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Abstract

It is impossible to combat software piracy as long as the machines
on which the programs execute are indistinguishable; then, any program
that can execute on one machine may be copied for execution on another
machine. Recently, hardware manufacturers have begun assigning unique
identifiers to CPU chips, which make it possible to address the piracy
issue in a new light. In this paper, we suggest schemes that make it
nearly impossible to use certain kinds of software on a machine unless
the manufacturer of that software has issued a license for that specific
machine.

1 Introduction

It is impossible to combat software piracy as long as the machines on which the
programs execute are indistinguishable; then, any program that can execute
on one machine may be copied for execution on another machine. Recently,
hardware manufacturers have begun assigning unique identifiers to CPU chips,
which make it possible to address the piracy issue in a new light. In this paper,
we suggest schemes that make it nearly impossible to use certain kinds of soft-
ware on a machine unless the manufacturer of that software has issued a license
for that specific machine.

Terminology An author creates files; an author is, typically, a software man-
ufacturer, and a file consists of executable as well as data components (music
and video files as well as binary executables can be protected using our scheme).
A retailer or the author sells a copy of the file to a customer. The customer
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installs the file on a machine and the file opens on that machine under a ker-
nel. Additionally, a group of individuals may create and distribute files among
themselves; we call such files privately shared files. 2

From the viewpoint of the author neither the retailer nor the customer is
trustworthy. A retailer may make unauthorized copies of a file and sell them
to customers at lower prices, and a customer may let other customers “borrow”
the files he has bought for a small fee. Additionally, a fake author may alter the
code of a genuine file, claim that the altered file is his creation and market the
file under a different title, possibly, through a dishonest retailer. Our scheme
prevents piracy in spite of such collusion among the dishonest parties.

Which files can be protected? The piracy problem, in theory, is unsolv-
able. Consider, for instance, a file whose content is a genome sequence. The
distributor of the file must provide the means for a customer to extract the
symbol at every position in the sequence. Therefore, a customer can recreate
the sequence, encode it in a different format and market the file. Similarly, a file
containing a video stream can be replicated by simply playing the video. Call
a file f vulnerable if a file equivalent to f can be constructed easily given the
specification of f and the outcomes of a finite number of experiments with f .
The genome sequence and the video stream are vulnerable, as we have argued.
By contrast, a word processing program is not easily reconstructed from its
specification (i.e., its manual) given a reasonable amount of time to experiment
with it. Methods of water-marking can be used to protect music and video files
– see section 3.3 for certifications of such files by a trusted third party – and
genome sequences are best protected manually through patenting.

Our thesis is that a file can be protected against piracy, without employing
a trusted third party, if and only if it is not vulnerable. This statement, un-
fortunately, carries little formal meaning since neither of the important terms
is precisely defined. Yet, we use this thesis as a guiding principle in devising
antipiracy schemes.

Requirements for an Antipiracy Scheme Our requirements for antipiracy
are grouped into correctness and performance requirements. Correctness re-
quirements are stated more precisely than the performance requirements, be-
cause the latter may be implemented in a variety of different ways by the authors
and the kernels. Most of the following requirements are self-explanatory.

• Correctness Requirements:

1. A file opens on a machine only if the author of that file has authorized
the machine for opening that file.

• Performance Requirements:

1. The author does not have to make extraordinary efforts to build
pirate-proof files. Few burdens are imposed upon the customer in
installing and opening the file, and the retailer in selling it.
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2. Storage and processing requirements for opening a file at the kernel
level are minimal.

Assumptions Our scheme requires the kernel to verify a “license”; so, we
require a secure kernel. Additionally, as mentioned earlier, each machine has a
unique id that cannot be compromised; effectively, the machine id is part of the
kernel.

Note that having a secure kernel alone does not solve the piracy problem
because the authenticity information from a genuine file (purchased for one
machine) may be attached to a pirated file running on the same machine. Our
solution makes heavy use of public key cryptography [2], – in particular, signed
messages – which we assume to be secure.

1. Each machine operates under a secure kernel. That is, the code of the
kernel cannot be changed, its state cannot be examined and its accesses
to addresses (in the application programs) cannot be observed.

2. Each machine has a unique identifier, called its machine id, that cannot
be changed.

3. Public key cryptography is secure.

Overview of the Solution and the Paper In order to buy a file a customer
provides his machine id. The customer receives a file along with a license: the
license contains the file id and machine id, and the license is signed by the
author. The kernel allows execution of a file on a specific machine only if the
file is licensed to run on that machine.

