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The ability to answer prediction questions is crucial in science and engineering.
A prediction question describes a physical system under hypothetical conditions
and asks for the resulting behavior of specified variables. Prediction questions are
typically answered by analyzing (e.g., simulating) a mathematical model of the
physical system. To provide an adequate answer to a question, a model must be
sufficiently accurate. However, the model must also be as simple as possible to ensure
tractable analysis and comprehensible results. Ensuring a simple yet adequate model
is especially difficult for complex systems, which include many phenomena that can
be described at many levels of detail. While tools exist for analysis, modeling is a
creative, time-consuming task performed by humans.

We have designed algorithms for automatically constructing models to answer
prediction questions, implemented them in a program called TRIPEL, and evaluated
them in the domain of plant physiology. Given a prediction question and domain
knowledge, TRIPEL builds the simplest differential-equation model that can ade-
quately answer it and automatically passes the model to a simulator to generate the
desired predictions. TRIPEL uses knowledge of the time scales on which processes
operate to identify and ignore insignificant phenomena and choose quasi-static rep-
resentations of fast phenomena. It also uses novel criteria and methods to choose
a suitable system boundary, separating relevant subsystems from those that can
be ignored. Finally, it includes a novel algorithm for efficiently searching through
alternative levels of detail in a vast space of possible models. TRIPEL successfully

vii



answered plant physiology questions using a large, multipurpose, botany knowledge
base (covering 300 processes and 700 plant properties) independently developed by
a domain expert. Because its methods are domain-independent, TRIPEL should be
equally useful in many areas of science and engineering.
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Chapter 1

Introduction

1.1 Prediction Questions

Our long-term goal is a computer program that can answer prediction questions
about physical systems. The following question, from the plant physiology domain,
illustrates the general form of a prediction question: “How would decreasing soil
moisture affect a plant’s transpiration! rate?” A prediction question poses a hypo-
thetical scenario (e.g., a plant whose soil moisture is decreasing) and asks for the
resulting behaviors of specific variables of interest (e.g., transpiration rate). Each
variable represents a property of the scenario. An answer to a prediction question
includes the desired predictions (e.g., “Transpiration will initially remain constant
but will decrease as the plant begins to wilt.”). Equally important, the answer must
explain how domain principles justify the predictions. Therefore, our computer
program must solve the following prediction task: Given a prediction question and
domain knowledge, produce the desired predictions as well as their explanations.
Prediction is important for many tasks in science and engineering. A design
engineer must predict how a design will respond to hypothetical conditions (e.g.,
“How is power consumption affected as the fan speed is increased?”). A diagnosti-
cian must predict the consequences of an hypothesized diagnosis and compare them
with observed symptoms (e.g., “How would the patient’s sodium level be affected if
his insulin level were dropping?”). A theorist evaluates theories by using them to
make predictions that can be experimentally tested (e.g., “How would the interval
between pulses be affected if the density of a pulsar were increasing?”). We are
particularly motivated by the use of prediction questions in tutoring, in which a
tutoring system teaches domain principles in the context of student questions (e.g.,
the tutor uses the question about decreasing soil moisture to explain the role of

! Transpiration is the process by which water evaporates from the leaves.
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Figure 1.1: The three steps needed to answer a prediction question.

the ABA hormone in regulating plant water loss through transpiration). Answering
prediction questions for these tasks requires people with special knowledge, and it
can be time consuming and error prone. Therefore, automation would be valuable.

In each of these tasks, a comprehensible explanation of the predictions is
crucial. In the tutoring task, the main objective is to teach the domain principles
that underlie the predictions. Even when the predictions themselves are the main
objective, experience with expert systems shows clearly that humans accept the
conclusions of computers much more readily when the computer can justify those
conclusions [8]. Therefore, a computer program for answering prediction questions
must be capable of making the desired predictions and explaining them well.

1.2 Modeling

Scientists and engineers answer prediction questions by constructing and analyzing a
mathematical model of the scenario. A mathematical model uses a formal language,
such as differential equations, to represent the physical phenomena that govern
the scenario. Once the model is constructed, mathematical methods are used to
analyze it (e.g., solve the equations for the variables of interest), resulting in the
desired predictions. Finally, to answer the original question, scientists and engineers
interpret the mathematical predictions in physical terms and show how the physical
principles embodied in the model explain the predictions. Thus, as illustrated in
Figure 1.1, there are three steps in answering a prediction question: construct a
model of the scenario, analyze the model, and explain the results.



To automate this process, we must automate these three steps. There are
already a variety of methods that automate the analysis step. For example, to
analyze differential equation models, there are programs for solving the equations
analytically (e.g., Mathematica [87]) and there are algorithms for simulating such
models (e.g., Runge-Kutta [6]). However, the other two steps, modeling and ex-
planation, typically require humans. This dissertation addresses the first of these:
automatically constructing models for answering prediction questions.

More specifically, this dissertation provides methods for automatically con-
structing models consisting of algebraic equations and ordinary differential equations.?
Each variable in such a model represents a real-valued, continuous, time-varying
property of the scenario being modeled. Examples include the amount of water in
a plant or its soil, the rate of a process (e.g., transpiration), and the pressure in a
plant’s cells. Each equation in such a model specifies a variable, or its rate of change,
as a function of other variables. These equations represent the physical phenomena
that govern the scenario. For example, the rate at which the amount of plant wa-
ter changes is a function of the rate of water uptake from the soil and the rate of
water loss through transpiration. Because many properties of physical systems can
be represented with such variables, and because many physical phenomena can be
represented with such equations, such models are widely used throughout science
and engineering.

In summary, this dissertation focuses on the following modeling task:

e Given a prediction question and domain knowledge, produce a model of the
scenario, consisting of algebraic equations and ordinary differential equations,

that is suitable for answering the question.

1.3 Multiple Models

A modeler must balance two competing goals. First, the model must be sufficiently
accurate. If the model omits some relevant phenomenon in the scenario, or fails to
represent it in sufficient detail, the predictions or their explanation may be incorrect.
For instance, in the example given earlier, transpiration will appear unaffected by
decreasing soil moisture unless the model includes the effects of plant water regula-
tion processes. This goal, accuracy, encourages detailed, comprehensive models.
However, a model must also be as simple as possible. If the model includes

irrelevant information, it will be more difficult to analyze and explain. For example,

2We show later that the methods are useful for building qualitative models [19, 28, 52, 54, 72]
as well as quantitative ones. Although the methods are equally applicable to building quantitative
models, our empirical evaluation has focused on qualitative models.



a detailed model of the entire plant would include an enormous number of variables,
making the model difficult to simulate or solve analytically, and the excess details
would obscure the simple reason that transpiration decreases.

For complex systems (such as plants), no single model can satisfy both these
goals for a wide variety of questions. Complex systems encompass many phenomena
that can be described at many different levels of detail. Hence, if a model is compre-
hensive enough to provide an accurate answer to a wide variety of questions, it will
be unnecessarily detailed for any particular question. Consequently, for complex
systems, a modeler must consider multiple models, choosing the simplest adequate
model for each question.

This introduces three requirements for any modeling program intended to

handle complex systems:

e The modeling program must be able to construct multiple, alternative models

that differ in accuracy and simplicity.

e The modeling program must have criteria for determining whether a candidate
model is adequate (e.g., sufficiently accurate) for answering a given question.

e The modeling program must have criteria for determining whether one candi-

date model is simpler than another.

1.4 Types of Modeling Alternatives

For a given scenario, human modelers are able to construct multiple, alternative
models that differ in accuracy and simplicity. A modeling program must consider
the same types of modeling alternatives that humans do, for two reasons. First,
the experience of scientists and engineers in many different domains has proven
their methods useful for representing physical phenomena. Second, to ensure com-
prehensible explanations, the elements of a model must match the concepts used
by scientists and engineers. Therefore, it is important to understand how human
modelers tailor the model of a scenario to the question it must answer.

To construct a model, human modelers first determine which physical phe-
nomena in the scenario are relevant. Of the many phenomena governing any complex
system (such as a plant), only a handful are relevant to any particular question. For
example, of the many processes at work in a plant, the question about decreas-
ing soil moisture only requires modeling the effects of the plant’s water regulation
processes. The effects of some processes can be ignored because they are insignif-
tcant. For instance, in the decreasing soil moisture example, metabolic processes
and mineral transport processes can be ignored because they do not significantly



influence the variable of interest, transpiration rate. The effects of other processes
can be treated as ezogenous (i.e., causally upstream from the input variables in the
model). For example, although the processes that regulate soil moisture (e.g., rain
and evaporation) do significantly influence the transpiration rate of a plant, they are
nonetheless irrelevant to predicting the effects of decreasing soil moisture on tran-
spiration rate. By omitting insignificant and exogenous phenomena from a model,
a modeler simplifies it.

For those phenomena the modeler chooses to represent in the model, many
levels of detail are possible. For example, water in the plant can be treated as an
aggregate, or the water in the roots, stem and leaves can be modeled individually.
Similarly, processes can be aggregated. For example, the chemical formula for pho-
tosynthesis summarizes the net effects of its many component reactions. For an
even simpler level of detail, the dynamics of a process can be summarized by its
equilibrium results. For example, when the level of solutes in a plant cell changes,
the process of osmosis adjusts the cell’s water to a new equilibrium level. If the dy-
namics of this process are irrelevant, the modeler can simply treat the level of water
as an instantaneous function of the level of solutes. These types of alternatives are
useful in many areas of science and engineering.

Human modelers have many criteria for choosing among such alternatives.
Our objective is not to develop new criteria for humans to use. Rather, our objective
is to develop a computer program that can choose among these types of alternatives.
Therefore, we must develop a representation for the modeling alternatives and for the
knowledge that humans use to choose among them, and we must develop methods
that use that knowledge to construct models.

1.5 Compositional Modeling

To answer prediction questions in domains like plant physiology, a large collection
of models is needed. A complex system like a plant is governed by a large number of
phenomena, and many of these can be described at multiple levels of detail. Addi-
tionally, different species of plants are governed by somewhat different phenomena.
Any particular question could concern any aspects of any species of plant, so almost
any combination of plant physiology phenomena and their levels of detail might be
relevant. Thus, the requirements for this modeling task — to answer a wide range of
questions about complex systems and to use the simplest possible model to answer
each question — make it impractical to construct an adequate library of models
ahead of time.

Instead of selecting from a library of complete models, it is more practical



for a modeler to construct models from available pieces. The modeler uses domain
knowledge to identify the physical phenomena that govern the scenario and to pro-
vide multiple levels of detail at which these phenomena can be described. The
modeler determines which phenomena are relevant to the question and, for each
relevant phenomenon, chooses from among the available levels of detail. Thus, the
domain knowledge provides the building blocks for models, and the modeler con-
structs a model by composing relevant building blocks. This approach is called
compositional modeling [25].>

For instance, in the decreasing soil moisture example, the domain knowledge
would provide ways of describing all the phenomena governing the plant and soil,
including the effects of metabolic processes, mineral transport processes, plant water
regulation processes, and soil moisture regulation processes. The modeler would
recognize that only the plant water regulation processes are relevant, and it would
construct a model from the available descriptions of these relevant processes.

For complex systems, the domain knowledge needed for compositional mod-
eling is much easier to provide than a library of complete models. The domain
knowledge must provide a set of domain phenomena, ways of modeling each sepa-
rate phenomenon, and ways of identifying these phenomena in scenarios — exactly
the sort of information found in textbooks in plant physiology or any other area of
science or engineering.

However, compositional modeling raises three new issues for the modeler:

e What should serve as the building blocks for models? Is an equation an ap-
propriate building block, or are smaller or larger building blocks required?

e How should the modeler use the domain knowledge? Should the modeler
identify all phenomena in the scenario before selecting relevant ones, or can
the two steps be more efficiently interleaved?

e How should the modeler search for the simplest adequate model? Should it
build all possible models, prune the inadequate ones, and choose the simplest
of those remaining? Or can the modeler interleave construction of candidate
models and selection of the simplest adequate one?

The following three sections summarize our approach to these three issues.

FWe use the term “compositional modeling” to refer to this basic approach, not the particular
method developed by Falkenhainer and Forbus.



1.6 The Building Blocks: Influences

In the compositional modeling approach, a model is constructed from building blocks
that are provided by domain knowledge. However, the approach does not specify
the appropriate size of the building blocks. Since an ordinary differential equation
(oDE) model is a set of equations, it might seem natural for the domain knowledge
to provide individual equations as building blocks. To understand this issue, we
first examine the relationship between the physical phenomena in a scenario and
the equations in a model of that scenario.

Each equation in an ODE model represents all the physical phenomena that
influence one particular variable in the model (or its rate of change). In a differential
equation, the phenomena are typically the effects of processes. For example, the
rate at which the amount of sugars in a plant’s leaves changes equals the rate of
production by photosynthesis minus the rate of consumption by respiration minus
the rate of transport to other plant parts. In an algebraic equation, the phenomena
are typically the factors that control the rate of a process.* For example, the rate of a
chemical reaction equals the product of the concentrations of its reactants. Similarly,
the rate of acceleration of a body equals the sum of forces on that body divided by
its mass (Newton’s Law). Thus, each equation in an ODE model is a composition of
individual physical phenomena in the scenario, typically either effects of processes
or factors controlling their rate.

Before constructing an equation, a modeler must make two types of decisions.
First, the modeler must decide which of these phenomena is significant and which
can be ignored. In the examples above, photosynthesis might be negligible on a
cloudy day, the effect of some reactants on the reaction rate may be negligible if
they are available in abundance, and the effect of some forces (e.g., friction) might
be negligible. Second, the modeler must choose a suitable level of detail for each
significant phenomenon. For example, the modeler could treat photosynthesis as an
aggregate process, or it could decompose photosynthesis into its component dark
reactions (which produce sugars) and light reactions (which convert light energy to
chemical energy).

Because the modeler must reason about individual phenomena, it is not ap-
propriate for the domain knowledge to provide equations as the building blocks for
models. Of the phenomena influencing a variable, the modeler might choose any
subset as significant, and each significant phenomenon can generally be represented

at multiple levels of detail. Therefore, there may be a variety of useful combina-

*Often, the algebraic equations in an ODE model are eliminated by substitution into the differ-
ential equations. In this discussion, we ignore such algebraic simplifications in order to highlight
the different types of phenomena that are represented in an ODE model.



tions of these phenomena and their levels of detail, and hence a variety of possible
equations for the variable. Rather than provide each of these equations, the domain
knowledge can simply provide the individual pieces from which an equation can be
built; each piece is an influence representing one phenomenon at one level of detail.

An influence is a causal relation between two variables, as in Qualitative
Process Theory [28]. Each variable represents a property of the scenario (e.g., soil
moisture or the plant’s transpiration rate). Each influence specifies that a variable,
or its rate of change, is a function of another variable. For example, each of the

following is an influence:

e the rate at which the amount of sugars in a plant’s leaves changes is a function
of the rate of production by photosynthesis (and perhaps other things).

e the rate of photosynthesis (a chemical reaction) is a function of the amount of
carbon dioxide (one of its reactants) in the leaves (and perhaps other things).

e the rate of acceleration of a rocket at lift-off is a function of the force of gravity

(and perhaps other things).

Each influence represents one of the physical phenomena affecting a variable,
as emphasized by the qualification “and perhaps other things.” To construct an
equation, the modeler uses the domain knowledge to identify all the influences on a
given variable, it chooses those influences that represent significant phenomena at an
appropriate level of detail, and it composes the chosen influences into an equation.

Additional domain knowledge is needed to compose influences into equations.
Forbus [28] developed methods for composing influences into qualitative equations,
given the sign of the partial derivative of each influence. Such qualitative models
[19, 28, 52, 54, 72] are useful when quantitative details are unavailable (as is often
the case in plant physiology) or irrelevant (as is often the case in tutoring). Farquhar
[26] extended the methods to construct quantitative equations, given knowledge of
whether each influence is an additive term, a multiplicative term, or some other
type of term. While some modeling decisions arise at this step — determining the
form of the equation — this dissertation focuses on the more important decisions
involved in choosing the influences that make up each equation.

The methods described in this dissertation base their modeling decisions on
the influences among variables, but not on the quantitative details of the influences.
Therefore, the methods are useful in building qualitative models as well as quantita-
tive models. The issues that the methods address are important in constructing both
types of models. However, to date, the methods have only been used to construct

qualitative models.
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Figure 1.2: The two subtasks of the modeling task: scenario elaboration and model
construction.

In summary, the role of the domain knowledge is to provide the influences
that could be used to describe the scenario. The modeler constructs a model by
selecting those influences that are relevant to answering the given question.

1.7 Demand-Driven Scenario Elaboration

The modeling task can be separated into two subtasks, as illustrated by Figure 1.2.
In the scenario elaboration task, the modeler uses the domain knowledge to elabo-
rate the scenario description given in the question. Specifically, scenario elaboration
infers all the phenomena that govern the scenario (not just the relevant ones) and the
levels of detail at which they can be described. As discussed in Section 1.6, this in-
formation is represented as influences. For instance, in the decreasing soil moisture
example, the modeler would infer influences representing the effects of metabolic
processes, plant water regulation processes, soil moisture regulation processes, and
many others. As another example, a modeler might use general knowledge of chem-
ical engineering and a specific question about a Dow Chemical factory in Houston
to infer the influences representing the factory’s many processes.

In the model construction task, the modeler uses the goals of the question
(e.g., predict the plant’s rate of transpiration) to select relevant influences, and it
composes the influences into a model of the scenario. For instance, in the decreasing
soil moisture example, the modeler would choose influences representing plant water
regulation processes at an appropriate level of detail. Thus, scenario elaboration
generates the building blocks for models, and model construction selects relevant
building blocks.

In principle, scenario elaboration could be run to completion before model
construction begins. Conceptually, scenario elaboration would identify all phenom-



ena governing the scenario and all the levels of detail at which they could be de-
scribed. However, for complex systems (such as a plant), this full description would
be enormous, and generating it would take a long time. Not only are there an enor-
mous number of phenomena governing a plant, but scenario elaboration might have
to infer all the unstated anatomical details of the plant in order to recognize the
governing phenomena. From this extensive description, the modeler will select only
a tiny fraction to serve as the model. Moreover, typically only a small fraction of
the full description is needed in order to choose that model. Therefore, exhaustively
elaborating the scenario before making modeling decisions is both impractical and
unnecessary.

To address this issue, our modeling methods use demand-driven scenario
elaboration. That is, scenario elaboration only generates missing elements of the
scenario description as they are needed. The modeler, in constructing its model of
the scenario, requests information such as the influences on a specific variable. If the
scenario description lacks the requested information, the modeler uses the domain
knowledge to infer it, and the information is added to the scenario description. Thus,
scenario elaboration and model construction are efficiently interleaved, and scenario
elaboration only generates those elements of the scenario description needed for
model construction.

1.8 Searching Through Partial Models

Given a question, a modeler must find the simplest model that can adequately
answer it. Conceptually, there are three steps: construct candidate models, filter
out those that are inadequate, and choose the simplest from the remaining models.
However, this generate-and-test approach is impractical. For complex systems, the
space of models is too large to generate. A modeler needs an efficient strategy for
searching through the space of models while explicitly considering only a fraction of
the models.

Our model construction algorithm achieves this goal by searching through
the space of partial models. Starting from an initially empty model, the algorithm
repeatedly identifies relevant aspects of the scenario not yet included in the model.
The domain knowledge provides the possible ways of extending the model to remedy
each omission. The algorithm extends the model in each possible way, resulting
in new partial models, and the process is repeated. Conceptually, this algorithm
constructs a tree of partial models; each child is an extension of its parent.

The key to this approach is the ability to eliminate partial models from fur-
ther consideration. By pruning a partial model at an early stage, the algorithm
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prunes a large chunk from the space of possible models (i.e., all the model’s future
descendants in the tree). Our algorithm uses adequacy criteria to recognize partial
models that cannot be extended into an adequate model of the scenario, and it
prunes them. Furthermore, by extending simpler partial models before more com-
plex ones, the algorithm finds the simplest adequate model without ever trying to
remedy the omissions in many of the partial models under construction. Chapter 6
describes the algorithm in detail and proves that it always returns a simplest ade-
quate model for a question when one exists, and the empirical evaluation described
in Chapter 9 indicates that it does so efficiently.

1.9 Related Work

This dissertation builds on important previous work in compositional modeling. Our
research was particularly influenced by the earlier work of Forbus [28] and Falken-
hainer and Forbus [25]. Forbus’s Qualitative Process (QP) Theory uses influences as
the building blocks for models, and it shows how influences can be generated from
domain knowledge. However, it does not provide methods for identifying relevant
influences; in QP Theory, the complete scenario description is the model. Falken-
hainer and Forbus extended the ideas in QP Theory to handle complex scenario
descriptions containing multiple levels of detail. Their methods address the task of
constructing the simplest adequate model for answering a question. The objectives
of our research are also similar to more recent work that has progressed concurrently
with our own, especially the work of Nayak [65] and Iwasaki and Levy [43].

Each of these pieces of related work, and many others, addresses a variety of
issues. No single description of each previous modeling program can adequately de-
scribe the many similarities and differences between that program and ours. There-
fore, discussions of these programs are spread throughout the dissertation, organized
around individual issues.

In addition to previous work in automated modeling, our research has been
guided by the practices of human modelers in biology, ecology, economics, and engi-
neering. While human modelers rarely offer operational advice for automating their
task, their textbooks (e.g., [4, 14, 31, 34, 45, 49, 59, 75, 76]) and journal articles
(e.g., [32, 38, 39, 40, 50, 69, 78, 79, 82]) often reveal the modeling alternatives they
consider and the criteria for their choices.
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1.10 Summary of Contributions and Results

Our research provides three types of contributions. First, we formulated declarative
criteria that specify when a model is adequate for answering a prediction question
and when one model is simpler than another. Second, we designed algorithms for
constructing the simplest adequate model for a given question. Finally, we imple-
mented these algorithms in a modeling program called TRIPEL,> and we evaluated
the program, the algorithms, and the criteria in the plant physiology domain.

The evaluation is especially significant for three reasons. First, the domain
knowledge was independently developed by a domain expert. Second, the domain
knowledge was designed to support a wide range of tasks besides prediction; it
consists of fundamental textbook knowledge. Finally, the domain knowledge is
extensive; it describes 700 plant properties and 1500 influences among them. These
three factors make the evaluation far more ambitious than any previous evaluation
of an automated modeling program.

To evaluate our contributions, we tested TRIPEL on plant physiology ques-
tions constructed by the domain expert. For each question, the expert assessed
the model TRIPEL constructed. In addition, we evaluated the efficiency with which
TRIPEL constructed the models and the importance of key components in TRIPEL.
The results indicate that TRIPEL is already an effective modeling program; it typ-
ically constructs simple, adequate models, and it does so efficiently. Furthermore,
our experiments show that several key components of TRIPEL play an important
role in its success. Finally, the results suggest several natural extensions to TRIPEL
that would remedy its limitations.

The following list highlights the important features of TRIPEL and the criteria

and algorithms that underlie it:

e TRIPEL uses a novel representation to encode the phenomena governing a sce-
nario at multiple levels of detail. The dissertation illustrates how the represen-
tation naturally supports a variety of types of abstractions and approximations
that human modelers use throughout science and engineering. Our evaluation
indicates that the representation is natural and effective for the plant physi-

ology domain.

e TRIPEL uses demand-driven scenario elaboration to control the use of domain
knowledge. This often obviates the need to generate many scenario influences.

e In addition to choosing a level of detail that is adequate for answering a given

5The name TRIPEL is an acronym for “Tailoring Relevant Influences for Predictive and Explana-
tory Leverage.” It is also a style of strong ale made by Trappist Monks in Belgium.
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question, TRIPEL is sensitive to the user’s level of knowledge and the desired
level of detail. When considering a decision on level of detail, it checks for in-
formation indicating that a candidate level is inappropriate for the user. Such
information could be provided on demand from a user model, a pedagogical
plan, or the discourse context.

e TRIPEL can exploit a time scale of interest. The question can specify a time
scale on which the predictions should be made (e.g., seconds, hours, days), and
TRIPEL uses this time scale to simplify the model. Specifically, a time scale of
interest allows TRIPEL to recognize and eliminate insignificant phenomena and
to use simple, quasi-static representations of some phenomena. Furthermore,
TRIPEL includes a novel method for determining an appropriate time scale of
interest when none is specified. Empirical results show that many irrelevant
details are eliminated from models by exploiting the time scale of interest.

e TRIPEL uses novel criteria and methods to choose exogenous variables, effec-
tively eliminating exogenous phenomena from the model. Empirical results
show that these criteria and methods are effective in eliminating irrelevant
phenomena while ensuring an adequate model.

e TRIPEL uses a novel, best-first search algorithm for constructing the simplest
model that is adequate for answering a given question, as discussed briefly
in Section 1.8 and in more detail in Chapter 6. The algorithm is guaranteed
to return a simplest adequate model when one exists, and empirical results
indicate that it does so efficiently.

e TRIPEL bases its modeling decisions on the influences among properties of a
scenario, but not on the quantitative details of the influences. Therefore, its
methods are useful in building qualitative models [19, 28, 52, 54, 72] as well as
quantitative models. Qualitative models are useful when quantitative details
are unavailable (as is often the case in plant physiology) or irrelevant (as is
often the case in tutoring). TRIPEL has been used to construct qualitative
models, which it passes automatically to the Qualitative Process Compiler
(qpc) [27], a qualitative simulation program. From TRIPEL’s model, QpPC
generates the desired predictions.

1.11 Reader’s Guide

The remainder of the dissertation is organized as follows:
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Chapter 2 describes the representation language TRIPEL uses to describe sce-
narios. A description of the scenario plays a central role in answering a pre-
diction question: the question provides a partial description, the modeler uses
domain knowledge to elaborate that description, and the modeler constructs
a model from relevant elements of the elaborated description.

Chapter 3 specifies the elements of a prediction question.

Chapter 4 discusses demand-driven scenario elaboration, including the types
of information it contributes to the scenario description, the types of domain
knowledge needed, and the required inference methods. We show that a stan-
dard backward-chaining inference engine [12], coupled with the types of knowl-
edge introduced in Qualitative Process Theory [28], is sufficient. The ideas in
this chapter are not a primary contribution of our research; the chapter simply
shows that the input required for the algorithms in the remaining chapters can
be generated efficiently.

While Chapters 3 and 4 define the inputs for model construction, Chapter 5
defines the output, a simplest adequate model of a scenario. This chapter
defines a model and specifies the declarative criteria that determine whether
a model is adequate and when one model is simpler than another.

Chapter 6 presents the algorithm for constructing a simplest adequate model
for answering a given prediction question. This algorithm efficiently searches
through the space of partial models. After presenting the algorithm, we prove
its correctness: the algorithm is guaranteed to return a simplest adequate
model, as defined in Chapter 5.

The algorithm for constructing a simplest adequate model has a subroutine
that decides when a variable in a model can be treated as exogenous. Chap-
ter 7 describes the relevant issues and provides an algorithm for making this
decision.

Chapter 8 provides an algorithm for automatically choosing an appropriate
time scale of interest for a prediction question. A time scale of interest is an
important source of power for a modeler, and the person posing a prediction
question cannot always provide it, so this algorithm is an important component
of any modeling program for answering prediction questions.

Chapter 9 discusses an empirical evaluation of TRIPEL in the domain of plant
physiology. The chapter discusses the details of the evaluation as well as the
results. The results address the quality of the models TRIPEL constructs to
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answer questions, the efficiency with which it constructs a model for each

question, and the importance of several key components of TRIPEL.

e Chapter 10 discusses areas for future work. The chapter discusses limitations
of TRIPEL, it shows how TRIPEL could incorporate ideas from related research,
and it suggests short-term and long-term extensions. The chapter closes by
discussing how TRIPEL could be extended to answer questions other than pre-

diction questions.
e Finally, Chapter 11 summarizes the dissertation.

Although some of TRIPEL’s limitations are discussed in earlier chapters, most
are postponed until Chapters 9 and 10. This places the limitations in the broader

context of TRIPEL’s overall performance and the proposed extensions.

1.12 Typographic Conventions

This dissertation uses a few simple typographic conventions to aid the reader. When
a new term is introduced informally, it appears in italics (e.g., widget). When a for-
mal term is defined, it appears in bold face (e.g., widget). Finally, variables, func-
tions and relations used in algorithms appear in sans serif when they are mentioned

in prose (e.g., relation).
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Chapter 2

Describing Scenarios

A description of the scenario plays an important role in answering a prediction ques-
tion. The question provides a partial description (e.g., a plant whose soil moisture
is decreasing). The modeler uses domain knowledge to elaborate that description
(e.g., to specify the influences governing the plant). From the elaborated descrip-
tion, the modeler chooses relevant elements (e.g., the influences representing plant
water regulation processes) and composes them into a model of the scenario. The
language for describing scenarios is an important part of any program that answers
prediction questions.

This chapter presents TRIPEL’s language for describing scenarios. The lan-
guage combines elements from previous scenario description languages, and it also
introduces some novel extensions. Subsequent chapters describe how this language
is used to pose a prediction question, elaborate a partial scenario description, and
construct a scenario model. The concepts introduced here are required for those
chapters.

2.1 Scenario Variables: Properties of Entities

Scientists and engineers use variables to represent dynamic properties of physical
systems. Each variable in an 0DE model denotes a real-valued, continuous function
of time. Examples include the amount of water in a plant and the rate of transpi-
ration. To provide the elements from which models can be constructed, a scenario
description must include such variables.

A variable in a scenario description is a scenario variable. To represent its
meaning, the scenario description specifies each scenario variable as a property of
some conceptual entityin the scenario. For instance, the following types of properties
and entities are useful in many areas of science and engineering:
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e A spaceis an entity. A plant is a simple example of a space. However, a space
need not be spatially continuous; the collection of leaves of a plant can also
be treated as a space. Similarly, the stomates of a plant (i.e., the pores in
its leaves) can be treated as a space. Examples of properties that apply to
spaces include volume and cross-sectional area (an important property of the
stomates, which serve as a conduit for water vapor and other gases).

e A poolis an entity. A pool consists of the substance or energy of a particular
type in a particular space. Examples of pools include the glucose in a plant,
the heat in its leaves, and the water in its roots. Examples of properties that

apply to pools include amount and concentration.

e A process is an entity. A process is a mechanism of continuous change. Ex-
amples include photosynthesis, osmosis, and growth. The state of a process is

represented by its rate property.

Entities, properties and variables in TRIPEL’s scenario description language
are written as ground terms in Predicate Calculus [33]. For example, photosyn-
thesis in a plant, which is an entity, can be written as photosynthesis(plant). The
rate of photosynthesis in a plant, which is a scenario variable, can be written as
rate(photosynthesis(plant)). Similarly, the amount of water in a plant, another sce-
nario variable, can be written as amount(pool(water, plant)), where pool is a function
that maps a type of substance and a space to the corresponding pool. In this repre-
sentation, a property (e.g., amount) is a function that maps an entity to a real-valued,

continuous function of time (i.e., a scenario variable).

2.2 Relations Among Entities: Entity Encapsulation

Often, the entities in a scenario can be described at multiple levels of detail. One
entity may represent an aggregation of other entities, summarizing their properties
while encapsulating their details. For example, the water in a plant could be treated
as an aggregate pool, or the water in the roots, stem and leaves could be treated
individually. Analogously, photosynthesis summarizes the net effects of many chem-
ical reactions. Similarly, in engineering, a system component is often treated as a
black box even though it is constructed from other components. These are all exam-
ples of entity encapsulation, which is ubiquitous in science and engineering because
it allows scientists and engineers to create abstract descriptions that hide irrelevant
details.

A full description of a scenario may include entities at multiple levels of de-
tail, as in the examples above. In order to choose a suitable level of detail and
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ensure a coherent model, a modeler must understand the relationships among en-
tities in the scenario description. KEncapsulation relationships among entities are
represented with the encapsulates relation. The pair (E1, E2) is an element of
this relation if and only if the entity E1 encapsulates the entity E2. For example,
encapsulates(pool(water, plant), pool(water, leaves(plant))) specifies that the pool of
water in the plant encapsulates the pool of water in the leaves; that is, these pools
are alternative levels of description. Of course, the pool of water in the plant also
encapsulates the water in the stems and roots; each such relationship is a separate
pair within the relation. The encapsulates relation is an ordering relation like <; it
is irreflexive (no entity encapsulates itself), asymmetric (no two entities encapsulate
each other), and transitive (if E1 encapsulates E2 and E2 encapsulates E3 then E1
encapsulates E3).

