A proof of Fermat’s little theorem

Jayadev Misra

September 5, 2021

The following theorem, known as Fermat’s little theorem, is a fundamental result in number theory. The theorem has many applications. Pratt [3] uses the theorem to certify that a number is prime. It is used in cryptographic protocols, such as the Diffie-Hellman key exchange [1].

Theorem 1 For any natural number \(n \) and prime number \(p \), \(n^p - n \) is a multiple of \(p \).

There are several ways to prove this theorem, e.g. using induction on \(n \). A proof using the pigeon-hole principle is as follows. For positive integers \(i \) and \(j \), and prime \(p \) it can be shown that \(i \cdot n \equiv j \cdot n \pmod{p} \) if and only if \(i \equiv j \pmod{p} \). Then \(\{i \cdot n \pmod{p} | 1 < i < p\} = \{j | 1 < j < p\} \). The product of the elements of the sets in this equation are identical, so, \(\Pi(\{i \cdot n | 1 < i < p\}) \equiv \Pi(\{j | 1 < j < p\}) \pmod{p} \), or \(n^p - 1 \equiv (p-1)! \pmod{p} \). Since prime \(p \) does not divide \((p-1)! \), cancel \((p-1)! \) from both sides to get \(n^p \equiv 1 \pmod{p} \). This is equivalent to \(n^p - n \) is a multiple of \(p \).

Dijkstra[2] gives a beautiful proof using elementary graph theory. The proof given here is based on Dijkstra’s constructions though it does not use graph theory.

Proof of the theorem: Consider the set of words of length \(p \) over an alphabet of size \(n \). Define an equivalence relation over the words, \(x \) and \(y \) are equivalent if and only if \(x \) is a rotation of \(y \). We count the number and size of the equivalence classes.

Define \(q \) to be a period for \(x \) if \(q \) rotations of \(x \), leftward for positive \(q \) and rightward for negative \(q \), yields \(x \). Clearly, 0 is a period for all \(x \), 1 is a period for \(x \) if and only if all symbols in \(x \) are identical, and given periods \(q \) and \(q' \) for \(x \), \(a \times q + b 	imes q' \), for arbitrary integers \(a \) and \(b \), are also periods for \(x \). In particular, a multiple of a period is a period. A simple period is not a multiple of another period. For simple period \(q \) for \(x \), all \(q \) rotations of \(x \) yield distinct words.

Let \(q \) be a simple period for a given \(x \). We use Bézout’s identity: for integers \(m \) and \(n \), there exist integers \(a \) and \(b \) such that \(a \times m + b \times n = \gcd(m, n) \), where \(\gcd \) is the greatest common divisor. Setting \(m, n = p, q \) in Bézout’s identity, \(\gcd(p, q) \) is a period. Since \(p \) is prime, \(\gcd(p, q) \) is either 1 or \(p \), and since \(q \) is a
simple period, \(q = 1 \) or \(q = p \). If \(q = 1 \), \(x \) consists of identical symbols. There are \(n \) such words so, \(q = p \) for the remaining \(n^p - n \) words. Therefore, each of these words belongs to an equivalence class of size \(p \); so, \(n^p - n \) is a multiple of \(p \).

Dijkstra’s proof The following proof is a rewriting of the proof of Dijkstra [2]. For \(n = 0 \), \(n^p - n \) is 0, hence a multiple of \(p \). For positive integer \(n \), take an alphabet of \(n \) symbols and construct a graph as follows: (1) each node of the graph is identified with a word of \(p \) symbols, and (2) there is an edge from \(x \) to \(y \) if rotating word \(x \) by one place to the left yields \(y \). Observe:

1. No node is on two simple cycles because every node has a single successor and a single predecessor (which could be itself).
2. Each node is on a cycle of length \(p \) because successive \(p \) rotations of a word transforms it to itself.
3. Every simple cycle’s length is a divisor of \(p \), from (2). Since \(p \) is prime, the simple cycles are of length 1 or \(p \).
4. A cycle of length 1 corresponds to a word of identical symbols. So, exactly \(n \) distinct nodes occur in cycles of length 1. The remaining \(n^p - n \) nodes occur in simple cycles of length \(p \).
5. A simple cycle of length \(p \), from the definition of a simple cycle, has \(p \) distinct nodes. From (4), \(n^p - n \) is a multiple of \(p \).

References