Under mild attack, see section 3, a pirate can only copy a file, verbatim. This
is currently the prevalent mode of attack, and this can be combatted relatively
easily by verifying the license.

We also consider vicious attacks in section 3, in which a pirate may read,
analyze and modify a file. In particular, the pirate may change the file header
so that a license for another product can be used for this file. We propose a
few schemes that thwart this attack. Methods to combat dishonest retailers are
discussed in section 4. Several aspects of our scheme, including a few extensions,
are discussed in section 5. Since many ingenious attacks may be imagined, we
construct a formal proof of the main result based on a small number of axioms
that couch our assumptions. The only attacks that can succeed against our
scheme are the ones that invalidate the axioms; therefore, we discuss each axiom
in detail and the possible attacks against it.

Related Work There is a vast amount of work on secure transactions. We
mention only two here: digiboxes from Intertrust Corporation [4] and cryp-
tolopes from IBM [1]. These employ methods similar to block encryption that
we suggest in section 3.2.
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2 Axiomatic Treatment of Piracy and Licensing

2.1 File Header

Each author and each kernel has a unique signature. A signature is a function
that converts a string to another string1. Any one can decrypt a string signed
by author v, but no one other than v can create a string with v’s signature. We
write v.sign, v.unsign for the signature encryption and decryption functions for
v; v.sign is private to v, but v.unsign is publicly available. We assume that
v.sign and v.unsign are inverses of each other.

Each file, f , has a header, f.header, that includes
f.id, the title of file f , and
f.unsign, the (publicly available) signature decryption function of the

author of f .
The header information in a file may not be genuine because it may have

been corrupted by the pirate.

Privately Shared Files We regard each customer as an author. For a file
created by a customer, the header information will, typically, be constructed
by the kernel (it will assign an id to the file and the signature function may
be picked from a table of such functions built into the kernel). This permits
treatment of privately shared files in exactly the same way as the files marketed
as products.

2.2 A Model of Piracy

In the world of piracy, a file is either genuine or a copy of a genuine file. A
copy need not be verbatim; a pirate may analyze and simulate a genuine file to
understand its functioning and create a file different from the original. But we
expect that a copy would be very similar to the genuine file. Also, we expect
genuine files from different authors to be quite different. Finally, we propose
that genuine files from the same author should be made quite different: files
with different version numbers, for instance, can be made dissimilar by loading
the modules in a totally different order. Therefore, the only way two files are
alike is for one to be a copy of the other (or even be a copy of a copy), perhaps
with a small amount of modification.

Since files are either quite alike or quite different, we can define an equiva-
lence relation, similar (written as ∼), over files. If files f, g are copies (or copies
of copies) of the same genuine file then we expect f ∼ g.

Axiom 1 asserts that each file is a copy of some unique genuine file. Axiom
2 says that a copy carries the same header information as the original. Axiom 2
seems hard to justify since a pirate can read a file, locate the header and replace
it by a different header. We suggest methods to defeat this attack; see section 3.

1A tuple of strings may be signed, by converting the tuple to a simple string. This conver-
sion is not shown explicitly.
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Axiom 1: There is an equivalence relation, ∼, over files such that for any file
f there is a unique genuine file g where f ∼ g.

Axiom 2: (f ∼ g) ∧ (genuine g) ⇒ (f.header = g.header).

Remarks on the axioms It may seem unreasonable to claim that a copied
file that is several generations removed from the original is still similar to the
original. We do not believe that copies will be made from copies unless the
copies are verbatim; therefore, this is a reasonable assumption.

Axiom 2 permits two unrelated files to have the same header. For instance,
an author may release a file g that has the same header as f released earlier by
the same author. This permits every purchaser of file f to upgrade to g at no
additional cost; see section 2.3.

2.3 Licensing

When a customer buys a file f (from an author or retailer), he specifies his
machine id, m. The customer receives f and a license (f.id, m) signed by the
author of f . A license cannot be forged since it is signed. Privately shared files
are acquired in exactly the same fashion, though the details will differ on the
financial aspects of the transaction.

Opening a File A file can be opened on a machine only if the customer can
produce an appropriate license. Specifically, the kernel on machine m carries
out a license verification in order to open a file f under license c, as follows.
It reads the header information (f.id, f.unsign) from the file. (We describe in
section 3 how the header information is encoded in a file so that it cannot be
removed by the pirate and it can be accessed by the kernel.) The kernel then
computes f.unsign(c); if this matches (f.id, m) then the file is opened, else the
file is deemed to be a fake.

