An elementary proof of Hall’s marriage theorem

Jayadev Misra
Dept. of Computer Science
The University of Texas
Austin, Texas, 78712

April 1, 2022

1 Introduction

Hall’s marriage theorem [1] is applied in many combinatorial problems. Given
is a bipartite graph \(B \) with non-empty node sets \(X \) and \(Y \). A matching is a set
of edges that have no common incident nodes. A \((X, Y)\) matching is a matching
in which every node of \(X \) is incident on some edge in the matching.

Hall condition (HC): Subset \(S \) of \(X \) meets HC if the number of neighbors of
\(S \) is greater than or equal to the size of \(S \).

Theorem 1 [Hall] There is a \((X, Y)\) matching if and only if every subset of \(X \)
meets HC.

Proof: The proof in one direction, that if there is a \((X, Y)\) matching every
subset of \(X \) meets HC, is straightforward. I prove the converse of the statement
by induction on the size of set \(X \). If \(X \) is empty, there is a trivial matching.
For the general case assume, using induction, that there is a matching over all
nodes of \(X \) except one node \(r \).

Henceforth \(u \overset{n}{\rightarrow} v \) and \(u \overset{m}{\rightarrow} v \) denote, respectively, that \((u, v)\) is a non-matching
edge and \((u, v)\) a matching edge. An alternating path is a simple path of alternating
matching and non-matching edges. Let \(Z \) be the subset of nodes of \(X \)
that are connected to \(r \) by an alternating path.

Every node of \(Z \) except \(r \) is connected to a unique node in \(Z' \) by a matching
edge, from the induction hypothesis; so, there are \(|Z| - 1\) nodes in \(Z' \) that are
so connected. Since \(Z \) meets HC, \(|Z'| \geq |Z|\). Therefore, there is a node \(v \) in \(Z' \)
that is not connected to any node in \(Z \) by a matching edge. I show that \(v \) is
not incident on any matching edge.

Let \(v \) be a neighbor of \(u \) in \(Z \), so \(u \overset{n}{\rightarrow} v \). Since \(u \in Z \), there is an alternating
path between \(r \) and \(u \); extend the path to include edge \(u \overset{n}{\rightarrow} v \), as shown below
in \(P \). I color the matching edges blue and non-matching edges red for emphasis.

\[P : r = x_0 \overset{n}{\rightarrow} y_0 \overset{m}{\rightarrow} x_1 \cdots x_i \overset{n}{\rightarrow} y_i \overset{m}{\rightarrow} x_{i+1} \cdots x_t \overset{n}{\rightarrow} y_t \overset{m}{\rightarrow} x_{t+1} = u \overset{n}{\rightarrow} v. \]
If v is incident on a matching edge, say $v \leftarrow m \rightarrow w$, then $w \not\in Z$ because v is not connected to any node in Z by a matching edge. However, we can extend P as follows which shows that r is connected to w by an alternating path, so $w \in Z$, a contradiction.

$P' : r = x_0 \leftarrow n \rightarrow y_0 \leftarrow m \rightarrow x_1 \leftarrow n \rightarrow y_1 \leftarrow m \rightarrow x_i \leftarrow n \rightarrow y_i \leftarrow m \rightarrow x_{i+1} = u \leftarrow n \leftarrow v \leftarrow m \rightarrow w.$

So, we conclude that v is not incident on any matching edge.

Flip the edge labels in P from n to m and m to n to obtain a matching that includes all previously matched nodes of X and now includes r, so all nodes of X are in the matching.

$r = x_0 \leftarrow m \rightarrow y_0 \leftarrow n \rightarrow x_1 \leftarrow m \rightarrow y_1 \leftarrow n \rightarrow x_i \leftarrow m \rightarrow y_i \leftarrow n \rightarrow x_{i+1} = u \leftarrow m \leftarrow v.$

This completes the inductive proof.

References