For example, for pools and processes, the encapsulates relation could be de-

fined as follows:

e A pool encapsulates its subpools and internal transport processes. A subpool is
a pool consisting of a subset of the aggregate pool’s contents. The aggregate
pool might be decomposed based on taxonomic distinctions in its substance
type (e.g., glucose in the plant is a subpool of carbohydrates in the plant) as
well as by partonomic distinctions (e.g., glucose in the leaves is a subpool of
glucose in the plant). An internal transport process for a pool is a process
that transports substance from one subpool to another, with no net loss or
gain in the pool. For instance, phloem sap distribution transports sucrose in a
plant from the photosynthesizing leaves to fruits and other parts of the plant
that cannot produce sugars; this process is an internal transport process of the
pool of sucrose in the plant. Thus, an aggregate pool encapsulates the details
of its subpools and the processes that shift its contents among them.

e Analogously, a process encapsulates its subprocesses and internal pools. For
example, photosynthesis is actually an aggregate process representing the net
effects of two subprocesses, the light reactions and dark reactions, and each of
those is an aggregation of many other chemical reactions. A process’s internal
pools are those pools influenced by its subprocesses but not included in the
process’s net effects. For example, the net effect of photosynthesis is to convert
carbon dioxide, water and light into sugar and oxygen, but, in accomplishing
this conversion, it alternately produces and consumes from an internal pool of
phosphates in the leaves. Thus, an aggregate process encapsulates the details
of its subprocesses and the internal pools they manipulate.

Note that the encapsulates relation represents relationships among alternative
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levels of description, not spatial relationships. The relation is useful whenever an
entity can be described as a black box or, alternatively, through its components.
While spatial relations might form the basis of some such relationships (as with
pools and subpools), this need not be the case (as with processes and subprocesses).

In summary, when the scenario description includes multiple levels of detail,
it must also represent the relationships among levels. Entity encapsulation is one
important way of creating multiple levels of detail, and the encapsulates relation
defines the relationship among such levels. A modeler needs such information to
choose a suitable level of detail for describing the scenario and to ensure a coherent,
comprehensible model.

2.3 Behavioral Conditions

A prediction question poses hypothetical conditions and asks for the resulting be-
havior of certain variables of interest. Often, the hypothetical conditions are stated
in terms of scenario variables. There were several examples in the last chapter:
“decreasing soil moisture,” “increasing fan speed,” and “decreasing insulin level.”
Scenario conditions that are stated in terms of scenario variables are called behavioral
conditions.

In prediction, there are two important types of behavioral conditions. First,
a question may specify the initial state of certain variables. For example, the tem-
perature may be below freezing, or the level of soil moisture may be at the saturation
point. Second, a question may specify the behavior of certain variables. “Decreasing
soil moisture” is an example. For any scenario variable, the scenario description can
specify its initial state, its behavior, or both.

The initial state of a variable is specified as an (in)equality (i.e., equality
or inequality statement) comparing the variable or its first derivative to another
variable or constant. For example, the initial temperature of a plant could be spec-
ified precisely as temperature(plant) = 67°F or less precisely as temperature(plant)
> 32°F or temperature(plant) > temperature(soil). Its initial rate of change could
similarly be specified (using the differential operator D) as D(temperature(plant)) =
zero (thermal equilibrium) or D(temperature(plant)) > zero (the plant is warming
up).

The behavior of a variable describes its state throughout the scenario. A
scenario is not a static situation; it has temporal extent. For example, recall the
question “How would decreasing soil moisture affect a plant’s transpiration rate?”
This question asks for the rate of transpiration over a period of time in which soil
moisture is decreasing. The language for specifying the initial state of a variable
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can also be used to specify its behavior. For example, as a specification of behavior,
D(amount(pool(water, soil))) < zero says that soil moisture is decreasing throughout
the scenario. Qur implementation also allows a behavior to be described as increas-
ing or decreasing to a new equilibrium value (i.e., increasing or decreasing for an
unspecified amount of time and constant thereafter). Although not implemented,
the scenario description language could allow behaviors to be specified as arbitrary

functions (e.g., a sine wave).

2.4 Structural Conditions

Some scenario conditions cannot be stated in terms of scenario variables. Examples
include the existence of individuals like a plant and its soil, the species of plant,
partonomic relations (e.g., a plant’s parts include its roots, stem and leaves), and
some spatial relations (e.g., the plant’s roots are surrounded by soil). Any scenario
condition that cannot be stated in terms of scenario variables is a structural con-
dition. A structural condition is stated as a ground, atomic formula in Predicate
Calculus [33]. For example, the formula Surrounded-by(roots,soil) represents the fact
that the roots are surrounded by soil.

Our work focuses on ODE models. ODE models predict scenario changes in
terms of scenario variables. For this reason, we assume that structural conditions
remain constant throughout the scenario (e.g., the roots do not get pulled out of
the soil). Structural conditions encode those scenario facts for which the domain
knowledge lacks a theory of dynamics.

Our assumption that structural conditions remain constant is a matter of
convenience, not necessity. The assumption simplifies presentation and implemen-
tation of the key ideas in our research. However, other alternatives are possible. For
instance, Qualitative Process Theory [28] allows changes in structural conditions
to result from changes in behavioral conditions. Section 10.2.4 shows how TRIPEL

could be extended to support such a representation.

2.5 Influences

As discussed in Chapter 1, the phenomena governing a scenario are represented as
influences, which serve as the building blocks for models. An influence is a causally-
directed relation among two scenario variables, the influencer and the influencee.
There are two types of influences: differential and functional.

A differential influence specifies that the rate of change (first derivative) of
the influencee is a function of the influencer (and perhaps other variables). Typically,
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differential influences represent the effects of processes. For example, the process of
water uptake transports water into the roots of a plant; thus, the amount of water
in the roots is differentially influenced by the rate of water uptake. Of course, a
variable may be differentially influenced by more than one process; for example, the
amount of water in the roots is also differentially influenced by the rate at which
water is transported from the roots to the leaves. When the differential influences
on a variable are combined to form an equation, the result is a first-order differential
equation. A differential influence is written as V1 = V2, where the variable V1 is

the influencer and the variable V2 is the influencee.

In contrast, a functional influence specifies that the influencee (rather than
its first derivative) is a function of the influencer (and perhaps other variables).
As with differential influences, there may be multiple functional influences on a
variable. When combined to form an equation, they result in an algebraic equation.
A functional influence is written as V1 — V2, where the variable V1 is the influencer

and the variable V2 is the influencee.

Typically, functional influences represent one of three types of phenomena.
First, they are used to represent the factors that affect the rate of a process. For
example, the rate of photosynthesis is functionally influenced by the amount of car-
bon dioxide (one of its reactants) in the leaves. Second, they are used to represent
definitional relations. For example, concentration is defined as amount per unit
volume, so the concentration of sucrose in tree sap is functionally influenced by the
amount of sucrose in the sap and by the volume occupied by the sap. Finally, a
functional influence may represent a quasi-static approximation. For example, when
the level of solutes in a plant cell changes, the process of osmosis adjusts the cell’s
water to a new equilibrium level. If the dynamics of this process are irrelevant,
the modeler can simply treat the level of water as an instantaneous function of the
level of solutes, and this functional dependence can be represented with a functional
influence. Quasi-static approximations are important in many branches of science
and engineering [14, 46, 77, 78, 80, 82]. In fact, several branches of engineering,
notably circuit theory and equilibrium thermodynamics, rest on such approxima-
tions [13, 83]. A functional influence that represents a quasi-static approximation is

called an equilibrium influence.

An equilibrium influence summarizes the net effect of some set of processes on
the equilibrium state of the influencee. When the scenario description includes both
the equilibrium influence and the underlying processes, the relationship between
these two levels of detail must also be represented. To represent this relationship, an
equilibrium influence can be associated with an aggregate process that encapsulates
the underlying pools and processes that restore equilibrium. By representing the
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relationship between the two levels of detail, a modeler can choose a suitable level
and ensure that the model does not mix the two levels.

2.6 Attributes of Influences

An influence represents some phenomenon at some level of detail. In addition to
the influencer, influencee, and type (i.e., differential or functional) of an influence,
a modeler must know three other things: when the phenomenon is active, when the
phenomenon is significant, and when the influence is a valid approximation of the
phenomenon. The following three sections discuss these attributes of influences.

2.6.1 Activity Preconditions

Sometimes one variable influences another only under certain behavioral conditions.
For example, the amount of carbon dioxide in the leaves influences the rate of
photosynthesis only if the amount of light energy in the leaves is greater than zero.
The activity preconditions of an influence specify the behavioral conditions under
which it is active.

The activity preconditions of an influence are a (possibly empty) conjunc-
tive set of behavioral conditions. At a given time in the scenario, an influence is
active if and only if each of its activity preconditions is satisfied. (Hence, if it has

no activity preconditions, it is always active.)

2.6.2 Significance Preconditions

Sometimes the effects of an influence are insignificant for purposes of answering a
question. A model can often be greatly simplified when insignificant influences are
recognized and omitted. While human modelers use many criteria to determine
the significance of influences, knowledge of the time scale of different processes is
particularly important.

Processes cause significant change on widely disparate time scales [4, 36, 68,
76, 80]. For example, in a plant, water flows through membranes on a time scale of
seconds, solutes flow through membranes on a time scale of minutes, growth requires
hours or days, and surrounding ecological processes may occur on a time scale of
months or years. Given the time scale of interest for a question, any influence that
causes significant change only on a slower time scale is insignificant. For example,
to answer the question concerning the effect of decreasing soil moisture on a plant’s
transpiration rate, a time scale of hours is most appropriate; since the effects of
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growth are significant only on a time scale of days or longer, they are insignificant
for purposes of answering the question.

To represent such knowledge, the significance preconditions of an in-
fluence are encoded as a time scale condition. A time scale condition is an
(in)equality relating the time scale of interest and a specific time scale. For exam-
ple, for an influence representing the effect of growth on the size of a plant, the
significance preconditions would be encoded as the time scale condition time-scale-
of-interest > days. An influence is significant for purposes of answering a given
question if and only if the question’s time scale of interest satisfies the time scale
condition in the influence’s significance preconditions.

Typically, a differential influence represents an effect of a process, so its sig-
nificance preconditions should specify the fastest time scale on which the effect is
significant, as in the growth example above. If the significance preconditions of a dif-
ferential influence are empty, the modeler must treat the influence as significant for
any question. Functional influences, being instantaneous, are significant regardless
of the time scale of interest, so their significance preconditions are always empty.

In addition to biological and ecological domains, this type of time scale knowl-
edge appears useful in engineering domains as well. Kokotovic, O’Malley, and San-
nuti [50] and Saksena, O’Reilly, and Kokotovic [78] survey hundreds of applications,
in many different engineering fields, in which models are simplified using knowledge
of the disparate time scales of processes.

2.6.3 Validity Preconditions

Many influences are approximations of the phenomena they represent, and these
approximations typically have a limited range of validity. The validity preconditions
of an influence specify the conditions under which the influence is a valid model
of the phenomenon it represents. Contrast validity preconditions with activity and
significance preconditions. The latter specify when a phenomenon is inactive or
insignificant, and hence need not be modeled at all. Validity preconditions, on the
other hand, specify when one particular influence is an invalid approximation of its
phenomenon, but they don’t obviate the need to model that phenomenon.

As with significance preconditions, human modelers use many criteria to as-
sess the validity of influences, but the time scale of interest is particularly important.
Therefore, the validity preconditions of an influence are encoded as a time scale
condition. Such a precondition might arise from cases like the following;:

e The behavior of an aggregate pool is often used as an approximation to the
behavior of one of its subpools. For example, the rate of photosynthesis is
functionally influenced by the concentration of carbon dioxide in the mesophyll
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cells of the leaves. As an approximation, a modeler might say that the rate
of photosynthesis is functionally influenced by the concentration of carbon
dioxide in the leaves. Such an approximation is reasonable when the subpools
equilibrate on a time scale much faster than the time scale of interest [45, 82].
For example, suppose that diffusion of carbon dioxide throughout the leaves
achieves a uniform concentration on a time scale of minutes. Then, on a time
scale of minutes or longer, the overall concentration of carbon dioxide in the
leaves is approximately the same as the concentration in the mesophyll cells.
Thus, the influence of carbon dioxide in the leaves on the rate of photosynthesis
is a valid approximation to the true influence if the time scale of interest is
minutes or longer.

e An equilibrium influence is typically valid only if the underlying processes
reach equilibrium on a time scale at least as fast as the time scale of interest.
For example, when the level of solutes in a plant cell changes, the process of
osmosis adjusts the cell’s water to a new equilibrium level. On a time scale
of minutes or longer, this process can be treated as instantaneous. Therefore,
the equilibrium influence of solute level on water level is valid on a time scale
of minutes or longer.

2.7 Relations Among Influences: Explanation

A full description of a scenario may include multiple levels of detail. Section 2.2
discussed how entities can be described at multiple levels of detail, and it showed
how the encapsulates relation represents the relationships among such levels. Simi-
larly, since each influence in a scenario description represents a phenomenon in the
scenario, different influences may represent the same phenomenon at different levels
of detail.

To choose a suitable set of influences on a variable in a model, a modeler must
understand the relationships among all the influences in the scenario description on
that variable. Specifically, the modeler must determine which of them represent
independent phenomena and which represent different levels of detail for the same
phenomenon.

Influences on a given scenario variable represent alternative levels of detail
in cases like the following:

e The influence of an aggregate process on a pool represents the aggregate effect
of its subprocesses on that pool. For example, the influence of photosynthesis
on water in the leaves is due to the influence of one of its subprocesses, the
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light reactions, on water in the leaves. In turn, the influence of the light
reactions represents the aggregate effect of two of its subprocesses: the Hill
reaction, in which light energy is used to split water molecules into hydrogen
and oxygen, and photophosphorylation, in which light energy is converted to
chemical energy and water. Thus, the influence of photosynthesis on water in
the leaves is explained by the influence of the light reactions, which is explained
by the influence of the Hill reaction and the influence of photophosphorylation.

e The influence of an aggregate pool on a process represents the aggregate effect
of its subpools on that process. For example, in many plants, the influence of
carbon dioxide in the leaves on photosynthesis is due to the influences of two
subpools: the mesophyll cells and the bundle sheath cells.

To generalize these cases, TRIPEL’s scenario language allows one influence to
be explained by other influences. The explanation for an influence, if it has one,
relates it to other influences of the same type (i.e., differential or functional) that
have the same influencee. Specifically, the influence being explained represents the
collective effect on the influencee of the influences that explain it, and the influences
that constitute the explanation fully explain the aggregate influence. In short, the
influence being explained and the influences in its explanation represent the same
underlying phenomena at different levels of detail.

The relationship between an influence and the influences that explain it is
represented by the explanation relation. The pair (il,i2) is an element of this
relation if and only if influence 12 is an element of the set of influences that explain
influence 11. The explanation relation is irreflexive and asymmetric. The transitive
closure of the explanation relation is the explanation* relation, which provides an
ordering among influences.

The explanation relation represents the relationships among influences of the
same type having the same influencee. While there may be similar relationships
among influences with different types or influencees, TRIPEL’s modeling criteria and
algorithms do not require a representation of these relationships. The explanation
relation captures those relationships among influences that are relevant to TRIPEL.

2.8 Related Work

Forbus’s Qualitative Process (QP) Theory [28] provides the basis for our scenario
description language. In QP Theory, scenario variables are called “quantities,” and
quantities are properties of entities. Differential influences are called “direct in-
fluences” and functional influences are called “indirect influences.” The activity
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preconditions of influences are called “quantity conditions.” Our structural and be-
havioral conditions also have close counterparts in QP Theory. However, because
QP Theory was not designed to represent modeling alternatives, it does not in-
clude a representation for significance preconditions, encapsulation or explanation
relationships, or validity preconditions.

Several researchers have addressed the issue of representing modeling alter-
natives in a compositional modeling framework. For instance, entities in Zeigler’s
“system entity structure” [89] represent systems, and each entity can be decomposed
(possibly in multiple ways, called “aspects”) into other entities that represent its
components. FEach entity has associated variables as well as models that describe
the behavior of the variables.

Our scenario description language was most influenced by the compositional
modeling framework of Falkenhainer and Forbus [25], which combines and extends
ideas from Forbus’s QP Theory and Zeigler’s system entity structure. Entities rep-
resent systems, and each entity can be decomposed into component entities. “Model
fragments,” the building blocks for models, pertain to entities or specific configura-
tions of multiple entities; model fragments provide individual influences or complete
equations for variables that represent properties of the entities. To allow different
model fragments to specify different modeling alternatives, each model fragment
has associated “assumptions,” symbolic labels that characterize the phenomena it
represents and its level of detail. To represent the relationships among model frag-
ments, assumptions are organized into “assumption classes”; the assumptions in an
assumption class represent mutually incompatible modeling alternatives for an en-
tity or phenomenon. Several researchers [43, 65] define interesting variants of this
compositional modeling framework, but the basic ideas are widely used.

While our early work adopted the representation introduced by Falkenhainer
and Forbus, our representation gradually evolved into its current form for several
reasons. First, we chose to use individual influences as model fragments in order
to focus the modeler’s reasoning at the level of individual phenomena. Influences
serve a similar role in a variety of areas of science and engineering [10, 31, 55,
72, 75]. Second, we chose to representationally distinguish activity preconditions,
significance preconditions, and validity preconditions, since each plays a distinct role
in our modeling algorithms. Third, the explanation relation among influences, which
plays an important role in our modeling algorithms, is awkward to represent using

assumptions and assumption classes.

Still, on top of these extensions, we could allow influences to be tagged with
assumptions, and we could allow assumption classes and rules to specify relationships
among these assumptions. However, from carefully studying the types of knowledge
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that researchers encode using assumptions, we believe that this use of assumptions
would not provide any important generality over our current representation. Many
such types of knowledge, such as the relationships among alternative levels of detail,
can be sufficiently encoded in our representation. Other types of knowledge, such
as the conditions under which an assumption class is relevant to a question, are
unnecessary because our modeling algorithms have sufficient criteria for making
such decisions. Thus, although our modeling algorithms could exploit assumptions
and assumption classes with little modification, we chose to avoid these features
until their utility is clearly demonstrated.

Throughout areas of science and engineering, time scale is used to determine
significance of phenomena and validity of approximations. Yet few researchers in
automated modeling have exploited knowledge of time scales. Kuipers [53] shows
the utility of decomposing models by time scale, and he provides a simulation al-
gorithm for coupling such models, but a human modeler is required to use their
knowledge of time scales to decompose the models. The modeling algorithm devel-
oped by Yip [47] can be viewed as removing insignificant influences based on given
scale parameters, including the length, time, and velocity scales of interest. The
Extended Adiabatic Elimination method of Dieckmann and Williams [20] simplifies
a set of differential equations by using quasi-static approximations wherever possi-
ble. Iwasaki [42] presents an approach to using time scale that is closest to ours;
her modeling algorithm determines the time scale on which each scenario process
operates, and it ignores those that are slower than the time scale of interest while
treating those that are faster as instantaneous.

2.9 Summary

TRIPEL’s scenario description language allows several important types of information
to be specified. Scenario variables represent the dynamic properties of entities in the
scenario. Behavioral conditions represent the initial state and behavior of variables.
Structural conditions represent static properties of the scenario. Influences represent
the phenomena that govern the scenario. Activity preconditions specify when these
phenomena are active, significance preconditions specify when they are significant,
and validity preconditions specify when an influence is a valid approximation of
the phenomenon it represents. These types of information are all important in
constructing an adequate model of a scenario and in using that model to make
predictions.

Additionally, the language allows a scenario to be described at multiple levels
of detail. In particular, some entities may encapsulate other entities, summarizing
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their properties while hiding their details. Similarly, one influence may represent the
net effect of several other influences. To ensure a coherent, comprehensible model
that captures all relevant aspects of the scenario, a modeler needs to understand the
relationships among different levels of detail. For this purpose, the encapsulates rela-
tion represents relationships among entities, and the explanation relation represents
relationships among influences.
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Chapter 3

Causal Prediction Questions

Our research addresses the task of automatically constructing models for answering
prediction questions. Informally, a prediction question poses a hypothetical scenario
and asks for the resulting behavior of particular variables of interest. More formally,
there are two components of a prediction question: the scenario and the goals.

3.1 Scenario

A prediction question provides a partial description of a scenario, expressed in the
language introduced in Chapter 2. Specifically, a prediction question specifies struc-
tural and behavioral conditions. As illustrated in Figure 3.1, the behavioral con-
ditions specified in a question can include initial conditions, behaviors of selected
variables, or both. Additional elements of the scenario description, such as influ-
ences and unstated structural conditions, are added during scenario elaboration,
which is the subject of Chapter 4.

Behavioral conditions specified in a prediction question are special, because
the person posing the question is interested in the effect of these conditions on the
variables of interest. Therefore, we will refer to such conditions as driving conditions,
and the scenario variables appearing in the driving conditions will be called driving

variables.

3.2 Goals

While the scenario specifies the situation to be modeled, goals are needed to de-
termine which aspects of the scenario are relevant. Different types of questions are
distinguished by different types of goals. The following sections describe the types
of goals that arise in prediction questions.
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Structural Conditions

Plant(plantl) hypothetical plant

Soil(soil1) hypothetical soil

Has-Part(plantl, rootsl) the plant has roots
Surrounded-by(rootsl, soill) the roots are surrounded by the soil

Initial conditions

temperature(plantl) > 32°F plant temperature is above freezing
Behaviors
D(amount(pool(water,soill))) < zero soil moisture is decreasing

Figure 3.1: An example of a scenario description provided by a question.

3.2.1 Variables of Interest

The primary goal in a prediction question is to predict the behavior of specified
variables of interest. This goal provides the necessary focus for modeling, enabling
a distinction between relevant and irrelevant aspects of the scenario. For this reason,

we require a prediction question to include at least one variable of interest.

Furthermore, our research focuses on causal prediction questions, in which
the person posing the question wants to know the causal effect of the driving condi-
tions on the variables of interest. For example, the question “How would decreasing
soil moisture affect a plant’s transpiration rate?” asks for the causal effect of de-
creasing soil moisture on the rate of transpiration. In contrast, consider the question
“What is the rate of inflow into a bathtub if the level of water remains constant
and the rate of outflow is five gallons per minute?” This question has the basic
elements of a prediction question — structural conditions, behavioral conditions,
and a variable of interest — but it is not a causal prediction question. The rate
of outflow and the level of water do not cause the behavior of the inflow rate (at
least not in my tub). Because our research addresses causal prediction questions,

we require the question to include at least one driving condition.

There are two reasons for focusing on causal prediction questions. First,
many prediction questions in science and engineering are causal ones. Second,
causality provides important guidance in modeling, as will be shown later. Through-
out this dissertation, “question” and “prediction question” are merely shorthands

for “causal prediction question.”
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3.2.2 Desired Level of Detail

To ensure a comprehensible model, a modeler must choose a level of detail that is
suitable for the person posing the question. For example, a model suitable for a
first-year botany student will be much simpler than a model suitable for a veteran
plant physiologist. The level of detail might also be tailored to fit the discourse
context. For example, a tutor might use a student’s question to illustrate domain
principles that were recently discussed. To guide the choice of a suitable level of
detail, a question can include a desired level of detail.

The desired level of detail is specified through glass-box entities and black-box
entities. A glass-box entity is an entity (e.g., pool or process) that is too simple.
If such an entity, or a simpler, encapsulating entity, is needed in the model, the
detailed entities that it encapsulates should be used instead. For example, if pho-
tosynthesis is marked as a glass-box entity, the modeler must use its component
reactions in its place. In contrast, a black-box entity is an entity whose underlying
component entities should not be used because they are too detailed. A black-box
entity prevents the modeler from using any entity that it encapsulates. For ex-
ample, if photosynthesis is marked as a black-box entity, the modeler can include
photosynthesis in a model but cannot use any of its component reactions. Together,
glass-box and black-box entities prevent the modeler from choosing a level of detail
that is inappropriate for the person posing the question.

Although glass-box and black-box entities could be specified explicitly in a
question, they might come from a variety of sources. They might come from an
overlay user model [35]. For example, if a student understands photosynthesis but
not its component reactions, photosynthesis can be marked as a black-box entity.
They might also come from a discourse history. For example, if a tutor has re-
cently discussed the component reactions of photosynthesis, photosynthesis might
be marked as a glass-box entity. Glass-box and black-box entities provide a simple
interface to each of these information sources.

3.2.3 Time Scale of Interest

As discussed in Chapter 2, a time scale of interest provides an important source
of power in modeling. It allows the modeler to treat influences that operate on a
slower time scale as insignificant. It allows the modeler to model the effects of faster
processes using equilibrium influences, based on a quasi-static approximation. It
allows the modeler to treat separate pools as a single aggregate when they equilibrate
on a faster time scale. Thus, a time scale of interest allows many important model

simplifications.
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Although the person posing the question may specify a time scale of interest,
often the modeler must determine it automatically. Chapter 8 provides an algorithm
for choosing an appropriate time scale of interest when none is specified in the
question. Whether the time scale of interest is chosen by the modeler or provided
by the person posing the question, remaining chapters will treat it as part of the
question.

3.3 Summary

In summary, our research addresses the task of automatically constructing models
for answering causal prediction questions. We define a causal prediction question to
consist of the following elements:

e structural conditions

e driving conditions (at least one), consisting of initial conditions, behaviors or

both

variables of interest (at least one)

desired level of detail, specified as glass-box and black-box entities

e time scale of interest
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Chapter 4

Scenario Elaboration

4.1 The Role of Scenario Elaboration

Given a prediction question, a modeler uses domain knowledge to elaborate the sce-
nario description, in order to provide the building blocks for model construction.
The prediction question provides a partial description of the scenario, consisting of
structural and behavioral conditions. To this description, the domain knowledge
adds the influences that represent phenomena in the scenario, along with the re-
lationships among different levels of detail (i.e., the encapsulates and explanation
relations). From the resulting scenario description, the modeler constructs a model
of the scenario by selecting relevant influences. Thus, the process of scenario elabo-
ration uses the domain knowledge to bridge the gap between the scenario description
given in the question and the needs of model construction.

Prediction partial scenario
Question description

Scenario Scenario
Elaboration Description

Domain

Knowledge

Figure 4.1: The scenario elaboration task.
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Define-Influence-Rule

structural preconditions:
Plant(7plant)
Has-Part(7plant, ?roots)
Roots(?roots)
Surrounded-by(?roots, ?soil)
Soil(?soil)

influence:
rate(water-uptake(7soil, ?plant) = amount(pool(water, 7plant))

activity preconditions:
None

validity preconditions:
None

significance preconditions:
time-scale-of-interest > hours

Figure 4.2: An example influence rule. This rule states “For any plant whose roots
are surrounded by soil, the amount of water in the plant is differentially influenced
by the rate of water uptake from the soil into the plant. Terms that begin with “7”
are universally quantified, logical variables.

4.2 Domain Knowledge

This section describes the types of domain knowledge that are needed to elaborate
a scenario description given in a question. The section shows that standard knowl-
edge representation techniques, based on inference rules, can encode the necessary
knowledge. However, the specific representation language is not important, since a

variety of similar alternatives will serve the same purpose.

4.2.1 Influence Rules

Starting from a partial scenario description given in a question, a modeler must
use domain knowledge to identify the influences that represent phenomena in the
scenario. To support this task, the domain knowledge includes influence rules.

Asg illustrated by the example in Figure 4.2, an influence rule consists of
structural preconditions, which serve as the antecedent of the rule, and an influence
and its attributes (activity preconditions, validity preconditions, and significance
preconditions), which serve as the consequent of the rule. For example, the rule in
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Figure 4.2 states “For any plant whose roots are surrounded by soil, the amount
of water in the plant is differentially influenced by the rate of water uptake from
the soil into the plant.” It also states that this influence is always active (i.e., no
activity preconditions), always valid (i.e., no validity preconditions), and significant
on a time scale of hours or longer. Structural preconditions consist of a conjunction
of structural conditions, and these conditions may contain universally quantified,

1A logical

logical variables (shown as terms beginning with “?” in the example).
variable introduced in the structural preconditions may be referenced in the influ-
ence and its activity preconditions. Viewed as a logical implication, an influence
rule states that the specified influence, with its specified attributes, can be used to

describe any scenario in which each structural precondition is satisfied.

4.2.2 Structural Rules

Typically, a prediction question leaves many structural conditions unstated. For
example, consider the question “How would decreasing soil moisture affect a plant’s
transpiration rate?” The question does not mention that the plant has a source of
light, that its leaves are surrounded by the atmosphere, or that it has any anatomical
parts (e.g., leaves). Yet such structural conditions may serve as structural precon-
ditions for important influences in the scenario. Therefore, in order to infer all the
influences for a scenario, the domain knowledge must provide rules for inferring
unstated structural conditions. Such rules are called structural rules.

The antecedent of a structural rule is a conjunction of structural conditions
and the consequent is also a structural condition. Any logical variables appear-
ing in the antecedent may also appear in the consequent, and they are universally
quantified throughout the rule. For example, the rule

If Tree(?t) Then Plant(?t)

says “Every tree is also a plant.”
Structural rules can also infer the existence of unstated objects. For example,

consider the logical implication
If Plant(?p) Then 3 ?I: Leaves(?l) and Has-Part(?p, ?I)

which says “For every plant, there exists a part of the plant, its leaves.” This
implication can be encoded as the following logically equivalent structural rules:

Logical variables, which can only appear in the domain knowledge, should not be confused
with scenario variables, such as the amount of water in a plant, which represent properties of the
scenario.
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If Plant(?p) Then Leaves(leaves(?p))
If Plant(?p) Then Has-Part(?p, leaves(?p))

where leaves is a Skolem function [11]. Thus, structural rules can infer structural
conditions concerning unstated objects as well as objects mentioned in the question.

Clearly, inferring unstated structural conditions is not a simple matter of de-
duction. For example, a plant does not necessarily have a source of light, a surround-
ing atmosphere, and leaves; yet without evidence otherwise, a person answering a
prediction question will assume such conditions if they are unstated. Thus, struc-
tural rules may be default rules (i.e., plausible, although not certain, inferences).
However, the issues that arise when using default rules (e.g., detecting contradic-
tions and retracting assumptions) are orthogonal to the issues addressed in this
dissertation, so they are ignored.

4.2.3 Relationships Among Levels of Detail

The domain knowledge also needs rules that allow the modeler to infer the encap-
sulates and explanation relations. These relations can be inferred with simple rules
whose antecedents consist of structural conditions. For example, Figure 4.3 shows
a rule for inferring that a pool encapsulates its subpools. This rule could be used
to conclude that the pool of sugar in a plant encapsulates the pool of glucose in the
plant’s leaves. Similarly, Figure 4.4 shows an example rule for inferring that one
influence explains another. In our implementation, many elements of the explanation
relation are inferred through two general rules:

e The influence of a process (e.g., photosynthesis) on a pool (e.g., water in
the leaves) is explained by the influence of its subprocesses (e.g., the light
reactions) on that pool.

e The influence of a pool (e.g., carbon dioxide in the leaves) on a process (e.g.,
photosynthesis) is explained by the influence of its subpools (e.g., carbon diox-
ide in the mesophyll of the leaves) on that process.

By providing rules for inferring the encapsulates and explanation relations, the do-
main knowledge can specify relationships among different levels of detail in the
scenario description.

4.2.4 Related Work

Our approach of generating influences from rules in the domain knowledge is based
on Forbus’s Qualitative Process Theory [28]. Other researchers have used similar
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If Has-Part(?whole, 7part)  and e.g., a plant has leaves

Contains(?whole, ?general) and e.g., the plant contains sugar
Contains(?part, ?specific) and e.g., the leaves contain glucose
Isa(?specific, ?general) e.g., glucose is a special type of sugar

Then Encapsulates(pool(?general, ?whole), pool(?specific, 7part))

Figure 4.3: An example rule for inferring the encapsulates relation. This rule says
that a pool encapsulates its subpools (e.g., the pool of sugar in a plant encapsulates
the pool of glucose in the plant’s leaves).

If Plant(?p) and Has-Part(?p, ?1) and Leaves(7l)
Then Explanation(rate(photosynthesis(?1)) = amount(pool(water, 71)),
rate(light-reactions(?1)) = amount(pool(water, 71)))

Figure 4.4: An example rule for inferring the explanation relation. This rule says
that the influence of photosynthesis on the water in the leaves is explained by the
influence of its component reaction, the light reactions, on water in the leaves.

approaches, and some have explored the issue of matching structural preconditions
to structural conditions in the scenario when a strict syntactic match is not possible.
For instance, to construct models for solving textbook physics problems, Kook and
Novak [51] propose model fragments called “physical models.” Physical models can
be viewed as inference rules whose antecedent consists of structural preconditions
and whose consequent is a single principle or law of physics. However, the structural
preconditions are stated in terms of “canonical objects” [67] (e.g., a point mass or
an ideal spring), and additional knowledge is used to map scenario entities to appro-
priate canonical objects. Similarly, applying knowledge in one domain to questions
in another domain may require analogical mapping between structural conditions in
the scenario and structural preconditions of influence rules [16, 22].

4.3 Demand-Driven Scenario Elaboration

For complex systems such as a plant, exhaustive scenario elaboration is impractical.
If all possible structural rules and influence rules were applied to a partial description
of a plant, the result would be a full anatomical and physiological description of the

plant. This description would be enormous, and the time required to execute all the
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rules could be prohibitive.

Moreover, exhaustive scenario elaboration is unnecessary. The modeler will
select only a tiny fraction of the full description to serve as the model. The modeler
may need to examine a larger fraction in order to choose the appropriate model, but
that fraction will still be only a small portion of the full description.