Definition: m opens (f, c) ≡ [f.unsign(c) = (f.id, m)].

It is reasonable to say that a machine m has been authorized to open file g
if there is a license c such that m opens (g, c). Since no machine is authorized
to open a non-genuine file, we may also assume that g is genuine if m has been
authorized to open g.

Definition: m authorized for g ≡ [(∃ c :: m opens (g, c)) ∧ genuine g].

2.4 Correctness

The correctness requirements are described in section 1. Our proof obligation
is that if a machine opens file f under license c, i.e., m opens (f, c), then m has
been authorized for f . This result is not true because f may not be genuine. We
can show, however, that there is a genuine g such that f ∼ g and “m authorized
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for g”. Then, it makes no sense to open copy f on m given that permission to
open the genuine file g on m has has been acquired.

Observation 1: Given f and m there is a unique c such that m opens (f, c).
That is, m opens (f, c) and m opens (f, c′) implies c = c′.

Proof: We prove the result by computing the value of c given that m opens
(f, c).

m opens (f, c)
⇒ {Definition}

f.unsign(c) = (f.id, m)
⇒ {Function application}

f.sign(f.unsign(c)) = f.sign(f.id,m)
⇒ {f.sign, f.unsign are inverses}

c = f.sign(f.id,m)

Note: It is highly improbable, though not impossible, for m to open two
different files f, g using the same license, c. From observation 1, then

c = f.sign(f.id,m), and
c = g.sign(g.id, m).

This is a remote possibility for well-chosen signature functions, and even if
these equalities hold for some m they are unlikely to hold for many other ma-
chine ids; thus, systematic piracy is still highly unlikely.

Theorem 1: m opens (f, c) ⇒ (∃ g :: f ∼ g ∧ genuine g ∧ m authorized for g).

m opens (f, c)
⇒ {Axiom 1}

(∃ g :: f ∼ g ∧ genuine g) ∧ m opens (f, c)
⇒ {Axiom 2 applied to f ∼ g}

(∃ g :: f ∼ g ∧ genuine g ∧ f.header = g.header)
∧ m opens (f, c)

⇒ {Definition of header and “opens”}
(∃ g :: f ∼ g ∧ genuine g
∧ f.id, f.unsign = g.id, g.unsign

)
∧ f.unsign(c) = (f.id, m)

⇒ {Predicate Calculus}
(∃ g :: f ∼ g ∧ genuine g ∧ g.unsign(c) = (g.id,m))

⇒ {Definition of “opens”}
(∃ g :: f ∼ g ∧ genuine g ∧ m opens (g, c))

⇒ {Definition of “authorized”}
(∃ g :: f ∼ g ∧ genuine g ∧ m authorized for g)

6



3 Attacks

The only assumptions we have made so far are, in rough terms: (1) the kernel
is secure, (2) the machine id cannot be compromised, (3) (axiom 1) each file is
a copy of a unique genuine file, and (4) (axiom 2) the header of a genuine file
cannot be altered. We do not discuss the possible attacks against the kernel
in this paper. The remaining assumption that needs scrutiny is axiom 2. We
discuss two different kinds of attacks and show how this axiom can be satisfied.

Mild Attack In this form of attack, a pirate can only copy a genuine file
verbatim. That is,

(f ∼ g) ≡ (f = g).
Then, a pirate cannot change the header of a genuine file, and axiom 2 holds.

More formally,

Observation 2: In mild attack, (f ∼ g) ⇒ (f.header = g.header).
Proof:

f ∼ g
⇒ {Definition of mild attack}

f = g
⇒ {Predicate calculus}

f.header = g.header

Mild attacks can be defeated even in the absence of a secure kernel; file f
mimics the steps of the kernel for license verification. There is an executable
portion in f that reads the header information from f , the license, c, the machine
id m, and it evaluates (m opens (f, c)).

Vicious Attack In our treatment of vicious attacks, we endow the attacker
with extraordinary powers. An attacker may replace portions of a binary file,
simulate executions of portions of the file, take core dumps after execution of
each instruction and analyze those to pinpoint instructions that change contents
of specific memory locations, for instance. Almost all of these attacks are in-
feasible. For instance, replacing a portion of a binary executable file may cause
all the absolute addresses to be shifted, which would make the execution of a
program impossible. Yet, we allow these attacks in order to study the ultimate
defenses.

