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Preface

One way to avoid a headache is to have no head, so goes a saying in Sanskrit.
Concurrency was not a headache as long as we wrote only sequential programs.
It started to become a minor headache with the advent of operating systems
that managed a card-reader, a printer and a disk simultaneously. Now that we
have many million mobile, and potentially interacting, devices, we do have a
giant headache.

Concurrent programs are hard to design and understand. Unlike sequential
programs in which a programmer assumes the role of an executing machine and
reasons about his program step by step, concurrency creates, through forks,
many executing threads that can not be followed linearly. Concurrency has tra-
ditionally excited a lot of passion, for the intricate programming and verification
issues that it throws up.

This book presents our attempt to understand concurrency and develop
concurrent programs in a more structured style, using a theory called Orc. The
work is inspired by earlier works with similar goals, CCS [36], CSP [24] and π-
Calculus [38]. Unlike earlier works, the emphasis in Orc is on the combinators
that allow us to create larger programs from some given components, a process
that can be applied hierarchically. The basic components themselves are not
part of the calculus. Orc programming language, based on Orc calculus, has
been used to solve a large number typical problems in concurrency.
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previous implementation and extends it in many directions including the notion
of “class”. The attractive web interface at http://orc.csres.utexas.edu is
due to Adrian Quark. I also appreciate the contributions of Bryan McCord in
helping develop the documentation and Sidney Rosario for help in implementa-
tion.
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operational semantics of Orc and has been a collaborator in this project. Albert
Benveniste, of IRISA/INRIA, and Claude Jard, of Ecole Normale Supérieure de
Cachan, France, have been our collaborators for a long time. They and their
students have extended the concepts of the language, applied the concepts in a
variety of practical domains and helped us to reexamine our core beliefs (and
prejudices). Jose Meseguer, and his student Musab AlTurki, have implemented
the real-time rewriting semantics of Orc [2] in their system Maude; interactions
with them have been a pleasure.
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Chapter 1

Orchestration

1.1 On Building Large Software Systems

This book is about a theory of programming, called Orc, developed by me and
my collaborators. The philosophy underlying Orc is that: (1) large programs
should be composed out of components, which are possibly heterogeneous (i.e.,
written in a variety of languages and implemented on a variety of platforms), (2)
the system merely orchestrates the executions of its components in some fashion
but does not analyze or exploit their internal structures, and (3) the theory of
orchestration constitutes the essential ingredient in a study of programming.

I am sorry if I have already disappointed the reader. None of the points
made above is startling. Building large systems out of components is as old as
computer science; it was most forcefully promulgated by Dijkstra in his classic
paper on Structured Programming [11] nearly a half century ago. It is the
cornerstone of what is known as object-oriented programming [19, 35]. In fact,
it is safe to assert that every programming language includes some abstraction
mechanism that allows design and composition of components.

It is also well-understood that the internal structure of the components is of
no concern to its user. Dijkstra [11] puts it succinctly: “we do not wish to know
them, it is not our business to know them, it is our business not to know them!”.
Lack of this knowledge is essential in order that a component may be replaced
by another at a later date, perhaps a more efficient one, without affecting the
rest of the program.

Component-based design makes hierarchical program construction possible.
Each component itself may be regarded as a program in its own right, and de-
signed to orchestrate its subcomponents, unless the component is small enough
to be implemented directly using the available primitive operations of a pro-
gramming language. Hierarchical designs have been the accepted norm for a
very long time.

Where Orc differs from the earlier works is in insisting that programming be
a study of composition mechanisms, and just that. In this view, system building

11
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consists of assembling components, available elsewhere, using a limited set of
combinators. The resulting system could itself be used as a component at a
higher level of assembly.

There are few restrictions on components. A component need not be coded in
a specific programming language; in fact, a component could be a cyber-physical
device or a human being that can receive and respond to the commands sent
by the orchestration mechanism. Components may span the spectrum in size
from a few lines of code, such as to add two numbers, to giant ones that may
do an internet search or manage a database. Time scales for their executions
may be very short (microseconds) to very long (years). The components may
be real-time dependant. A further key aspect of Orc is that the orchestrations
of components may be performed concurrently rather than sequentially.

We advocate an open design in which only the composition mechanisms are
fixed and specified, but the components are not specified. Consequently, even
primitive data types and operations on them are not part of the Orc calculus.
Any such operation has to be programmed elsewhere to be used as a component.
By contrast, most traditional designs restrict the smallest components to the
primitives of a fixed language, which we call a closed design. Closed designs
have several advantages, the most important being that a program’s code is
in a fixed language (or combinations of languages) and can be analyzed at
any level of detail. The semantics of the program is completely defined by
the semantics of the underlying programming language. It can be run on any
platform that supports the necessary compiler. Perhaps the most important
advantage is that the entire development process could be within the control of
a team of individuals or an organization; then there are fewer surprises. In spite
of these advantages for a closed system design, we do not believe that this is the
appropriate model for large-scale programming in the future; we do not believe
that a single programming language or a set of conventions will encompass the
entirety of a major application; we do not believe that a single organization will
have the expertise or resources to build very large systems from scratch, or that
a large program will run on a single platform.

The second major aspect of Orc is on its insistence on concurrency in orches-
tration. Dijkstra [11] found it adequate to program with three simple sequential
constructs, sequential composition, a conditional and a looping construct 1 .
However, most modern programming systems, starting from simple desktop ap-
plications to mobile computing, are explicitly or implicitly concurrent. It is
difficult to imagine any substantive system of the future in purely sequential
terms.

We advocate concurrency not as a means to improving the performance of
execution by using multiple computers, but for ease in expressing interactions
among components. Concurrent interactions merely specify a large number
of alternatives in executing a program; the actual implementation may indeed
be sequential. Expressing the interactions in sequential terms often limits the

1Dijkstra did not explicitly include function or procedure definition. This was not essential
for his illustrative examples. In his later work, he proposed non-deterministic selection using
guarded commands [12, 14] as a construct, though concurrency was not an explicit concern.
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options for execution as well as making a program description cumbersome.
Components may also be specified for real time execution, say in controlling
cyber-physical devices.

Almost all programming is sequential. Concurrency is essential but rarely
a substantial part of programming. There will be a very small part of a large
program that manages concurrency, such as arbitrating contentions for shared
resource access or controlling the proliferation (and interruption) of concurrent
threads. Yet, concurrency contributes mightily to complexity in programming.
Sprinkling a program with concurrency constructs has proven unmanageable;
the scope of concurrency is often poorly delineated, thus resulting in disaster in
one part of a program when a different part is modified. Concurrent program
testing can sometimes show the presence of bugs and sometimes their absence.
It is essential to use concurrency in a disciplined manner. Our prescription is to
use sequential components at the lowest-level, and orchestrate them, possibly,
concurrently.