For these reasons, our modeling methods allow demand-driven scenario elab-
oration. During model construction, the modeler requests information from the
scenario description through a carefully designed interface. If the scenario descrip-
tion lacks the requested information, the domain knowledge is used to infer it, and
the information is added to the scenario description. The interface cleanly sepa-
rates model construction from scenario elaboration issues, and it allows the domain

knowledge to be applied selectively.

4.3.1 Scenario Description Interface

During model construction, a modeler needs to know how scenario variables interact.
There are two types of interaction. First, one variable can influence another. Second,
one variable can enable an influence on another variable; that is, the first variable
appears in the activity preconditions of an influence on the second variable. To
index into these two types of interactions, the scenario description interface allows

the following three requests:

e Given a scenario variable v, return all influences in which v is the influencer

(i.e., how does v influence other scenario variables?).

e Given a scenario variable v, return all influences whose activity preconditions

reference v (i.e., which influences does v enable?).

e Given a scenario variable v, return all influences in which v is the influencee

(i.e., how do other variables influence v?).

To specify the relationships among different levels of detail, the scenario

description interface provides the following two functions:

e The function encapsulates? takes two entities, el and e2, and returns true if
and only if el encapsulates e2 (i.e., (el,e2) is an element of the encapsulates

relation).

e The function explanation? takes two influences, il and i2, and returns true if
and only if i2 explains i1 (i.e., (i1,i2) is an element of the explanation relation).
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Thus, given any two entities in the scenario description, the modeler can determine
whether one encapsulates the other, and given any two influences in the scenario
description, the modeler can determine whether one explains the other.

4.3.2 Implementing the Interface

Demand-driven scenario elaboration is implemented by backward chaining[12] through
the inference rules provided by the domain knowledge. For example, suppose a pre-
diction question specifies one structural condition, a plant, and the modeler asks
for the influences on the amount of water in the plant. Figure 4.5 shows how the
influence of transpiration can be found by backward chaining through one influ-
ence rule and two structural rules. First, the request is encoded as an influence
(in this example, a differential influence) in which the influencer is unknown (i.e.,
encoded as the logical variable ?influencer). Next, the request is unified with the
consequent of an influence rule; this indicates that the influence rule is relevant to
the request. The influence rule applies to the scenario if its structural preconditions
are satisfied, so backward chaining continues by trying to satisfy each precondition.
A structural precondition is established in two ways: by unifying it with an existing
structural condition in the scenario description (e.g., Plant(plantl) in the example)
or by backward chaining through structural rules (as shown for the second and
third structural preconditions in the example). In the example, backward chaining
successfully establishes all structural preconditions, resulting in the influence

rate(transpiration(plantl, atmosphere(plantl)) = amount(pool(water, plantl))

which is returned as one of the requested influences. The attributes of the influence
(its activity, validity, and significance preconditions) are uniquely specified by the
ground instance of the influence rule. Thus, backward chaining allows new facts (e.g.,
influences and structural conditions) to be inferred from the domain knowledge and
added to the scenario description as they are needed during model construction.
The interface specified earlier is implemented through backward chaining as

follows:

e To find all influences in which a given scenario variable v is the influencer,
backward chain on the query v = ?influencee to find differential influences and
on the query v — 7influencee to find functional influences. For these queries,
v is fixed and backward chaining establishes bindings for ?influencee.

e To find all influences that a given scenario variable v enables, unify v with
scenario variables appearing in the activity preconditions of influence rules,
and backward chain on the structural preconditions of these rules.
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?influencer => amount(pool(water, plantl))

rate(transpiration(?plant, ?atm)) => amount(pool(water, ?plant))

Plant(?plant) Surrounded-by(?plant, ?atm) Atmosphere(?atm)
\ \ \
\ \ \
Plant(plantl) Surrounded-by(?plant, atmosphere(?plant))  Atmosphere(atmosphere(?plant))
Plant(?plant) Plant(?plant)
\ \
\ \
Plant(plantl) Plant(plantl)

Figure 4.5: Demand-driven scenario elaboration, as implemented by backward chain-
ing. The initial query, shown at the top of the figure, requests a variable that differ-
entially influences the amount of water in the specified plant. Dashed lines represent
unification. For example, the initial request for a differential influence is unified with
the consequent of the influence rule. Arrows represent inference rules; they point
from antecedents to consequents. Underlined facts are those given in the prediction
question. This example shows how the influence of transpiration on the amount of
water in the plant is found by backward chaining through one influence rule and
two structural rules.
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e To find all influences in which a given scenario variable v is the influencee,
backward chain on the query ?influencer = v to find differential influences and
on the query ?influencer — v to find functional influences. For these queries,
v is fixed and backward chaining establishes bindings for ?influencer.

e To answer requests of the form encapsulates?(el, e€2), backward chain on the
query encapsulates(el, €2), where el and e2 are constants (the names of par-

ticular entities).

e To answer requests of the form explanation?(il, i2), backward chain on the
query explanation(il, i2), where il and i2 are constants (particular influences).

4.3.3 Related Work

Previous automated modeling programs have used demand-driven scenario elabo-
ration to varying degrees. Some programs (e.g., those of Falkenhainer and Forbus
[25] and Lee [56]) exhaustively elaborate the scenario before starting model con-
struction. Other programs (e.g., those of Nayak [66] and Iwasaki and Levy [43])
allow some interleaving of scenario elaboration and model construction. Williams’s
program [85] automatically generates some equations (the building blocks for his
models) via algebraic simplification as they are needed during model construction.
Finally, Amsterdam’s program [5] uses a model’s deficiencies to enable selected rules
for adding elements to the model, effectively interleaving some aspects of scenario

elaboration with model construction.

4.4 Summary

Scenario elaboration uses the domain knowledge to bridge the gap between the
partial scenario description given in a question and the needs of model construction.
This chapter specified the scenario description interface with which the needs of
model construction are communicated, it discussed the types of domain knowledge
that are required, and it presented a simple method, backward chaining, for inferring
the requested information on demand. Demand-driven scenario elaboration allows
scenario elaboration and model construction to be interleaved, which is far more
efficient than performing them serially.

While the notion of demand-driven scenario elaboration is important, the
underlying details are not. Backward chaining is a standard method of inference in
artificial intelligence, and the types of domain knowledge we propose are similar to
those proposed by other researchers. Many variants of backward chaining and of
these types of domain knowledge would serve the same purpose. The point of this
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chapter is that demand-driven scenario elaboration is important and that it can be
implemented using standard techniques.

The remainder of the dissertation does not depend on the details of scenario
elaboration. The remaining methods only depend on the details of the scenario
description language specified in Chapter 2 and the details of the scenario description
interface specified in this chapter.
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Chapter 5

The Model Construction Task

5.1 Introduction

Given the background provided by previous chapters, we are finally prepared to dis-
cuss the main focus of this dissertation: the model construction task. As illustrated
in Figure 5.1, this task has two inputs:

e a causal prediction question, which provides variables of interest, driving con-
ditions, a desired level of detail, and a time scale of interest, and

e a scenario description (the output of scenario elaboration), which provides
influences and relationships among different levels of detail (i.e., encapsulates
and explanation relations).

While these inputs were defined in previous chapters, this chapter defines
the output, a simplest adequate scenario model. Section 5.2 defines a scenario
model. Section 5.3 specifies the criteria for judging one model as simpler than

. variables of interest
influences
. driving conditions ..
Scenario encapsulates relation Model g Prediction
Description ) ) Construction desired level of detail Question
explanation relation
time scale of interest

Simplest Adequate
Scenario Model

Figure 5.1: The model construction task.
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another. Section 5.4 specifies the criteria for determining whether a scenario model
is adequate for answering a question. The criteria in this chapter allow a modeler to
choose the simplest adequate scenario model from among a set of candidate models
for answering a question. The algorithm for generating candidate models will be
discussed in Chapter 6.

The criteria in this chapter, especially those that define an adequate model,
are an important contribution of our research. These criteria address several issues
not addressed in previous research. Furthermore, because the criteria are stated
declaratively, they can be evaluated independent of any modeling algorithms that
use them, and they serve as the correctness standard for such modeling algorithms.
Thus, this chapter serves as an independent contribution of our research as well as
a foundation for subsequent chapters.

5.2 Scenario Models

From the elements of a scenario description, a modeler constructs a scenario model.
A scenario model consists of the following:

e aset of variables (a subset of the scenario variables) partitioned into ezogenous
variables, whose behavior is determined by influences external to the model,
and dependent variables, whose behavior is determined by the model

e aset of influences (a subset of the scenario influences), each of whose influencee
is a dependent variable in the model and whose influencer is another variable
in the model (exogenous or dependent)

For example, the scenario model in Figure 5.2 shows how a plant regulates
the abscisic acid hormone (ABA) in response to changes in turgor pressure (hydraulic
pressure) in its leaves (e.g., when it begins wilting). Leaf turgor pressure is the only
exogenous variable; all the others are dependent. The model shows that ABA is
synthesized and consumed in the leaf mesophyll cells and transported to the guard
cells, where it helps limit the amount of water lost through transpiration.

A scenario model is intended to support analysis (e.g., simulation) regardless
of particular behavioral conditions. To make predictions from a particular state of
the scenario, the analysis module must determine which influences in the scenario
model are active in that state. For example, turgor pressure only influences ABA
synthesis when the pressure drops below a threshold. The activity preconditions of
the influence would represent that fact. To simulate a healthy plant whose turgor
pressure is dropping, the simulator would omit this influence until turgor pressure
drops below the threshold. A variety of simulators are capable of simulating scenario
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synthesis ——» mesophy transport” mins™ cell ABA
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Figure 5.2: A scenario model. This and subsequent figures use the following con-
ventions:

e Arrows with solid tips represent differential influences.
e Arrows without solid tips represent functional influences.
e Exogenous variables (in this example, leaf turgor pressure) are underlined.

e Differential influences are labeled with the time scale on which they become
significant. For example, “mins” is a shorthand for the significance precondi-
tion time-scale-of-interest > minutes.

e Influences are labeled with the sign of their partial derivative. For example,
when leaf turgor pressure decreases, the rate of ABA synthesis increases.

e Activity preconditions of influences are not shown.
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models in this way [27, 28, 30]. Using this approach, the modeler need only build
one scenario model to answer a question, rather than building a different model for

different states of the scenario.

5.3 Simplicity

To answer a prediction question, a modeler should construct the simplest adequate
scenario model, minimizing irrelevant phenomena and details. If the model includes
irrelevant information, it will be more difficult to analyze and explain. Thus, a
modeler requires criteria for determining whether one candidate model is simpler
than another.

While not infallible, the number of variables in a model is a good heuristic
measure of the model’s complexity. Simulation complexity tends to increase with the
number of variables in the model, and a model with more variables is generally more
difficult to understand and explain. Furthermore, most simplification techniques
used by human modelers reduce the number of variables in a model. Thus, we

define one model as simpler than another as follows:

e For any two scenario models M1 and M2, M1 is simpler than M2 if and only
if M1 has fewer variables than M2.

Human modelers probably use a combination of many criteria to determine
the complexity of a model. For example, for some purposes, a large linear model
is preferable to a small nonlinear one. For tutoring purposes, one model might be
simpler than another if it relies on concepts that are simpler to explain. Nevertheless,
the number of variables in a model is a simple measure that correlates well with most
other measures of complexity, and it has proven to be an effective heuristic in our
experience.

Other researchers have proposed different measures of simplicity. Nayak [65]
and Iwasaki and Levy [43] define one scenario model as simpler than another if, for
every model fragment in the first, either that model fragment or a more-detailed
alternative is in the second.! This is a reasonable criterion when it holds, but it
leaves too many models incomparable. For example, consider two models, one with
only a few variables and influences (i.e., representing a few phenomena), and one
with many variables and influences (i.e., representing many phenomena, some in
great detail); if the first model treats some aspect of the scenario in more detail
than the second model, the two models are incomparable under their criterion.

! Actually, Iwasaki and Levy’s definition is in terms of “composite model fragments” rather than
model fragments, but the distinction is irrelevant to our discussion.
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Thus, although the first model is intuitively simpler, a modeling algorithm based
on their simplicity criterion would be content to choose the second model as the
simplest adequate model.

Falkenhainer and Forbus [25] define one model as simpler than another if
the first includes fewer scenario entities. If two models include the same number
of entities, one is simpler than the other if its sum of indices of assumption class
choices is smaller. An assumption class represents a set of modeling alternatives,
and one alternative has a lower index if it is simpler. Our representation does not
use assumption classes, so this approach is not feasible.

Amsterdam [5] uses a simplicity criterion very similar to ours. Bond graph
elements [48] are the building blocks for his models, and he defines one model as

simpler than another if it contains fewer elements.

5.4 Adequate Scenario Model

Intuitively, a scenario model is adequate for answering a given prediction question
if it can make the desired predictions with sufficient accuracy. Additionally, to
ensure a comprehensible explanation, the model must be a coherent description of
the scenario at the desired level of detail. To automate modeling, we must formalize
these two intuitive criteria.

To formalize the criteria, this section provides a set of adequacy constraints.
Each constraint is a predicate of three arguments: a scenario description, a causal
prediction question, and a scenario model. These constraints are individually neces-
sary and collectively sufficient conditions for adequacy; that is, a scenario model is
adequate for a given scenario description and question if and only if every adequacy
constraint is satisfied.

In formulating adequacy constraints, we have two objectives. First, they
should capture the two intuitive criteria for adequacy. Second, they must be op-
erational; that is, an automated modeling program must be able to efficiently test
them to decide whether a given model is adequate. The second objective requires
the adequacy constraints to reference only information that is available to a mod-
eler. For example, we cannot require a model’s predictions to match the “correct”
behavior if the correct behavior is unknown.

Mathematicians, such as systems theorists, have invested considerable work
into formalizing the notions of adequate model and valid simplification. However,
their criteria suffer from two limitations: they typically apply to restricted classes
of systems, and they typically are not operational. For instance, the notion of a
valid simplification is usually defined relative to a known base model (i.e., most
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detailed and accurate model); for complex systems such as a plant, constructing a
base model is impractical.

Thus, rather than seek mathematically valid principles, our approach is to
formalize the intuitive criteria that human modelers use to achieve sufficiently ac-
curate, coherent models. But formulating operational constraints that capture the
two intuitive criteria for adequacy is difficult also. Ultimately, some constraints may
prove to be overly restrictive, pruning intuitively adequate models. Equally likely,
some scenario models may satisfy all the constraints without being intuitively ade-
quate. Progress in automated modeling requires iteratively formulating and testing
adequacy constraints. For the adequacy constraints we propose, this chapter ex-
plains why each is intuitively necessary, and Chapter 9 empirically evaluates the
constraints in the domain of plant physiology.

5.4.1 Variables in a Model

A model is only adequate if it can make the desired predictions. Clearly, the behavior
of a variable of interest cannot be predicted if the variable is not in the model. This

motivates the following constraint.

Adequacy constraint 1 (include variables of interest)
A scenario model is adequate only if it includes every variable of interest.

During analysis (e.g., simulation), a model must be able to determine which
of its influences is active. This requires the ability to evaluate any relevant ac-
tivity preconditions. The following constraint ensures that the model has enough

information to do so.

Adequacy constraint 2 (include variables in activity preconditions)
A scenario model is adequate only if it includes every variable appearing in an
activity precondition of an influence in the model.

5.4.2 Exogenous Variables

Once a variable is included in a model, the modeler must determine how to model
it. The first decision is whether to model it as exogenous or dependent.

While the phenomena governing a dependent variable are represented by
influences in the model, the phenomena governing an exogenous variable are outside
the scope of the model. Conceptually, the model represents a system, and the
exogenous variables represent the system boundary, the interface between the system
and its surrounding environment. Thus, by choosing to model some variables as

exogenous, a modeler partitions the scenario description into two parts: the system
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that is relevant to answering the given question, and its environment (which is
irrelevant).

To ensure that a model is adequate and as simple as possible, a suitable
system boundary is crucial. Yet despite the importance of this issue, previous
automated modeling programs cannot adequately choose exogenous variables for
prediction questions. Some programs require exogenous variables to be specified
in the question or the domain knowledge, thus shifting responsibility to humans.
That approach is impractical when the domain knowledge is extensive. Of the few
programs that choose exogenous variables automatically, we explain at the end of
this section that their criteria are too weak and can result in either inadequate or
unnecessarily complex models.

Human modelers treat a variable as exogenous only if it is approximately
independent of the other variables in the model. For example, the rate of precipita-
tion can be treated as exogenous in a model of a single plant; while the behavior of
the plant depends critically on the rate of precipitation, the phenomena that govern
precipitation do not depend significantly on the behavior of the plant. Thus, to
decide which scenario variables can be treated as exogenous, a modeler must be
able to determine whether one scenario variable significantly affects another.

The influences in a scenario description determine which variables affect each
other. Clearly, one variable affects another if there is an influence from the first
variable to the second. One variable can also affect another by enabling or disabling
the influences on it; that is, one variable affects another if there is an influence on
the second variable whose activity preconditions reference the first variable.

Therefore, we define the scenario influence graph as follows. The nodes
of the graph are the scenario variables. There is a directed edge from one variable
to another if and only if there is an influence whose influencee is the second variable
and either

e the first variable is the influencer or
e the first variable appears in the activity preconditions.

An influence path is a path of non-zero length in the scenario influence graph.
One scenario variable affects another when there is an influence path leading from
the first variable to the second.

A time scale of interest permits stronger criteria for determining whether one
scenario variable affects another. For any particular time scale, only some influences
are valid and significant. Thus, one scenario variable significantly influences
another on a given time scale if and only if there is an influence path leading from

49



v0 => v3
activity preconditions: v1 >0
significance preconditions: time—scale—of-interest >= hours

v2 => v3

significance preconditions: time—scale-of-interest >= minutes vO \
3 4 vl v3 v4
v3 => v
significance preconditions: time—scale—of-interest >= seconds v2 /
(A) Influences (B) Scenario influence graph

Figure 5.3: Scenario influence graphs. Part A shows a set of influences, along
with their significance preconditions and activity preconditions. Part B shows the
corresponding scenario influence graph.

the first variable to the second and every influence in the path is valid and significant
on that time scale.

Figure 5.3 illustrates these concepts. Part A shows a set of influences. Part B
shows the corresponding scenario influence graph. On a time scale of seconds, only
v3 significantly influences v4. However, on a time scale of hours, v4 is significantly
influenced by v0, vl, v2 and v3.

Given the definitions above, the following constraint formalizes the intuition
that an exogenous variable is approximately independent of all other variables in
the model.

Adequacy constraint 3 (exogenous variables independent of model)
A scenario model is adequate only if none of its exogenous variables is significantly
influenced in the scenario description, on the time scale of interest, by another

variable in the model.

While the previous constraint on exogenous variables ensures that they are
appropriate for the model that contains them, the next constraint ensures that they
are appropriate for the given question. Recall that a causal prediction question
asks for the effects of driving conditions on variables of interest, where the driving
conditions are those behavioral conditions specified in the question. To answer a
prediction question, a modeler includes in the model those variables whose behavior
is relevant to determining the behavior of the variables of interest. Therefore, if
a variable in the model is significantly influenced by a driving variable (a variable
in a driving condition), the model should reflect this so the effects of the driving
variable’s behavior on that variable can be determined. Thus, to ensure that the

exogenous variables do not disconnect the model from relevant driving conditions, a
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variable cannot be exogenous unless it is approximately independent of the driving
variables.

Adequacy constraint 4 (exogenous variables independent of question)

A scenario model is adequate only if none of its exogenous variables is significantly
influenced in the scenario description, on the time scale of interest, by a driving
variable (other than itself if it is a driving variable).

Together, these two constraints specify whether a variable in a model can
be exogenous. If the exogenous variables in a scenario model satisfy these two
constraints, the model’s system boundary is adequate.

To illustrate these criteria for choosing exogenous variables, consider the
question “What happens to the amount of ABA in a plant’s guard cells when the
turgor pressure in its leaves decreases?” This question is important because plants
send ABA to the guard cells to combat dehydration. As will be discussed in Chap-
ter 8, the appropriate time scale of interest for this question is minutes. Part A
of Figure 5.4 shows a portion of the elaborated scenario description for the ques-
tion; the driving variable (leaf turgor pressure) and variable of interest (guard cell
ABA amount) are shown in bold. Part B shows the simplest adequate model for
answering the question. In this model, none of the dependent variables could be
exogenous, because each one is significantly influenced (on a time scale of minutes)
by the driving variable, leaf turgor pressure (thus violating adequacy constraint 4).
Leaf turgor pressure can be exogenous in the model because it satisfies adequacy
constraints 3 and 4; that is, as shown in Part A, leaf turgor pressure is not signif-
icantly influenced (on a time scale of minutes) by any other variable in the model
nor by any other driving variable (there are no others). On a time scale of hours,
however, leaf turgor pressure could not be treated as exogenous, because it would
be significantly influenced by guard cell ABA amount on that time scale via a path
passing through guard cell water amount and transpiration. Thus, the time scale of
interest allows a tighter system boundary than would otherwise be possible.

Related Work

Despite its importance, no previous work in automated modeling has provided ex-
plicit criteria for choosing exogenous variables. Typically, work in automated mod-
eling assumes that either the domain knowledge or the question specifies those vari-
ables that can be exogenous. For instance, the modeling algorithms of Williams [85]
and Iwasaki and Levy [43] require, as input, the variables that can be exogenous for
the question. Although these algorithms can determine which exogenous variables
must be included in the scenario model, neither algorithm can determine exogenous
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Figure 5.4: (A) A portion of the elaborated scenario description for the question
“What happens to the amount of ABA in a plant’s guard cells when the turgor pres-
sure in its leaves decreases?” The driving variable and variable of interest are shown
in bold. Ellipses indicate connections to the remainder of the scenario variables and
influences. Alternative levels of detail are not shown. (B) The simplest adequate
scenario model for answering the question.
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variables automatically. For complex systems, this approach is impractical.

The modeling algorithm of Nayak [65] can choose exogenous variables, but
it does not have special criteria for doing so. His adequacy criteria are suitable for
his modeling task, explaining a specified causal relation, but they are too weak for
prediction questions. For instance, his criteria would allow the chosen scenario model
to include an exogenous variable that, in the scenario description, is significantly
influenced by another variable in the model.

The modeling algorithm of Falkenhainer and Forbus [25] largely determines
the system boundary by determining relevant scenario objects. The algorithm re-
quires, as input, a system decomposition. That is, each scenario object is assumed
to be a system, and each object can have component objects that represent its sub-
systems. To determine the objects that are relevant to a question, the algorithm
identifies the smallest set of objects that must be modeled to include the imme-
diate influences on the variables of interest; these objects are marked as relevant.
Next, to ensure that interactions among these objects are modeled, the algorithm
determines a “minimal covering system,” the lowest object down the system de-
composition that subsumes the relevant objects. That object and its subsystems
(down to the level of the initially relevant objects) are relevant. Any variable that
is a property of a relevant object, but is only influenced by properties of irrelevant
objects, is exogenous.

Their approach has several limitations. While their modeling algorithm re-
quires a system decomposition for the scenario, our criteria for choosing a system
boundary only require knowledge of the influences. Furthermore, Falkenhainer and
Forbus assume that the system decomposition is based on partonomic structure;
however, O’Neill et al. [68] argue that approximate system boundaries in natural
systems arise from differences in process rates (i.e., their time scales) and that these
boundaries may not correspond to standard structural decompositions. Even in en-
gineered systems, designed system boundaries cannot be trusted when considering
faults or unintended interactions [18]. Reasoning at the level of influences provides
more flexibility and overcomes the difficulty of specifying an a priori system decom-
position. Additionally, by specifying the criteria for choosing exogenous variables
in terms of influence paths, we ensure that the chosen system boundary will be
sufficiently sensitive to the connections between driving conditions and variables of
interest.

5.4.3 Influences on a Dependent Variable

Exogenous variables, which lie on the system boundary, are governed by phenomena
outside the scope of the model. In contrast, for every dependent variable in a model,
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amount(pool(water, guard-cells)) < rate(osmosis(accessory-cells, guard-cells))

amount(pool(water, guard-cells)) <— amount(pool(aBA, guard-cells))
validity preconditions: time-scale-of-interest > hours

amount(pool(water, guard-cells)) <— amount(pool(coy, guard-cells))
validity preconditions: time-scale-of-interest > hours

Figure 5.5: Influences on the amount of water in a plant’s guard cells.

the modeler must choose a set of influences to represent the phenomena that govern
it. The constraints in this section ensure that every dependent variable in a model
has an adequate set of influences.

For analysis of a model, the influences on a variable are combined to form an
equation. Human modelers use two types of equations: algebraic equations, com-
posed of functional influences, and differential equations, composed of differential
influences. The following constraint ensures that the influences on every dependent
variable correspond to one of these two types.

Adequacy constraint 5 (influences homogeneous)
A scenario model is adequate only if the influences on any given dependent variable
are all the same type (i.e., differential or functional).

For example, Figure 5.5 shows a set of influences on the amount of water
in a plant’s guard cells. The first influence represents the fact that the amount of
water is regulated by osmosis from neighboring accessory cells. The remaining two
influences are equilibrium influences; changes in the levels of ABA or carbon dioxide
cause osmosis to adjust the level of water to a new equilibrium. The amount of
guard cell water can be modeled by the differential influence or the two functional
influences, but it would be incoherent to mix them.

A model must also be sufficiently accurate. For this reason, each of its influ-
ences must be a valid approximation of the phenomenon the influence represents.
In TRIPEL’s scenario description language, an influence’s validity preconditions (if
it has any) are encoded as a time scale condition. Thus, the following constraint
ensures that each influence is valid for purposes of answering a given question.

Adequacy constraint 6 (influences valid)
A scenario model is adequate only if each of its influences is valid on the time scale
of interest.
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For example, the two equilibrium influences in Figure 5.5 are only valid on a
time scale of hours, since the mechanisms that restore equilibrium operate on a time
scale of minutes. Therefore, for any question whose time scale of interest is less than
hours (e.g., seconds or minutes), a scenario model that includes these influences is
inadequate.

To further ensure that a model is sufficiently accurate, the influences on each
dependent variable should represent all the phenomena that affect the variable. Such
a set of influences is complete. Given a scenario description, a scenario variable, and
a type of influence (i.e., functional or differential), we define a complete set of
influences as follows:

e The set of most-aggregate influences of the specified type on the variable (i.e.,
those that do not explain any other influence) is complete.

e The result of replacing an influence in a complete set with the set of influences
that explain it (as specified by the explanation relation) is a complete set.

For example, Figure 5.6 shows a set of influences on the amount of carbon
dioxide in a plant’s leaves. As shown, the influence of photosynthesis is explained
by the influence of the dark reactions (and not by any other influences). The first
two influences in the figure constitute a complete set because they are the most-
aggregate influences. Also, the first and third influences constitute a complete set,
since the photosynthesis influence is fully explained by the more-detailed influence
of the dark reactions.

Of course, the model need only be sufficiently accurate for the time scale of
interest. Therefore, the influences on each dependent variable need only represent
all the significant phenomena that affect the variable. For a given time scale of
interest, a set of influences on a variable is approximately complete if and only
if it is a subset of a complete set of influences and none of the omitted influences
is significant on the given time scale. For example, in Figure 5.6, the first influence
alone constitutes an approximately complete set on a time scale of seconds. However,
on a time scale of minutes or longer, either the second or third influence must be
additionally included.

Given these definitions, the following constraint ensures that the model rep-
resents all phenomena that significantly affect each dependent variable.

Adequacy constraint 7 (influences complete)
A scenario model is adequate only if the set of influences on each dependent variable

is approximately complete for the time scale of interest.
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amount(pool(coy, leaves)) < rate(co,-diffusion(atmosphere, leaves))
significance preconditions: time-scale-of-interest > seconds

amount(pool(C0q, leaves)) < rate(photosynthesis(leaves))
significance preconditions: time-scale-of-interest > minutes

amount(pool(Coq, leaves)) < rate(dark-reactions(leaves))
significance preconditions: time-scale-of-interest > minutes

Explanation(amount(pool(cosq, leaves)) < rate(photosynthesis(leaves)),
amount(pool(C0q, leaves)) < rate(dark-reactions(leaves)))

Figure 5.6: Influences on the amount of carbon dioxide in a plant’s leaves. The first
two are the most-aggregate influences. The influence of photosynthesis is explained
by the influence of the dark reactions (and not by any other influences).

Finally, to ensure that the influences on a dependent variable are coherent, a
modeler must avoid mixing different levels of detail for the same phenomenon. The

following constraint enforces this requirement.

Adequacy constraint 8 (influences not redundant)
A scenario model is adequate only if the influences on each dependent variable do

not include two influences related by the explanation* relation).

If a model’s influences on a dependent variable satisfy the four constraints
in this section, we say that the influences are adequate. Constraints 6 (influences
valid) and 7 (influences complete) ensure that the influences provide a sufficiently
accurate representation of the governing phenomena, and constraints 5 (influences
homogeneous) and 8 (influences not redundant) ensure that the representation is
coherent.

Related Work

Most previous work in automated modeling does not enforce explicit constraints
like these for the influences on a dependent variable. Typically, each alternative
set of influences on a variable resides in a separate model fragment, and each such
model fragment has preconditions governing its inclusion in a model. Less typically,
each model fragment could include one of the influences, and the assumptions that

label these model fragments, along with the compatibility constraints among these
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assumptions provided by the domain knowledge, are used to find compatible combi-
nations of influences. The person encoding the domain knowledge is responsible for
ensuring that each compatible combination of model fragments yields an adequate
set of influences.

Some previous modeling programs are given a complete equation for a de-
pendent variable and they identify and discard negligible terms in the equation
[24, 86, 47]. This is analogous to identifying an approximately complete set of influ-
ences. However, these programs do not consider alternative levels of detail for the
elements of the equation.

5.4.4 Entities in a Model

A scenario model is a model of selected entities in the scenario. The entities in a
scenario model consist of the following:

e Each variable in a model is a property of an entity. Thus, the entities in a
model include all the entities whose properties are represented by the model’s
variables.

e As discussed in Section 2.5, an equilibrium influence can be associated with
an aggregate process that encapsulates the underlying pools and processes
that restore equilibrium. Thus, the entities in a model include any process

associated with an equilibrium influence in the model.

The entities in a model are important because they indicate the model’s view
of the scenario. To ensure consistent predictions and a comprehensible explanation,
that view must be coherent. That is, although scenario entities can typically be de-
scribed at multiple levels of detail, a modeler must avoid mixing levels. An entity in
a model represents a black box whose internal details are irrelevant to the modeler’s
objectives. Alternatively, when the internal details are relevant, that entity should
be represented in the model in terms of its component entities. For example, a hu-
man modeler might treat plant water as an aggregate or might individually model
the water in the roots, stems and leaves. Similarly, a human modeler might treat
photosynthesis as an aggregate process or might individually model its component
reactions. The following constraint ensures that models do not mix levels of detail
for the same entity.

Adequacy constraint 9 (entities coherent)
A scenario model is adequate only if it does not include two entities related by the
encapsulates relation).
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Besides being coherent, the entities in a scenario model must be consistent
with the desired level of detail. As discussed in Section 3.2.2, the desired level of
detail is specified as black-box and glass-box entities. A black-box entity prevents
the modeler from including too much detail, while a glass-box entity prevents the
modeler from using too little detail. The following two constraints ensure that the
model is consistent with the desired level of detail.

Adequacy constraint 10 (entities consistent with black-box entities)
A scenario model is adequate only if it does not include an entity that is encapsulated
by a black-box entity of the question.

Adequacy constraint 11 (entities consistent with glass-box entities)
A scenario model is adequate only if it does not include a glass-box entity of the
question or any entity that encapsulates a glass-box entity.

The driving variables of a question also constrain the choice of entities in a
model. A scenario model need not necessarily include all driving variables, because
some may be irrelevant to the variables of interest. However, the model should
respect the level of aggregation specified in the driving variables, for two reasons.
First, these variables indicate the level of detail in which the user is interested.
Second, if the modeler encapsulates these variables or chooses variables at a lower
level of detail, the given information will be lost.? The following constraint ensures
that the model respects the level of aggregation specified in the driving variables.

Adequacy constraint 12 (entities compatible with driving variables)

A scenario model is adequate only if it does not include an entity that encapsulates
an entity of a driving variable and it does not include an entity that is encapsulated
by an entity of a driving variable.

For example, consider the question “How is the rate of transpiration affected
when the amount of water in the leaves decreases?” For this question, the amount of
water in the leaves is the driving variable. Therefore, it would be inappropriate for
the model to treat plant water as an aggregate (encapsulating water in the leaves)
or to include detailed pools of water within the leaves.

If the entities in a model satisfy constraints 9, 10, 11, and 12, we say that
the model’s level of detail is adequate.

2Tt may be possible to infer behavioral conditions at the abstract or more-detailed levels from
the given driving conditions, but we have no general method for making such inferences.
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Related Work

Most previous compositional modeling programs either include a variant of adequacy
constraint 9 (entities coherent) or provide a representation language in which the
domain knowledge can provide such a constraint for particular entities. However,
the other three constraints are novel.

5.4.5 Influence Paths in a Model

A causal prediction question asks for the causal effect of driving conditions on vari-
ables of interest. Therefore, a scenario model is adequate for answering the question
only if, on the time scale of interest, the variables of interest are significantly influ-
enced by the driving variables. Additionally, in order to predict the behavior of the
variables of interest beyond the initial state, the influence paths relating the driving
variables to the variables of interest must be capable of predicting changes in the
variables of interest.