There is no guaranteed way of preventing a pirate from reading (the binary
contents) of a file, analyzing the contents to remove the header, and replacing
it by a different header. A customer who plans to steal the file for personal
use will replace the header by the header of a file that is licensed to run on
his machine. But for large scale operation, a pirate declares himself to be an
author and includes a header in a file identifying him as the author (replacing
the original one). From then on, he is free to issue licenses for the file on any
machine. It may seem that this particular attack can be thwarted by hiding
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the header inside the file in some fashion so that it cannot be removed; the
exact hiding place is known only to the author and the kernel. But, then, any
dishonest author can glean this information by claiming that he needs to hide
the header in the files he produces. Therefore, the exact hiding place has to
be author-dependent. This requires each kernel to maintain a list of authors
and their hiding places; a unworkable solution if the author list is long and
constantly changing.

A possible solution to this problem is for the file itself to do the license
verification, as was proposed for the mild attack. The header and the code
for the check could be hidden within the file. This is surely quite effective in
practice. But, it is not immune to the kind of attack we have described earlier.
A pirate can analyze the code to locate all instructions that compare a value
against the machine id, for instance. He may then replace those instructions
by the ones that compare the value against a location where a fake machine
id is stored. While such attacks can be combatted by a variety of means to
hide the code for license verification – indirect addressing, self-modifying code –
there seems to be no general cure against a committed adversary who is allowed
to analyze the code and simulate its execution. We suggest several possible
defenses, each of which ensure axiom 2, that may be appropriate under different
circumstances.

3.1 File Encryption

The simplest strategy is to encrypt the entire file so that only the kernel can
decrypt it. The header information is a part of the file, and it will be impossible
to remove the header from the encrypted file. The kernel opens the file by
decrypting it and checking the header information. The file is executed in a
privileged mode under the control of the kernel so that no attacker can read the
decrypted version. This strategy can also be applied if the hardware supports
execution of instructions in encrypted mode.

The major drawback of this strategy is the performance penalty associated
with decryption each time the file is opened. Therefore, this strategy is best
applied for small or infrequently used files.

3.2 Block Encryption

This is a refinement of the previous strategy; instead of encrypting the entire
file, only a portion of it that includes the header is encrypted. We postulate
that every file, f , that is not vulnerable, contains a block of code, B, with the
following properties.

• B is essential: Unless B is executed at the appropriate point the machine
will eventually crash or produce meaningless results.

• B is incomprehensible: Observing only the effects of B, i.e., which bits are
altered as a result of executing B, for any finite number of inputs gives no
clue about its effect for some other input.
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The availability of such a block of code within f makes it possible to satisfy
axiom 2, as follows. Include the header within B. Next, encrypt B so that it
can be decrypted only by the kernel. The encrypted version of B, B′, is passed
as an argument of a call to a kernel routine. The kernel routine decrypts B′,
checks for authenticity using the header included there and then executes the
code of B. We argue that this strategy satisfies axiom 2.

• B′ cannot be removed from a copy of f because B is essential.

• An attack may attempt to replace B′ by B′′ where B′′ is (the encrypted
version of) some code that mimics B and B′′ includes a fake header. Since
B′ cannot be analyzed by an attacker, being in an encrypted form, the
construction of B′′ has to rely on the observations of the effects of B′, i.e,
observing the bits that are altered as a result of executing B′. (The storage
area for the kernel is unobservable, and, hence, the decrypted version of B′

is also unobservable.) From the condition of incomprehensibility, no finite
set of experiments suffice to determine the functionality of B′. Hence, no
such B′′ can be constructed.

• From the two observations above, every copy of f has to include B′. There-
fore, the header is included, as required by axiom 2.

The block B is application dependent. For instance, in a program that
performs garbage collection, a few critical instructions manipulate the pointers.
Understanding the effects of these instructions is tantamount to understanding
the full program. These critical instructions can be taken to be B. However,
in a larger program that includes a garbage collector, it is not sufficient to use
this strategy, because an attacker may replace the entire garbage collector.

We have assumed that B is executed only once. We can make it extremely
difficult for the attacker to observe the effect of B if B spawns a kernel process
that runs concurrently with the application program. This process does the
license verification and carries out some essential computation. Observing the
effect of B is very difficult since its execution is intertwined with the execution
of the other processes in f and its effect is spread out over an execution of
undetermined length.