In the rest of this chapter, we argue the case for the orchestration model
of programming, and enumerate a specific set of combinators for orchestration.
These combinators constitute the Orc calculus, which we introduce informally
in Chapter 2 and more formally in Chapter 3. Orc calculus, analogous to the
λ-calculus, is not a suitable programming language. Chapter 4 includes a very
small programming language built upon the calculus; we ought to call it a
“notation” rather than a “language” because it is designed to explore the nature
of component integration, rather than build industrial-scale applications. The
rest of the book describes our experience in using this notation to code a variety
of common programming idioms and some small applications.

1.2 Structure of Orc

1.2.1 Components, also known as Sites

Henceforth, we use the term site for a component 2.
The notion of a (mathematical) function is fundamental to computing. Func-

tional programming, as in ML [37] or Haskell [15], is not only concise and elegant
from a scientist’s perspective, but also economical in terms of programming cost.
Imperative programming languages often use the term “function” with a broader
meaning; a function may have side-effects. A site is an even more general notion.
It includes any program component that can be embedded in a larger program,
as described below.

The starting point for any programming language is a set of primitive built-in
operations or services. Primitive operations in typical programming languages
are arithmetic and boolean operations, such as “add”, “logical or” and “greater
than”. These primitive operations are the givens; new operations are built from
the primitive ones using the constructs of the language. A typical language has

2This terminology is a relic of our earlier work in which web services were the only com-
ponents. We use “site” more generally today for any component.
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a fixed set of primitive operations. By contrast, Orc calculus has no built-in
primitive operation. Any program whose execution can be initiated, and that
responds with some number of results, may be regarded as a primitive operation,
i.e. a site, in Orc.

The definition of site is broad. Sites could be primitive operations of common
programming languages, such as the arithmetic and boolean operations. A site
may be an elaborate function, say, to compress a jpeg file for transmission over
a network, or to search the web. It may return many results one by one, as
in a video-streaming service or a stock quote service that delivers the latest
quotes on selected stocks every day. It may manage a mutable store, such as a
database, and provide methods to read from or write into the database. A site
may interact with its caller during its execution, such as an internet auction
service. A site’s execution may proceed concurrently with its caller’s execution.
A site’s behavior may depend on the passage of real time.

We regard humans as sites for a program that can send requests and receive
responses from them. For example, a program that coordinates the rescue efforts
after an earthquake will have to accept inputs from the medical staff, firemen and
the police, and direct them by sending commands and information to their hand-
held devices. Cyber-physical devices, such as sensors, actuators and robots, are
also sites.

Sites may be higher-order in that they accept sites as parameters of calls and
produce sites as their results. We make use of many factory sites that create
and return sites, such as communication channels. Orc includes mechanisms for
defining new sites by making use of already-defined sites.

1.2.2 Combinators

The most elementary Orc expression is simply a site call. A combinator com-
bines two expressions to form an expression. The results published by expres-
sions may be bound to immutable variables. There are no mutable variables in
Orc; any form of mutable storage has to be programmed as a site.

Orc calculus has four combinators: “parallel” combinator, as in f|g , exe-
cutes expressions f and g concurrently and publishes whatever either expression
publishes; “sequential” combinator, as in f >x> g , first executes f , binds each
of its publications to a different instance of variable x and then executes a sepa-
rate instance of g for each such binding; “pruning” combinator, as in f <x< g ,
executes f and g concurrently, binds the first value published by g to variable x

and then terminates g, here x may appear in f ; and “otherwise” combinator, as
in f;g , introduces a form of priority-based execution by first executing f , and
then g only if f halts without publishing any result.

There is one aspect worth noting even in this very informal description. An
expression may publish multiple values just as a site does. For example, if each
of f and g publishes a single value, then f|g publishes both of those values;
and (f|g)>x> h executes multiple instances of expression h, an instance for
each publication of f|g . Informal meanings of the combinators are given in
Chapter 2 and the formal meanings in Chapter 3.
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1.2.3 Consequences of Pure composition

The combinators for composition are agnostic about the components they com-
bine. So, we may combine very small components, such as for basic arithmetic
and boolean operations drawn from a library, to simulate the essential data
structures for programming. This, in turn, allows creations of yet larger com-
ponents, say for sorting and searching. Operations to implement mutable data
structures, such as for reading or writing to a memory location, can also be
included in a program library. A timer that operates in real time can provide
the basics for real time programming. Effectively, a general purpose concurrent
programming language can be built starting with a small number of essential
primitive components in a library. This is the approach taken in the Orc lan-
guage design in Chapter 4.

Even though it is possible to design any kind of component starting with a
small library of components, we do not advocate doing so in all cases. The point
of orchestration is to reuse components wherever possible rather than building
them from scratch, and components built using Orc may not have the required
efficiency for specific applications.

1.3 Concluding Remarks

There is a popular saying that the internet is the computer. That is no less or
no more true than saying that a program library is a computer. This computer
remains inactive in the absence of a driving program. Orc provides the rudi-
ments of a driving program. It is simultaneously the most powerful language
that can exploit available programs as sites, and the least powerful programming
language in the absence of sites.

A case against a grand unification theory of programming It is the
dream of every scientific discipline to have a grand unification theory that ex-
plains all observations and predicts all experimental outcomes with accuracy.
The dream in an engineering discipline is to have a single method of construct-
ing its artifacts, cheaply and reliably. For designs of large software systems, we
dream of a single, preferably small, programming language with an attendant
theory and methodology that suffices for the constructions of concise, efficient
and verifiable programs. As educators we would love to teach such a theory.

Even though we have not realized this dream for all domains of program-
ming, there are several effective theories for limited domains. Early examples
include boolean algebra for designs of combinational circuits and BNF nota-
tion for syntax specification of programming languages. Powerful optimization
techniques have been developed for relational database queries. Our goal is to
exploit the powers of many limited-domain theories by combining them to solve
larger problems. A lowest-level component should be designed very carefully for
efficiency, employing the theory most appropriate for that domain, and using
the most suitable language for its construction. Our philosophy in Orc is to
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recognize and admit these differences, and combine efficient low-level compo-
nents to solve a larger problem. Orc is solely concerned with how to combine
the components, not how a primitive component should be constructed.

Bulk vs. Complexity It is common to count the number of lines of code in
a system as a measure of its complexity. Even though this is a crude measure,
we expect a system with ten times as many lines of code to be an order of
magnitude more complex. Here we are confusing bulk with complexity; that
bulkier a program, the more complex it is. There are very short concurrent
programs, say with about 20 lines, that are far more complex than a thousand
line sequential program. Concurrency adds an extra dimension to complexity.
In a vague sense, the complexity in a sequential program is additive, whereas in
a concurrent program it is multiplicative.

The philosophy of Orc is to delegate the bulkier, but less complex parts
to components and reserve the complexity for the Orc combinators. Though
solvers of partial differential equations can be coded entirely in Orc using the
arithmetic and boolean operations as sites, this is not the recommended option.
It should be coded in a more suitable language, but concurrent executions of
multiple instances of the solvers, with different parameters, for instance, should
be delegated to Orc.