Through an individual influence, one variable can cause change in another
variable in two ways: (1) with a differential influence, a specified value for the
influencing variable (along with values for other influencing variables) provides the
rate of change of the influenced variable; (2) in contrast, a functional influence can
cause change only if the influencing variable is changing [28]. Thus, a model can
predict the changes in a variable of interest caused by a driving variable only if
the influence path connecting them contains a differential influence or the driving
conditions specify how the driving variable is changing (in which case a path of
functional influences will propagate the change). If either case is satisfied, the
influence path is a differential influence path.

For example, the question “What happens to the amount of ABA in a plant’s
guard cells when the turgor pressure in its leaves decreases?” specifies that turgor
pressure is decreasing, so any influence path from turgor pressure to another vari-
able is a differential influence path, capable of causing change. In contrast, if the
question only specified that turgor pressure is above the “yield point” (above which
the pressure causes cell growth), an influence path leading from turgor pressure is
differential only if it contains a differential influence (as is the case with the influence
of turgor pressure on cell growth).

Motivated by the above discussion, the following constraint ensures that a
model can predict the effect of the driving conditions on the variables of interest.

Adequacy constraint 13 (variables of interest differentially influenced)
A scenario model is adequate only if, for every variable of interest, the model includes
a differential influence path leading to it from some driving variable such that every

59



influence in the path is valid and significant on the time scale of interest.

Related Work

The requirement that a scenario model relate driving variables to variables of interest
is not new. Several people have recognized its importance. However, none of these
people require an adequate model to include differential influence paths. Nayak
[65] requires an adequate model to provide a causal path linking a single specified
driving variable to a single specified variable of interest. Amsterdam [5] requires an
adequate model to provide “interaction” paths (i.e., not necessarily causal) linking
every variable of interest to some driving variable. Williams’s method for generating
a “critical abstraction” [85] is designed to ensure that the chosen scenario model
causally links the driving variables (in his framework, the exogenous variables of
the system) to the variables of interest. While each of these is similar to adequacy
constraint 13, our particular formulation is novel. For prediction questions, the
requirement of differential influence paths is crucial.

5.5 Other Related Work

Some previous automated modeling programs address tasks in which the correct
behavior of the variables of interest is known [3, 84]. In these programs, a model
is adequate only if its predictions match the correct behavior (within a specified
tolerance). Because a prediction question does not provide the correct behavior, we
do not use such an adequacy constraint. However, TRIPEL could be extended to
address such questions, in which case this constraint could be added. Section 10.6.2
discusses this issue further.

Some previous automated modeling programs assume that the approximate
error introduced by different approximations is known or can be estimated [21, 23,
24, 81]. In these programs, a model is adequate only if the error in its predictions
is within a specified tolerance. In the application domain we explored, plant phys-
iology, the approximate error introduced by approximations is not available, so we
excluded this constraint. We expect that TRIPEL could be extended to use such
knowledge, in which case this constraint could be added.

5.6 Summary

The model construction task takes a causal prediction question and a scenario de-
scription as input and returns a simplest adequate scenario model. Intuitively, a
scenario model is adequate if it provides a coherent, sufficiently accurate description
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of the scenario at the desired level of detail. To formalize these criteria, we define a

scenario model as adequate for a causal prediction question if and only if the model

satisfies the following constraints:

Its variables include every variable of interest (adequacy constraint 1) and
every variable appearing in an activity precondition of its influences (adequacy

constraint 2).
Its system boundary is adequate (adequacy constraints 3 and 4).

Its influences on each dependent variable are adequate (adequacy constraints 5,

6, 7, and 8).
Its level of detail is adequate (adequacy constraints 9, 10, 11, and 12).

It relates the driving variables of the question to the variables of interest

(adequacy constraint 13).

Among the adequate scenario models for a question, those with the fewest

variables are the simplest, and the modeler’s objective is to find one of these simplest

adequate models.
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Chapter 6

The Model Construction
Algorithm

6.1 Introduction

Chapter 5 defined TRIPEL’s model construction task, shown in Figure 6.1. The cur-
rent chapter describes TRIPEL’s model construction algorithm. The algorithm can
be viewed as conducting a search through a space of partial models (models under
construction); Section 6.2 describes the search space. Sections 6.3, 6.4, and 6.5 de-
scribe TRIPEL’s model construction algorithm, which efficiently searches this space
for the simplest adequate model. Finally, Section 6.6 proves several important prop-
erties of the algorithm; most importantly, the algorithm is guaranteed to return a

simplest adequate scenario model if one exists.

. variables of interest
influences
. driving conditions ..
Scenario encapsulates relation Model g Prediction
Description ) ) Construction desired level of detail Question
explanation relation
time scale of interest

Simplest Adequate
Scenario Model

Figure 6.1: The model construction task.
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6.2 The Search Space: Partial Models

A naive algorithm might find the simplest adequate model as follows:
1. Generate all possible models of the scenario.
2. Filter out the inadequate models using the adequacy constraints of Chapter 5.
3. Order the remaining adequate models by simplicity.
4. Choose one of the simplest adequate models.

However, for complex systems, there are a vast number of possible models for a sce-
nario, so this generate-and-test algorithm is impractical. Instead, TRIPEL searches
the space of partial models of the scenario, so it can rule out most models without
ever generating or considering them.

A partial model satisfies the definition of a scenario model with one possible
exception: in addition to exogenous and dependent variables, it may contain free
variables. After a modeler has chosen to include a variable in a model, but before
the modeler has decided whether to treat it as exogenous or dependent, the variable
is free. Thus, a partial model with free variables represents a model still under
construction.

Formally, a partial model consists of the following;:

e aset of variables (a subset of the scenario variables) partitioned into exogenous
variables, dependent variables, and free variables

e aset of influences (a subset of the scenario influences), each of whose influencee
is a dependent variable in the model and whose influencer is another variable
in the model (exogenous, dependent or free)

Note that a scenario model is simply a special type of partial model, one with no
free variables.

Partial models are ordered by an extension relation. Intuitively, a partial
model M’ is an extension of a partial model M if and only if M’ can be constructed
from M by making additional modeling decisions. More precisely, M’ is an exten-
sion of M if and only if M and M’ are not identical and all of the following conditions
are satisfied:

e every variable in M is also in M’
e every exogenous variable in M is an exogenous variable in M’

e every dependent variable in M is a dependent variable in M’
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(A) A Partial Model

ABA 4 leaf hvll ABA + guard
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rate

(B) An Extension

Figure 6.2: The extension relation. Part A shows a partial model in which the
variable leaf mesophyll ABA amount is free. Part B shows an extension of that
partial model in which the variables ABA synthesis rate and ABA consumption rate
are free.

e the set of influences on the dependent variables of M are identical in M and

I\/Il

These conditions allow a partial model to be extended by adding variables,
by deciding to treat a free variable as exogenous or dependent, and by adding
influences on free variables or new variables. For example, Part A of Figure 6.2
shows a partial model in which the amount of leaf mesophyll ABA is a free variable,
and Part B shows an extension. In the extension, the amount of leaf mesophyll ABA
is a dependent variable, the influences on it are included, and two new free variables
(the influencers) are included.

The extension relation is an ordering relation like <. That is, it is irreflexive
(no partial model is an extension of itself), asymmetric (no two partial models are
extensions of each other), and transitive (if m1 is an extension of m2 and m2 is an
extension of m3 then ml is an extension of m3). The definition of simplicity used
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for scenario models applies to partial models as well, so a partial model is at least as
simple as any of its extensions, because any extension has at least as many variables.

One key to efficient model construction is the ability to recognize that a given
partial model cannot be extended into an adequate scenario model. The adequacy
constraints in Chapter 5, although defined in terms of scenario models, can be tested
in a partial model as well. A partial model that violates an adequacy constraint
can sometimes be extended to remedy the violation; for example, if a partial model
violates adequacy constraint 1 (include variables of interest), it can be extended to
include the variables of interest. However, a partial model can be eliminated from
consideration when it violates a monotonic constraint. A monotonic constraint is
an adequacy constraint which, when violated for a partial model, is violated for each
of its extensions. For instance, when a partial model includes mutually incoherent
entities, so will all its extensions. By pruning such a partial model from consid-
eration, TRIPEL avoids generating any of its extensions, effectively pruning a large
chunk from the search space. The next section shows how TRIPEL exploits mono-
tonic constraints during model construction, and Section 6.5 lists those adequacy
constraints that are monotonic.

6.3 The Model Construction Algorithm: Extending Par-
tial Models

We illustrate TRIPEL’s model construction algorithm using the familiar question
“What happens to the amount of ABA in a plant’s guard cells when the turgor
pressure in its leaves decreases?” For convenience, Figure 6.3 repeats the portion
of the scenario description for this question that was shown in Chapter 5. As will
be discussed in Chapter 8, the appropriate time scale of interest for this question is
minutes.

To construct an adequate scenario model, TRIPEL starts with a partial model
consisting only of the variables of interest, and it incrementally extends this model
until it satisfies all the adequacy constraints. At each step, there may be alternative
ways of extending the model, so it must search through the possibilities.

The model construction algorithm can be viewed as graph search. Each node
in the search graph is a partial model. The initial node in the search is a partial
model consisting only of the variables of interest, each a free variable. For instance,
the initial node for the example is a partial model consisting of one free variable,
guard cell ABA amount. As will be described below, a partial model’s successors in
the search graph consist of some of its extensions. The goal of the search is to find
a simplest adequate scenario model for the question. (Unlike some graph search
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Figure 6.3: A portion of the elaborated scenario description for the question “What
happens to the amount of ABA in a plant’s guard cells when the turgor pressure
in its leaves decreases?” The driving variable and variable of interest are shown in
bold. Ellipses indicate connections to the remainder of the scenario variables and
influences. Alternative levels of detail are not shown.
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problems, the path by which a goal node is found is irrelevant.)

A best-first strategy guides the search, using the simplicity criterion as the
evaluation function. That is, TRIPEL always extends the search by removing the
simplest partial model (i.e., the one with the fewest variables) from the search
agenda. If this partial model is an adequate scenario model, it is returned as the
simplest adequate scenario model; every other partial model on the agenda has as
many or more variables, so they and their extensions cannot be simpler. In the
example, the initial partial model is the simplest one on the agenda (in fact, the
only one), so it is removed. Because it contains a free variable, it is not a scenario
model, hence it is not an adequate scenario model.

If the partial model is not an adequate scenario model, its successors replace
it on the search agenda. The function Extend-model returns the successors of a
given partial model m. To generate these successors, the function extends m with
alternative ways of modeling one of m’s free variables.

To accomplish this, Extend-model first asks the System Boundary Selector
(discussed in Chapter 7) whether all of m’s free variables can be exogenous (i.e.,
whether they satisfy adequacy constraints 3 and 4). If so, Extend-model marks each
free variable as exogenous, and it returns the resulting scenario model as the only
successor. In our example, this is not the case. The free variable in the initial partial
model (guard cell ABA amount) cannot be exogenous because it violates adequacy
constraint 4; specifically, it is significantly influenced by the driving variable (leaf
turgor pressure) on the time scale of interest (minutes).

When the System Boundary Selector’s response is “no”, it also tells Extend-
model which variable v must be dependent (in the example, guard cell ABA amount).
In this case, Extend-model asks the function Dv-models (described in Section 6.4)
for those combinations of influences on v that might be adequate for the question
(i.e., satisfy adequacy constraints 5, 6, 7, and 8). In our example, Dv-models simply
returns the only influence on guard cell ABA amount, the influence of the ABA
transport rate. In general, Extend-model returns a set of new partial models, each
the result of extending m with one of these combinations of influences.

To extend m with a combination of influences, Extend-model marks v as
dependent, adds the influences on v to the model, and adds any new free variables.
A free variable is added in the following cases:

e If the influencer of a new influence is not already in m, it is added as a free

variable.

e If a variable in the activity preconditions of a new influence is not already in
m, it is added as a free variable (to satisfy adequacy constraint 2).
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ABA + guard
transport” mins™ cell ABA
rate amount

Figure 6.4: The result of applying the function Extend-model to the partial model
consisting only of guard cell ABA amount. ABA transport rate is a free variable.

Figure 6.4 shows the partial model returned by Extend-model in our example.

Before adding a partial model to the agenda (whether the partial model is
the initial node in the search or a successor returned by Extend-model), TRIPEL
checks whether the model violates a monotonic constraint. If so, it is pruned from
the search, since none of its extensions is an adequate scenario model. The partial
model in our example does not violate any monotonic constraints, so it is added to
the agenda.

The search ends when a simplest adequate scenario model is found or the
search agenda becomes empty. If the agenda becomes empty before an adequate
scenario model is found, no such model exists, so TRIPEL returns failure.

Figure 6.5 illustrates the search graph that TRIPEL generates for the example.
The third node from the top has two successors because there are two adequate
combinations of influences on leaf mesophyll ABA amount: the first includes the
influence of ABA consumption, and the second includes the influences of ABA binding
and ABA degradation that explain it (for simplicity, those influences were not shown
in Figure 6.3).

Figure 6.6 summarizes the model construction algorithm, Find-adequate-
model, as well as the successor function Extend-model.

6.4 Influences on Dependent Variables

A modeler must choose an adequate set of influences on each dependent variable in a
model. In TRIPEL, this task is performed by the function Dv-models. The task arises
in the function Extend-model, which was described in Section 6.3. After deciding
to model a variable as dependent, Extend-model asks Dv-models for an adequate set
of influences on the variable. As illustrated in Figure 6.7, the inputs to Dv-models
include a scenario description, a question, and the scenario variable whose influences
are desired.

There may be more than one adequate set of influences for a dependent
variable. For instance, it may be possible to use either equilibrium influences or
differential influences. Also, one adequate set may contain the influences that explain
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Figure 6.5: The search graph for the question “What happens to the amount of ABA
in a plant’s guard cells when the turgor pressure in its leaves decreases?” Boxes indi-

cate partial models, and dashed arrows point from a partial model to its successors.

The heavy box indicates the simplest adequate scenario model (the goal node re-
turned by the model construction algorithm).
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Find-adequate-model (Q, S)
agenda «+ ()
let initial be a partial model consisting of the variables of interest, each free
if initial satisfies all monotonic constraints
then add initial to agenda
while agenda is not empty
remove the simplest partial model m from agenda
if mis an adequate scenario model
then return m
else for each partial model m” in Extend-model(m, Q, S)
if m’ satisfies all monotonic constraints
then add m’ to agenda
return failure

Extend-model (m, Q, S)
if all free variables in m can be exogenous
then mark all free variables in m as exogenous
return {m}
else let v be a free variable in m that must be dependent
models < ()
for each m, in Dv-models(v, Q, S)
m’ < extend m with m,,
add m’ to models
return models

Figure 6.6: TRIPEL’s model construction algorithm

scenario variable

l

. influences Dependent A
Scena.rlo. ) ) Variable time scale of interest Predlc.tlon
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Adequate sets of
influences on the
scenario variable

Figure 6.7: The task performed by the function Dv-models.
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an influence in another adequate set. Dv-models must return each alternative set of
influences for consideration by the model constructor. Extend-model creates a new
partial model for each one, and the function Find-adequate-model tests each new
partial model to see which ones represent a potentially adequate extension of the
current partial model.

Chapter 5 specified the criteria for determining whether a set of influences

on a dependent variable is adequate:

e The influences must be approximately complete; that is, they must repre-
sent all significant influencing phenomena at some level of detail (adequacy
constraint 7).

e The influences must represent valid approximations (adequacy constraint 6).
e The influences must be mutually coherent (adequacy constraints 5 and 8).

Adequacy constraint 5, which requires the influences on a dependent variable
to have the same type (i.e., differential or functional), allows Dv-models to separately
consider sets of functional influences and sets of differential influences. Dv-models
separately generates the adequate sets of influences that contain only differential
influences and those that contain only functional influences, and it returns the union
of these two sets. The remainder of this section presents the algorithm for generating
the adequate sets of influences for a given influence type (either one).

Given a scenario description, a prediction question, a dependent variable
to be modeled, and the type of influences desired (i.e., functional or differential),
Dv-models generates the adequate sets of influences as follows:

1. It generates every complete set of influences (of the specified type) on the de-
pendent variable (i.e., those sets of influences that represent all the phenomena
that affect the variable). Section 5.4.3 defines these as follows:

o The set of most-aggregate influences of the specified type on the variable

(i.e., those that do not explain any other influence) is complete.

e The result of replacing an influence in a complete set with the set of
influences that explain it (as specified by the explanation relation) is a

complete set.

2. It removes from these sets any influences that are insignificant on the time
scale of interest. Each resulting set is approximately complete (as defined in
Section 5.4.3), so each satisfies adequacy constraint 7.
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amount(pool(COg, leaves)) < rate(CO;-diffusion(atmosphere, leaves))
significance preconditions: time-scale-of-interest > seconds

amount(pool(COq, leaves)) < rate(photosynthesis(leaves))
significance preconditions: time-scale-of-interest > minutes

amount(pool(COq, leaves)) « rate(dark-reactions(leaves))
significance preconditions: time-scale-of-interest > minutes

Explanation(amount(pool(COg, leaves)) < rate(photosynthesis(leaves)),
amount(pool(COq, leaves)) < rate(dark-reactions(leaves)))

Figure 6.8: Influences on the amount of carbon dioxide in a plant’s leaves. The first
two are the most-aggregate influences. The influence of photosynthesis is explained
by the influence of the dark reactions (and not by any other influences).

3. It discards any set that contains an influence that is invalid on the time scale of
interest. Any such set of influences is inadequate because it violates adequacy
constraint 6.

4. It discards any set that is incoherent. A set is incoherent if it violates ade-
quacy constraint 8 (i.e., it includes two influences related by the explanation*
relation).

For example, consider the influences shown in Figure 6.8 (previously shown
as Figure 5.6) and assume that seconds is the time scale of interest. The algorithm

proceeds as follows:

1. As discussed in Section 5.4.3, there are two complete sets: (1) the first and
second influences and (2) the first and third influences.

2. From the first set, remove the insignificant photosynthesis influence. From the
second set, remove the insignificant dark reactions influence. This leaves two
identical sets, each of which includes only the diffusion influence. Because the

sets are identical, one is pruned and the other is passed to step 3.
3. The set does not include an invalid influence, so it is not discarded.

4. The set is coherent, so it is not discarded. Therefore, it is returned by Dv-
models.

As another example, consider the influences shown in Figure 6.9 and assume
that hours is the time scale of interest. The algorithm proceeds as follows:
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cross-section-area(stomates) <— amount(pool(water, guard-cells))

cross-section-area(stomates) <— amount(pool(ABA, guard-cells))
validity preconditions: time-scale-of-interest > hours

cross-section-area(stomates) <— amount(pool(COy, guard-cells))
validity preconditions: time-scale-of-interest > hours
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Figure 6.9: Influences on the cross sectional area of a plant’s stomates. The second
and third influences are each explained by the first influence.

1. The algorithm generates four complete sets: the second and third influences
(the most-aggregate influences), the first and third influences (since the first
explains the second), the first and second influences (since the first explains
the third), and the first influence alone (generated from either of the previous

two).
2. None of the influences is insignificant, so no set is changed.

3. None of the influences is invalid, so no set is changed. However, if the time scale
of interest were less than hours (e.g., seconds or minutes), any set containing
the second or third influence would be discarded.

4. Two of the four sets are incoherent (i.e., they violate adequacy constraint 8):
the one that includes the first and second influences, and the one that includes
the first and third influences. These two sets are discarded, and Dv-models
returns the two surviving sets: the one that includes the second and third
influences, and the one that includes only the first influence.

Dv-models can recognize when there are no adequate sets of influences on a
variable. For example, consider the influences shown in Figure 6.9, but suppose the
first influence is not in the scenario description (because the domain knowledge is
missing that level of detail). If the time scale of interest is less than hours (e.g.,
seconds or minutes), no set will survive step 3, so Dv-models will return the empty
set (i.e., no adequate sets of influences). Thus, Extend-model will return the empty
set (i.e., no successors); the partial model under consideration cannot be adequately
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extended. The key is that each influence represents a phenomenon to be modeled;
if the phenomenon is significant, Dv-models must find a valid way of modeling it,
either with that influence or an alternative level of detail.

6.5 The Role of Each Adequacy Constraint

Each adequacy constraint from Chapter 5 plays an important role in the model
construction algorithm. This section describes the role of each constraint, showing
that each is implemented in one of four ways:

e Some monotonic constraints serve as filters. Before a partial model is added to
the agenda, these constraints are tested. If any is violated, the partial model
is pruned from the search.

e Some non-monotonic constraints are used to extend partial models. These
propagation constraints, when violated in a partial model, specify the elements
that must be added for the constraint to be satisfied (analogous to constraint
propagation).

e Some constraints are folded into the function Dv-models.

e Some constraints are folded into the System Boundary Selector.

Adequacy constraint 1 (include variables of interest) is used to construct the
initial partial model on the agenda. The initial model includes every variable of
interest (as a free variable) because any model without these variables would violate
this constraint. Thus, this constraint can be viewed as a propagation constraint
applied to the empty model.

Adequacy constraint 2 (include variables in activity preconditions) is used
by Extend-model to identify new free variables for a partial model being extended.
When an influence is added to a partial model, this constraint requires the model to
include any variable in the influence’s activity preconditions. If the model lacks one
of these variables, the variable is added as a free variable. Since every extension of
the partial model must include the influence, any extension that lacks one of these
variables will violate this constraint. Thus, this constraint serves as a propagation
constraint.

Adequacy constraints 3 (exogenous variables independent of model) and 4
(exogenous variables independent of question) are tested by the System Boundary
Selector. They are both monotonic, as shown by the following lemma.

Lemma 1 Adequacy constraints 3 and 4 are monotonic constraints.
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Proof: If an exogenous variable v in a partial model M violates adequacy
constraint 4, there must be an influence path in the scenario description, leading
to v from a driving variable of the question, consisting of influences that are each
valid and significant on the time scale of interest (by definition of the constraint).
Since every extension of M contains v as an exogenous variable (by definition of an
extension), every extension violates the constraint as well. Similarly, if v violates
adequacy constraint 3, there must be an influence path in the scenario description,
leading to v from another variable v’ in M, consisting of influences that are each
valid and significant on the time scale of interest (by definition of the constraint).
Since every extension of M also contains v’ and contains v as an exogenous variable
(by definition of an extension), every extension violates the constraint as well. O

Although these two constraints are monotonic, they are not used as filters.
Rather, they are used by the System Boundary Selector to decide whether a given
free variable can be exogenous. This is more efficient than using them as filters.
Chapter 7 explains how the System Boundary Selector uses them.

Adequacy constraints 5 (influences homogeneous), 6 (influences valid), 7 (in-
fluences complete), and 8 (influences not redundant) are tested by the function
Dv-models. They are all monotonic, as shown by the following lemma.

Lemma 2 Adequacy constraints 5, 6, 7, and 8 are monotonic constraints.

Proof: Any influence in a partial model is also in each of its extensions
(by definition of an extension). Therefore, if an influence in a partial model violates
constraint 6, or a pair of influences violates constraint 5 or 8, the constraint will also
be violated in every extension. Similarly, if the influences on a dependent variable
in a partial model violate constraint 7, the constraint will also be violated in every
extension, because an extension cannot change the influences on a partial model’s
dependent variables (by definition of an extension). O

Although these four constraints are monotonic, they are not used to filter
partial models. Instead, as described in Section 6.4, the function Dv-models uses
constraints 5 and 7 to generate potentially adequate sets of influences on a dependent
variable, and it uses constraints 6 and 8 to filter these sets.

Adequacy constraints 9 (entities coherent), 10 (entities consistent with black-
box entities), 11 (entities consistent with glass-box entities), and 12 (entities com-

patible with driving variables) are all monotonic, as shown by the following lemma.

Lemma 3 Adequacy constraints 9, 10, 11 and 12 are monotonic constraints.

Proof: As discussed in Section 5.4.4 (p. 57), the entities in a partial model
are determined by the model’s variables and equilibrium influences. Therefore, every
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entity in a partial model is also in each of the model’s extensions, since the variables
and influences in each extension are a superset of those in the partial model (by
definition of an extension). Thus, if a partial model includes entities that violate
one of these constraints, every extension will also violate the constraint. O

These four constraints are used to filter partial models. They are tested
before a new partial model is added to the search agenda.

Adequacy constraint 13 (variables of interest differentially influenced) is
monotonic when applied to models that have no free variables, as shown by the
following lemma.

Lemma 4 For a given scenario description and causal prediction question, let M
be a scenario model that satisfies adequacy constraints 1 (include variables of in-
terest) and 2 (include variables in activity preconditions). If M wviolates adequacy
constraint 13, every extension of M also violates the constraint.

Proof: Assume that E is an extension of M that satisfies constraint 13. We

show by contradiction that such an extension cannot exist.

1. M violates constraint 13 (given). Therefore, for some variable of interest v,
there is no differential influence path in M, leading to it from a driving variable
of the question, such that every influence in the path is valid and significant
on the time scale of interest.

2. E satisfies adequacy constraint 13 (by assumption). Therefore, there is a differ-
ential influence path in E from a driving variable to v, consisting of influences
that are valid and significant on the time scale of interest.

3. Let i be the last influence in this influence path that is not in M. There must be
such an influence because if every influence in the path were in M, all the vari-
ables in the path would also be in M (since M satisfies adequacy constraint 2),
and hence the influence path would be in M, which contradicts step 1.

4. The influencee of i must be in M. If i is the last influence in the path, its
influencee is the variable of interest v. Since M satisfies adequacy constraint 1,
vis in M. If i is not the last influence, the next influence in the path is in M
(by definition of i), and so i’s influencee is in M (since M satisfies adequacy
constraint 2).

5. The influencee of i cannot be an exogenous variable in M. If it were, it would
also be exogenous in E (by definition of an extension). But then E could not
include any influences on it (by definition of a partial model), and hence i
could not be in E.
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Constraint | Description Role
1 include variables of interest propagation
2 include variables in activity preconditions propagation
3 exogenous variables independent of model System Boundary Selector
4 exogenous variables independent of question | System Boundary Selector
5 influences homogeneous Dv-models
6 influences valid Dv-models
7 influences complete Dv-models
8 influences not redundant Dv-models
9 entities coherent filter
10 entities consistent with black-box entities filter
11 entities consistent with glass-box entities filter
12 entities compatible with driving variables filter
13 variables of interest differentially influenced filter

Table 6.1: The role of adequacy constraints in model construction.

6. The influencee of i cannot be a dependent variable in M. An extension cannot
change the influences on a partial model’s dependent variables (by definition
of an extension), so i could be in E only if it was also in M (which contradicts

the definition of i).

7. Since the influencee of i cannot be dependent or exogenous in M, and since
M has no free variables (given), the influencee of i cannot be a variable in M.
This contradicts step 4. That step follows from the assumption that E satisfies

adequacy constraint 13. Therefore, that assumption is false.

This lemma allows adequacy constraint 13 to be used as a filter. Before a
model with no free variables is placed on the search agenda, the constraint is tested.
Every partial model to be placed on the agenda, whether the initial model or the
result of Extend-model, satisfies adequacy constraints 1 and 2, so the antecedent of

the lemma is satisfied. Therefore, if the model violates constraint 13, it is pruned

from the search.

For extensibility, TRIPEL is designed to easily accommodate new monotonic
constraints and propagation constraints. This allows TRIPEL to incorporate addi-
tional sophistication in its modeling criteria, such as new criteria for determining
whether models are coherent, without changes in its model construction algorithm.

Table 6.1 summarizes the information in this section.
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6.6 Properties of the Model Construction Algorithm

6.6.1 The Model Construction Algorithm Avoids Redundancy

To ensure an efficient search for a solution, a search algorithm must avoid redun-
dancy. Typically, a graph search algorithm avoids redundancy by maintaining a
record of nodes it has visited. However, Find-adequate-model does not keep a record
of partial models that it has visited because of the following theorem.

Theorem 1 (Search is not redundant) In the search graph constructed by Find-
adequate-model, a given partial model cannot be reached via more than one path from
the initial partial model.

Proof: A partial model has multiple successors only when one of its free
variables is chosen as dependent (by definition of Extend-model). Each successor in
this case contains a different set of influences on that variable. Since an extension of
a partial model cannot change the influences on that model’s dependent variables,
no two successors of a partial model can share a common extension. Thus, if a
partial model is viewed as representing itself and all its extensions, its successors
represent disjoint subsets of its extensions. Viewed this way, Find-adequate-model
starts with a single set (the initial partial model) and repeatedly splits one set into
disjoint subsets. Therefore, it is not possible for any two partial models in the search
graph to have a common descendant. O

Thus, Find-adequate-model is a version of the well-known “split and prune”
search algorithm [70], and the search graph it constructs is a tree.

6.6.2 The Model Construction Algorithm Always Terminates

Conceptually, Find-adequate-model operates by repeatedly pruning parts of the search
space from consideration. When each iteration of the while loop begins, part of the
search space has been pruned from consideration and part remains. Specifically,
the partial models on the agenda, along with all their extensions, are still under
consideration. This set of partial models is the consideration set. Since every
partial model is an extension of the empty one (i.e., no variables or influences),
the consideration set includes the entire search space when the agenda includes the
empty model. Otherwise, it includes only a subset of the search space.

The following theorem ensures that the search will always terminate by show-
ing that the initial consideration set is finite and that each iteration of the while loop
decreases the size of the consideration set. Termination is an important property of
any algorithm. It is also an important step in proving subsequent theorems.

78



Theorem 2 If the scenario description is finite, Find-adequate-model will termi-

nate.
Proof:

1. Every individual step in the algorithm always terminates. FEach adequacy
constraint can be checked in finite time because (1) there are only a finite
number of variables and influences (and hence entities) in a partial model and
(2) there are only a finite number of glass-box entities, black-box entities, and
driving variables in a question (because the scenario description is finite). The
function Dv-models terminates in finite time because there are a finite number
of influences on a scenario variable. Finally, as will be shown in Chapter 7, the
System Boundary Selector simply checks a finite number of entries in a matrix
to decide whether a variable can be exogenous. Thus, Find-adequate-model
will terminate if its while loop terminates, which we now show.

2. The search space is finite. Given a scenario description, the search space
consists of all partial models of that scenario. A finite scenario description has
only a finite set of partial models. To see this, note that a partial model is
uniquely determined by four sets: its exogenous variables, dependent variables,
free variables, and influences. Each of the first three sets is a subset of the
scenario variables, and the influences are a subset of the scenario influences.
In a finite scenario description, these sets are finite, so there are only a finite

set of unique partial models.
3. Since the search space is finite, the initial consideration set is finite.

4. Every iteration of the while loop prunes the simplest partial model on the
agenda from the consideration set. That is, the simplest partial model on the
agenda is replaced by, if anything, its successors. A partial model cannot be
an extension of any of its successors, and it cannot be an extension of any
other partial model on the agenda (from Theorem 1), so it is no longer in the

consideration set.

5. The consideration set never increases in size. Every extension of a partial
model’s successors is also an extension of the partial model.

6. Therefore, since the consideration set is initially finite, and every iteration of
the while loop decreases the size of the consideration set, the while loop must

eventually terminate.
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6.6.3 The Model Construction Algorithm is Admissible

Find-adequate-model is an admissible search algorithm. A search algorithm is ad-
missible if it is guaranteed to return an optimal solution whenever a solution exists
[70]. Find-adequate-model is admissible because it is guaranteed to return a simplest
adequate scenario model whenever an adequate scenario model exists. Conceptually,
the algorithm is admissible because it uses the following strategy:

e Irom the space of all partial models of the scenario (including all scenario
models), it repeatedly prunes away models until only a single scenario model
(if any) remains.

e It never prunes a scenario model unless either (1) the model is inadequate for
the question or (2) if the model is adequate, there is an adequate scenario
model still under consideration that is at least as simple.

The remainder of this section proves that Find-adequate-model is admissible
by proving that it follows this strategy. The following seven subsections list the
seven ways that Find-adequate-model prunes models, and they prove that each is
justified. Finally, the lemmas from these subsections are combined to prove that
Find-adequate-model is admissible.

Pruning Models Without The Variables Of Interest

Find-adequate-model does not start with the empty model on the agenda, so the
initial consideration set does not contain all partial models of the scenario. Initially,
the agenda contains a partial model consisting of the variables of interest, each a
free variable. The following lemma ensures that every adequate scenario model is
an extension of this initial model.

Lemma 5 For a given scenario description and causal prediction question, any

scenario model that does not contain the variables of interest is inadequate.

Proof: Any scenario model that does not contain the variables of interest
violates adequacy constraint 1 (include variables of interest), so it is not adequate
for the question. O

Pruning Models that Violate Monotonic Constraints

If a partial model violates a monotonic constraint, it is not added to the agenda,
thereby pruning it and its extensions. The following lemma ensures that a partial
model that violates a monotonic constraint can be discarded.
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Lemma 6 Given a scenario description and a causal prediction question, if a partial
model violates a monotonic constraint, it is inadequate for the question, and so is
each of its extensions.