3.3 File Certification

An entirely different scheme to thwart vicious attacks is based on using unforge-
able certificates. There is a trusted third party, called a certification authority,
to whom authors submit their files for certification. If the authority determines
that the file is genuine and the author is the legitimate creator of the file then it
issues a certificate to the file, which the author attaches to the file as a header.
The kernel checks for such a certificate in each file and uses the certificate and
the license to open a file.

The certification authority may use a variety of means to check the authen-
ticity of files. For music and video, water-marking may be the preferred solution;

9



for a genome sequence a manual patent check may be sufficient. We outline an
automatic scheme, similar to water-marking, that is applicable to executable
binary files. Before explaining the scheme, we state the properties of certifi-
cates in axiom 3 – 5, and show that axiom 2 is implemented. Then, we show
that our scheme implements these axioms. Note that any scheme that satisfies
these axioms will protect the files against piracy; our scheme is only one way of
implementing the axioms.

A certificate is issued only to a genuine file and for a specific kernel (imag-
ine that files running under different kernels are different). For every file f ,
f.header is a certificate. For a genuine file, g, g.header is the certificate issued
to it, and for a fake file, f , f.header is a certificate issued to some genuine file.
A kernel can verify if a file “satisfies” a certificate; we write f sat c to denote
that file f satisfies certificate c, and we define this term in section 3.3.1. Note
that f need not be genuine to satisfy c.

Axiom 3: For any file f , f sat f.header.

Axiom 4: For any certificate c, f sat c ∧ g sat c ⇒ f ∼ g.

Axiom 5: For every certificate, c, there is a genuine file f such that c =
f.header.

We now prove that axiom 2 follows from the three axioms above.

Theorem 2: (f ∼ g) ∧ (genuine g) ⇒ (f.header = g.header).
Proof: Let c = f.header.

c = f.header
⇒ {Axiom 5: let h be a genuine file such that h.header = c}

c = f.header ∧ c = h.header ∧ (genuine h)
⇒ {Axiom 3: Both f, h satisfy their headers}

f sat c ∧ h sat c ∧ f.header = h.header ∧ (genuine h)
⇒ {Axiom 4: f sat c ∧ h sat c ⇒ f ∼ h}

f ∼ h ∧ f.header = h.header ∧ (genuine h)
⇒ {antecedent: f ∼ g ∧ (genuine g)}

f ∼ g ∧ (genuine g) ∧ f ∼ h ∧ (genuine h) ∧ f.header = h.header
⇒ {Uniqueness condition from axiom 1}

g = h ∧ f.header = h.header
⇒ {Predicate calculus}

g.header = h.header ∧ f.header = h.header
⇒ {Predicate calculus}

f.header = g.header
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3.3.1 Implementing Axioms 3,4

We propose that a certificate issued to f contain a pair (f.id, f.sign), matching
the structure of a header; the certificate will be signed by a trusted third party,
as we show in section 3.3.2. The component f.id of the certificate is computed
as follows. Let p be a sequence, p = p0, p1, .., where, for all i, pi is a random
position in f where the bit value is 0. Then f.id is K.unsign(p) where K is the
kernel under which this file operates (recall that each kernel has a signature).
Thus, f.id can be read (i.e., decrypted) only by the kernel.

Definition: File f satisfies certificate c (written as f sat c), where c contains
the pair (u, v), if f [pi] = 0, for all i, and p = K.sign(u).

We claim that axioms 3,4 are met by this scheme. For a genuine file, g, the
certificate issued to it becomes its header; therefore, g sat g.header, meeting
axiom 3. For any other file the kernel rejects the file if this condition is not
met. Therefore, every file submitted to a kernel meets axiom 3. For axiom 4,
note that a random bit string satisfies c with probability 2−|p|, where |p| is the
length of the sequence of positions chosen from f . Thus, for sufficiently long
p, say |p| = 40, it is highly unlikely for two files to satisfy the same certificate
unless they are copies. Additionally, no one can tweak a file content to satisfy a
certificate c for an entirely different file, f , because that would require decryption
of f.id; only the kernel can perform this decryption.

3.3.2 Implementing Axiom 5

We use a trusted third party, called a Certification Authority, or CA for short,
for implementing axiom 5. There can be several CA. An author submits to
a CA a file f and the name of the kernel K under which f is to be exe-
cuted. If the CA determines that f is genuine then it issues a signed certificate,
CA.sign(f.id, f.sign), that becomes f.header. Since the certificate is signed by
a CA, any fake certificate will be rejected by the kernel. Therefore, axiom 5 is
met: For every certificate, c, there is a genuine file f such that c = f.header.