Some sweeping remarks about programming Consider the following sce-
nario. A patient receives an electronic prescription for a drug from a doctor.
The patient compares prices at several near-by pharmacies, and chooses the
cheapest one to fill the prescription. He pays the pharmacy and receives an
electronic invoice which he sends to the insurance company for reimbursement
with instructions to deposit the amount in his bank account. Eventually, he
receives a confirmation from his bank. The entire computation is mediated at
each step by the patient who acquires data from one source, does some minor
computations and sends data to other sources.

This computing scenario is repeated millions of times a day in diverse areas
such as business computing, e-commerce, health care and logistics. In spite of
the extraordinary advances in mobile computing, human participation is cur-
rently required in every major step in most applications. This is not because
security is the over-riding concern, but that the infrastructure for efficient medi-
ation is largely absent, thus contributing to cost and delay in these applications.
We believe that humans can largely be eliminated, or assigned a supporting role,
in many applications. Doing so is not only beneficial in terms of efficiency, but
also essential if we are to realize the full potential of the interconnectivity among
machines, using the services and data available in the internet, for instance. We
would prefer that humans advise and report to the machines, rather than that
humans direct the machines in each step.

The initial impetus for Orc came from attempting to solve such problems by
orchestrating the available web services. Ultimately, languages outgrow the ini-
tial motivations of their design and become applicable in a broader domain. Orc
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is currently designed for component integration and concurrency management
in general.

The programming community has had astonishing success in building large
software systems in the last 30 years. We routinely solve problems today that
were unimaginable even a decade ago. Our undergraduates are expected to code
systems that would have been fit for a whole team of professional programmers
twenty years ago. What would programs look like in the future? We can try
to interpolate. The kinds of problems the programmers will be called upon
to solve in the next two decades will include: health care systems automating
most of their routine tasks and sharing information across hospitals and doctors
(for example, about adverse reaction to drugs); communities and organizations
sharing and analyzing data and responding appropriately, all without human
intervention; disaster recovery efforts, including responding to anticipated dis-
asters (such as, shutting down nuclear reactors well before there is a need to)
being guided by a computer; the list goes on. These projects will be several
orders of magnitude larger than what we build today. We anticipate that most
large systems will be built around orchestrations of components. For example,
a system to run the essential services of a city will not be built from scratch
for every city, but will combine the pre-existing components such as for traffic
control, sanitation and medical services. Software to manage an Olympic game
will contain layer upon layers of interoperating components.

A Critique of Pure Composition A theory such as Orc, based as it is on
a single precept, may be entirely wrong. It may be too general or too specific,
it may prove to be too cumbersome to orchestrate components, say in a mobile
application, or it may be suitable only for building rapid prototypes but may be
too inefficient for implementations of actual systems. These are serious concerns
that can not be argued away. We will try to address these issues in this book
in two ways: (1) prove results about the calculus, independent of the compo-
nents, that will establish certain desirable theoretical properties, and (2) supply
enough empirical evidence that justifies claims about system building. While
(1) is largely achievable (see Chapter 3), (2) is a never-ending task. We supply
empirical evidence in this book by programming a large number of commonly
occurring programming patterns. We hope that the evidence presented in this
book will spur others to investigate Orc, and add to the body of evidence for or
against it.
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Chapter 2

Orc Calculus

2.1 Introduction

This chapter introduces the Orc calculus, the foundation of our theory of struc-
tured concurrent programming. The essential elements of the calculus are: (1)
site, (2) combinator and (3) definition. A site is a service of any kind that a
program can call and from which it may receive responses, combinators provide
the mechanisms for orchestrating the site calls, and the definitions provide the
essential abstraction mechanism for defining sites in Orc. The calculus does not
include data types, or typical concurrent programming notions such as thread,
process and synchronization; such concepts can be programmed from the con-
structs of the calculus.

We describe the calculus informally in this chapter and more formally in
Chapter 3.

2.2 Site

Summary A site is a service that is called like a traditional procedure and
it responds with some number of values, called publications. It may, option-
ally, send an indication when its computation on behalf of this call has ended.
Thus, there are three kinds of responses: (1) a non-terminal response that has
an associated value, (2) a terminal response with a value indicating that the
computation has ended, so there will be no further response, and (3) a terminal
response without a value indicating just the end of computation, but no value.
A response is positive if it carries a value; it could be terminal or non-terminal.
A negative response carries no value, it is always terminal. A helpful site is
one that sends a terminal response whenever its computation on behalf of a call
ends. ✷

We next elaborate on the nature of site call and response.
A site is any entity that can accept input from a program and respond to it.

A site may be a program component, a cyber-physical device or a human being
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who can communicate with a computer.

A site is called in order to trigger its execution and the site responds by
returning values. First, we describe the specifics of call and response and then
show that various kinds of more general interactions may be simulated through
the call/response protocol.

2.2.1 Site Call

A site call looks like a procedure or function call in other programming lan-
guages. A site call has zero or more parameters1 , where each parameter is a
variable, and the list of parameters are comma-separated within parentheses. If
the parameter list is empty the parentheses are still used, as in M() . A site may
have a variable number of parameters; in fact, the library site that constructs a
tuple out of its arguments may have any number of arguments exceeding 1.

A site call is executed even when some of its parameters are not bound to
values. We call this form of execution lenient. As each parameter gets bound
to a value, the value is transmitted to the site. A site may respond even before
receiving values of all its parameters.

We call a site strict if it needs the values of all its parameters before it can
start execution. Though all sites are called leniently, a site may specify that
its behavior is strict. For example, a strict site for “logical-or” needs values of
both its boolean arguments before it sends its response. A lenient site for the
same function may respond with true if one of the argument values is true

even though the other argument may not yet be bound to a value.

A site may be called concurrently, possibly from many parts of the same
program. The site may execute the calls it receives in some sequential order, or
it may execute multiple instances of its code concurrently. Concurrent execution
introduces the possibility that the different execution threads may interfere in
reading/writing to shared mutable store. How a site handles concurrent calls is
a part of its specification.

More Elaborate Call Protocols We sketch how more elaborate site call
protocols may be implemented using the Orc protocol.

Typically, large components do not have a single interface. A site may
provide a variety of methods that may be called directly. This is supported
directly in the Orc language. It can be simulated in the Orc calculus by the
user (i.e., the orchestrating program) first calling a site with a method name as
a parameter; the site responds with the name of another site that performs the
actions of that method, and then the user may call that site with the appropriate
parameters of that method.

Many sites engage in a dialog with a user before they accept the proper input
from the user. For example, to interact with a bank, the user first inputs the

1Henceforth, we use the terms “argument” and “parameter” interchangeably. A “formal
parameter” is the name of the variable being used for a parameter and “actual parameter” is
the value of the formal parameter in a call.
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“user name”, the user receives a pass-phrase by which he authenticates the site,
the user then inputs the “password”, and the site responds by allowing the user
to access the account. We can think of this protocol as being equivalent to a
series of smaller steps: the user calls the bank with “user name” as a parameter,
receives a response that includes a pass-phrase and another site name A, user
authenticates the pass-phrase by calling another site B, then the user calls A
with the password and expects to receive a site name C for access to the account.