Proof: The partial model itself is inadequate because it violates the con-
straint. By definition, a monotonic constraint, when violated for a partial model,
is violated for any extension of that model. Thus, each extension is inadequate for
the question as well. O

Pruning Models in which a Variable is Dependent

When the System Boundary Selector says that all remaining variables in a partial
model can be exogenous, Extend-model marks the variables exogenous and returns
the resulting scenario model. This effectively prunes any extension in which one of
these variables is dependent. The following two lemmas justify this approach; the
first lemma simply establishes one of the antecedents of the second lemma.

Lemma 7 Fvery partial model that Find-adequate-model passes to Extend-model
satisfies all adequacy constraints except perhaps adequacy constraint 13 (variables
of interest differentially influenced).

Proof: Adequacy constraint 1 (include variables of interest) is satisfied
because the partial model is an extension of the initial partial model. Adequacy
constraint 2 (include variables in activity preconditions) is satisfied because, when-
ever Extend-model adds an influence to a partial model, it also adds any variables
appearing in the influence’s activity preconditions. Adequacy constraints 3 (exoge-
nous variables independent of model) and 4 (exogenous variables independent of
question) are satisfied because no model passed to Extend-model has any exogenous
variables. Adequacy constraints 5 (influences homogeneous), 6 (influences valid), 7
(influences complete), and 8 (influences not redundant) are satisfied because (1) Dv-
models only returns influences that satisfy these constraints and (2) if the influences
on a variable in a partial model satisfy these constraints, they will in any extension
as well (i.e., the constraints are independent of the rest of the model). Finally,
adequacy constraints 9 (entities coherent), 10 (entities consistent with black-box
entities), 11 (entities consistent with glass-box entities), and 12 (entities compatible
with driving variables) are satisfied because a partial model is only added to the
agenda if it satisfies these constraints. O

Lemma 8 Let P be a partial model for a given scenario description. For a given
causal prediction question Q, suppose P satisfies all adequacy constraints except per-
haps adequacy constraint 13 (variables of interest differentially influenced). Suppose
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that all free variables in P can be treated as exogenous (i.e., they satisfy adequacy
constraints 3 and 4). Let E be the scenario model that results from making each
free variable in P an exogenous variable. Then there is an extension of P that is
a simplest adequate scenario model for Q only if E is a simplest adequate scenario

model for Q.

Proof: The extension E has the same number of variables as the partial
model P, so E is at least as simple as any other extension of P (by the definition
of an extension). Therefore, if E is adequate and some other extension of P is a
simplest adequate scenario model, E must be a simplest adequate scenario model as
well. We complete the proof by showing that if E is not adequate, none of the other

extensions of P is adequate.

1. E must satisfy all adequacy constraints except perhaps adequacy constraint 13
because (a) P satisfies all these constraints (given), (b) the new exogenous
variables satisfy adequacy constraints 3 and 4 (given), and (c) E has the same

variables and influences as P.

2. Thus, if E is inadequate, it violates adequacy constraint 13. That is, for some
variable of interest v, there is no differential influence path in E, leading to it
from a driving variable of the question, such that every influence in the path
is valid and significant on the time scale of interest.

3. Assume there is an extension E" of P that is an adequate scenario model. Then
E’ satisfies adequacy constraint 13, and hence there is a differential influence
path in E' from a driving variable to v, consisting of influences that are valid

and significant on the time scale of interest.

4. Let i be the last influence in this influence path that is not in E. There must be
such an influence because if every influence in the path were in E, all the vari-
ables in the path would also be in E (since E satisfies adequacy constraint 2),
and hence the influence path would be in E, which contradicts step 2.

5. The influencee of i must be in E. If i is the last influence in the path, its
influencee is the variable of interest v. If not, the next influence in the path is
in E (by definition of i), and so i’s influencee is in E (since E satisfies adequacy

constraint 2).

6. The influencee of i must be a free variable in P. Otherwise, no extension of P
can add an influence on it, and 1 would have to be in both P and E.
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7. However, all the free variables in P can be exogenous (given), so there is no
influence path from a driving variable to any of these free variables consisting
of influences that are valid and significant on the time scale of interest.

8. Thus, the influence path implied by the assumption in step 3 cannot exist,
so E” cannot be an adequate scenario model. Thus, if E is not an adequate
scenario model, no other extension of P is an adequate scenario model.

a

Pruning Models in which a Variable is Exogenous

When the System Boundary Selector says that a variable in a partial model must
be dependent, Extend-model effectively prunes any extension in which the variable

is exogenous. This is justified by the following lemma.

Lemma 9 For a given scenario description and causal prediction question, if a
variable v in a partial model M cannot be exogenous in M, (i.e., if it were, it would
violate adequacy constraint 3 or adequacy constraint ), then any extension of M in
which v is exogenous is inadequate for answering the question.

Proof: This follows directly from the fact that these two constraints are

monotonic (Lemma 1). O

Pruning Models Based on Dv-models

Given a partial model with a variable v that must be dependent, Extend-model only
considers those sets of influences on v returned by the function Dv-models, thereby
pruning any extension with a different set of influences on v. The following two
lemmas justify this approach. The first lemma ensures that every other set of influ-
ences is either inadequate or simply adds some insignificant influences. The second

lemma ensures that those sets containing insignificant influences can be discarded.

Lemma 10 For a given scenario description and causal prediction question, if a
set of influences on a variable is not returned by the function Dv-models, the set
is either inadequate (i.e., violates adequacy constraint 5, 6, 7 or 8) or simply adds

insignificant influences to a set that is returned.

Proof:  Step 1 in the function Dv-models generates every complete set
of influences, and step 2 discards any insignificant influences from these sets. A
set of influences will not make it past these steps in two cases: (1) the set is not
approximately complete, or (2) the set is identical to one that makes it past these
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steps except it includes some insignificant influences. In the first case, the set violates
adequacy constraint 7 (influences complete). The second case satisfies the lemma
if we can show that the remaining steps of the algorithm only discard inadequate
sets of influences. Step 3 only discards sets that violate adequacy constraint 6, and
step 4 only discards sets that violate adequacy constraint 8. Therefore, the lemma

holds. O

Lemma 11 Given a scenario description and a causal prediction question, let M
be a partial model with a variable v. Suppose the influences on v in M include some
that are insignificant on the time scale of interest. Let M’ be a partial model that
is the same as M except it does not include the insignificant influences on v. Then
if M or one of its extensions is an adequate scenario model, either M’ or one of its
extensions is also an adequate scenario model and is at least as simple.

Proof: If M or one if its extensions is an adequate scenario model, call that
partial model A. We show by construction that M’ or one of its extensions is also
adequate and is at least as simple. Construct A’ from A by simply removing the
insignificant influences on v. If A = M, then A" = M’. Otherwise, A’ is an extension
of M'. A’ is at least as simple as A because it has the same variables. Furthermore,
A’ is an adequate scenario model because it contains no free variables (since A is
adequate) and it satisfies all adequacy constraints:

o Constraints 1 and 2 are satisfied because the variables in A’ are the same as
those in A and the influences in A’ are a subset of those in A.

o Constraints 3 and 4 are satisfied because the variables in A’ are the same as
those in A and the exogenous variables in A’ are the same as those in A.

e Constraints 5, 6 and 8 are satisfied because the influences in A" are a subset
of those in A.

e Constraint 7 is satisfied because A’ contains all influences from A except in-
significant ones.

e Constraints 9, 10, 11, and 12 are satisfied because the variables in A’ are the
same as those in A and the influences in A’ are a subset of those in A, so the
entities in A’ are a subset of the entities in A.

e Constraint 13 is satisfied for the following reasons. A is adequate, so it satisfies
this constraint. Therefore, for every variable of interest, there is an influence
path in A leading from a driving variable to the variable of interest, and every
influence in the path is valid and significant on the time scale of interest. A’
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includes all the variables and influences in E except some influences that are
insignificant on the time scale of interest. Thus, A" must include every such
influence path that A does, and hence A" must satisfy adequacy constraint 13.

Pruning Models that Violate Propagation Constraints

For each partial model to be returned, Extend-model adds variables that are required
by adequacy constraint 2 (include variables in activity preconditions). This effec-
tively prunes those extensions without the variables. The following lemma ensures
that the pruned extensions are all inadequate.

Lemma 12 For a given scenario description and causal prediction question, if a
partial model M includes an influence, any extension of M that does not include all
the variables appearing in that influence’s activity preconditions is not an adequate

scenario model.

Proof: Every extension of M will include the influence (by the definition of
an extension). Thus, any extension without all the variables will violate adequacy
constraint 2. O

Pruning Models When an Adequate Model is Found

Find-adequate-model returns the first adequate model it finds, effectively pruning
the remainder of the consideration set. The following lemma justifies this approach.

Lemma 13 When Find-adequate-model returns an adequate scenario model M, no
other scenario model in the consideration set is a simplest adequate scenario model
unless M s also.

Proof:  Find-adequate-model always removes the simplest partial model
from the agenda, so no other model on the agenda is simpler than M. Hence, since
the definition of an extension ensures that M is as simple as any of its extensions
and that every model on the agenda is as simple as any of their extensions, no model
in the consideration set is simpler than M. Thus, since M is an adequate scenario
model, no other scenario model in the consideration set can be a simplest adequate
model unless M is also. O
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Admissibility Theorem

The following lemma summarizes all the previous lemmas in this section. Recall
that the search space initially consists of all partial models (including all scenario
models) for the given scenario description.

Lemma 14 For a given scenario description and causal prediction question, Find-
adequate-model never prunes a scenario model from the search space unless either
(1) the model is inadequate or (2) there is an adequate scenario model still in the
consideration set that is at least as simple.

Proof: Follows directly from Lemmas 5, 6, 7, 8, 9, 10, 11, 12, and 13 as
well as the fact that these are the only ways in which Find-adequate-model prunes
models from the search space. O

Finally, building on all the previous lemmas, the following theorem proves
that the model construction algorithm is admissible.

Theorem 3 (Model construction algorithm is admissible) Given a finite sce-
nario description and a causal prediction question for which some scenario model is
adequate, Find-adequate-model will return a simplest adequate scenario model.

Proof: Lemma 14 ensures that Find-adequate-model never prunes an ad-
equate scenario model unless another adequate scenario model, at least as simple,
remains in the consideration set. If there is an adequate scenario model, then the
lemma ensures that the consideration set cannot become empty. Furthermore, if
there is an adequate scenario model and the consideration set is reduced to a single
adequate scenario model, that model must be a simplest adequate scenario model.

Theorem 2 ensures that Find-adequate-model eventually terminates. Upon
termination, either the agenda (and hence consideration set) is empty or the consid-
eration set consists of a single adequate scenario model (which is returned). If there
is an adequate scenario model for the question, the previous paragraph ensures that
the first case cannot arise, and it ensures that the model in the second case must be

a simplest adequate scenario model. O

6.7 Related Work

Falkenhainer and Forbus [25] take a knowledge-based approach to model construc-
tion. Each model fragment has associated “assumptions,” symbolic labels that char-
acterize the phenomena it represents and its level of detail. The domain knowledge
provides constraints on the use of assumptions:
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e Assumptions are organized into “assumption classes.” The assumptions in an
assumption class represent mutually incompatible modeling alternatives.

e The domain knowledge can provide domain-specific constraints among as-
sumptions, such as that one assumption requires another.

e For each assumption class, the domain knowledge must specify the scenario
conditions under which it is relevant. An adequate scenario model must include
one alternative from each relevant assumption class.

In their modeling task, a question specifies terms (e.g., variables) of interest.
Their objective is to find a minimal set of assumptions that satisfy all the domain
constraints and ensure that the model includes the terms of interest. They accom-
plish this with a constraint satisfaction algorithm (“dynamic constraint satisfaction”
62]).

In their framework, most criteria for model adequacy are specified in the
domain knowledge. Their model fragments are analogous to influences, and their
assumption classes are similar to TRIPEL’s encapsulates and explanation relations.
However, we do not require the domain knowledge to provide relevance conditions
or domain-specific constraints among modeling alternatives; our modeling criteria
and algorithm obviate the need for that extra “modeling knowledge.” Formulating
the modeling knowledge so that it ensures an adequate model could be a difficult,
time-consuming, error-prone task. In addition, it is not clear how to encode some
constraints, such as adequacy constraint 13 (variables of interest differentially influ-
enced), in their language. Removing the need for modeling knowledge has been a
driving motivation for our work.

A second approach to model construction is to start with a detailed model
and repeatedly simplify it. Williams’s method for generating a “critical abstrac-
tion” [85] starts with a detailed model of the scenario and simplifies it in three
ways: (1) the method removes influences on which the variables of interest do not
causally depend (such influences are never introduced into a scenario model by our
algorithm), (2) the method algebraically eliminates certain intermediate variables if
they are neither driving variables nor variables of interest, and (3) the method alge-
braically abstracts quantitative details that are not needed to answer the question.
Yip’s modeling algorithm starts with a detailed model and repeatedly simplifies it
by removing insignificant terms in the equations (analogous to eliminating insignif-
icant influences). Nayak’s modeling algorithm [65] starts with a detailed model and
repeatedly simplifies it by (1) eliminating irrelevant phenomena or (2) replacing
one model fragment with another that represents a “causal approximation” of it
(typically, this corresponds to omitting some of the influences in the original model
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fragment).

For complex systems, which include many phenomena that can be described
at many levels of detail, the approach of repeatedly simplifying a detailed model
is impractical. First, it may be difficult to find an initial conservative (i.e., overly
complex) model that is sufficiently close to the simplest adequate model. Second, the
simplification operators must be fine-grained enough not to skip over the simplest
adequate model, but if they are too fine-grained it will take a long time to reach the
simplest adequate model.

Nayak [65] proves that his algorithm will reach the simplest adequate model
in time polynomial in the size of the scenario description. However, his results do
not apply to our task, for several reasons. First, as discussed in Section 5.3, his sim-
plicity criteria leave many models incomparable, even though some of these models
are intuitively much simpler than others. His algorithm exploits his simplicity crite-
ria by using a hill-climbing search. If more of the models were comparable, as they
are under our simplicity criterion, this search strategy would not be guaranteed to
find a simplest adequate model. Second, his hill-climbing search strategy relies on
a restrictive assumption: he assumes that every phenomenon in the scenario has its
own set of modeling alternatives and that the modeler can choose an alternative for
modeling one phenomenon independent of how the other phenomena are modeled.
However, our modeling framework is built around aggregation of phenomena. One
entity can aggregate several other entities, and one influence can aggregate several
other influences. Aggregation hierarchies are crucial to achieving simple models of
complex systems, but they violate Nayak’s assumption. We investigated the pos-
sibility of extending Nayak’s approach to handle aggregation, but it would require
assuming that, for every level of description for a phenomenon, there is a compatible
level of description for every related phenomenon; this requires a level of complete-
ness in the scenario description that seems impractical. Finally, his proofs currently
place restrictions on the use of influences in model fragments, and these restrictions
would seriously diminish the advantages of using influences as the building blocks
for models.!

TRIPEL’s algorithm for model construction is very similar to the one used by
Iwasaki and Levy [43]. Their algorithm starts with a partial model consisting of the
variables of interest, and it repeatedly extends the model to include the influences on
free variables. There are two major differences between the two algorithms. First,
they have no method for automatically choosing exogenous variables. (Chapter 7
describes our method.) Second, like Nayak [65], their simplicity criteria leave many

!'Nayak (personal communication) believes that the proofs could be extended to accommodate
our use of influences.
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models incomparable, even though some of these models are intuitively much simpler
than others. If more of the models were comparable, as they are under our simplicity
criterion, their search strategy would not necessarily find a simplest adequate model.
In addition to these primary differences, there are other smaller differences:

e They allow the activity preconditions of a model fragment to include predicates
as well as behavioral conditions. Correspondingly, while TRIPEL’s algorithm
always extends a model by considering the influences on a free variable, their
algorithm can also extend a model to include influences on these predicates.
This is a natural and useful extension of TRIPEL’s approach.

e In their representation, influences in the scenario description do not have a
causal direction. The direction of causality is only assigned after the model is
complete, using a causal ordering algorithm [44]. This causes their algorithm
to extend models to include all variables that could “possibly influence” the
chosen free variable, which will generally result in larger models with more
irrelevant phenomena. The question of whether influences can be given a
causal direction before the scenario model is built is an open question [29].
However, our approach has worked well in the plant physiology domain, and
we expect similar success in many other domains. Section 10.2.2 discusses this

issue further.

e Their algorithm relies on a strong assumption about the domain knowledge
(the “library coherence assumption”) to guarantee that the equations in an
adequate scenario model are complete (i.e., have the same number of equations
as dependent variables). In contrast, our modeling algorithm is designed to
ensure that.

e Their algorithm is guaranteed to run in time polynomial in the size of the
scenario description [58]. However, that result does not apply to our task
since it relies on the same assumptions as the similar result of Nayak [65]
discussed earlier.

The MECHO program for solving physics problems [61] is also similar to
TRIPEL’s model constructor. It starts with the unknowns of the problem (analogous
to the variables of interest) and searches backward through alternative equations un-
til it finds an adequate model. A model is adequate if it can predict the value of the
unknowns from the given information. Beyond these similarities, there are impor-
tant differences between MECHO and TRIPEL. First, there is no issue of coherence for
MECHO to address; alternative equations represent different physics principles, not
alternative levels of detail. Second, MECHO does not distinguish between significant
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and insignificant phenomena, and it does not consider the validity of approxima-
tions. Finally, for the textbook physics problems MECHO solves, a much simpler
criterion for choosing exogenous variables is sufficient; a variable can be exogenous
if and only if its value is given.

Several people have explored an approach to model construction called “dis-
crepancy-driven refinement” [3, 5, 84]. After constructing an initial model, the
modeler compares its predictions against the known behavior of the system. Dis-
crepancies suggest refinements to the model, and the process is repeated until a
sufficiently close match is obtained. We have not used this approach because we do
not assume that the correct behavior is known. However, when it is, these algorithms
are complementary to TRIPEL; TRIPEL provides a more sophisticated approach to
constructing the initial model than these algorithms currently use. Section 10.6.2
discusses this issue further.
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Chapter 7

Choosing Exogenous Variables

The exogenous variables of a scenario model constitute its system boundary. The
system boundary separates those aspects of the scenario that are modeled from
those that are ignored. Consequently, the system boundary must be chosen so that
relevant aspects of the scenario are included in the model while irrelevant aspects
lie outside the boundary.

Previous chapters introduced the system boundary selection task. Chapter 5
explained the crucial role of exogenous variables in modeling and specified the cri-
teria for choosing them. Chapter 6 explained the role of system boundary selection
in TRIPEL’s model construction algorithm. The current chapter explains the design
of the System Boundary Selector, which makes system boundary decisions when
they are required during model construction. Because TRIPEL’s criteria for choosing
exogenous variables are novel (as explained in Chapter 5), the design of the System
Boundary Selector (which implements those criteria) is novel as well.

7.1 The Role of System Boundary Selection

During model construction, system boundary decisions arise in the successor func-
tion Extend-model, described in Chapter 6. Given a scenario description, a causal
prediction question, a partial model and one of its free variables, Extend-model asks
the System Boundary Selector whether the variable can be exogenous. Such deci-
sions are important; if the variable must be dependent, the model must be extended
to include additional influences (on that variable) and variables (referenced by those
influences).

The System Boundary Selector’s response is either “yes” (the variable can

be exogenous) or “no” (the variable must be dependent), interpreted as follows:

o If the response is “yes,” then the variable can be exogenous in any extension
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Figure 7.1: The system boundary selection task.

of the partial model that does not contain additional variables.

e If the response is “no,” then the variable must be dependent in every extension
of the partial model. That is, no extension in which the variable is exogenous
is an adequate scenario model.

Recall from Section 6.3 how Extend-model uses the System Boundary Selec-
tor’s response. If the response is “no” (the variable must be dependent), Extend-
model marks the variable as dependent and extends the partial model to include
influences on it. In contrast, if the response is “yes” (the variable can be exoge-
nous), Extend-model only marks the variable as exogenous if all other free variables
can also be exogenous. The System Boundary Selector’s response justifies Extend-
model’s actions, as shown by Lemmas 7, 8, and 9.

Figure 7.1 summarizes the system boundary selection task.

7.2 The System Boundary Selector

7.2.1 Overview

The criteria for choosing exogenous variables were specified in Chapter 5. As spec-
ified there, an exogenous variable must satisfy two constraints:

e Adequacy constraint 3 — A variable in a scenario model cannot be exogenous
if it is significantly influenced in the scenario description, on the time scale of
interest, by another variable in the model.

e Adequacy constraint 4 — A variable in a scenario model cannot be exogenous
if it is significantly influenced in the scenario description, on the time scale of
interest, by a driving variable (other than itself if it is a driving variable).
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Although these constraints are stated in terms of scenario models, they apply
to partial models as well. Lemma 1 in Chapter 6 shows that both constraints are
monotonic. That is, if a variable in a partial model violates one of the constraints,
the variable cannot be exogenous in any extension of the partial model either. In
this case, the System Boundary Selector can answer “no” (the variable cannot be
exogenous). On the other hand, if a variable in a partial model satisfies both con-
straints, it can be exogenous in any extension with the same variables. (The variable
might not satisfy adequacy constraint 3 in an extension with additional variables.)
In this case, the System Boundary Selector can answer “yes” (the variable can be
exogenous). Thus, the system boundary selection task simply requires the ability
to test these two constraints.

These constraints can be tested by a graph connectivity algorithm. Recall
from Section 5.4.2 that one scenario variable significantly influences another on
the time scale of interest if and only if there is an influence path (in the scenario
description) leading from the first variable to the second and every influence in the
path is valid and significant on that time scale. Thus, a free variable in a partial
model can be exogenous if and only if the graph algorithm finds no such path leading
to the variable from any driving variable of the question or any other variable in the
model.

However, it would be inefficient to run the graph algorithm anew for each
system boundary decision. Each run of the graph algorithm will repeat much of the
search that previous runs did. To avoid this problem, TRIPEL performs a system
boundary analysis before beginning the search for an adequate scenario model. The
system boundary analysis determines all variables and influences that might be
relevant to the question, and it computes and caches connectivity relations among
the variables. These potentially relevant variables and influences constitute the
space that would be repeatedly searched by the graph algorithm. The algorithm for
system boundary analysis is given in Section 7.2.2.

The result of the system boundary analysis is a Boolean connectivity matriz.
This matrix records the connectivity between every pair of potentially relevant vari-
ables. That is, the ¢th variable significantly influences the jth variable on the time
scale of interest if and only if the (i,j) cell of the matrix contains a 1.

Once system boundary analysis is complete, TRIPEL begins its search for the
simplest adequate scenario model as described in Chapter 6. Using the connectivity
matrix, system boundary decisions that arise during model construction are trivial.
A free variable in a partial model must be dependent if, according to the connectivity
matrix, the variable violates adequacy constraint 3 or 4. In this case, the System
Boundary Selector returns “no” (the variable cannot be exogenous). Otherwise, it

93



returns “yes.”

7.2.2 System Boundary Analysis
Potentially Relevant Variables

The variables in the connectivity matrix are called the potentially relevant variables
because they include all variables that might be relevant to answering the question.
More precisely, they include any variable that might be added to a partial model
during model construction. Similarly, the potentially relevant influencesinclude any
influence that might be added to a partial model during model construction. TRIPEL
defines the potentially relevant variables and influences as follows:

e The variables of interest are each potentially relevant.

e If a variable is potentially relevant, any influence on it that is valid and sig-
nificant (on the time scale of interest) is a potentially relevant influence.

e The influencer of every potentially relevant influence is potentially relevant.

e Any variable appearing in the activity preconditions of a potentially relevant
influence is potentially relevant.

This definition mirrors the steps that add variables and influences to partial models
during model construction.

The System Boundary Selector finds the potentially relevant variables and
influences using a breadth-first search through the scenario influence graph. First,
each of the variables of interest is marked as potentially relevant and placed on
the search agenda. On each iteration of the search, a variable is removed from the
agenda, and each valid, significant influence on that variable is marked as potentially
relevant. For each such influence, its influencer and the variables in its activity
preconditions are marked as potentially relevant. Each newly marked variable is
placed on the agenda unless it had previously appeared on it. The search ends when
the agenda is empty; the terminal variables in the search are those that are not
significantly influenced on the time scale of interest and those that are significantly
influenced only by variables discovered earlier in the search (i.e., through feedback
loops). When the search ends, all potentially relevant variables and influences will
have been marked.

To illustrate this algorithm, consider the familiar question “What happens
to the amount of ABA in a plant’s guard cells when the turgor pressure in its leaves
decreases?” For convenience, Part A of Figure 7.2 repeats a portion of the sce-
nario description for this question. The search for potentially relevant variables and
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influences begins with the influences on guard cell ABA amount. The influences
of transpiration on leaf mesophyll water (middle of left side) and water uptake on
xylem water (lower left) are insignificant on the time scale of interest (minutes);
removing these two influences disconnects the potentially relevant variables from
the remainder of the scenario variables and influences, including the feedback loop
through transpiration. Part B shows the result, the potentially relevant variables
and influences for the example. For comparison, Part C shows the simplest adequate
model for the question (as described in Chapter 6).

As illustrated by the example, the search for potentially relevant variables
and influences will typically have to traverse only a fraction of the variables and
influences of a scenario. In natural systems, like plants, animals, and ecosystems,
modularity arises from the widely disparate time scales at which processes cause
change [4, 53, 68, 76, 80]. The result is a hierarchy of nearly decomposable subsys-
tems; processes acting within a subsystem cause significant change quickly, while
processes acting across subsystems cause change more slowly [4, 53, 68, 82]. The
time scale of interest filters out influences that are significant only on slower time
scales, thus isolating the variables of interest in their own nearly decomposable sub-
system. The search for potentially relevant variables and influences is confined to
this subsystem because the influences from other subsystems are insignificant.

Computing the Connectivity Matrix

After determining the graph of potentially relevant variables and influences, the Sys-
tem Boundary Selector constructs the connectivity matrix. First, it constructs the
subgraph of the scenario influence graph corresponding to the potentially relevant
variables and influences. Analogous to the definition in Section 5.4.2, the nodes of
this subgraph are the potentially relevant variables, and there is a directed edge from
one variable to another if there is a potentially relevant influence whose influencee
is the second variable and for which the first variable is the influencer or appears in
the activity preconditions. The connectivity matrix is simply the adjacency matrix
for the transitive closure of this subgraph. Given the subgraph, the connectivity
matrix can be computed efficiently; the Floyd-Warshall algorithm computes it in
O(n?) time, where n is the number of nodes (potentially relevant variables) in the
subgraph [17].

Properties of the Connectivity Matrix

As discussed earlier, the System Boundary Selector decides whether a variable in
a partial model can be exogenous by checking cells in the connectivity matrix.
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Figure 7.2: (A) A portion of the elaborated scenario description for the question
“What happens to the amount of ABA in a plant’s guard cells when the turgor
pressure in its leaves decreases?” The driving variable and variable of interest are
shown in bold. Ellipses indicate connections to the remainder of the scenario vari-
ables and influences. Alternative levels of detail are not shown. (B) The potentially

relevant variables for the question. (C) The simplest adequate scenario model for
the question.
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Therefore, the connectivity matrix must include every variable for which a system
boundary decision might be required. The following theorem ensures this.

Theorem 4 (Connectivity matrix is complete) For a given scenario descrip-
tion and causal prediction question, the connectivity matriz constructed by the Sys-
tem Boundary Selector contains every variable for which a system boundary decision
might be required by TRIPEL’s model construction algorithm.

Proof: A system boundary decision is only required for variables added to
partial models during model construction. The connectivity matrix includes every
such variable because the definition of potentially relevant variables and influences

mirrors the steps that add variables and influences during model construction:

e The initial partial model for model construction only contains the variables of

interest.

e The function Dv-models only adds influences that are valid and significant on

the time scale of interest.

e The function Extend-model only adds a variable if it is the influencer of a newly
added influence or it appears in the activity preconditions of a newly added

influence.

O
The System Boundary Selector uses the connectivity matrix to determine
whether one scenario variable significantly influences another. The following theo-

rem ensures that the connectivity matrix can provide this information.

Theorem 5 (Connectivity matrix is correct) For a given scenario description
and causal prediction question, cell (i,j) of the connectivity matriz contains a 1 if
and only if the ith scenario variable significantly influences the jth variable on the

time scale of interest.

Proof: The “only if” follows directly from the definition of the connectivity
matrix. To prove the “if,” suppose that p is the influence path by which i (the ith
variable) significantly influences j (the jth variable). If p consists only of variables
and influences that are potentially relevant, cell (i,j) will contain a 1 (by definition
of the connectivity matrix). Otherwise, let e be the last influence in the path
that is not potentially relevant. There must be such an influence because if every
influence in the path were potentially relevant, all the variables in the path would
also be potentially relevant (by definition of the potentially relevant variables and

influences).
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The influencee of e must be potentially relevant. If e is the last influence in the
path, its influencee is j, which is in the connectivity matrix and hence is potentially
relevant. Otherwise, if e is not the last influence, the next influence in the path is
potentially relevant (by definition of e), so e’s influencee is potentially relevant (by
definition of the potentially relevant variables and influences). But since e is a valid
and significant influence on a potentially relevant variable, it must be potentially
relevant (by definition of the potentially relevant variables and influences). This
contradicts the definition of e. Therefore, p must consist only of variables and
influences that are potentially relevant, and the theorem must hold. O

To determine whether a variable can be exogenous, the System Boundary
Selector must ensure that the variable is not significantly influenced by any driving
variable (as discussed in Section 7.2.1). However, the definition of potentially rel-
evant variables does not ensure that every driving variable is potentially relevant,
so some driving variables may not appear in the connectivity matrix. Nevertheless,
variables in the connectivity matrix are only significantly influenced by other vari-
ables in the matrix. Therefore, when deciding whether a variable can be exogenous,
the System Boundary Selector knows that the variable is not significantly influenced

by any driving variable that is not in the matrix.

7.3 Summary

In summary, TRIPEL chooses exogenous variables by using a graph connectivity al-
gorithm to test adequacy constraints 3 and 4. For efficiency, TRIPEL computes and
caches a Boolean connectivity matrix before it begins model construction. TRIPEL
uses the matrix to determine whether a variable in a partial model is significantly
influenced by another variable of the model or by a driving variable. The connectiv-
ity matrix can be computed efficiently, and it allows TRIPEL to efficiently determine
which variables can be exogenous.

The algorithms in this chapter do not depend on the particular criteria for
determining whether an influence is valid and significant. TRIPEL uses a time scale
of interest, but other criteria could be used instead or in addition. For complex sys-
tems, in which scenario variables are highly interconnected, the ability to recognize
insignificant influences is crucial to achieving a suitable system boundary. This abil-
ity is also required to keep the number of potentially relevant variables (and hence
the size of the connectivity matrix) small. Therefore, the most important area for
future work is improving TRIPEL’s ability to recognize insignificant influences, which

is discussed in Chapter 10.
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Chapter 8

Choosing a Time Scale of
Interest

8.1 Motivation

A time scale of interest provides an important focus for modeling. Processes that
operate on slower time scales can be ignored, and processes that operate on faster
time scales can be modeled as instantaneous (through equilibrium influences). An
aggregate pool can be used in place of its subpools when they equilibrate on a faster
time scale. These modeling techniques are useful, and often necessary, to achieve
conceptual clarity, to enable analytic solutions to a model’s equations, and even
to enable practical numerical or qualitative simulation. The techniques are widely
used in many fields, including economics [82], biology [34, 45, 77, 80, 88], ecology
[4, 46, 68, 79] and many areas of engineering [14, 50, 78].

However, a person asking a prediction question cannot be expected to provide
the time scale of interest. Typically, the person will not know which influences link
the driving conditions to the variables of interest, much less the time scales on which
the influences operate. The modeler must choose, as the time scale of interest, a

time scale that is adequate for answering the question.

Despite the importance of a time scale of interest, no previous work has
provided methods for choosing one. This chapter describes TRIPEL’s criteria and
algorithm for choosing a time scale of interest when none is specified in the question.

TRIPEL executes the algorithm before performing any other steps. That is,
time scale selection precedes system boundary analysis and model construction.
However, it is interleaved with scenario elaboration; it requests information from
the scenario description just as model construction does.
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8.2 Adequate Time Scale

A causal prediction question asks for the causal effect of driving conditions on vari-
ables of interest. Section 5.4.5 argued that a scenario model is adequate for answer-
ing a causal prediction question only if adequacy constraint 13 is satisfied; that is,
for every variable of interest, the model must include a differential influence path
leading to it from some driving variable such that every influence in the path is
valid and significant on the time scale of interest. Thus, for a given time scale, an
adequate model exists only if, for every variable of interest, the scenario description
includes such an influence path. This suggests the following criterion for choosing
a time scale on which the question can be adequately answered: A time scale is
adequate for answering a causal prediction question only if, for every variable of
interest, the scenario description includes a differential influence path leading to it
from some driving variable such that every influence in the path is valid and sig-
nificant on that time scale. Intuitively, this simply states that the modeler should
choose a time scale on which the driving conditions of the question are capable of

causing significant change in the variables of interest.