The remaining question is how a CA tells if a file is genuine. Here, different
methods may be employed for different kinds of files. Water-marking is best
applied for music and videos; if the CA detects a water-mark of another author
it rejects the file. We describe below a variation of this scheme to establish
authenticity of executable binary files.

For CA to issue certificates only to genuine files the author has to prove to
CA that a file it submits is genuine. One possible proof is for the author to
supply the source code for f ; any party that has access to the source code can
be deemed to be the genuine author. CA then compiles the source code and
certifies the resulting executable file. Unfortunately, this scheme does not quite
work, because it requires the author and CA to agree on a common compiler. It
is possible that an author has an in-house compiler on which the code is to be
compiled. Then, CA has to first certify the genuineness of the compiler. This is
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not a frivolous issue, because a pirate may create a fake compiler that includes
an encoding of a genuine executable file, f , from another author; compiling any
input with this compiler produces f . If CA accepts compilers without question
from authors then it will certify f as a creation of the pirate.

We suggest a strategy based on water-marking. Each author first registers
with CA and then CA assigns an imprint to the author. The imprint information
is a secret that is shared between CA and the author. Imprints have the following
properties: (1) it is not burdensome for an author to embed its imprint into its
files, (2) it is easy for CA to check a file for the imprints of all registered authors,
(3) it is highly unlikely that a random bit string bears the imprint of any author,
and (4) it is nearly impossible to remove an imprint from a file without knowing
the imprint. We discuss certain kinds of imprints and argue why they do or do
not meet these conditions.

First, we show that CA can certify that a genuine file is genuine and reject
fake files, given these properties of imprints. For a file submitted by author v,
CA checks that the file bears v′s imprint and only v′s imprint. Then CA can
assert that the file is written by v; had it been written by any other author it
would bear that author’s imprint, from condition (4).

A genuine file submitted for certification may bear another author’s imprint
accidentally. In that case, the file will be rejected by CA, and the author will
have to modify it. The chances of this happening are quite low (see assumption
3 above), and it is highly unlikely that this scenario will repeat with the modified
file.

How can an attacker change an executable file? We have allowed the
possibility that an attacker may change a genuine file, f , to a file g and then
market g as his own. What kinds of changes are possible?

A genuine executable file, f , is available as a bit string. Let f [i] denote the
bit value at the ith position of f . Since the source code of f is not available,
the attacker has, at best, an understanding of small portions of the code of
f . Without a thorough understanding of the file it is impossible to change it
extensively and still have the file run properly. Thus, inserting an instruction,
which shifts a significant portion of the memory map by one location, is surely
going to make an executable file useless. Similarly, data items cannot be changed
significantly either because their absolute addresses may be used in the file. The
pirate may insert new code at the end of f and change small portions of f by
adding jumps to new code. He may also modify a few bits of f (even at the
expense of losing some functionalities) in order to embed his imprint. However,
for f ∼ g, we can assert that f [i] = g[i], for almost all i whenever f [i], g[i] are
defined. If this is not the case then g will not execute because file f makes
references to absolute addresses in f , which will now be different in g. We
exploit this limitation of the attacker to distinguish a genuine file from a fake
file.

Notation: position is an index i such that f [i] is defined. For a sequence of
positions X, f [X] is the bit string obtained from the corresponding positions of
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f ; we assume that all positions in X fall within the bounds of f so that f [X] is
defined.

Imprints that meet the stated conditions A simple imprint that CA can
assign to each author is a pair (X, S), where X is a sequence of positions and
S is a bit string, and X and S have the same length. A bit string f bears the
imprint (X, S) if f [X] = S. The probability that a random string bears this
imprint is 2−|X|. However, it is possible to guess such an imprint by examining
a large number of files from the same author. Suppose we examine q files from
an author and find that all files have the same value at a particular position.
The likelihood of this occurrence is 2−q+1; for q of about 50, say, it is extremely
unlikely for one position to have the same value in all files unless it is specifically
intended. Thus, all such positions can be identified and they can all be inverted;
with high likelihood, the imprint will then be removed.

This analysis assumes that different files from the same author share nothing
but the imprint. This may be true for music and video files, but for executable
files they, typically, share much more. So, it is unlikely that this attack will
succeed in practice. However, we can modify this imprinting scheme and avoid
the attack altogether.