A site may engage in continual interactions with its caller during its exe-
cution. These are known as reactive programs, first introduced by Manna and
Pnueli [33]. We may imagine that the site interacts with its caller through in-
put and output channels; the initial call to the site establishes the identities of
these channels. Sites may also interact through websites whose identities can
be similarly established.

2.2.2 Site Response

A site responds to a call by sending some number (zero, non-zero finite or infi-
nite) of values; optionally, it may also send an indication when its computation
on behalf of this call has ended. We say that the site publishes each value, and
the values are the publications of the site. The termination indication from a
site, if any, allows the caller to stop waiting for further publications. Note that
a site may send a termination indication without sending any publication when
the computation ends without any output by the site. Further, many sites,
particularly the external ones, never send a termination indication when their
computation on behalf of a call terminates.

Sites may follow a variety of protocols to send their responses to callers. We
abstract from these protocols and adopt the convention that a site sends three
kinds of responses: (1) a non-terminal response that has an associated value,
(2) a terminal response with a value indicating that the computation has ended,
so there will be no further response, and (3) a terminal response without a value
indicating just the end of computation, but no value. Call a response positive
if it carries a value; it could be terminal or non-terminal. A negative response
does not carry a value, and it is always terminal.

We require of an implementation that a terminal response be received last
by the caller. An implementation may ensure this requirement by having each
terminal response carry the count of the number of non-terminal responses pre-
ceding it so that the caller processes all non-terminal responses before processing
the terminal response.

The non-terminal responses from a site are received by the caller in arbitrary
order; so they form a set, not a sequence. If the site intends to send a stream of
values, as for a video file, it should assign sequence numbers to the individual
responses and have the caller reassemble the responses into a stream. The end
of the stream is a terminal response.

Helpful Site Not all sites send the termination indication. A site is helpful
for a call if its computation on behalf of the call is infinite or it sends a terminal
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response (at the end of computation). A site is helpful if it is helpful for every
call. Typical web services that are called as sites are not expected to be helpful.

Parameter and Response Values There are no designated data types or
special values in Orc, except the value signal that carries no data. A signal
may be a parameter value in a site call or published by a site. A site may publish
any value, such as integers, lists and trees, XML records and Java objects, that
are merely passed on to other sites by the orchestrating program. A site is also
treated as a value; so, the actual parameters of a site call may themselves be
sites and the publications of a site may also be sites.

Site Implementation It is irrelevant for our theory how a site is imple-
mented, or the servers on which the computations of a site take place. It is
possible that a site is down-loadable —as is the case with most Java applets—
which causes a site call to result in a download and the execution of the ap-
plication on the client’s machine. More elaborate schemes for migration and
execution may be implemented for certain sites. These details are of no concern
in the theory of Orc; they are relevant only for efficient implementation.

More on Site Response Sites are not just mathematical functions, nor are
they quite comparable to procedures in traditional languages that publish at
most one value. We give a few examples of site responses.

A site may send only a single terminal response with a value that is a math-
ematical function of its arguments; logical-or is such a site. A site’s response
could be non-deterministic, as in a random number generator; standard library
site Random(n) sends a single terminal response with a value that is a random
natural number smaller than n. A site may send only a negative response; li-
brary site stop has this behavior (see below). A site may publish for some
argument values, but not for others; see Ift below. A site call may be blocked
waiting for another site call to change the site state; reading from an empty
buffer is blocked until another site call writes some data into the buffer. A site
may send a very large number of positive responses, as in a video-streaming
service. A site’s response may depend on the passage of time: a site that pub-
lishes an “alarm” signal at a specific time every day has an unbounded number
of publications each of which is time-dependent.

2.2.3 Common Sites

Sites are treated as uninterpreted symbols in the Orc calculus. We introduce a
few common sites below for use in our examples. These sites are easy to code
in any common programming language. All of them are available in the Orc
standard library. Each site publishes a single terminal response, so it is helpful.
Each site serializes executions of concurrent calls in some arbitrary order.

Ift(b) , Iff(b) : Site Ift(b) publishes a signal immediately if b is (bound
to) true , and sends a negative response if b is false or non-boolean. Site
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Iff has the opposite behavior; it publishes a signal if b is false , and
sends a negative response otherwise.

stop and signal: stop is an abbreviation for Iff(true) , and signal is same
as Ift(true) . Thus, stop does not publish and signal immediately
publishes a signal. Technically, stop is not a site but a primitive of the
calculus. The distinction is important in semantic description.

Constants: It is convenient to imagine that each constant value is actually a
site, a site of zero arity. Thus, there is a site corresponding to each inte-
ger and real constant, such as 3, -1 , 2.5 , and 3.0E-2 , that we wish to
represent in a computer. Call to any such site responds immediately with
a non-terminal response with the corresponding value. Similarly, boolean
values true and false are published by the sites true and false respec-
tively, and Unicode strings, such as "37wxy.pq" , are published by the
corresponding sites. We adopt the convention that calls to constant sites
are written without parentheses so that they resemble the familiar literals;
for example, we write just 3 instead of 3() to call the corresponding site.

Any implementation would clearly use a different technique for represent-
ing constants, rather than employong sites. Representation by sites unifies
their treatment in the Orc calculus.

Rwait(t) : A call to Rwait(t) , where t is bound to a non-negative integer
value, publishes a signal, a terminal response, exactly2 t time units later.
Henceforth, we take a time unit to be 1 millisecond. Observe that Rwait

(t) , where t is bound to 0, behaves as signal.

2.3 Orc program Structure

An Orc program is an expression. An expression is either (1) a site call, (2) two
constituent expressions combined using a combinator, or (3) a site definition
followed by an expression. This structure supports repeated and nested site
definitions which we illustrate in full generality in Chapters 3 and 4. We restrict
ourselves to definitions without nesting in this chapter, which is sufficient to
explain the main ideas of Orc.

From the syntax of expressions, any expression is preceded by a, possibly
empty, sequence of definitions. The expression following all the definitions in a
program is called its goal expression. A program execution starts by executing
its goal expression.

An expression engages in two possible activities during its execution: (1)
site calls and (2) publications. Its execution may (1) may halt eventually hav-
ing published a finite number of values (possibly zero), (2) continue forever
publishing a finite or infinite number of values, or (3) blocked indefinitely wait-
ing for responses from some sites. An expression halts if it can engage in no

2An implementation can only approximate this guarantee.
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further computation, that is: (1) it has received all responses from every site it
has called (guaranteed by receiving a terminal response from each called site),
and (2) it will not call any site nor publish any further value. An expression
that never publishes is silent, though it may still call sites. We define these
notions formally in Section 3.7.1 (page 65).

The most elementary expression is a site call. Any value associated with a
positive response of the site becomes a publication of the expression.