8.3 Finding an Adequate Time Scale

To find a time scale that satisfies this criterion, a modeler must search for the
required influence paths. The search for influence paths during system boundary
selection is kept manageable by the time scale of interest, but no such focus is
available when searching for an adequate time scale of interest. The complete set
of influences for a scenario could be enormous, so generating that set and searching
through it for influence paths could be prohibitively expensive. Efficient time scale
selection requires the ability to generate and search through only a fraction of the
influences.

TRIPEL gains efficiency by starting with the fastest possible time scale and
testing successively slower time scales until it finds one that is adequate. When
TRIPEL tests a time scale, it can ignore all influences that are significant only on
slower time scales, so each test operates on a manageable fraction of the scenario
influences. By testing faster time scales before slower ones, TRIPEL performs the
inexpensive tests before the more expensive ones, because the set of significant in-
fluences grows monotonically as TRIPEL considers slower time scales. TRIPEL chooses
the first adequate time scale it finds as the time scale of interest.

To determine whether a candidate time scale is adequate, TRIPEL conducts a
breadth-first search, starting from the driving variables, for scenario variables that
are reachable via significant (on that time scale) influence paths. For each reachable
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variable, TRIPEL records whether it is reachable via a differential influence path or
a functional one. The actual influence paths need not be recorded. The search ends
when every variable of interest is reachable by a differential influence path (in which
case the time scale is adequate) or when the set of variables reachable at that time
scale is exhausted (in which case the time scale is not adequate).

For example, Part A of Figure 7.2 (page 96) shows some of the influences for
the question “What happens to the amount of ABA in a plant’s guard cells when the
turgor pressure in its leaves decreases?” To find an adequate time scale, TRIPEL first
tests a time scale of seconds. The figure illustrates that only the ABA synthesis rate
is significantly influenced by leaf turgor pressure on this time scale. Next, TRIPEL
tests a time scale of minutes. On this time scale, there is a differential influence path
from leaf turgor pressure to guard cell ABA amount (along the top of the figure), so
this time scale is chosen.

8.4 Practical Time Scale

If a time scale does not satisfy the criterion in Section 8.2, there is no scenario
model on that time scale that is adequate for answering the given question. For if
the required influence paths do not exist in the scenario description on that time
scale, no scenario model will include them, and hence no scenario model will satisfy
adequacy constraint 13. Thus, TRIPEL is justified in discarding any candidate time
scale that does not satisfy the adequacy criterion.

However, the criterion is not sufficient to ensure that there is an adequate
scenario model. While the criterion suggests that the question can be meaningfully
answered on any time scale judged adequate, the domain knowledge (and thus the
scenario description) may lack certain levels of detail that are required. For example,
on that time scale, there may not be a scenario model that satisfies the desired level
of detail.

In general, there is probably no way to guarantee that an adequate scenario
model exists on a given time scale short of building one. However, trying to build
an adequate scenario model is a potentially expensive process. The following simple
test can often recognize a time scale that satisfies the adequacy criterion even though
no adequate scenario model exists on that time scale.

Although the previous section stated that TRIPEL chooses the fastest ade-
quate time scale as the time scale of interest, it does not. Instead, after finding an
adequate time scale, TRIPEL tests that time scale using a slightly stronger version of
the adequacy criterion. Specifically, while searching for differential influence paths
relating the driving variables to the variables of interest, TRIPEL prunes any path
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that passes through a scenario variable that could not appear in an adequate sce-
nario model. This includes variables whose entity violates adequacy constraints 10
(entities consistent with black-box entities), 11 (entities consistent with glass-box
entities), or 12 (entities compatible with driving variables). It also includes vari-
ables whose entity is incompatible with the variables of interest (via constraint 9).
If a variable cannot appear in an adequate scenario model, any differential influ-
ence path that passes through it cannot be included in an adequate scenario model.
TRIPEL tests successively slower time scales, starting with the fastest adequate one,
until one of them satisfies the test. The first time scale to satisfy the test is chosen
as the time scale of interest.

Since this stronger test is ultimately used to choose the time scale of interest,
it would be possible to skip the earlier, weaker test. However, by using both tests as
described, TRIPEL provides valuable information. If a time scale passes the first test,
it is likely that the question is meaningful on that time scale. If that time scale does
not satisfy the stronger test, it is likely that the domain knowledge is simply missing
some important level of detail. Thus, to provide feedback on possible inadequacies
in the domain knowledge, as well as to indicate that the question is meaningful on a
time scale faster than the chosen time scale of interest, TRIPEL uses both tests and

warns the user whenever the tests suggest two different time scales.

8.5 Discussion

TRIPEL’s method for time scale selection has several limitations. First, it assumes
that a single time scale will suffice for answering a question. However, some questions
are best answered by combining the results of several models, each with a different
time scale [7, 42, 53, 59]. Also, the fastest adequate time scale may not be the
best one for answering some questions; there may be more important connections
between driving variables and variables of interest on slower time scales.

Another limitation results from using significance preconditions for both
model construction and time scale selection. For model construction, an influence’s
significance preconditions should specify the fastest time scale on which the influence
can be significant. This will cause TRIPEL to include the influence in cases where it
might be insignificant, but that is better than ignoring it in cases where it might be
significant. However, if the domain knowledge uses that convention for significance
preconditions, TRIPEL might choose a time scale of interest that is faster than it
really should be. Then, when using the fast time scale of interest during model
construction, TRIPEL may prune influences that are actually significant on the ap-
propriate time scale of interest. Thus, significance preconditions that are encoded
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to prevent TRIPEL from omitting significant influences can cause TRIPEL to omit
significant influences! This limitation could be remedied with additional knowledge;
if TRIPEL knew the fastest time scale on which an influence might be significant and
the time scale on which the influence is typically significant, it could use the former
during model construction and the latter for time scale selection.

Another limitation results from TRIPEL’s use of driving variables rather than
driving conditions. To illustrate the problem, consider the amount of glucose in
a plant’s leaves. The amount of glucose is influenced by photosynthesis (which
manufactures glucose), and this influence is sometimes significant on a time scale
of minutes (e.g., during a sunny day). The amount of glucose is also influenced
by respiration (which burns it to release energy), and respiration is significant on
a time scale of hours under most conditions. Suppose the question to be answered
is “When the rate of respiration exceeds the rate of photosynthesis (e.g., at night),
what happens to the amount of glucose?” The variable of interest (amount of
glucose) is significantly influenced by some driving variable (rate of photosynthesis)
on a time scale of minutes, so TRIPEL chooses that as the time scale of interest.
However, on that time scale, respiration is insignificant, so it is not included in the
model. Thus, the relevant driving condition cannot even be expressed in terms of
the model.

There are two possible remedies for this limitation. The first is simply to
require TRIPEL to find a relevant driving condition (rather than driving variable)
for each variable of interest, where a driving condition is relevant only if each of its
driving variables significantly influences the variable of interest. The other, more
complicated, remedy would be for TRIPEL to be more sensitive to the details of the
driving conditions. If TRIPEL knew that respiration exceeds photosynthesis only
when photosynthesis is operating very slowly, it could choose a more appropriate
time scale. I think the first solution could be implemented easily, but the second
solution would require more research.

Despite these limitations, TRIPEL’s method for selecting a time scale of inter-
est has proven quite successful in practice. The limitations only arise in relatively
rare cases. As will be shown in Chapter 9, TRIPEL typically chooses the most ap-
propriate time scale as the time scale of interest, and it does so efficiently.
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Chapter 9

Empirical Evaluation

9.1 Introduction

There are two important issues that must be empirically evaluated. The first issue
concerns the quality of the models TRIPEL constructs. Chapter 6 proved that TRIPEL
always returns a simplest adequate model when there is one. However, the proof
says nothing about whether the definition of a simplest adequate model matches
our intuitive notions of simplicity and adequacy. To address this issue, we tested
TRIPEL on plant physiology questions. Section 9.2 describes the knowledge base
that provided the plant physiology knowledge, and Section 9.3 describes an assess-
ment of TRIPEL’s performance by an expert in plant physiology. In addition, to
demonstrate the importance of several elements of TRIPEL, Section 9.4 shows how
TRIPEL’s performance degrades as these elements are weakened.

The second issue concerns TRIPEL’s efficiency. For complex systems, the full
scenario description and the space of possible models are very large. TRIPEL will
only be practical if it can cope with such complexity. As described in Section 9.2, the
plant physiology knowledge base provides an excellent test bed, because it describes
many plant phenomena at many levels of detail. Section 9.6 evaluates the efficiency
with which TRIPEL constructs models from this knowledge base.

9.2 The Botany Knowledge Base

This dissertation addresses the task of automatically constructing models of com-
plex systems. Specifically, our methods were developed to handle large scenario
descriptions that include many phenomena and many levels of detail. Therefore, to
empirically evaluate these methods, we require domain knowledge capable of cre-
ating such extensive scenario descriptions. For this purpose, we used the Botany
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Knowledge Base (BkB) [71].

The BKB is an ideal test bed for evaluating TRIPEL for three reasons. First,
its knowledge is extensive. The knowledge base currently contains about 200,000
facts covering plant anatomy, physiology, and development. Its knowledge ranges
over many phenomena and levels of detail. Second, it was independently developed
by a domain expert whose main objective was a faithful and unbiased representation
of botany knowledge. Finally, it was developed to support a wide range of tasks
besides prediction; that is, the BKB encodes fundamental, textbook knowledge, and
the representation of that knowledge was not chosen to facilitate its use for any
single task such as prediction.

It was not difficult to implement demand-driven scenario elaboration for the
BKB. The BKB includes inference methods, specifically rules and taxonomic inher-
itance, that can be used in a backward-chaining fashion. The types of knowledge
required by TRIPEL (described in Chapters 2 and 4) can all be provided by the BKB,
either directly or through inference methods. Thus, given a question regarding a
plant, scenario elaboration can use the BKB to generate missing elements of the
scenario description, including the influences that govern the plant.

However, while the BKB can provide the knowledge TRIPEL needs, we soon
discovered a number of errors in its knowledge. The BKB has been used to sup-
port a variety of research projects, including machine learning [63, 64], explanation
generation [1, 2, 57], and natural language generation [9]. However, none of these
projects required the types of knowledge that TRIPEL needs, so the knowledge grew
without being tested, and errors accumulated over the years. As the first consumer
of these types of knowledge, TRIPEL was the first to uncover the errors.

In order to use the BKB to evaluate TRIPEL, we had to eliminate as many
errors as possible. It would be difficult to evaluate TRIPEL if its performance was
poor due to faulty knowledge. To uncover errors, we used scenario elaboration to
generate the influences governing a prototypical plant, and we showed the results
to the expert. He identified erroneous and missing influences, he fixed the BKB, and
we repeated the process.

While a considerable number of problems were fixed this way, we eventually
reached a point of diminishing returns. It is difficult to anticipate how different
pieces of knowledge in the BKB will interact during inference. A change in the BKB
would often correct the targeted inference but introduce other unwanted inferences
(or eliminate desired inferences). When we reached this point of diminishing returns,
we switched to a more predictable method for eliminating the remaining errors. We
used the scenario elaboration methods to exhaustively elaborate the description of
a prototypical plant, storing this description as facts in the BKB, and the domain
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expert fixed errors in this description directly. With the help of a variety of simple
tools, the expert uncovered and fixed the remaining errors.

The result is a complete scenario description covering a prototypical plant
and its environment (soil and atmosphere), all stored in the BKB. This scenario
description includes 691 scenario variables and 1507 influences among them. It
includes 47 different spaces (e.g., roots, stems, leaves) and 172 different pools of
substances in those spaces (e.g., oxygen in the leaves). It includes 313 processes,
covering water regulation, metabolic processes like photosynthesis and respiration,
temperature regulation, and transportation of gases and solutes. Additionally, the
variables, influences, pools and processes cover many different levels of detail for
describing a plant. Thus, this description meets the most important requirement
for evaluating TRIPEL: it includes many phenomena at many levels of detail.

Although the scenario description is stored explicitly in the BKB, eliminating
the problem of errors due to faulty inferences, another problem remains: retriev-
ing knowledge from the BKB, even without inference, is currently slow. Without
unbundling TRIPEL’s computations from the retrieval of BKB facts, it would be dif-
ficult to assess TRIPEL’s efficiency, and experiments would be unnecessarily slow.
To alleviate this problem, we ran a program to extract all the elements of the sce-
nario description and store them in simple Lisp data structures. This version of the
scenario description was used to empirically evaluate TRIPEL, as described in the
remaining sections.

9.3 Evaluation by a Plant Physiology Expert

9.3.1 Experiment

To test TRIPEL, we asked the domain expert to construct a set of questions that
he thought the BKB could answer. To generate a large number of questions, he
constructed a set of question templates. For example, Figure 9.1 shows a question
template and a question that was generated from it. Because properties of a plant
can be described at many levels of detail (e.g., ABA in the plant versus ABA in the
leaves), question templates allowed the expert to generate many variations of each
basic question.

From the question templates, a random number generator was used to select
16 questions. That is, random numbers were used to select question templates and
choose from among the alternatives within each template. TRIPEL was tested on
these questions, and the results were informally evaluated by the domain expert. The
results showed that TRIPEL performed well, indicating that no changes to TRIPEL
or the scenario description were needed.
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Question template:

e How does an increase/decrease in plant/leaf ABA level affect plant/leaf water
potential?

Question generated from it:

e How does an increase in leaf ABA level affect leaf water potential?
Figure 9.1: A question template (above) and a question generated from it (below).
Items separated by “/” represent alternatives. Italicized choices indicate that the

same choice must be made in all places. For instance, in this example, either “plant”
or “leaf” must be chosen in both places.

However, to ensure that the results were not affected by the evaluation pro-
cedure, we devised the following procedure for evaluating TRIPEL’s performance on

subsequent questions:

1. The domain expert generates his answer (model and predictions) for a question
before looking at TRIPEL’s results. This prevents him from being influenced
by TRIPEL’s choices.

2. The domain expert evaluates TRIPEL’s model for the question by comparing
it to his own.

3. After the expert has evaluated TRIPEL’s performance on all questions, he
presents his assessment, and we discuss the knowledge he uses to reach his

conclusions.

To formally evaluate TRIPEL, another 15 questions were chosen randomly, and
the above procedure was followed. Only these 15 questions were evaluated carefully
and in great detail, so they form the basis of our evaluation. However, the informal
evaluation suggests that TRIPEL’s performance on these 15 is representative of its
performance on the entire 31. For this reason, we will sometimes present statistics
for all 31 to provide a broader picture.

Of the 15 questions used in the formal evaluation, one had to be thrown out.
The expert found the question odd, and he was not sure how to answer it. Therefore,
he could not, with confidence, determine which elements of the scenario description
were relevant to answering it. In the following sections, all formal evaluation results
are based on the remaining 14 questions. Appendix A lists all 31 questions; the first
14 are those used for the formal evaluation. Appendix B shows the models TRIPEL
constructed in the formal evaluation.
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Instantaneous | Seconds | Minutes | Hours | Days | None
3 2 12 11 1 2

Table 9.1: The distribution of time scales chosen by TRIPEL as the time scale of
interest. The top row lists the different time scales it chose, and the bottom row
lists the number of times it chose each time scale as the time scale of interest. The
last column indicates cases where TRIPEL could not find a practical time scale.

9.3.2 Does TRIPEL choose an appropriate time scale of interest?

Table 9.1 shows the distribution of time scales that TRIPEL chose as the time scale
of interest over the entire 31 questions. A time scale of “instantaneous” is chosen
when the causal effect is purely functional. For example, the question “How would
an increase in carbon dioxide in the leaves affect the rate of photosynthesis?” can
be answered on an instantaneous time scale; carbon dioxide is one of the reactants
of photosynthesis, so the effect is essentially immediate. The last column in the
table indicates cases where TRIPEL found no practical time scale for answering the
question. The distribution indicates that TRIPEL made use of a variety of time scales
in answering the questions.

Of the 14 questions that were formally evaluated, the expert judged TRIPEL’S
chosen time scale of interest appropriate in nine. In eight cases, TRIPEL’s choice was
the same as the expert’s. In the other case, TRIPEL’s choice was different than
the expert’s but nonetheless appropriate. TRIPEL’s model for this case captured an
effect that is significant and more immediate than the one captured by the expert’s
model. The effect modeled by the expert is less common but more dramatic when
it occurs. The expert believes both effects are important and that either one is an
adequate answer to the question.

Of the five cases where TRIPEL chose an inappropriate time scale, three were
due to errors in the scenario description. In the first case, TRIPEL chose a time scale
faster than the expert’s because an equilibrium influence in the scenario descrip-
tion was missing a validity precondition. Thus, TRIPEL thought this influence was
valid and significant instantaneously, while in actuality it represents an effect that
operates on a time scale of minutes. In the second case, TRIPEL chose a time scale
slower than the expert’s because the effect captured by the expert’s model could not
be represented using influences from the scenario description. The expert’s model
crossed levels of detail; he used an “influence” to show that a change in the amount
of sucrose in a plant’s shoot system suggests that the amount in a specific subpart
is likely to be changing similarly. However, the scenario description does not con-
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tain any such influence, and in fact TRIPEL could not find any adequate model for
this question precisely because the question requires this ability to cross levels of
detail. Similarly, in the third case, TRIPEL found no practical time scale because the
expert’s model crossed levels of detail using an influence that is not in the scenario
description.

In the remaining two cases, TRIPEL chose an inappropriate time scale be-
cause it erroneously judged an insignificant influence path as significant. In the first
case, TRIPEL actually chose the same time scale, based on the same effect, as the
expert. However, while the expert acknowledged that this was the most reasonable
connection between the driving variable and variable of interest, he said that the
connection is probably insignificant. Therefore, the proper answer was that there is
no adequate time scale and no adequate model. In the second case, TRIPEL found
a long influence path on a time scale of interest faster than the expert’s; the expert
said the path was in fact insignificant.

These last two cases are the most interesting, because they indicate that
TRIPEL’s criterion for determining whether an influence path is significant is too
simplistic. As defined in Chapter 5, an influence path is significant on a given time
scale if each of its influences is valid and significant on that time scale. However,
the expert’s reasoning indicates that an influence path might be significant only on
a slower time scale; the expert reasons about extra time lags due to the length of
the path or the spatial distance it covers. As we will see, this limitation of TRIPEL
also causes problems during model construction.

9.3.3 Does TRIPEL construct adequate models?

Of the 14 questions that were formally evaluated, the expert judged TRIPEL’s chosen
model adequate in ten. That is, in the expert’s judgement, these ten models include
all the variables and influences needed to generate the right predictions and expla-
nations. For example, Figure 9.2 shows the adequate model TRIPEL constructed to
answer the question “How does a decreasing amount of water in a plant affect the
amount of KT in its guard cells?” In nine of the ten, the models included all the
elements of the expert’s model. TRIPEL’s model for the remaining one captures an
effect that is significant and more immediate than the one captured by the expert’s
model, as discussed in Section 9.3.2. It may seem strange that TRIPEL constructed
an adequate model in one case where it chose an inappropriate time scale. However,
this was the case where a relevant influence was missing its validity preconditions,
as discussed in Section 9.3.2. TRIPEL constructed the right model, but it erroneously
thought the model operates on a faster time scale than it does.

For two of the remaining four questions, TRIPEL could not find any adequate
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Figure 9.2: The model TRIPEL constructed to answer the question “How does a
decreasing amount of water in a plant affect the amount of K% in its guard cells?”
(The figures in this chapter use the conventions introduced in Chapter 5.)

model. In both these cases, the expert’s model crosses levels of detail using an
influence not in the scenario description, as discussed in Section 9.3.2.

The remaining two failures, which are the most interesting, were already
analyzed in Section 9.3.2. Specifically, they are the two cases in which TRIPEL
found a connection between the driving variable and variable of interest that is in
fact insignificant. As discussed in that section, the problem is that TRIPEL’s criterion
for determining whether an influence path is significant is too simplistic.

9.3.4 Why does TRIPEL sometimes fail to find an adequate model?

TRIPEL determined that there is no adequate model for eight of the 31 questions.
(For two questions, it could not even find a practical time scale of interest.) In
each case, the problem lies with the scenario description. Conceptually, each such
question requires a model of several aspects of the plant, and the available levels of
detail for these aspects are not compatible. For example, the scenario description
cannot provide an adequate model for the question “What is the effect of an increas-
ing amount of CO3 in the symplast of a plant’s leaves on the rate of photosynthesis
in the leaves?” The problem is that the scenario description does not relate prop-
erties of the leaves’ symplast to properties of the leaves as a whole. In each such
case, a close variant of the question can be successfully answered. For example, the
scenario description can provide an adequate model for the question “What is the
effect of an increasing amount of CO5 in the symplast of a plant’s leaves on the rate

110



of photosynthesis there?” In this question, both the driving variable and variable of
interest concern the symplast. There were more questions without adequate models
in the first set of questions (six) than the second set (two) because generation of the
first set erroneously ignored coherence constraints in the question templates (e.g.,

the italicized elements in Figure 9.1).

9.3.5 Do the models TRIPEL constructs include irrelevant elements?

Across the 23 questions for which TRIPEL found an adequate model, the size of the
simplest adequate model it found varied considerably. Table 9.2 shows the size of the
simplest adequate model it found for each of these questions. The table shows that,
on average, there are about 2 influences on each variable in these models. Almost
all variables in these models represent rates of processes and amounts and concen-
trations of pools; the table shows how many pools and processes are represented in
each model.

For the ten (out of 14) questions for which the expert judged TRIPEL’s model
adequate, Table 9.3 compares the size of the model with its number of irrelevant ele-
ments (according to the expert). These numbers are somewhat misleading, though;
one error in TRIPEL’s judgement typically forces it to include many irrelevant ele-
ments. For this reason, the types of errors it made are more interesting. Most of
the irrelevant elements in these models (as well as the models that were only infor-
mally evaluated) were included because TRIPEL erroneously thought an influence or
influence path was significant. Most of TRIPEL’s errors result from three differences
between TRIPEL’s criteria for significance and the expert’s criteria:

e The expert uses a finer gradation of time scales than those in the scenario
description. For each time scale in the scenario description (e.g., minutes or
hours), the expert considers a variety of more specific time scales (e.g., a few
minutes versus many minutes). When the expert chooses “few minutes” as the
time scale of interest, he ignores processes operating on a time scale of many
minutes. Because the scenario description does not distinguish these two time
scales, TRIPEL treats the slower processes as significant.

e As discussed in Section 9.3.2, TRIPEL’s criterion for determining whether an
influence path is significant is too simplistic. Therefore, TRIPEL sometimes
includes a feedback loop that the expert can tell is insignificant.

e TRIPEL does not consider behavioral conditions when assessing an influence’s
significance, because it attempts to build models that will cover any behavioral
conditions that might arise. In contrast, the expert sometimes determines
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# | Tsol Variables | Influences | Pools | Processes
16 | instantaneous 3 2 2 0
1 | instantaneous 6 5 4 1

hours 6 7 3 2

3 | instantaneous 7 6 5 1

17 | minutes 7 7 3 2
4 | minutes 8 10 3 2

18 | seconds 10 14 2 2
5 | minutes 11 14 5 3

19 | seconds 12 16 3 2
6 | hours 16 25 6 6

20 | hours 16 25 6 6
21 | hours 18 27 6 6
7 | minutes 19 28 7 7

8 | minutes 25 41 9 9

22 | hours 26 41 8 10
23 | hours 37 66 14 14
9 | minutes 41 70 14 15

24 | hours 59 111 18 25
25 | hours 74 131 23 33
10 | minutes 78 145 23 32
11 | minutes 82 147 23 31
15 | minutes 82 148 23 31
12 | days 93 173 27 39

Table 9.2: The size of the simplest adequate model TRIPEL found for those questions
where it found an adequate model. Each row represents a question. The first column
shows the question number. The second column shows the time scale of interest
(Tsor) that TRIPEL chose. The remaining columns show the number of variables,
influences, pools and processes in the simplest adequate model TRIPEL found. The
rows are ordered by the size of the models.
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# | TRIPEL’s Model | Irrelevant Elements
1 6,5,4,1 none

2 6,7, 3,2 none

3 7,6,5,1 none

4 8, 10, 3, 2 none

5 11,14, 5, 3 none

6 16, 25, 6, 6 5,8,2,1

7 19,28, 7,7 6,9, 2, 2

8 25,41,9,9 none

9 41, 70, 14, 15 29, 55, 10, 10
11 | 82,147, 23, 31 64, 121, 17, 28

Table 9.3: The number of irrelevant elements in the models TRIPEL constructed.
Each row represents a question. The first column shows the question number. The
second column shows the number of variables, influences, pools and processes in the
simplest adequate model found by TRIPEL. The third column shows the number of
these variables, influences, pools and processes that are not relevant to answering
the question. The rows are ordered by the size of the models.

that an influence is insignificant because it is significant only under behavioral
conditions that will not arise in the scenario. For example, oxygen is rarely a
limiting reactant for respiration; therefore, when the expert can see that the
driving conditions of a question will not cause oxygen to become limiting, he
omits the influence of oxygen on respiration.

In summary, most of TRIPEL’s models do not include irrelevant elements, and
most of the irrelevant elements that it includes could be eliminated by extensions
to its criteria for identifying significant influences and influence paths.

9.4 Ablation Experiments

The preceding sections suggest that TRIPEL is relatively successful at building simple,
adequate models from a large scenario description. However, while those sections
point out specific weaknesses, they do not identify the keys to TRIPEL’s successes.
This section quantifies the importance of two key elements of TRIPEL: its system
boundary criteria and its use of a time scale of interest.
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9.4.1 Weakening the System Boundary Criteria

TRIPEL’s criteria for choosing exogenous variables are an important source of its
power. A model’s exogenous variables constitute its system boundary, and ev-
erything outside the boundary is deemed irrelevant. Suitable criteria for choosing
exogenous variables help a modeler include relevant phenomena while omitting irrel-
evant ones. In contrast, if the modeler’s criteria are flawed, the model may include
irrelevant phenomena or, worse yet, exclude relevant phenomena. Chapter 5 pro-
posed the following two criteria for choosing exogenous variables, which are used by
TRIPEL (adequacy constraints 3 and 4):

e A scenario model is adequate only if none of its exogenous variables is signifi-
cantly influenced in the scenario description, on the time scale of interest, by
another variable in the model.

e A scenario model is adequate only if none of its exogenous variables is signifi-
cantly influenced in the scenario description, on the time scale of interest, by
a driving variable (other than itself if it is a driving variable).

To evaluate the validity of these criteria, as well as determine their role in
TRIPEL’s success, we replaced the criteria with the following alternative: A scenario
model is adequate only if none of its exogenous variables is significantly influenced
in the scenario description, on the time scale of interest, by any other variable in
the scenario description (regardless of whether that other variable is in the model or
is a driving variable). Intuitively, a variable can be exogenous under this criterion
only if it is regulated on a time scale slower than the time scale of interest. For
example, on a time scale of minutes, growth processes are insignificant, so the size
of a plant can be exogenous.

This criterion provides a good comparison for several reasons. First, it is
intuitively reasonable. Second, it is more conservative than TRIPEL’s criteria; any
variable that can be exogenous under this criterion can also be exogenous under
TRIPEL’s criteria. Finally, this criterion is simpler conceptually as well as simpler to
implement.

We modified TRIPEL to use this conservative criterion for choosing exogenous
variables, and we tested the resulting program on all 31 questions. The conservative
program found an adequate model for exactly those questions that TRIPEL did. For
those questions, Table 9.4 compares the sizes of the models found by TRIPEL (shown
earlier in Table 9.2) with the sizes of the models found by the conservative program.

This table illustrates two points. First, the conservative criterion typically
results in a significantly larger model. Second, the model found using the conserva-
tive criterion typically includes all the variables and influences in TRIPEL’S model.
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# | Tsorl TRIPEL | Conservative | Variables/Influences in Common
16 | instantaneous | 3/2 3/2 3/2
1 | instantaneous | 6/5 11/11 6/5
hours 6/7 13/15 6/7
3 | instantaneous | 7/6 10/9 7/6
17 | minutes 7/7 8/8 /7
4 | minutes 8/10 9/11 8/10
18 | seconds 10/14 14/18 10/14
5 | minutes 11/14 55/84 10/13
19 | seconds 12/16 14/18 12/16
6 | hours 16/25 35/50 16/25
20 | hours 16/25 35/50 16/25
21 | hours 18/27 35/50 18/27
7 | minutes 19/28 34/50 19/28
8 | minutes 25/41 43/67 25/41
22 | hours 26/41 39/59 26/39
23 | hours 37/66 63/103 37/66
9 | minutes 41/70 67/109 41/70
24 | hours 50/111 | 85/148 59/111
25 | hours 747131 | 98/168 74/131
10 | minutes 78/145 120/207 78/145
11 | minutes 82/147 105/183 81/140
15 | minutes 82/148 105/183 81/144
12 | days 93/173 | 106/190 92/172

Table 9.4: The sizes of the models constructed by TRIPEL and by a variant that uses
a more conservative criterion for choosing exogenous variables. Each row represents
a question. The first column shows the question number. The second column shows
the time scale of interest that TRIPEL chose for the question. The third column
shows the number of variables and influences in the simplest adequate model that
TRIPEL found. The fourth column shows the number of variables and influences in
the simplest adequate model found by the conservative variant. The last column
shows the number of variables and influences that the two models have in common.
The rows are ordered by the size of the models.
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(The conservative model sometimes excludes a few variables and influences that
are in TRIPEL’s model because the conservative model includes alternatives in their
place.)

For every question evaluated by the domain expert, the extra elements in the
conservative models are all irrelevant (according to the expert). This suggests that
TRIPEL’s criteria for choosing exogenous variables are effective in retaining relevant
phenomena while excluding irrelevant phenomena. The difference in size between
TRIPEL’s models and the conservative models shows the extra power TRIPEL’S cri-

teria provide for achieving simple models.

9.4.2 The Importance of a Time Scale of Interest

As discussed throughout this dissertation, a time scale of interest is an important
source of TRIPEL’s power. A time scale of interest allows TRIPEL to treat influences
that operate on a slower time scale as insignificant. It allows TRIPEL to model
the effects of faster processes using equilibrium influences, based on a quasi-static
approximation. It allows TRIPEL to treat separate pools as a single aggregate when
they equilibrate on a faster time scale. If TRIPEL did not use a time scale of interest,
the simplest adequate model for a question would be much more complex than it
currently is.

To test this claim, we ran TRIPEL on each of the 31 questions without using
a time scale of interest. Without a time scale of interest, TRIPEL cannot recognize
insignificant influences, and it cannot use influences whose validity depends on the
time scale of interest. For those questions where TRIPEL originally found no adequate
model, the modified version of TRIPEL also found no adequate model (because these
questions expose gaps in the scenario description). For those questions on which
TRIPEL did originally find an adequate model, Table 9.5 compares the size of that
model against the size of the model constructed when TRIPEL does not use a time
scale of interest.

This table illustrates two points. First, when TRIPEL does not exploit a time
scale of interest, it constructs a model that is significantly larger, and the effect
is even more dramatic than it was using the conservative criterion for choosing
exogenous variables. Second, TRIPEL often cannot construct an adequate model
even though it could when using a time scale of interest. Without using a time
scale of interest, TRIPEL is forced to model more phenomena, and it is more likely to
need two phenomena for which the scenario description does not include compatible
levels of detail. Thus, a time scale of interest not only results in smaller models, but
also makes TRIPEL less sensitive to gaps in the scenario description.

For every question evaluated by the domain expert, the models built without
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# | Tsor TRIPEL | No TSOI
16 | instantaneous | 3/2 97/181
1 | instantaneous | 6/5 116/218
hours 6/7 13/18

3 | instantaneous | 7/6 116/218
17 | minutes 7/7 64/114
4 | minutes 8/10 | 116/218
18 | seconds 10/14 na

5 | minutes 11/14 na

19 | seconds 12/16 na

6 | hours 16/25 | 64/114
20 | hours 16/25 | 64/114
91 | hours 18/27 | 64/114
7 | minutes 19/28 | 99/185
8 | minutes 25/41 | 65/115
22 | hours 26/41 | 116/218
23 | hours 37/66 | 64/114
9 | minutes 41/70 na

24 | hours 59/111 na

25 | hours 74/131 | 116/218
10 | minutes 78/145 | 139/269
11 | minutes 82/147 | 168/307
15 | minutes 82/148 | 168/306
12 | days 93/173 | 97/181

Table 9.5: The sizes of the models constructed by TRIPEL and by a variant that
does not exploit a time scale of interest. Each row represents a question. The first
column shows the question number. The second column shows the time scale of
interest that TRIPEL chose for the question. The third column shows the number
of variables and influences in the simplest adequate model that TRIPEL found. The
fourth column shows the number of variables and influences in the simplest adequate
model found by the variant; “na” means that no adequate model was found. The
rows are ordered by the size of the models.
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using a time scale of interest are strictly inferior to the models TRIPEL originally
constructed. That is, in every case, they add irrelevant elements without adding

any missing relevant elements (according to the expert).