As before, let CA assign to each author a pair (X,S), where X is a sequence
of positions and S is a bit string, and X and S have the same length. A bit
string f bears this imprint if f [X] = S′, where S′ is a rotation of S by some
amount. We argue below that this scheme meets all the criteria for imprints
listed earlier. In the following, let N be the number of bits in f (N is several
hundred million for today’s commercially available files) and n be the length of
X (and S); (we will consider n in the range of about 32 bits).

First, It is possible for an author to embed its imprint into its files if n
is small. For n = 32, for instance, it will take some help from compiler and
loader to put a few hand-designed routines into specific positions in f so that
the imprint is embedded. Or, it may be possible to fiddle with absolute code to
invert a few bits to embed an imprint.

Second, CA can check a file for a specific imprint quite easily: given (X, S)
to see if f [X] is a rotation of S can be solved using an algorithm due to Shiloach
[3] that operates in time proportional to |X|; see Gasteren and Feijen [5] for an
elegant development of Shiloach’s algorithm. More simply, it is sufficient to
check that f [X] is a substring of SS, and a linear string matching algorithm
can be used for this purpose. The imprints of all authors in a given file can
be checked in time proportional to the number of authors and the lengths of
their imprints. (For 30, 000 authors it takes around 3 seconds to check all the
imprints, assuming that 107 instructions are executed per second, and that it
takes around 1000 instructions to check for an imprint.)

Third, it is quite unlikely that a random file bears the imprint of some
author. The probability that a random bit string has the imprint (X,S) of
a specific author is n/2n (we assume that the string S yields different strings
when rotated by different amounts). Given that there are r authors, each with
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the same parameter n, the probability of finding the imprint of some author in
a random string is, 1− (1− n/2n)r. For n, r = 32, 30000, this is about 0.0002.
This is the probability that CA rejects a valid file from an author because it
detects the imprint of another author. The author may recompile the file in a
different sequence and submit it for certification in that case.

Fourth, we argue that it is nearly impossible to remove an author’s imprint
from a file without knowing the imprint itself. An imprint can be removed from
f by creating g which is a shift of f by one position. It is unlikely then that
g[X] = f [X], and hence g[X] will most likely differ from any rotation of S, thus
removing any imprint in f . However, g will then differ from f in a large number
of positions (around half, on average), and, as we have argued, g will not then
execute properly. As long as most positions in g have identical bit values as
in f , the only attack seems to be to guess some position in X and invert the
bit value at that position. The only information available to an attacker are
several files from the same author. However, no position in all the files bears
any distinguishing characteristic if S is chosen appropriately, for instance, if S
has about equal number of zeroes and ones. Then, the only attack that seems
to be left is to invert a random number of bits of f to remove an imprint.

How many bits have to be inverted randomly so that an imprint is removed?
We calculate the probability of choosing one of the positions in X if t positions
are chosen randomly out of N positions. Call the positions in X private and
the remaining positions public; there are n private positions and N positions
in all. Probability of choosing a public position in a random choice is around
(1− n/N) (this is an approximation because the number of public and private
positions change as a result of a choice). Probability of choosing all public
positions in t choices is (1 − n/N)t. So, the probability of choosing at least
one private position is 1 − (1 − n/N)t. With N,n = 106, 32 the probabilities
are .031, .062, 0.617, 0.959 for t = 1000, 2000, 30000 and 100000, respectively.
Therefore, a fake author has to invert around 10% of the bits of the original file
to assure removing an imprint; for larger files a larger fraction of the bits have
to be inverted if n remains unchanged. It is unlikely that a file that differs in
so many bits from the original can simulate the original file in any reasonable
sense.

Remarks on the contents of certificates The certificate issued by CA
should contain additional statistical information about a file such as its length
and checksums for certain blocks. In the absence of such information, a pirate
may truncate a genuine file drastically to remove the author’s imprint, embed
its own imprint by tweaking the truncated file and submit the truncated file for
certification. The certificate issued to the truncated file is valid for the original
file as well. Hence, the pirate can market the original file with the certificate
issued for the truncated file.
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3.3.3 Drawback of certification

The major difficulty in using certification is that privately shared files are no
longer permitted; all such files have to be certified by a CA. Therefore, this
scheme is best used for music and video files, that are, typically, publicly mar-
keted.