Orc has four combinators: parallel (| ), sequential (>x> ), pruning (<x< ),
and otherwise (; ). Each combinator captures a different aspect of concurrency.
Syntactically, the combinators are written infix. Their order of precedence from
stronger to weaker binding power is as follows: sequential, parallel, pruning,
otherwise. Thus, f >x> M(x,y)<y< h|Rwait(5); 3 is same as
((f >x> M(x,y))<y< (h|Rwait(5))); 3 .

Orc programs have no mutable variables. A mutable store has to be managed
by a site written in some other language. The Orc program can manipulate such
a store only by calling the site, but never directly.

Execution Engine We assume that an Orc program is executed on a com-
puter that can run an arbitrary number of concurrent computations simultane-
ously, and that provides a real time-service so that the same real time is visible
to all computations. Clearly, this is an idealized model; an implementation can
only approximate this ideal. In a later chapter, we show how the computation
of an Orc program can be distributed over a set of machines while providing the
illusion of the single time-service. The idealized computing model simplifies the
description of Orc semantics.

2.3.1 Parallel Combinator

Given that f and g are Orc expressions, f|g is executed by starting the exe-
cutions of f and g immediately and concurrently. Executions of f and g are
interleaved arbitrarily in the execution of f|g . Any site call (or publication)
by a constituent expression, f or g, is also a site call (or publication) by f|g .
There is no direct communication between f and g during the execution.

Example

Expression 2|3 calls the sites 2 and 3 simultaneously. Since each of these sites
publishes the corresponding value immediately, expression 2|3 publishes
2 and 3 immediately, in either order.

Expression Google(x)|Yahoo(x) calls the sites Google and Yahoo simultane-
ously. ✷

The parallel combinator is commutative and associative, that is, f|g is equiv-
alent to g|f and (f|g)|h to f|(g|h) . We prove these results in Chapter 3 using
the operational semantics of Orc.



2.3. ORC PROGRAM STRUCTURE 25

2.3.2 Sequential Combinator

In f >x> g , first the execution of f is started. Each value published by f

initiates a separate execution of g wherein x is bound to that published value.
Execution of f continues in parallel with the executions of all instances of g.
The publications of the instances of g are the publications of f >x> g . The
values published by f are internally consumed by being bound to the various
instances of x . If f publishes no value, no execution of g occurs, and f >x> g

does not publish.

Example

Expression 2 >x> Double(x) is executed as follows. First, site 2 is called and
it publishes 2. Then the published value 2 is bound to x and site Double is
called with parameter x . Suppose site Double publishes double the value
of its parameter; then, the entire expression publishes 4.

In expression (2|3)>x> Double(x) , since 2|3 publishes 2 and 3 in either
order, site Double is called twice with parameter x bound to 2 and 3.
Therefore, the entire expression publishes 4 and 6 in either order.

In ( CNN()|BBC())>x> Email(a, x) , sites CNNand BBCmay each publish a
news page or send no response. Assume that site call Email(a, x) sends
the value of x by email to address a, where a is already bound to a value.
Since either or both of CNNand BBCmay or may not publish, Email may
be called 0, 1 or 2 times depending on the number of responses received
from CNNand BBC.

stop >x> 2 behaves as stop; it publishes nothing and halts. We show in Sec-
tion 3.7.3 (page 67) that stop >x> g , for any expression g, is equivalent
to stop. Similarly, signal >x> g is equivalent to g, though, technically,
this is called a weak equivalence. ✷

Notational Convention Exploiting the sequential combinator, we write con-
stants instead of just variables for parameters in a site call. Thus, writing
M(2,y) , where M is a site, is a shorthand for 2 >x> M(x,y) and M(2,3) is
2 >x> (3 >y> M(x,y)) .

We adopt the convention that the sequential combinator is right associative,
i.e. f >x> g >y> h is interpreted as f >x> (g >y> h) . When x is not used
in g, we use the short-hand f >> g for f >x> g . ✷

The sequential combinator generalizes the traditional sequential composition
for a concurrent world: if f just publishes a signal when it has completed its
execution, then f >> g behaves like a program in which g follows f .

2.3.3 Pruning Combinator

The two combinators described so far can only spawn new computations, but
never terminate an executing computation. The next combinator allows us to
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do just that. In f <x< g , both f and g are started concurrently. Recall that
site calls are lenient; so, the site calls in f that have x as a parameter can
proceed even though x is not bound to a value. If g publishes a value, then x is
bound to that value and g’s execution is terminated. Terminating the execution
of expression g has the effect that no further site calls are made from g and a
response received later from a site that was called from g is ignored.

In contrast to ( CNN()|BBC())>x> Email(a, x) , the following expression
calls Email at most once. Below, a is already bound to a value.

Email(a, x) <x< ( CNN()|BBC() )

Here, executions of Email(a, x) and CNN()|BBC() are started simultaneously.
The site call Email(a, x) is made even though x is not bound to a value,
though the execution of Email would be suspended until x is bound. The
execution of CNN()|BBC() calls CNNand BBC simultaneously. As soon as a
value is received from either site call, the value is bound to x , execution of
CNN()|BBC() is terminated, and Email ’s execution resumes. If one of CNN()

or BBC() subsequently publishes a value, it is ignored. If CNN()|BBC() never
publishes, Email ’s execution is permanently suspended.

Notational Convention By convention, the pruning combinator is left asso-
ciative, i.e., f <x< g <y< h is interpreted as (f <x< g)<y< h . When x is not
used in f , we use the short-hand f << g for f <x< g .

Parallelism in the Pruning combinator Execution of f <x< g starts con-
current executions of f and g. Therefore, (f <x< g)<y< h starts concurrent
executions of f <x< g and h, i.e., concurrent executions of all the component
expressions, f , g and h. Orc programming language exploits this feature of
the pruning combinator to introduce concurrency in a program without explicit
programmer intervention.

2.3.4 Otherwise Combinator

Otherwise combinator exploits halting of expressions. In f;g , execution of f is
first started. If f halts and it has not published during its execution, then g is
started. If f ever publishes a value, then g is ignored.

This combinator is particularly useful in programming with helpful sites,
introduced in Section 2.2.2 (page 21). Recall that a helpful site responds with a
terminal response when its computation ends. Halting of a helpful expression,
i.e., one that calls only helpful sites, can be detected from the terminal responses
received from those sites. A general site either responds or stays unresponsive
forever; in the latter case, the caller waits forever and the halting can not be
detected. So, this combinator is not particularly useful if such a site is called
from f .

All “Common Sites” introduced in Section 2.2 (page 19) are helpful (though
they may be blocked indefinitely waiting for some condition to hold, as in reading
from an empty channel). For example, Ift(b) either publishes a terminal
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response with an associated signal value if b is true , or sends a terminal response
without any value, a negative response, if b has any other value.

Example

Expression 1;2 publishes value 1. The second expression, 2, is ignored after 1

publishes. And, stop;2 publishes 2.

In ( Ift(b); N())>x> Email(a, x) , an email is sent to a if b is true or if
N responds. We do not assume that N is helpful.