9.4.3 Combining the Ablations

To see the result of combining the two variants of TRIPEL — ignoring the time
scale of interest and using the conservative criterion for choosing exogenous vari-
ables — we created a third variant of TRIPEL and tested it on all 31 questions.
Table 9.6 combines the results of this new variant with the results shown in Ta-
bles 9.4 and 9.5. The last two columns show the new results: the simplest and
most-detailed adequate models constructed by the new variant for each question.
These columns are interesting for two reasons. First, the size of the simplest models
it found shows how models degrade when the previous two variants are combined.
Second, the most-detailed models constructed by the new variant are in fact the
most-detailed adequate models (from the scenario description) for the questions, so
the last column provides a useful comparison with the size of the models TRIPEL

originally constructed.!

9.5 Simulation Experiments

So far, the dissertation has focused entirely on modeling. However, as stated in
Chapter 1, our long-term goal is a computer program that can answer prediction
questions, not just a program that builds models. A program for answering predic-
tion questions must pass the model constructed by TRIPEL to an analysis program
that can generate the predictions. The issues that TRIPEL addresses are important
regardless of the method of analysis. This section describes the result of integrating
TRIPEL with one particular analysis program, the Qualitative Process Compiler [27].

Integrating TRIPEL with an analysis program serves two purposes. First, it
provides further evaluation of the models that TRIPEL constructs. At this early
stage of research in automated modeling, an expert’s evaluation is crucial, because
an expert is able to assess whether a model will make the right predictions and
whether it makes them for the right reasons. However, humans are prone to er-
rors in generating predictions from formal models, so a formal analysis program is
valuable in catching such errors. Second, although TRIPEL supports many meth-

! Although most of the detailed models are quite large, notice that the detailed model for one
question is small. That question specifically asks about a process, plant water distribution, that
treats the entire plant as a conduit for water transport from the soil to the atmosphere. Thus,
every adequate model for answering the question abstracts all the internal details of the plant.
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# | Tsor TRIPEL | Conservative | No Tsol | Combined (simplest) | Combined (detailed)
16 | instant. | 3/2 3/2 97/181 106/193 195/354
T | instant. | 6/5 11/11 116/218 129/234 159,296
hours 6/7 13/15 13/18 14/19 14/19

3 | instant. | 7/6 10/9 116/218 129/234 156290
17 | minutes | 7/7 8/8 64/114 71/122 72/124
1 | minutes | 8/10 9/11 116/218 129/234 137/247
18 | seconds | 10/14 14/18 na na na

5 | minutes | 11/14 55/84 na na na

19 | seconds | 12/16 14/18 na na na

6 | hours 16/25 35/50 64/114 71122 76/132
20 | hours 16/25 35/50 64/114 71/122 76/132
21 | hours 18/27 35/50 64/114 71/122 76/132
7 | minutes | 19/28 34/50 99/185 106/193 195/354
8 | minutes | 25/41 13/67 65/115 71/122 75/130
22 | hours 26/41 39/59 116/218 129/234 160/298
23 | hours 37/66 63/103 64/114 71/122 72/124
9 | minutes | 41/70 67/109 na na na

24 | hours 59/111 85/148 na na na

25 | hours | 74/131 98/163 116/218 129/234 159/296
10 | minutes | 78/145 |  120/207 | 139/269 152/285 160,298
1 | minutes | 82/147 | 105/183 | 168/307 177/319 195/354
15 | minutes | 82/148 | 105/183 | 168/306 177/318 195/354
12 | days 93/173 | 106/190 97/181 106/193 195/354

Table 9.6: A summary of the ablation experiments. Each row represents a question.
The first column shows the question number. The second column shows the time
scale of interest that TRIPEL chose for the question. The other columns show the
sizes (number of variables and influences) of the models constructed by TRIPEL,
the conservative variant, the variant that ignores the time scale of interest, and the
variant that combines these two ablations (the simplest and most-detailed models
it constructed). The rows are ordered by the size of the models.
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ods of analysis in principle, each method may require some additional issues to be
addressed. Integration of TRIPEL with an analysis program will expose these issues.

Models constructed from the BKB cannot be numerically simulated because
it contains few quantitative details. It is designed to cover a wide variety of plant
species; while different species are governed by similar phenomena, they differ greatly
in their quantitative details. Furthermore, in its current stage of development,
the BKB is primarily intended for tutoring. For that task, quantitative details are
typically irrelevant. Thus, generating predictions using models constructed from the
BKB requires qualitative simulation.

Qualitative Simulation

To perform qualitative simulations using the models TRIPEL constructs, I integrated
TRIPEL with the Qualitative Process Compiler (QpPcC) [27], a qualitative simulation
program. After TRIPEL constructs a scenario model, it passes the model to Qrc.
Starting from the initial state of the specified scenario, QPC identifies the active
influences in the scenario model (i.e., those influences whose activity preconditions
are satisfied), and it uses them to generate a set of qualitative differential equations
(QDEs). QpPc simulates the equations using the QsiM program [52, 54]. As the state
of the scenario changes during simulation, the set of active influences in the scenario
model may change, so QPC repeatedly formulates a set of QDEs and simulates them
until simulation is complete.

Qualitative differential equations are an abstraction of ordinary differential
equations. Figure 9.3 shows a simple model consisting of influences (Part A) and
the corresponding QDEs (Part B). This figure illustrates two points. First, differ-
ential influences are combined in a stronger way than functional influences: each
differential influence is assumed to be an additive term (although it is possible to
specify otherwise). Second, the information about the function f lacks quantitative
details.

The output of QpC is a qualitative behavior for the scenario. For example,
Figure 9.4 shows the qualitative behavior of one variable, the amount of water in a
bathtub, as the water in the tub drains out. The figure illustrates two important
aspects of qualitative predictions. First, the magnitude of a variable is represented
only by its relationship to fixed “landmarks”; in this example, the landmarks are
the amount corresponding to a full tub and the amount corresponding to an empty
tub. The dotted lines indicate the transition from one qualitative state to another,
not the quantitative trajectory. Second, a variable’s rate of change is represented
as the sign of its first derivative: zero (steady, shown as o), negative (decreasing,
shown as |), and positive (increasing, typically shown as 1, but not shown in the
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Figure 9.3: (A) A set of influences representing a simple model of a bathtub. The
variable a represents the amount of water in the tub, i is the rate of inflow from
the faucet, o is the rate of outflow through the drain, and d is the size of the drain.
The variables i and d are exogenous. (B) The corresponding qualitative differential
equations.

example).

For some domains and tasks, qualitative predictions are appropriate. For
plant physiology, different species differ significantly in their quantitative details.
For this reason, plant physiology books often describe only the qualitative behavior
of plants and the mechanisms responsible for that behavior. Thus, the combination
of TRIPEL and QpPC could provide a valuable foundation for a tutoring system in
plant physiology or similar domains.

Unlike numerical simulations, QPC does not necessarily predict a unique be-
havior for the physical system described by a scenario model. Often, due to lack of
quantitative details, there are multiple behaviors for the system that are consistent
with the @DEs. This is because a QDE model is an abstraction of many different ODE
models, each with different quantitative details. Thus, each qualitative behavior of
a QDE model is an abstraction of the quantitative behaviors resulting from some of
the underlying oDE models.

Integrating TRIPEL and QPC

Integrating TRIPEL with QPC required solutions to several problems:

e For each variable in a scenario model, TRIPEL must specify the range of the
variable and any important landmarks. To address this issue, I manually
added, for each variable in the elaborated scenario description, its range for
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Figure 9.4: The qualitative behavior of the amount of water in a bathtub as the
water drains out. This behavior includes three qualitative states: the amount is full
and decreasing at the initial time instant t0, it is between full and empty and is
decreasing in the time interval between t0 and t1, and it is empty and steady at the
final time instant t2.

a prototypical plant under typical daytime conditions. For example, amount
variables are all positive (e.g., a plant without any water would not look much
like a plant). When TRIPEL passes a scenario model to QPC it also passes
range constraints for every variable in the model.

e TRIPEL must specify an initial state for variables whose initial state is not
specified in the question and cannot be determined using the model. To ad-
dress this issue, I modified Qrc as follows. After QPC generates all the initial
states of the scenario that are consistent with the model and question, it calls
a subroutine that selects the initial state that is closest to equilibrium. That
is, it selects the initial state with the greatest number of steady variables.

e TRIPEL must specify the qualitative behavior for exogenous variables whose
behavior is not specified in the question. Currently, QPC assumes that exoge-
nous variables are constant unless otherwise specified. Such an assumption is
typically appropriate, so TRIPEL simply allows QPC to make such assumptions.

e Finally, qualitative simulation often produces multiple behaviors whose differ-
ence is irrelevant to answering the given question. It is typically difficult to
identify the differences among multiple behaviors to determine whether those
differences are relevant. To address this issue, I allowed QPC to use a tool
developed by Dan Clancy [15]. This tool collapses certain differences among
behaviors and represents the ambiguity as part of a single behavior (e.g., the
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symbol ] indicates that a variable may be increasing or decreasing). In our
experience using QPC to answer plant physiology questions, this tool has been

invaluable in collapsing irrelevant distinctions.

These solutions have worked well in practice. The domain expert typically
assumes that the initial state of a plant is as close to equilibrium as possible, he
typically assumes that exogenous variables are constant unless otherwise specified,
and the range constraints include the range of interest for all the questions we have
simulated. However, although these solutions sufficed for the simulation experiments
to be described shortly, they are not intended as general solutions. Chapter 10
describes some limitations of these solutions and areas for future work.

Experiment and Results

For each of the ten models that the expert judged adequate, TRIPEL passed the model
to Qpc for simulation. Those five models with the fewest variables (corresponding
to question 1-5) all generated a single, unique behavior. Four of these behaviors
(for questions 1, 2, 3, and 5) matched the expert’s predictions exactly. (The expert
described all his predictions in qualitative terms.)

From the model for question 4, Qpc predicted a different behavior than the
expert. The question asks “What happens to turgor pressure in a plant’s leaves
as root water absorption decreases?” Figure 9.5 shows the model that TRIPEL
constructed to answer the question. The problem with the model is that it does
not include the influence of transpiration on leaf water amount. TRIPEL omitted
this influence because transpiration operates on a time scale of hours, while TRIPEL
chose minutes as the time scale of interest. Without transpiration, there is an
inflow of water into the leaves but no outflow, so the amount of leaf water increases.
In contrast, the expert assumed that the plant starts out with transpiration and
water absorption balanced, so a decrease in water absorption causes leaf water to
decrease. TRIPEL’s model is inadequate for generating that prediction, but the
expert overlooked the inadequacy because transpiration plays an indirect role in
answering the question.

TRIPEL’s error in this question is a result of the time scales in the scenario
description. As discussed in Section 9.3.5, the expert uses a finer gradation of time
scales than those in the scenario description. To the expert, root water absorption
operates on a time scale of many minutes, while transpiration operates on a time
scale of one to two hours. Therefore, to the expert, these two processes are closely
comparable, and they cannot be separated under most conditions. Yet the scenario
description tells TRIPEL that the processes operate on time scales of minutes and

hours, respectively, so TRIPEL erroneously separates them.
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Figure 9.5: The model TRIPEL constructed to answer the question “What happens
to turgor pressure in a plant’s leaves as root water absorption decreases?”

124



T

heat + » Plant + - plant + - transpiration _ —  atmosphere

absorption heat temperature rate water potential

rate x amount _ B X —

b3
light-heat \L lant

+T conversion —T + stomata__* \?Jg{gr * \I?vater

_ rate size amount potential
environment — heat ~
temperature ——= dissipation N
—_— rate

rhizosphere + _ water

water potential = absorption

rate
N\,
J
water

soil water__"___transport_*_,_rhizosphére
potential rate water amount

Figure 9.6: The model TRIPEL constructed to answer the question “What happens
to a plant’s water potential as the temperature of the environment decreases?”

While Qpc generated a single, unique behavior for the five models with the
fewest variables, it generated a number of possible behaviors for the next simplest
model (for question 6). However, the ambiguity is due only to the influences on
one variable, transpiration rate. Figure 9.6 shows the model for question 6. Given
qualitative information alone, QPC cannot tell whether a change in plant temper-
ature will cause a corresponding change in transpiration (through the immediate
influence) or an opposite change (via stomata size). However, if I assert to QpcC
that the influence of plant temperature on transpiration dominates the influence
of stomata size (i.e., that transpiration behaves as if it is only a function of plant
temperature while plant temperature is changing), QPC generates a single, unique
behavior for this question, the one predicted by the expert. The influence of temper-
ature dominates the influence of stomata size because temperature is a driving force
for transpiration, while stomata size merely controls the resistance. This example
demonstrates three things: the influences in the model are adequate for answering
the question, qualitative information alone is insufflicient to generate the required
prediction, and knowledge of dominant influences eliminates the ambiguity.

For the remaining four models (questions 7-10), QPC also generated a number
of possible behaviors. However, unlike the model for question 6, there are many
sources of ambiguity in these models. As with question 6, the problem does not lie
with TRIPEL’s choice of influences. The problem is that the qualitative information
provided by the BKB is not sufficient to uniquely determine the behavior of the
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variables of interest.

The ambiguity in the predictions could be reduced in several ways. One
solution would be to incorporate some quantitative information into the BKB. QPC
can incorporate varying amounts of quantitative information into its qualitative
simulation, and the extra information typically reduces ambiguity. Alternatively,
the BKB could provide information as to which influences tend to dominate other
influences. QPc could use this information to reduce ambiguity, as it did for question
6 (described earlier). Along with a colleague, | have begun exploring the second
approach as an extension to QpPC, but more work remains.

In summary, the simulation experiments show that those models judged ad-
equate by the domain expert result in a unique, correct qualitative prediction in
about half the cases. In one other case, simulation showed an inadequacy in a
model that the expert overlooked. Finally, for the remaining models, QPC generates
many possible behaviors, showing that qualitative information alone is insufficient
for predicting the behavior of larger models.

9.6 Efficiency

For each of the domain expert’s questions, we evaluated the efficiency with which
TRIPEL constructs the simplest adequate model. We separately evaluated the three
primary steps that TRIPEL performs: time scale selection, system boundary analysis,
and model construction. Note that the timing data reported in this section does
not include the time required for scenario elaboration, since scenario elaboration
was run to completion before TRIPEL was run, as described in Section 9.2. The
timing data pertains to Harlequin Lispworks 3.2 Common Lisp running on a DEC
3000/500 workstation.

9.6.1 Time Scale Selection

Of the three steps we evaluated, time scale selection is by far the most efficient.
The time required for time scale selection is a small fraction of the time required for
system boundary analysis and model construction. Across all the domain expert’s
questions, Table 9.7 shows the number of seconds TRIPEL took, in the worst case,
to choose a particular time scale as the time scale of interest.

It takes longer to choose a slower time scale of interest for two reasons. First,
the set of significant influences grows monotonically as TRIPEL considers slower time
scales. Thus, there are fewer influences to search through on a time scale of seconds
than there are on a time scale of hours. Second, TRIPEL starts with the fastest
possible time scale and tests successively slower time scales until it finds one that is
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Instantaneous | Seconds | Minutes | Hours | Days | None
.003 .01 .39 .82 .95 1.9

Table 9.7: The time required by TRIPEL to choose a time scale of interest. For each
time scale, the table shows the number of seconds required for time scale selection,
in the worst case, when that time scale was chosen as the time scale of interest. The
last column indicates the number of seconds required during time scale selection,
in the worst case, to determine that no practical time scale exists for the given
question. The times do not include the time required for scenario elaboration.

adequate. For example, to choose hours as the time scale of interest, TRIPEL must
test four time scales: instantaneous, seconds, minutes and hours. Thus, the time
required to choose a slow time scale of interest includes the time required to test
faster time scales.

9.6.2 System Boundary Analysis

Recall from Chapter 7 that system boundary analysis consists of two steps. First,
TRIPEL uses a breadth-first search to identify the potentially relevant variables and
influences. Second, it uses the Floyd-Warshall transitive closure algorithm to com-
pute a connectivity matrix. The time required to perform the system boundary
analysis is dominated by the transitive closure algorithm. The Floyd-Warshall algo-
rithm requires ©(n?) time, where n is the number of potentially relevant variables
[17]. (Of course, this complexity analysis ignores the cost of scenario elaboration.)

One of the biggest surprises during the empirical evaluation was the number
of potentially relevant variables TRIPEL found for each of the expert’s questions.
The number was nearly independent of the question; it depended primarily on the
time scale of interest. When the time scale of interest was instantaneous or seconds,
there were one or two dozen potentially relevant variables, and system boundary
analysis finished in less than one second. However, when the time scale of interest
was minutes, there were always about 450 potentially relevant variables, and there
were always about 650 on a time scale of hours. Since the entire scenario description
includes 691 variables, these numbers represent a significant fraction.

There is a high cost to identifying this many potentially relevant variables.
First, it will cause demand-driven scenario elaboration to generate a significant
fraction of the complete scenario description, which could be very costly. Second, it
makes the transitive closure algorithm expensive; the algorithm requires about 30
minutes to handle 450 variables and about two hours to handle 650. Even though
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we could expect significant improvements from an optimized implementation in a
more efficient language, this situation is unacceptable.

The root of the problem is TRIPEL’s criteria for determining whether an in-
fluence path is significant, as already discussed in Sections 9.3.2 and 9.3.5. As long
as every influence in a path is valid and significant, TRIPEL considers the path signif-
icant. When identifying potentially relevant variables and influences, this criterion
causes TRIPEL to include variables that influence the variables of interest through
very long paths. The expert can tell that these paths are insignificant from their
global properties, such as length, spatial distance covered, and cumulative delays
along the path. Thus, the same problem that causes TRIPEL to err in time scale se-
lection and to include irrelevant elements in models causes inefficiency during system
boundary analysis.

There is a simple solution to the problem for some cases. Sometimes, a wide
variety of questions can be answered from the same basic scenario description. That
is, the complete scenario description for each question includes the same influences;
each question is distinguished simply by different driving conditions and variables
of interest. This is the case with all the expert’s questions concerning a prototypical
plant. It would also be the case for a chemical processing facility; from domain
knowledge of chemical engineering, the complete set of influences could be gener-
ated and used to answer a wide variety of questions. While exhaustive scenario
elaboration may be expensive (e.g., for the BKB it takes about 24 hours), it may be
worthwhile in such cases. Given a complete scenario description, TRIPEL can gen-
erate a complete connectivity matrix (i.e., including all scenario variables) for each
possible time scale. For the scenario description generated from the BKB, this also
takes about a day. Then, to answer a question, system boundary analysis simply
selects the matrix corresponding to the time scale of interest. We have implemented
this strategy, and it allows plant physiology questions to be answered very quickly.

Nevertheless, the long-term solution is clear. To make system boundary
analysis efficient, as well as to improve other areas of TRIPEL’S performance, we must
improve TRIPEL’s criteria for determining whether an influence path is significant.

9.6.3 Model Construction

After time scale selection and system boundary analysis, TRIPEL executes its model
construction algorithm, Find-adequate-model. For the expert’s questions, the time
required for model construction is quite reasonable, as shown by Table 9.8. This
table shows the time required for model construction on 29 of the expert’s questions;
in the remaining two questions, TRIPEL finds no practical time scale, so it never
performs model construction. For most questions, model construction takes less
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than one minute, often less than one second. Of the questions where it found an
adequate model, the longest it took was about three minutes. The longest it took to
recognize that no adequate model exists for a question was less than eight minutes.

To appreciate TRIPEL’s efficiency, consider the size of the search space. Any
combination of influences defines a legal scenario model: the model’s dependent
variables are the influencees of the influences, and all other variables referenced
by the influences are exogenous. Furthermore, each of these scenario models is
different since they include different influences. Thus, since the scenario description
for a prototypical plant includes over 1500 influences, the search space includes over

21500 hossible scenario models.

TRIPEL searches this space efficiently because it avoids generating most of
these models. By pruning a partial model, TRIPEL avoids generating any of its
extensions. Therefore, one way to measure the efficiency of model construction is to
determine how many partial models TRIPEL explicitly generates and considers for

each question.

TRIPEL performs a best-first search for the simplest adequate model. When
TRIPEL finds an adequate model, it is the simplest, so the search terminates. Thus,
all the partial models that TRIPEL generates fall in one of three classes: the simplest
adequate model, models that were pruned by monotonic constraints, and models
left on the agenda at termination.

For each of the 29 questions that required model construction, the “Best-first
Search” column in Table 9.9 shows how many partial models were pruned by mono-
tonic constraints and how many were left on the agenda. The numbers indicate that
TRIPEL only generates a manageable number of partial models, especially compared
to the size of the search space. Even when there is no adequate scenario model,
TRIPEL can recognize this fact by explicitly generating only a small fraction of the
search space.

To determine how much of TRIPEL’s efficiency is due to its best-first search
strategy, we modified TRIPEL to perform an exhaustive search. Thus, model con-
struction terminates only when the search agenda is empty. With this search strat-
egy, all the partial models that TRIPEL generates fall in one of two classes: models
pruned by monotonic constraints, and adequate models that TRIPEL finds. For each
of the 29 questions, the “Exhaustive Search” column in Table 9.9 shows how many
partial models were pruned by monotonic constraints and how many adequate sce-
nario models were found. In many cases, the exhaustive search strategy caused
TRIPEL to consider many more partial models than it did using a best-first search,
indicating the importance of its best-first strategy.
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# | Tsorl Model Size (variables) | Time (seconds)
26 | hours na .03
27 | minutes na 4
28 | minutes na 2
29 | hours na 19
13 | hours na 202
30 | minutes na 449
16 | instantaneous 3 .04
1 | instantaneous 6 .01
2 | hours 6 .04
17 | minutes 7 .03
3 | instantaneous 7 .06
4 | minutes 8 .09
18 | seconds 10 .03
5 | minutes 11 1
19 | seconds 12 .04
6 | hours 16 2
20 | hours 16 2
21 | hours 18 2
7 | minutes 19 .6
8 | minutes 25 .8
22 | hours 26 5
23 | hours 37 5
9 | minutes 41 2
24 | hours 59 69
25 | hours 74 51
10 | minutes 78 192
11 | minutes 82 80
15 | minutes 82 92
12 | days 93 130

Table 9.8: The time required for model construction. Each row represents a question.
The first column shows the question number. The second column shows the time
scale of interest TRIPEL chose. The third column shows the number of variables in
the model TRIPEL constructed (or “na” if TRIPEL found no adequate model). The
fourth column shows the amount of time (in seconds) that TRIPEL spent during
model construction (i.e., the amount of time to execute the function Find-adequate-
model). The times do not include the time required for scenario elaboration. The

rows are ordered by the size of the models.
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# | Tsol Simplest Adequate Model | Best-first Search | Exhaustive Search
26 | hours na 2,0 2 (na)
28 | minutes na 61,0 61 (na)
27 | minutes na 186, 0 186 (na)
29 | hours na 306, 0 306 (na)
13 | hours na 751, 0 751 (na)
30 | minutes na 1536, 0 1536 (na)
16 | instantaneous 3 11, 4 13 (3)
1 | instantaneous 6 1,0 1(1)
2 | hours 6 4,0 4 (1)
17 | minutes 7 4,0 4 (1)
3 | instantaneous 7 13, 2 13 (3)
4 | minutes 8 8,3 16 (2)
18 | seconds 10 1,0 1(1)
5 | minutes 11 13,3 71 (10)
19 | seconds 12 1,0 1(1)
6 | hours 16 11,9 269 (37)
20 | hours 16 11,9 269 (37)
51 | hours I8 75, 36 3359 (101)
7 | minutes 19 14, 18 7947 (732)
8 | minutes 25 10, 9 101 (9)
22 | hours 26 76, 58 10624 (816)
93 | hours 37 08, 20 147 (21)
9 | minutes 41 45 14 652 (120)
24 | hours 59 934, 67 956 (64)
25 | hours 74 188, 72 13272 (1008)
10 | minutes 78 828, 196 4638 (36)
15 | minutes 82 684, 41 3726 (324)
11 | minutes 82 740, 121 6132 (1296)
12 | days 93 476, 69 14157 (1560)

Table 9.9: The number of partial models pruned during model construction. Each
row represents a question. The first column shows the question number. The second
column shows the time scale of interest TRIPEL chose. The third column shows the
number of variables in the simplest adequate model TRIPEL constructed. The fourth
column shows how many partial models TRIPEL pruned during model construction:
the first number shows how many were pruned by monotonic constraints, while the
second number shows how many were still on the agenda when TRIPEL found the
simplest adequate model. The last column shows the results when TRIPEL uses an
exhaustive search strategy: the first number is the number of models pruned with
monotonic constraints, and the second number (in parentheses) is the number of
adequate models it found.
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9.7 Summary

To evaluate our criteria and algorithms for automatically constructing models, we
evaluated TRIPEL in the plant physiology domain. The plant physiology knowledge
was provided by the Botany Knowledge Base (BKB). The BKB is an ideal test bed for
TRIPEL because it is a large, multi-purpose knowledge base that was independently
developed by a domain expert. It describes many phenomena at many levels of
detail, so constructing simple, adequate models from it is a difficult task. Using the
BKB, TRIPEL constructed models to answer plant physiology questions that were
generated by the domain expert. For these questions, we evaluated the quality of
the models TRIPEL constructed, the efficiency with which it constructed them, and
the importance of several of TRIPEL’S key components.
The evaluation supports the following conclusions:

e TRIPEL is already an effective modeling program. From a large knowledge base,
it typically generates simple, adequate models. The knowledge it requires is
available as fundamental plant physiology knowledge that is natural for a

domain expert to encode.

e TRIPEL’s criteria for selecting exogenous variables and its ability to choose and
exploit a time scale of interest, both important contributions of our research,
play an important role in TRIPEL’s ability to construct simple yet adequate
models.

e TRIPEL’s algorithms for time scale selection and model construction are very
efficient. Despite the enormous number of possible models, TRIPEL finds a
simplest adequate model quickly by generating and considering only a small
fraction of the possible models.

e Several extensions could significantly improve TRIPEL’s performance. Most
importantly, its criterion for determining whether an influence path is signif-
icant is too simplistic. Currently, it treats an influence path as significant if
every influence in the path is valid and significant on the time scale of interest.
The evaluation suggests that TRIPEL should also consider extra time lags due
to the length of the path or the spatial distance it covers. This limitation
causes three problems: TRIPEL sometimes chooses a time scale of interest that
is too fast, it sometimes includes irrelevant elements in models, and it iden-
tifies too many variables and influences as potentially relevant during system
boundary analysis. Section 10.1.2 discusses the necessary extension.
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Chapter 10

Future Work

TRIPEL provides an excellent foundation for future work. It was designed to be
extensible so that progress in particular areas can be easily incorporated. This
chapter discusses a variety of ways that TRIPEL could be extended. The chapter
shows how TRIPEL could incorporate ideas from related research, it suggests several
simple, short-term extensions, and it discusses important areas where significant
research will be required.

While the subsections are largely independent and can be read in any or-
der, they are grouped into sections to highlight the type of issue they address.
Section 10.1 discusses extensions to TRIPEL’s criteria for determining whether an in-
fluence or influence path is significant and whether a model is coherent. Section 10.2
discusses extensions to TRIPEL’s language for describing scenarios and to the types
of domain knowledge TRIPEL requires. Section 10.3 discusses future work in sce-
nario elaboration. Section 10.4 discusses future work in using models to generate
predictions. Finally, Section 10.5 briefly discusses testing TRIPEL in domains other
than plant physiology, and Section 10.6 discusses using TRIPEL to answer questions

other than causal prediction questions.

10.1 Modeling Criteria

10.1.1 Significant Influence

The ability to recognize insignificant influences is an important source of power for
any modeler, including TRIPEL. Currently, TRIPEL uses a time scale of interest to
determine whether an influence is significant. However, TRIPEL’s algorithms do not
depend on this particular criterion in any fundamental way. In principle, TRIPEL
could be extended to include other criteria for recognizing insignificant influences.
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The evaluation suggests that these additional criteria would make TRIPEL more
efficient and would reduce the number of irrelevant elements in its models.

In addition to time scale, human modelers use other criteria to recognize

insignificant influences:

e Some influences are significant only under certain behavioral conditions. For
example, the concentration of a reactant significantly influences the rate of a
chemical reaction only if the reactant is limiting (i.e., not available in abun-
dance). Similarly, according to relativity, the velocity of a body influences its
mass, but that influence is insignificant if the body is moving much slower
than the speed of light.

e Some influences are insignificant because they are dominated by other influ-
ences. For example, there are three influences on the amount of water in a
plant’s apoplast:! uptake from the soil, evaporation from the leaves (tran-
spiration), and osmosis into the symplast. However, the effect of osmosis is
typically overshadowed by the effects of uptake and transpiration, so it is an
insignificant influence on the amount of apoplast water.

Ultimately, TRIPEL should take into account the time scale of interest, desired accu-
racy, behavioral conditions, and dominance relations to determine which influences
are significant. Similar comments apply to the problem of determining whether an
influence is valid.

Applied mathematicians have developed some formal (albeit heuristic) meth-
ods for recognizing insignificant terms (i.e., influences) in equations [49, 59]. These
methods are interesting because they combine the considerations mentioned above.
In these methods, the modeler first “scales” the equations; that is, he uses scales
of interest (e.g., a time scale of interest) to put the equations in nondimensional
form so that the order of magnitude of each term is apparent. Next, the modeler
drops terms whose order of magnitude is very small. Finally, the modeler solves the
equations and checks whether the discarded terms are in fact negligible. Yip [47] has
designed an automated modeling program that uses these methods. Yip’s program
does not address many of the issues addressed by TRIPEL, so a combination of the

two programs would be worth exploring.

'Roughly speaking, the apoplast of a plant is its network of dead parts. In contrast, the symplast
of a plant is its network of living parts. For example, cell walls are part of the apoplast, while the
contents of cells are part of the symplast.
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10.1.2 Significant Influence Path

As discussed in Chapter 9, TRIPEL’s criterion for determining whether an influence
path is significant is too simplistic. Currently, it treats an influence path as sig-
nificant if every influence in the path is valid and significant on the time scale of
interest. The evaluation suggests that TRIPEL should also consider extra time lags
due to the length of the path or the spatial distance it covers. This limitation causes
three important problems: TRIPEL sometimes chooses a time scale of interest that
is too fast, it sometimes includes irrelevant elements in models, and it identifies
too many variables and influences as potentially relevant during system boundary
analysis.

TRIPEL can easily be extended to use more sophisticated criteria in assessing
the significance of an influence path. The graph algorithms that TRIPEL uses do
not record each path from one variable to another. However, they can record the
length of the shortest path from one variable to another, so TRIPEL could use that
information to assess whether one variable significantly influences another. The
algorithms could also record the minimum spatial distance covered by the influence
paths from one variable to another. Therefore, TRIPEL could be extended to consider
these factors in assessing the significance of influence paths. Determining how these
factors should be used in the assessment is an important area for future work.

10.1.3 Mixing Levels of Detail

TRIPEL is careful to avoid mixing levels of detail. Adequacy constraint 9 (entities
coherent) ensures that TRIPEL’s models never include two entities that are related
by the encapsulates relation. For example, TRIPEL would never include, in the same
model, both the pool of water in a plant and the pool of water in its leaves. Our
experience suggests that this constraint is very useful; by ensuring a consistent level
of detail, it results in coherent, comprehensible models. A survey of the modeling
literature for biology and ecology suggests that human modelers obey this constraint
when constructing formal models.

However, the evaluation described in Chapter 9 suggests that human mod-
elers sometimes mix levels of detail. The domain expert sometimes included in
his models an influence that bridges two levels of detail. For example, consider
the question “How would decreasing solar irradiation to a plant’s leaves affect the
plant’s carbon dioxide absorption?” To answer this question, the domain expert
constructed a model at the leaves level. This model shows how solar irradiation of
the leaves affects their absorption of carbon dioxide. In addition, since the question
asks about carbon dioxide absorption at the plant level, the expert added the fol-
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lowing influence to the model: carbon dioxide absorption into the plant is a function
of carbon dioxide absorption into the leaves. This influence bridges the gap between
the variable of interest (at the plant level) and the rest of the model (at the leaves
level).

Such mixing of levels of detail certainly does not make the model incoherent
or incomprehensible. Therefore, TRIPEL should be extended to allow cases like this.
However, future work is required to determine when it is acceptable to mix levels
of detail. Such an extension would not have helped TRIPEL during our evaluation,
because the domain knowledge does not provide influences that cross levels of detail.
Therefore, to allow TRIPEL to use such influences, they must be included in the
domain knowledge.

10.2 Domain Knowledge and Scenario Descriptions

10.2.1 Multiple Decompositions

TRIPEL uses the encapsulates relation to determine whether entities in a scenario
model are mutually coherent. For example, the pool of water in a plant encap-
sulates the pool of water in its leaves, so a scenario model should include one or
the other but not both. However, when an entity can be decomposed in multiple
ways, the encapsulates relation may be insufficient for recognizing incoherent com-
binations. For example, a plant can be decomposed into roots, stems and leaves or,
alternatively, into apoplast (roughly, the network of dead parts of the plant) and
symplast (roughly, the network of living parts of the plant). The pool of water in the
roots and the pool of water in the symplast are not comparable by the encapsulates
relation, since neither encapsulates the other, yet they seem mutually incoherent.
A similar problem arises with influences; two influences may represent overlapping
phenomena, yet neither explains the other.