4 Licensing from the Retailer

In this section, we present a few proposals for the retailer to issue licenses on
behalf of the authors. There are many commercial reasons why customers may
prefer to purchase files from a retailer rather than directly from the author. A
retailer may handle files produced by several authors. For the retailer to issue
licenses it must have the headers for all the files it sells, and it must sign a pair
(f.id, m) with the signature of f ’s author. Given honest retailers this scheme
is immune to piracy in the sense described in theorem 1. However, a dishonest
retailer may create unauthorized copies of files and issue licenses which are never
reported to the authors.

A possible defense against dishonest retailers is as follows. An author as-
sociates a unique serial number with each copy of each file it sells. The serial
number appears in plain text. The customer buys the file (on a CD, for instance)
from the retailer and then contacts the author electronically for a license. The
request for the license includes the serial number of the file as well as the ma-
chine id. The author issues the license, and it keeps track of the serial numbers
sold. Then the author can demand the appropriate payment from the retailers
based on the sales data and the serial numbers of the files issued to each retailer.
Also, the author will not issue duplicate licenses for the same serial number. We
reject this solution, however, because customers often buy from retailers when
they have no convenient electronic contact with the author.

Electronic contact between a retailer and an author is more easily estab-
lished. Therefore, a retailer may obtain the license from the author, on behalf
of a customer, as described in the previous paragraph; the customer has to sup-
ply the machine id to the retailer. This procedure is analogous to “credit-card
sale authorization” where a point-of-sale terminal (pos) obtains an authoriza-
tion code for a credit card sale. The customer presents a machine-id card and
the file to be purchased at a pos and the pos issues a license after contacting
the author.

Another possibility is for the retailer to use a secure device, called a licenser.
Presented with a file title, its author and a machine id, the licenser issues the
appropriate license and records the sale on permanent storage. The device has
to be secure so that the sales record cannot be modified by the retailer. The
storage requirement for a licenser are minimal: for each file sold by a retailer, it
has to store the header, the signature function of the author and the number of
copies of the file sold so far. The processing requirements are also minimal: for
each sale a license has to be computed. Information on sales data may be read
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out and reset by each author electronically (by using a secure authentication
protocol) from time to time; therefore, only periodic contact between an author
and a retailer is required. Since it is impossible for the retailer to access or
manipulate any information in the licenser all sales of a file will be reported to
its author.

In some countries such a device is already used for “fiscal journalling”, i.e.,
the sales are recorded on a secure device for tax purposes.

Creating a license does not place extraordinary burden on a retailer. He
may link the licenser to the point of sale terminal; the customer may provide
his machine id in a smart card that can be scanned, and the file title can be
obtained from its UPC code; the license can be printed in the sales receipt. Note
that the license has no value to any other party; therefore, it may be given in
plain text.

5 Extensions

Software leasing The scheme proposed in this paper permits leasing of soft-
ware for a specific time period. Then, the license carries the terms of the lease,
and these terms can be checked by the kernel as part of the license verification.
The licenser device at the retailer has to record the lease term as part of the
sale.

This scheme could be compromised by tampering with the clock in the ma-
chine. We assume that the clock is part of the kernel, and, hence, it is tamper-
proof.

Authorizing the customer vs. authorizing the machine We have, so
far, assumed that a file is authorized for execution on a specific machine. This
presents difficulties when the machine is sold to a different party; the buyer ac-
quires and the seller relinquishes all licensed software on the machine. Instead,
a file may be sold to a customer provided that the customer has a unique, un-
forgeable id encoded in a smart card that plugs into any machine. Authenticity
check is then made against a customer id instead of a machine id. It is possible
to authorize either a machine or a customer using this scheme. This allows a
customer to run his software on any machine, but if the cards are truly un-
forgeable then a file licensed to a customer could be operating on at most one
machine at any time.

Software refund It is difficult to carry out the following transaction: the
customer returns a file and demands a refund. This is because he can keep a
copy of his license and a copy of the original file.

Software reselling It is difficult for one customer to sell a file, that he had
purchased, to another customer (and remove it from his machine). Reselling is
a more general case of software refund (refund involves selling to the retailer),
which is difficult, as argued above.
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Bulk Licensing A file is sometimes licensed to run on any machine in a group,
particularly, when software is licensed to an organization. Then, a single license
may include the identities of all machines in the group, instead of licensing each
machine individually. In particular, a special machine id, “ALL”, could be used
in a license for a privately shared file to enable it to be installed on any machine.
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