Let f be an expression that halts (without publishing a value); it merely calls
some sites. Then f ; g results in the sequential execution of f followed
by g.

Notational Convention The otherwise combinator will be shown to be asso-
ciative in Section 3.7.3. So, we abbreviate both (f ; g); h and f ; (g ; h)

by f ; g ; h .

2.4 Site Definition

A site definition in Orc is written as def E(flist)= f ; here E is the name of
the site being defined, flist its list of formal parameters and f its body, which
is an expression. Site definitions may be recursive.

Given a definition def E(flist)= f , a call E(alist) executes the body f ,
called the goal expression of the definition, with the actual parameters alist

substituted for the formal parameters flist . A site call publishes every value
published by the execution of its body. If multiple concurrent calls are made to
site E, all instances of f execute concurrently. Concurrent execution causes no
difficulty unless the instances read/write mutable store; if they do, the execu-
tions of different instances may interfere with possibly disastrous consequences.

An expression that includes a definition D followed by expression g is written
as D # g where # is a separator symbol. The separator # is optional, i.e., it
can be replaced with a white space if the next non-white space is an alphanu-
meric symbol. We omit it wherever possible, though we sometimes use it for
readability even though it is optional.

Orc implementation guarantees that a site defined in Orc that calls only
helpful sites is helpful.

Example

--The logical ‘‘not’’ function.
def not(x) = Iff(x) >> true | Ift(x) >> false

-- The logical ‘‘or’’ function.
def or(x,y) =

Ift(x) >> true
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| Ift(y) >> true
| Iff(x) >> Iff(y) >> false

Observe that or(x,y) may start publishing even before both of its argu-
ments are bound to values; for example, if x is bound to true , the execution of
Ift(x)>> true will publish a value.

Site or(x,y) publishes two values when both x and y are true ; in all other
cases it publishes just one value. We can force publication of just one value by
using the pruning combinator.

def or(x,y) =
b <b<

( Ift(x) >> true
| Ift(y) >> true
| Iff(x) >> Iff(y) >> false

)

or, more simply when both x and y are bound:

def or(x,y) =
Ift(x) >> true ; Ift(y) >> true ; false

2.4.1 Closure

Defining a site creates a special value called a closure; the name of the site is a
variable and its bound value is the closure. A closure is treated like any other
value; it may be published or passed as an argument in a call.

As an example, consider the following definition of site apply where M is a
closure. Site M accepts two parameters. Calling apply(M,x,y) has the same
effect as calling M(x,y) .

def apply(M,x,y) = M(x,y)

Then, apply(Times,2,3) publishes 6 and apply(or,true,false) publishes
true .

We treat a more substantial example now. The site call Rwait(t) publishes
a signal after t milliseconds. Suppose we want a program to publish a signal
after a very long period, perhaps a year. The program may compute the waiting
time in milliseconds and wait for that length of time. The computed time may
be a very large number, possibly overflowing a computer word. Therefore, we
adopt a different strategy. Define 4 auxiliary sites: Rwaits , Rwaitm , Rwaith

and Rwaitd . These sites publish a signal after a second, minute, hour and day,
respectively. Then, we define site longwait that has as argument the number
of days, hours, minutes and seconds, and it publishes a signal after this amount
of time has elapsed.

We simplify the program by first we defining the site repeat that takes a
closure f and a non-negative integer n as arguments. Closure f has no arguments
and it publishes a signal after completion of its execution. Site repeat executes
f n times in succession and then publishes a signal. Site sub(x,y) returns x-y ,
and equals returns true if its two arguments are equal and false otherwise.
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def repeat(f,n) =
( Ift(b) >> signal ; f() >> repeat(f,m) )

<b< equals(n,0)
<m< sub(n,1)

Next, we define the auxiliary sites, and longwait as a sequence of calls to
repeat .

def Rwaits() = Rwait(1000)
def Rwaitm() = repeat(Rwaits,60)
def Rwaith() = repeat(Rwaitm,60)
def Rwaitd() = repeat(Rwaith,24)

def longwait(d,h,m,s) =
repeat(Rwaitd,d)

>> repeat(Rwaith,h)
>> repeat(Rwaitm,m)
>> repeat(Rwaits,s)

The execution of longwait calls repeat every second, thus incurring an
overhead that will skew the computation of accumulated time over a long period.
It may be preferable to define def Rwaitm()= Rwait(60000) , so that repeat

is called every minute.

Why Site Calls are lenient We expect that a call to a site can be replaced by
the body of the definition with appropriate substitutions of actual parameters
for formal parameters. This replacement should be valid in all contexts. In
particular, given the definition def E(x)= f , we should expect that E(x)<x<

g and f <x< g will be the same program. In f <x< g , execution of f is started
even if x is not bound. Therefore, execution of E(x) should also start under the
same conditions, that is, the call to E must be lenient.

2.5 Examples

We have already seen a few small examples in connection with each combinator.
The goal of this section is to solve several standard examples from concurrent,
as well as sequential, programming. Despite the austerity of Orc’s combinators,
we are able to encode a variety of idioms concisely. The examples are necessarily
small, and the solutions often awkward, in the absence of a proper programming
language. We will redo some of these examples in Chapter 4 after introducing
the Orc programming language.

We introduce appropriate sites to solve each example. Some of the sites are
of general utility; they can be coded in any standard programming language,
and they are also available in the Orc standard library (sites in the standard
library are coded in Java or Scala). We also introduce domain-dependent sites
to solve specific examples.
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2.5.1 Common Idioms

2.5.1.1 Sequencing

The most common programming idiom is to execute a sequence of steps. Im-
perative programming languages use a constructor, typically written with a
semicolon, f ; g , to sequence the given computations. In typical imperative
programming, computation of f has the side effect of modifying certain data
structures and f only publishes a signal on termination of its computation. In
functional programming, sequencing is function composition, where the inner
function f publishes a value that is supplied to the outer function g.

Orc includes the more general combinator >x> to sequence steps. In the
expression f >x> g , f may cause side effects, as in an imperative program, by
calling sites and it may publish an arbitrary number of values, not just signal.
If f always publishes a single signal and then halts, then f >x> g implements
the sequencing of f and g.

2.5.1.2 Conditional And

A common programming pattern is to first evaluate a boolean b and only if it is
true evaluate boolean b′. The result of the evaluation is true if both b and b′

evaluate to true , false if b evaluates to false or if b evaluates to true and b′

to false . For example, in searching over a boolean array p whose highest index
is n, we may first check that index i is within bounds using i <= n and then
evaluate p(i) . It is inadmissible to call a site that performs the conjunction of
i <= n and p(i) because p(i) may be evaluated first when i > n .

The following expression achieves the goal.

Ift(b) >> b’ ; false

2.5.1.3 Guarded Command

A guarded command b -> c has a guard b that is a boolean expression and a
command c that may be likened to an Orc expression. If b is simply a variable,
this guarded command may be written in Orc calculus as: Ift(b)>> c . Orc
language permits boolean expressions to appear as arguments of site calls; so,
this expression is a valid Orc language expression even when b is not just a
variable.

