing rate of di�usion of heatfrom the stems of a plant to the atmosphere sur-rounding the stems a�ect the water potential ofthe symplast in the stems?
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uence path fromthe driving variable to the variable of interest on a time scale of minutes, and itconstructed a large, complex model around the path. By the expert's criteria, thispath is insigni�cant. According to the expert, there is a short, signi�cant in
uencepath from the driving variable to the variable of interest on a time scale of hours.Therefore, since the most interesting aspect of tripel's model is the in
uence pathit found, we show the path rather than the entire model.158



B.11 How does an increasing amount of aba in theguard cells of a plant's leaves a�ect osmosis tothe leaves' accessory cells from the leaves' guardcells?
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In this diagram, 28 variables have been grouped into the box marked \water reg-ulation subsystem" to save space. These variables model the transport of wateramong the following pools: water in the rhizosphere, root cell walls, root xylem,root symplast, leaf cell walls, leaf mesophyll symplast, and leaf intercellular space.159



B.12 How does a decreasing rate of evaporation froma plant's leaves a�ect the amount of co2 in theatmosphere surrounding the leaves?
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In this diagram, 39 variables have been grouped into the box marked \water regula-tion subsystem" to save space. These variables model the transport of water amongthe following pools: water in the soil, rhizosphere, root cell walls, root xylem, rootsymplast, leaf xylem, leaf cell walls, leaf symplast, leaf intercellular space, and leaf160



atmosphere.Similarly, ten variables have been grouped into the box marked \oxygenregulation subsystem." These ten variables model the transport of oxygen amongthe following pools: oxygen in the leaf symplast, leaf intercellular space, and leafatmosphere.
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