It would not be difficult to devise a representation for multiple decomposi-
tions of entities and influences. Some previous work addresses this issue; for instance,
Zeigler [89] developed a representation that allows an entity to be decomposed in
multiple ways. Given a method for recognizing that two entities or two influences
in a model come from incompatible decompositions, monotonic constraints could be
implemented to prune such models. As stated in Section 6.5, TRIPEL can incorporate
new monotonic constraints without changes in its model construction algorithm.
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10.2.2 Causality

As proposed by Forbus in his Qualitative Process Theory [28], influences in TRIPEL
have a fixed causal direction (i.e., a designated influencer and influencee). Assigning
causality to influences has proven easy and appropriate in the plant physiology
domain, and we expect similar success in many other domains.

However, there is some debate as to when influences can be assigned a causal
direction [29]. In contrast to Forbus’s approach, some researchers believe that in-
fluences cannot be given a causal direction until after a model is complete [44].
Given a model with non-causal equations, these researchers use a “causal ordering”
algorithm to assign a causal direction to the equations (and hence the individual
influences that make up the equations) [44, 65]. Thus, modeling algorithms that
follow this approach cannot exploit causality until a model is already constructed
[43, 65].

TRIPEL exploits the causal direction of influences in several ways. During
time scale selection, it uses the directions to find causal paths from driving variables
to variables of interest. During model construction, it uses the directions to choose
adequate sets of influences on free variables. The System Boundary Selector uses
the causal direction of influences to determine whether a variable can be exogenous.
Finally, testing adequacy constraint 13 (variables of interest differentially influenced)
requires a causal direction for influences. Of all these ways that TRIPEL exploits the
causal direction of influences, only the last could be done if causal directions were
not specified until after a model is complete. The others exploit causality at an
earlier stage.

Waiting until a model is complete to assign causal directions is overly cau-
tious; most influences can be given a fixed causal direction before a model is con-
structed. Causal ordering algorithms for mixed sets of differential and algebraic
equations [41, 44, 65] almost always orient differential influences the way they are
causally oriented in TRIPEL. (Iwasaki and Simon [44] discuss some rare exceptions.)
Therefore, the only real restriction is TRIPEL’s assumption that functional influences
have a fixed causal direction. However, Iwasaki [41] shows that equilibrium influ-
ences should be causally oriented based on their underlying dynamic details. If this
is so, the person encoding the domain knowledge can often provide a causal direction
for equilibrium influences. Thus, most influences can be given a causal direction in
the domain knowledge.

Even if influences cannot be given a causal direction in the domain knowl-
edge, 1 believe they can, and should, be given a causal direction during scenario
elaboration. A physical understanding of the scenario should precede modeling de-
cisions, and causality is an integral component of physical understanding.
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Nevertheless, TRIPEL could be extended to allow non-causal influences. TRIPEL
would have to treat each non-causal influence as if it could be causally directed ei-
ther way. In general, this will cause TRIPEL to include more irrelevant elements in
models, because it will have to include all variables that might significantly influence
the variables of interest (depending on the unknown causal directions). The number
of irrelevant elements in models is likely to depend on the fraction of influences with-
out a causal direction. Once the model is complete and a causal ordering algorithm
assigns causality to the influences, TRIPEL could further simplify the model.

10.2.3 Model Fragments

In compositional modeling, models are constructed from building blocks provided by
the domain knowledge. The building blocks are often called “model fragments” [25].
In TRIPEL, the building blocks are influences. However, some other researchers allow
a model fragment to contain multiple influences on a variable, or even a complete
equation.

It would be simple to extend TRIPEL to handle such model fragments. If
a model fragment provides multiple influences on a variable, this would simply
constrain Dv-models. Specifically, Dv-models should only consider combinations of
influences that include all or none of the influences in each model fragment. Even
simpler, if a model fragment contains a complete equation (i.e., all relevant influ-

ences) for a variable, Dv-models is not needed at all.

10.2.4 Dynamic Structural Conditions

TRIPEL assumes that structural conditions are constant throughout the scenario.
This assumption simplifies presentation and implementation of the key ideas in
TRIPEL. However, it is not an important assumption.

Qualitative Process (QP) Theory [28] provides a reasonable alternative. In
TRIPEL, a structural condition can be inferred from a structural rule whose an-
tecedent is a conjunction of structural conditions. In contrast, QP theory allows the
antecedents of structural rules to include behavioral conditions. Thus, structural
conditions can change during a scenario as a consequence of changes in behavioral
conditions. Let’s call these structural conditions “derivable” to distinguish them
from “primitive” structural conditions, for which the domain knowledge has no way
of predicting change.

The primary advantage of derivable structural conditions is representational
convenience and comprehensibility. Although they add no expressive power to the

underlying behavioral conditions and primitive structural conditions, they provide a
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higher level of description that is valuable in building, maintaining, and explaining
a knowledge base.

TRIPEL could be extended to handle derivable structural conditions. During
scenario elaboration, TRIPEL generates the influences in a scenario by backward
chaining on influence rules and structural rules. If the antecedents of structural
rules can include behavioral conditions, this process would be identical except for
one change: rather than backward chaining on behavioral conditions, TRIPEL would
collect the behavioral conditions encountered during backward chaining and add
them to the activity preconditions of the resulting influence. In effect, this process
converts derivable structural conditions into their underlying primitive structural
conditions (which must be established during backward chaining) and behavioral
conditions (which become activity preconditions of influences).

Alternatively, TRIPEL could retain derivable structural conditions for use dur-
ing explanation. To accomplish this, TRIPEL could allow the activity preconditions
of influences to include derivable structural conditions, and it could include in the
model those structural rules that can conclude these conditions. This is the approach
taken by Iwasaki and Levy [43], and it would be a natural and useful extension to
TRIPEL.

10.2.5 Inferring Time Scale of Significance

The time scale on which a differential influence is significant bundles two pieces of
knowledge: the rates at which the influencing process operates, and the level of
change in the influenced variable that is considered significant. Sometimes, the time
scale can be encoded directly in the domain knowledge (i.e., stored in an influence
rule). Other times, it may be more practical to infer the time scale from these
two pieces of knowledge. The latter approach is especially useful when the level of
significant change depends on the question. Iwasaki [42] has explored this approach.
It does not matter to TRIPEL whether significance preconditions come from influence
rules or are inferred from other information.

10.2.6 Building Large Knowledge Bases

Our evaluation showed clearly that building large knowledge bases is a difficult,
error-prone task. The Botany Knowledge Base (BKB) is very large, and it was
constructed over many years. This poses two problems. First, it is difficult to ensure
that knowledge is represented consistently throughout. Changes in terminology and
representation conventions over time cause the same things to be represented in
different ways, and relationships among the alternative representations are often
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left out. Second, individual pieces of knowledge often interact in unexpected ways
during inference even though they seem reasonable in isolation.

To address these problems, a variety of tools are needed. During our de-
bugging of the BKB, we developed a number of simple tools to catch problems.
These tools incorporated a variety of “consistency principles” that allow one piece
of knowledge to suggest errors in another. For example, if a scenario variable has
both differential and functional influences on it, the functional influences are proba-
bly equilibrium influences, and hence they should have validity preconditions. Such
simple tools proved invaluable in identifying problems in the BKB. However, more
fundamentally, the knowledge base must take a more active role in its development.
It must relate each new piece of knowledge to existing knowledge, including identify-
ing inferential consequences of new knowledge that conflict with existing knowledge.
There has been some important work in this area [64], but much work remains.

The evaluation described in Chapter 9 suggests that TRIPEL itself might
be a valuable tool for debugging a knowledge base. When TRIPEL cannot find an
adequate model for answering a question, there are gaps in the domain knowledge.
TRIPEL could be extended to pinpoint its reasons for failure and suggest the types
of knowledge that are missing.

10.3 Scenario Elaboration: Elaborating Behavioral Con-
ditions

Analysis (e.g., simulation) requires methods for elaborating the behavioral condi-
tions specified in the question. The question may not provide initial values for all
variables in the model, and it may not provide behaviors for all exogenous variables,
but this information is typically required for analysis.

There are two considerations when elaborating behavioral conditions. First,
some conditions are more likely than others, and humans often assume these likely
conditions without stating them explicitly. Second, the question may be more mean-
ingful under some conditions than others. That is, behavioral conditions should be
chosen so that the driving variables significantly affect the variables of interest.

There may be a conflict between these two considerations; the conditions
under which the question is most meaningful may be atypical. For example, consider
the question “How does decreasing soil moisture affect the level of oxygen in a plant’s
roots?” This question is best answered assuming that the soil is initially saturated
with water, because the roots are starved for oxygen under such conditions. Under
more typical conditions, decreasing soil moisture would have little effect on the
oxygen in the roots. Thus, just as TRIPEL chooses a time scale of interest on which
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the driving conditions significantly affect the variables of interest, a modeler must

choose behavioral conditions using the same consideration.

10.4 Numerical Models

The work described in this dissertation should provide a foundation for building
numerical ODE models as well as qualitative models that lack numerical details.
The issues addressed in the dissertation arise in both cases. However, while TRIPEL
has been used to generate qualitative models, it has not been used to generate
numerical models.

There are two possible ways to generate numerical equations from influences.
First, the domain knowledge can provide a numerical equation for each useful com-
bination of influences on a variable. Forbus and Falkenhainer [30] have successfully
used that approach. Second, each influence can specify how it combines with other
influences, such as whether it is an additive term, a multiplicative term, or oth-
erwise. After the model is constructed, equations can be generated using these
specifications. Farquhar [26] has successfully used this approach for limited types
of equations, and it appears feasible for other types as well. Thus, there are no
apparent limitations that prevent TRIPEL from constructing numerical models, but

no such application has been attempted.

10.5 Other Domains

Although TRIPEL has only been tested in the domain of plant physiology, it was
designed to handle many domains within science and engineering. To test the gen-
erality of its modeling criteria and the knowledge it requires, it should be evaluated
in new domains. Because its representation is particularly suitable for reasoning
about pools and processes, it should be especially effective in the domains of ecol-

ogy, human physiology, and chemical engineering.

10.6 Other Types of Questions

This dissertation has focused on one type of question: causal prediction questions.
However, while TRIPEL was specifically designed for causal prediction questions,
many of the issues TRIPEL addresses arise in other types of questions as well. In
this section, we discuss how TRIPEL could be extended to handle two other types of

questions: non-causal prediction questions and explanation questions.

141



10.6.1 Non-Causal Prediction Questions

In a causal prediction question, the person posing the question wants to know the
causal effect of driving conditions on variables of interest. In contrast, consider the
question “What is the rate of inflow into a bathtub if the level of water remains
constant and the rate of outflow is five gallons per minute?” This question has the
basic elements of a prediction question — structural conditions, behavioral condi-
tions, and a variable of interest — but it is not a causal prediction question. The
rate of outflow and the level of water do not cause the behavior of the inflow rate.
Nevertheless, the given information is sufficient to make the desired prediction.

TRIPEL exploits causal prediction questions in several ways. To choose a time
scale of interest, it looks for causal influence paths from driving variables to variables
of interest. To construct models, it begins with a partial model consisting only of
the variables of interest, and it repeatedly extends models to include variables that
causally influence free variables. The System Boundary Selector searches for causal
paths from driving variables to variables in a model. Finally, adequacy constraint 13
(variables of interest differentially influenced) requires causal paths from driving
variables to variables of interest. Each of these steps is predicated on the question
being a causal prediction question.

However, as the bathtub example illustrates, these steps must be modified to
handle non-causal prediction questions. In general, it is possible to draw inferences
from influences in either direction, regardless of causality. Therefore, to answer non-
causal prediction questions, TRIPEL must treat the influence graph as an undirected
graph, the “interaction graph.” To choose a time scale of interest, TRIPEL would
look for an “interaction path” (path in the interaction graph) relating the driving
variables and variables of interest. When extending models, TRIPEL would add any
variables that “interact” with (i.e., influence or are influenced by) free variables.
The System Boundary Selector must ensure that a variable is not exogenous if it
significantly interacts with (via an interaction path) a driving variable or another
variable in the model. Finally, adequacy constraint 13 would only require interac-
tion paths, rather than influence paths, relating driving variables and variables of
interest.

In order to handle non-causal prediction questions, an earlier version of
TRIPEL took this approach [73]. The approach showed great promise, but it was
less effective than the current version of TRIPEL in two areas. First, it tended to
include more irrelevant elements in models, because more variables are related by
interaction paths than by causal influence paths. Second, the program sometimes
built models around interaction paths that were not the most important ones. The
most important area for future research on this approach is the ability to distinguish
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important interaction paths from unimportant ones.

10.6.2 Explanation Questions

Other than prediction questions, explanation questions are the most important type
of question in science and engineering. An explanation question is identical to a
prediction question except it specifies the behavior of the variables of interest, and
the goal is to construct a model that will predict the specified behaviors from the
other structural and behavioral conditions given in the question.

Explanation questions arise in many tasks. Monitoring and diagnosing the
behavior of physical systems requires constructing a model that explains observa-
tions so as to recognize when faults arise and pinpoint their origin. Theory formation
requires constructing a model that explains observations in order to identify the un-
derlying causal mechanisms. In tutoring, a student might be told that a physical
system behaves in a certain way (e.g., “When a plant begins to wilt, ABA builds up
in its guard cells”) and the student may ask why.

There has been a lot of important work on answering explanation questions
[3, 5, 37, 84]. The most common technique is called “discrepancy-driven refine-
ment.” In this technique, the modeler constructs an initial model of the scenario
and compares its predictions against the known behavior of the variables of interest.
Discrepancies suggest particular changes to the model that will reduce or eliminate
them. This process is repeated until the predictions of the model are sufficiently
close to the behaviors to be explained.

The most important role of TRIPEL in answering explanation questions is
in constructing the initial model. Work in discrepancy-driven refinement has con-
centrated on techniques for revising models to eliminate discrepancies, not on con-
structing the initial model. An initial model constructed by TRIPEL would be more
likely to contain all and only the relevant aspects of the scenario. Furthermore,
by recording the insignificant influences that were pruned, and why, TRIPEL could
provide important guidance for model revision.

While the theory formation task can be viewed as answering explanation
questions, it introduces one additional requirement: the domain knowledge is not
sufficient to construct an adequate model. In theory formation, the objective is to
extend the domain knowledge so that it can provide an explanation. However, this
task also fits into the framework described in this dissertation. The new require-
ment can be satisfied by adding additional sophistication to the scenario elaboration
module. For example, rather than simply instantiating general principles, scenario

elaboration might generate influences by analogy to other, more familiar domains
[22].
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10.7 Summary

In summary, the methods in this dissertation provide an important foundation for
further research in automated modeling. Many valuable improvements can be in-
corporated into TRIPEL as modular extensions. Nevertheless, experience with other

types of questions and other domains is needed to determine the generality of our

methods.
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Chapter 11

Conclusion

This dissertation addresses the task of automatically constructing models to answer
causal prediction questions. Such questions pose a hypothetical scenario and ask for
the causal effect of driving conditions on variables of interest. Given a question and
domain knowledge, the objective is to construct the simplest model of the scenario
that is adequate for answering the question. The dissertation focuses on building
models that consist of algebraic equations and ordinary differential equations (or
qualitative counterparts). Such questions and models are ubiquitous in science and
engineering.

Influences are the building blocks for models. Each influence represents some
phenomenon in the scenario at some level of detail. Influences are appropriate build-
ing blocks for models because they allow a modeler to select relevant phenomena and
choose a relevant level of detail for each. The influences in a model are combined
to form its equations.

The process of scenario elaboration generates missing elements of the sce-
nario description, including influences, from a question and domain knowledge. In
addition to the influences that govern the scenario, a complete scenario description
includes scenario variables, which represent properties of entities in the scenario,
behavioral conditions, which represent the initial state and behavior of scenario vari-
ables, structural conditions, which represent static properties of the scenario, and
attributes of influences, including activity preconditions, significance preconditions,
and validity preconditions. The encapsulates and explanation relations represent re-
lationships among different levels of detail for describing the scenario. Because the
complete scenario description for a complex system may be extensive, elements are
only generated as needed during model construction, using a method called demand-
driven scenario elaboration.

To operationalize the notion of a simple, adequate scenario model, this dis-
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sertation proposes a novel definition of simplicity and a novel set of adequacy con-
straints. The constraints specify variables that must be included in an adequate
model, they specify when a variable can be treated as exogenous, they define an
adequate set of influences on a dependent variable, they ensure that an adequate
model is coherent and that it includes an appropriate level of detail, and they ensure
that the model relates driving variables to variables of interest.

The dissertation provides a model construction algorithm for efficiently con-
structing the simplest adequate model for a given causal prediction question. For
complex systems, the space of possible models is enormous, but the algorithm
searches this space efliciently by searching the space of partial models. By prun-
ing a partial model at an early stage, the algorithm prunes a large chunk from the
space of possible models. Because the model construction algorithm prunes models
judiciously, it is guaranteed to return a simplest adequate model if one exists. In
addition to providing the basic model construction algorithm, the dissertation also
provides novel algorithms for choosing the influences on dependent variables and for
choosing exogenous variables.

A time scale of interest provides an important focus for modeling. The
dissertation shows how a time scale of interest allows insignificant phenomena and
invalid levels of detail to be recognized. Because it is typically difficult for a person
posing a question to specify a time scale of interest, and because a suitable time
scale of interest is crucial for eliminating irrelevant details, the dissertation provides
an algorithm for choosing a suitable time scale of interest for a causal prediction
question automatically.

Many of the claims in this dissertation are empirical. To evaluate the crite-
ria and algorithms presented in this dissertation, I implemented them in a program
called TRIPEL and evaluated the program in the plant physiology domain. Using a
large, multipurpose knowledge base independently developed by a domain expert,
TRIPEL constructed models to answer questions that were also constructed by the
expert. According to the expert, TRIPEL typically generates simple, adequate mod-
els. The use of a time scale of interest and TRIPEL’s novel criteria for choosing
exogenous variables play an important role in its success. The evaluation also sug-
gests the most important area for future work: TRIPEL’s criterion for determining
whether an influence path is significant is too simplistic. The evaluation suggests ex-
tensions to this criterion that should allow TRIPEL to consistently construct simple,

adequate models efficiently.

There are many important areas for future work. Automated modeling pro-
grams will require more sophisticated criteria for recognizing insignificant influences
and influence paths. Representing domain knowledge is a difficult, error-prone task;
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developing knowledge bases with extensive coverage in areas of science and engineer-
ing will require new tools and techniques. Finally, this dissertation only focuses on
one type of question, causal prediction questions, and it only describes an empirical
evaluation in one domain, plant physiology; further progress in automated modeling
will require a similar study of other types of questions and other domains.
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Appendix A

Plant Physiology Questions

This appendix lists all the plant physiology questions, constructed by the expert,
on which TRIPEL was tested (as described in Chapter 9). The first 14 formed the
basis of the formal evaluation.

1. How would an increasing amount of cO5 in a plant’s leaves affect the rate of

photosynthesis in the leaves?

2. How does increasing soil water potential affect a plant’s water distribution

rate?

3. How does an increasing level of ABA in a plant’s leaves affect transpiration

from the leaves?

4. What happens to turgor pressure in a plant’s leaves as root water absorption

decreases?

5. How does a decreasing amount of water in a plant affect the amount of K in

its guard cells?

6. What happens to a plant’s water potential as the temperature of the environ-

ment decreases?

7. How would an increasing rate of solar irradiation to a plant’s leaves affect the

temperature of the leaves?

8. How would a decreasing amount of water in the earth’s atmosphere affect a

plant’s photosynthesis rate?

9. How does increasing water potential in a plant’s leaves affect the rate of KT
efflux from the guard cells in the leaves?
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

How does an increasing rate of diffusion of heat from the stems of a plant to the
atmosphere surrounding the stems affect the water potential of the symplast

in the stems?

How does an increasing amount of ABA in the guard cells of a plant’s leaves

affect osmosis to the leaves’ accessory cells from the leaves’ guard cells?

How does a decreasing rate of evaporation from a plant’s leaves affect the
amount of €Oy in the atmosphere surrounding the leaves?

How does a decreasing rate of photosynthesis in a plant’s shoot system affect

the pressure potential in the phloem of its leaves?

As the amount of water in a plant’s cell walls increases, what happens to the

plant’s turgor pressure?

How does an increasing amount of water in the accessory cells of a plant’s
leaves affect the rate of KT influx to the guard cells in the leaves?

How does an increasing amount of c0o5 in a plant’s guard cells affect the size
of the stomates in its leaves?

How does increasing water potential in a plant affect the plant’s ABA amount?

How does decreasing water potential in a plant’s accessory cells affect the

amount of water in its guard cells?

How does an increasing amount of KT in a plant’s accessory cells affect the

amount of water in its guard cells?

How does decreasing soil water potential affect a plant’s transpiration rate?
What happens to the size of a plant’s stomates as soil moisture increases?
What happens to the water potential of a plant’s leaves as the soil dries out?
How does a rising level of ABA in a plant affect the plant’s water potential?

What happens to a plant’s apoplast water potential as the temperature of the
environment decreases?

How does decreasing photosynthesis in a plant’s leaves affect the amount of

glucose in its root system?
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26.

27.

28.

29.

30.

31.

How does increasing temperature in the atmosphere surrounding a plant affect
the plant’s photosynthesis rate?

How does increasing transpiration from a plant’s shoot system affect the

plant’s carbon dioxide absorption?

How would decreasing solar irradiation to a plant’s leaves affect the plant’s

carbon dioxide absorption?

What is the effect on plant temperature of an increasing diffusion of heat from

the atmosphere surrounding the shoot system to the earth’s atmosphere?

What is the effect of an increasing amount of co; in the symplast of a plant’s
leaves on the rate of photosynthesis in the leaves?

How does a decreasing amount of water in a plant’s leaves affect osmosis from

the guard cells to the accessory cells?
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Appendix B

The Models TRIPEL Constructed

This appendix shows the models that TRIPEL constructed for the formal evaluation

questions, as discussed in Chapter 9. The section numbers indicate the question

numbers. The conventions are the same as in earlier figures:

Arrows with solid tips represent differential influences.
Arrows without solid tips represent functional influences.
Exogenous variables are underlined.

Differential influences are labeled with the time scale on which they become
significant. For example, “mins” is a shorthand for the significance precondi-

tion time-scale-of-interest > minutes.
Influences are labeled with the sign of their partial derivative.
Activity preconditions of influences are not shown.

Driving variables and variables of interest are shown in bold.
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B.1 How would an increasing amount of c0, in a plant’s
leaves affect the rate of photosynthesis in the leaves?

leaf glucose
concentration
leaf light
—\L x energy
= Concentration

photosynthesis
rate

24 \
leaf
temperature

leaf CO +__ leaf
2 _*_ leafC )
amount concenfration

B.2 How does increasing soil water potential affect a
plant’s water distribution rate?

atmosphere
water potential

water /

rhizosphere ¥ _ gistribution
water potential rate

et

soil water_"___ transport_*_, rhizosphére
potential rate water amount
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B.3 How does an increasing level of ABA in a plant’s

leaves affect transpiration from the leaves?

leaf ABA - stomata T  transpiration + leaf
amount =~ size - rate temperature
N T
leaf C t h
amoun leaf water aggrsp ere
potential :
—_— potential

B.4 'What happens to turgor pressure in a plant’s leaves
as root water absorption decreases?

leaf + leaf + leaf
turgor < water — = water
pressure amount potential
water
transport
rate
7 X
root + root
water ——= water
amount potential
rhizosphere +  water
water potential ——= abtsorpnon
rate
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B.5 How does a decreasing amount of water in a plant
affect the amount of K™ in its guard cells?

ABA leaf + leaf + ABA
synthesis _ + mesophyll mesophyll transport
rate ABA ABA rate ~
amount concentration . guard
-T T . l . _ cell ABA
- concentration
plant ABA / guard /
turgor inactivati cell ABA
pressure Inactivation amount
rate
A 1
plant guard - guard
water cell Kt =—— cellCOp

amount amount amount

B.6 What happens to a plant’s water potential as the
temperature of the environment decreases?

e a0 T

heat + » Plant + - plant * _ transpiration . atmosphere

absorption heat temperature rate water potential

rate x amount _ _l X —

b3
light-heat \L lant

+T conversion —T + stomata__* wgtrétr M \?vater

_ rate Size amount potential
environment - heat ~
temperature ——= dissipation N
—_— rate

rhizosphere + _ water

water potential - absorption

rate
N,
J T ’
water

soil water___ - transporr_+> rhizosphere
potential rate water amount
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B.7 How would an increasing rate of solar irradiation

to a plant’s leaves affect the temperature of the

leaves?

heat + leaf +

absorption heat

rate amount
atmosphere _ heat

temperature ———=/ dissipation

light—heat
conversion
y rate \
leaf light + leaf light +
energy <—— energy

concentration amount

leaf +
temperature

size

irradiation
rate

rhizosphere
water potential
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B.8 How would a decreasing amount of water in the

earth’s atmosphere affect a plant’s photosynthesis

rate?

plant glucose + sucrose

synthesis «  plant sucrose

concentrato){'rate ><ncentratlon

plant sucrose plant
glucose breakdown - sucrose
amount rate amount
+
plant light + plantlight 4+ . _ . .
4 x_L|energy <— energy -—— lrr;%dlatlon
~"|| concentration amount
photosynthesis * .
rate _ /
y light-heat
conversion
+T rate _ stomata +
plant + size <— plant
shoot temperatur + water
atmosphere y + /k potential
COa plant heat transpiration -
concentration energy —4—— t P
- amount rate shoot
atmosphere
heat T - water amount
absorption shoot
rate heat atmospheré -
dissipation water potential water
+ rate earth _ diffusion
. atmosphere ——=> rate
environment water potential
temperature
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B.9 How does increasing water
leaves affect the rate of K*

cells in the leaves?

potential in a plant’s
efflux from the guard

leaf leaf + leaf ABA leaf + leaf + ABA
water water turgor synthesis _* mesophyll mesophyll transport
potential amount pressure rate ABA ABA rate x
amount concentration guard
/\ 7/ X cell ABA
- x x ~ amount
water / guard /
transport ABA cell ABA
rate inactivation concentration
N \ rate
J
root + root accessory
water —= water ¥ cell K¥ -
amount potential amount
Ny :
+ -
;vl?;?)rrption accessory cell K
e leaf o ~ _concentration_
symplas ;
effluX influx
+T temperature rate ) rate
rhizosphere w o guard cell |<f/
water potential :

- leaf leaf concentration
symplast + sucrose symplast - +
glucose — = synthesis «<—— sucrose
concentration rate concentration +

+ guard -
+ _ _ + ot cell K*
Y amount
- leaf sucrose leaf
symplast + _ symplast
glucose —— brfakdown sucrose guard
amount rate amount . cell COp
/ concentration
X
4 CO2 /
diffusion—  guard a
dark rate. ——-cell C
reactions + amoun
rate C
_ + + diffusion— leaf
P rate N intercellular CO2
7 AX/ space C - diffusion
leaf leaf leaf amount -e—— rate
symplast  + symplast intercellular
C — C space CQ
amount, concentration concentration

\*
> CO2
diffusion +
rate
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B.10 How does an increasing rate of diffusion of heat
from the stems of a plant to the atmosphere sur-
rounding the stems affect the water potential of

the symplast in the stems?

heat stem

: . - heat + stem + stem sucrose — stem + stem
diffusion g anoray —— temperature ——> breakdown —— sucrose——=- sucrose
rate amoS%t p rate amount concentration
+ leaf + leafsucrose + + leaf - phloem sap
fo&gc%afr%fi%ﬁ glucose#+—— breakdown<—— foe;fcseunctrrgigr% sucrose— distribution
amount rate amount rate
dark . rate of leaf + leaf
. - leaf C - stomatal water vapor __~ intercellular intercellular
:Z&Ct'ons amoun size diffusion into space space water
atmosphere water amount concentration
rate of leaf leaf \L
leaf xylem + \IAe’glIeﬁylem + osmosis from_ *+  cell wall + cellwal _ ~ (r:\l/tae %fration
pressure amount < leaf cell walls= water < water fron?cell walls
to leaf xylem potential amount
+\L
leaf xylem _ rate of water - stem + stem + rate of osmosis
transport from xylem xylem
water = stem xylem to water = water = from stem xylem
potential Y : to stem symplast
leaf xylem amount potential
+¢
stem
stem
symplast +  symplast
water -
. water
potential amount

For this question, TRIPEL found a significant (by its criteria) influence path from
the driving variable to the variable of interest on a time scale of minutes, and it
constructed a large, complex model around the path. By the expert’s criteria, this
path is insignificant. According to the expert, there is a short, significant influence
path from the driving variable to the variable of interest on a time scale of hours.
Therefore, since the most interesting aspect of TRIPEL’s model is the influence path
it found, we show the path rather than the entire model.
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B.11 How does an increasing amount of ABA in the
guard cells of a plant’s leaves affect osmosis to

the leaves’ accessory cells from the leaves’ guard

cells?
water + leaf — ABA . leaf . leaf . ABA
regulation | ——sturgor ——= synthesis mesophyll mesophyll transport
subsystem pressure rate ABA > ABA > rate x
amount concentration guard
N _T cell ABA
- + stomatal _T x x amount
’ size / uard /
atngosphteret_ | rhizosphere | ABA gell ABA
water potentia water potential inactivation concentration
rate

accessory accessory
cell pressure

cell K¥ -

amount
i +
leaf symplast .
symplast <_— sucrose accessory accessory  + accessory. -
SUCTOSSt . amount cell water cell water<—— cell osmotic — accessory cell K
concentration i i !
L amount  potential potential concentration.  x
I .
\ ! ! AN L influx
+ osmosis 0SMOsis . e
A rate rate /
guard cell K
sucrose sucrose N4 concentration
synthesis breakdown +
rate rate guard cell guard cell guard cell .
1 water water < osmotic
. amount  potential potential guard _
+ o+
+ cell K+
+ amount
leaf
leaf guard cell
s?/mplast symplast pressure
glucose <— glucose guard
concentrationt amount + ¥ cell COp
/ concentration
| x
l ’? CO2 /
diffusion-  guard A
—| temperature dark rate  —cell C
reactions + amoun
+ rate COp
. - + + diffusion— leaf
leaf heat - rate x intercellular C
amount - \ X/ space CQ  _  diffusion
leaf leaf leaf amount <e—— rate
a A - symplast + ™ symplast intercellular
_ COp > space CQ
light-heat amount, concentration concentration
conversion « ,
rate \
—_— leaf
heat heat
N : > COp CO2 atmosphere
d|?5|pat|0n ?Eg(saorptlon diffUsion —+ absorption<—— CO
g « rate rate concentration
atmosphere
temperature

In this diagram, 28 variables have been grouped into the box marked “water reg-
ulation subsystem” to save space. These variables model the transport of water
among the following pools: water in the rhizosphere, root cell walls, root xylem,

root symplast, leaf cell walls, leaf mesophyll symplast, and leaf intercellular space.
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B.12 How does a decreasing rate of evaporation from
a plant’s leaves affect the amount of Cco, in the
atmosphere surrounding the leaves?

leaf

leaf symplast
symplast <, Sucrose
sucrose amount
concentration+
leaf earth ,
evaporation atmosphere |
rate water potential
- ; D
b1/ s osse  Suoose
—————  synthesis breakdown

water rate rate
regulation + !
subsystem T i
+ +
+ T L h leaf
leaf
symplast
leaf g)I/ucgse - SYL?gg?st | guard
temperature concentrationt 9 eaf cell COp
amount symplast + concentration
light energy M
+ - ’T concentration coy /
- y  — 02
leaf heat 2 diffusion_ guard -
amount photosynthesis rate »cell C
rate + amoun
. + CO2 L
respiration _ + diffusion— leaf
Ilght heat rate P rate “ intercellular co
conversion / \ space CQ diffusion
rate - leaf leaf leaf amount rate
heat heat symplast + symplast intercellular
dissipation absorption COy — Co space CQ
rate N rate amount, concentration concentration
\ leaf / leaf leaf I % 4
symplast symplast \
gmoz’r’;ﬁr@ ATP ) oxygen > cop” cop
P concentration| concentration diffusion + absorption
+ —
+T / \+ P T+ rate _ rate \
A /
leaf atmsopher " symplast earth leaf leaf
heatamoum rate ATP oxygen atmosphere atmosphere + atmosphere
amount re%ulatlton oxygen CO, — CO;
subsystem concentration amount _ concentration
Ilght—heat :\ - +
conversion
rate COp Cco
heat hsfﬁ ) absorption  dissipation
d|fsnpat|0n raat:(’rptlon rate rate
rate . N . T
etarth h carth
aimosphere atmosphere
CO;

temperature
concentration

In this diagram, 39 variables have been grouped into the box marked “water regula-
tion subsystem” to save space. These variables model the transport of water among
the following pools: water in the soil, rhizosphere, root cell walls, root xylem, root
symplast, leaf xylem, leaf cell walls, leaf symplast, leaf intercellular space, and leaf
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atmosphere.

Similarly, ten variables have been grouped into the box marked “oxygen
regulation subsystem.” These ten variables model the transport of oxygen among
the following pools: oxygen in the leal symplast, leaf intercellular space, and leaf
atmosphere.
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