Given a set of guarded commands, b -> c , b’ -> c’ and b’’ -> c’’ , say,
the following expression concurrently executes all commands whose guards are
true .

Ift(b) >> c | Ift(b’) >> c’ | Ift(b’’) >> c’’

If none of the guards is true , no command is executed, and the entire expression
is equivalent to stop. If multiple guards are true , all commands corresponding
to true guards are executed concurrently. If the guards are mutually disjoint,
the command corresponding to a single true guard, if any, is executed. There-
fore, a conditional expression of the form if b then f else g is encoded by
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Ift(b) >> f | Iff(b) >> g

It is sometimes required to execute just one command whose associated
guard is true even when the guards are not mutually disjoint. The following
solution examines the guards in order and chooses the first one that is true.
Assume that each command publishes at least one value when it is executed.

Ift(b) >> c ; Ift(b’) >> c’ ; Ift(b’’) >> c’’

To solve the problem more generally when a command need not publish a
value when executed, examine all the guards concurrently and pick one, arbi-
trarily, that is true; then execute the associated command.

k >> ... execute command number k
<k< ( Ift(b) >> 0 | Ift(b’) >> 1 | Ift(b’’) >> 2)

The program fragment “execute command number k ” can be written as

equals(k,0) >p> Ift(p) >> c
| equals(k,1) >p> Ift(p) >> c’
| equals(k,2) >p> Ift(p) >> c’’

It can be more easily expressed using pattern matching of Orc language, a
topic that we cover in Section 4.3.5. For completeness, we show this program
fragment here though this is not part of the Orc calculus.

k >0> c | k >1> c’ | k >2> c’’

2.5.1.4 Non-determinism

All of Orc’s combinators, except the pruning combinator, are entirely deter-
ministic in the sense that the execution proceeds in exactly the same fashion
in every run of the program. The pruning combinator chooses the first pub-
lished value from its right side expression and then terminates execution of its
right side. The choice is non-deterministic if there are several publications that
may happen first. This feature can be exploited to implement non-deterministic
choice in executing either f or g.

( Ift(b) >> f | Iff(b) >> g)
<b< (true | false)

The expression (true | false) publishes both true and false in some order.
We have no a-priori knowledge of which of these values is published first; that
depends on how the Orc scheduler is implemented. Therefore, b is bound to
either true or false non-deterministically, and either f or g is chosen for
execution.

2.5.1.5 Filtering

An elementary form of filtering the publications of a computation is captured
in this example: execute expression f until it publishes true , then terminate
the computation of f and publish a signal.
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b <b< ( f >x> Ift(x) )

Here, if f ever publishes true , then f >x> Ift(x) publishes a signal; then, the
entire expression publishes a signal and halts.

2.5.1.6 Branching

The sequential combinator >x> permits a branching style of computation. Con-
sider publishing the Cartesian product of two sets, say, the sets {2, 3, 5} and
{1, 6, 7}. We can enumerate the sets using the parallel combinator, and for each
combination of enumerated values publish a tuple. The sequential combinator
permits combining the separate enumerations. Site call Tuple(x,y) forms a
tuple of the argument values. Assume that Tuple is strict.

(2|3|5) >x>
(1|6|7) >y>
Tuple(x,y)

Note that the publications appear in arbitrary order.
A branching computation may be used for enumerations of various struc-

tures. In particular, many backtrack style algorithms (see Section 5.3 in page 128)
and recursive descent parsers (see Section 5.3.7 in page 132) can be programmed
in this style.

2.5.1.7 Fork-Join

One of the most common concurrent programming idioms is fork-join: execute
two expressions f and g concurrently and wait for a result from both before
proceeding. Assume that f and g publish at most one value each.

Tuple(x,y) <x< f <y< g

Since Tuple is strict, both x and y have to be available to call Tuple . That is,
the expression publishes only when both f and g have published.

2.5.1.8 Phase Synchronization

Given are expressions M()>x> f and N()>y> g . It is required to execute them
independently except that f and g should be started only after both M and N

have responded; therefore, merely executing M()>x> f | N()>y> g does not
achieve this goal. We regard M and N as the first phase of the corresponding
expressions and f and g the second phase. Phase synchronization requires that
the start of each phase be synchronized. We use fork-join to implement phase
synchronization.

(Tuple(x,y) <x< M() <y< N())
>z>

( fst(z) >x> f
| snd(z) >y> g

)
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Here, sites fst and snd extract the first and second components of a tuple. (Orc
language provides pattern matching facilities to allow implicit tuple formation
and component extraction.)

The given phase synchronization scheme is easily generalized to multiple
component expressions and multiple phases within each.

2.5.2 Time, Timeout and Interruption

Orc is designed to communicate with the external world, and one of the most
important characteristics of the external world is the passage of time. The only
mechanism in Orc that deals with real time is the site Rwait . We use Rwait

together with the pruning combinator to enforce a timeout. Timeout is one
form of interruption. We also discuss general interruption mechanism in this
section.

2.5.2.1 Repeated Concurrent Execution

Consider executing three different instances of expression f where the start of
different instances are separated by 1 sec intervals. The simplest solution is

f
| Rwait(1000) >> f
| Rwait(2000) >> f

We prefer a different way of writing this solution that has the virtue of
naming f only once.

(0 | 1000 | 2000) >j> Rwait(j) >> f

or, more simply

(0 | 1 | 2) >i> Times(i,1000) >j> Rwait(j) >> f

where Times(x,y) publishes x times y .
If we were to extend this solution to execute f twenty times, say, we need

a site that publishes (0 | 1 | ... 19) . We define site upto where upto(n) ,
for a non-negative integer n, publishes all non-negative integers smaller than n.
Note that upto(0) is same as stop.

def upto(n) =
( Ift(b) >>

( m | upto(m) ) <m< Sub(n,1) )
<b< Positive(n)

Here, Positive(n) publishes true if and only if n is positive, and Sub(x,y)

publishes x-y .
Site upto is quite commonly used; it belongs in the standard library. To

execute f twenty times at 1 sec intervals, write

upto(20) >i> Times(i,1000) >j> Rwait(j) >> f
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2.5.2.2 Metronome

A metronome publishes a signal at regular intervals. The following expression
implements a bounded metronome: it publishes n signals t time units apart
starting immediately. The solution uses site upto defined above.

bmetronome(n,t) = upto(n) >i> Times(i,t) >m> Rwait(m)

A small application of bmetronome is to execute an expression periodically.
Below, expression f is executed n times at intervals of t time units.

bmetronome(n,t) >> f

The unbounded version of bmetronome publishes a signal every t time units
forever. Observe that its structure is entirely different from bmetronome .

def metronome(t) = signal | Rwait(t) >> metronome(t)

As with bmetronome , we may use metronome to execute f at intervals of
t time units forever: metronome(t)>> f . A more interesting example is the
following site that publishes an alternating sequence of 0’s and 1’s, starting with
a 0. Publications occur at 5 msec intervals.

def zeroone() =
metronome(10) >> 0 | Rwait(5) >> metronome(10) >> 1

Note that metronome(1)>> stop computes forever, neither publishing a
value nor halting.

2.5.2.3 Priority

It is required to call a site N immediately but publish any value received no
earlier than t time units from now. That is, if the publication from N arrives
before t it is delayed until t , and if it is received at or after t it is immediately
published. We are interested in publishing at most one response of N. The
following solution combines an immediate call to N with a wait.

(Rwait(t) >> x) <x< N()

We use this program to implement an elementary form of priority. It is
required to call sites Mand N immediately and publish one of their publications,
but we grant priority to M in the following sense. For a window of t time units
M’s response is published immediately. During this window, any response from
N is held until the time interval has elapsed and then published, unless M has
published earlier. If neither Mnor N publishes within this window, then the first
response received from either is published.

z <z<
M() | ( (Rwait(t) >> x) <x< N() )
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2.5.2.4 Polling

In concurrent programs it is often required to test if a boolean condition has
become true by repeated polling. Below, we define site await(t) that calls site
Mevery t milliseconds, and publishes a signal when Mpublishes true , and then
terminates the computation. Assume that Malways publishes a boolean.

def await(t) =
M() >b>

( Ift(b)
| Iff(b) >> Rwait(t) >> await(t)

)

or, more simply

def await(t) =
M() >b>

( Ift(b) ; Rwait(t) >> await(t) )

An even simpler solution uses the site metronome defined in Section 2.4
(page 27).

x <x< ( metronome(t) >> M() >b> Ift(b) )

Here, metronome(t) publishes a signal every t time unit that initiates the
computation corresponding to M()>b> Ift(b) . Its effect is to call M, test its
publication b, and publish a signal only if b is true. Further, the entire compu-
tation is terminated when the signal is published. Note that

metronome(t) >> M() >b> Ift(b)

has almost the desired behavior, but it does not terminate the computation
after a publication. Consequently, it will continue calling M forever and may
even publish multiple signals.

Polling is an important paradigm in concurrent programming. A telephone
may be programmed to re-dial a number every 30 seconds until a non-busy tone
is received, a channel may be polled periodically for arrival of a message and a
customer may poll the web-site of a store every day to determine if a particular
item has become available.

2.5.2.5 Timeout

Timeout can be implemented using the pruning combinator with Rwait . Here
is a simple example; bind true to x if expression f publishes within k time units
and false otherwise, and publish x .

x
<x< (f >> true | Rwait(k) >> false)

We apply timeout with the polling example of Section 2.5.2.4. Use site await

to publish true if it succeeds within k time units and false otherwise.

x <x< ( await(t) >> true | Rwait(k) >> false )
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This idiom can be used in a variety of ways to manage concurrent time-based
interactions with external processes. We show one such example next.

Flow rate computation A problem that is common in internet computing
is to determine the download speed from a web site, so that the fastest web site
can be contacted for download.

Suppose site M publishes a stream of values. A strategy is to receive the
values for some length of time, say 3 seconds, and count the number of responses
received. We need three sites to keep track of the count of responses (in the
Orc standard library there is a single site to manage counts): (1) init to
initialize the count to 0, (2) incr to increment the current count, and (3) read

to return the current count value. Below, the expression runs three sequential
computations: (1) initialize the count, (2) receive responses from Mfor 3 seconds
and increment the count for each response received, and (3) read and publish
the count after 3 seconds. Observe that each value received from M increments
the count, but that part of the computation never publishes; b is assigned a
value only after 3 seconds elapse.

init()
>> (b <b< (M() >> incr() >> stop | Rwait(3000) ) )
>> read()

2.5.2.6 Interruption

Timeout is one form of interruption of an ongoing computation. The pruning
combinator can be used for any interruption. Suppose we wish to execute f and
wait for its publication, but we would like to interrupt and terminate f if some
specific condition arises that is external to the computation of f . The condition
may be set by a different part of the same Orc program or by another agent,
say a customer cancelling an order so that the order processing computation
has to be interrupted. Let the site InterruptGet respond only when the given
condition arises. The desired program is then

z <z< ( f | InterruptGet() )

We can replace InterruptGet() by Rwait(t) to implement timeout. We can
include multiple interruption conditions as alternatives, each of which is encoded
by a different site.

It is often required to identify the alternative that publishes a value within
a pruning combinator. In the example above, we may want to know whether f

succeeded or if there is a timeout. In case of multiple interrupts, we would like to
know which interrupt occurred so that the proper interrupt processing routines
can be invoked. The standard strategy is to publish a tuple (i,v) where i

identifies the alternative that published the output and v is the value published.
In the example above, there are only two alternatives and we use boolean values
to identify them. Using the Tuple site introduced in Section 2.5.1.7 (page 32)
we modify the program given above.
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z <z<
( f >x> Tuple(true,x)

| InterruptGet() >x> Tuple(false,x)
)

For further computation with z , a site is needed to extract its components.

2.5.3 Logical Connectives

2.5.3.1 2-valued Logic

Suppose the site call M() may or may not publish a signal; similarly for N() . It
is required to publish a signal when (1) both site calls M() and N() do (“logical
and”), and (2) at least one of them does (“logical or”).

M() >> N() -- logical and
b <b< ( M() | N() ) -- logical or

Suppose further that site Mis finite (i.e., engages in only finite computation)
and helpful (see Section 2.2.2) so that it sends a terminal response to indicate
the end of its computation. Then there is a simpler version of logical or: M(); N

() . In this program, N() will not be called if M() publishes, unlike the previous
solution in which both M() and N() are called.

Logical negation can be implemented only for a finite helpful site M. The
following program publishes a signal if and only if the site call M() does not
publish.

( M() >> true ; false ) >b> Iff(b)

Here, the expression ( M()>> true ; false ) publishes true if M() publishes
and false if M() does not publish. Hence, boolean variable b is true if and only
if M() publishes. The entire expression publishes a signal if and only if b is
false , i.e., M() does not publish.

We show the program for a more complex logical connective, exclusive-or.
First, we define site xor , the exclusive-or of two boolean values, that publishes
a signal if exactly one value is true , and it never publishes otherwise.

def xor(p,q) =
Ift(p) >> Iff(q)

| Iff(p) >> Ift(q)

Observe the usefulness of a guarded command structure in this case.

Next, we define exclusive-or based on signals; publish a signal if exactly one
of Mand N publishes given that both Mand N are finite and helpful. Below, p is
true if and only if Mpublishes and, similarly, q is true if and only if N publishes.

xor(p,q)
<p< (M() >> true ; false)
<q< (N() >> true ; false)
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2.5.3.2 3-valued Logic: Parallel-and, Parallel-or

Let sites M and N publish boolean values, true or false , or do not publish at
all. The logical connectives are then operations in 3-valued logic: the result of a
connective is a boolean such that any value received from a site in the future can
not invalidate the published result. Thus, (1) logical-and publishes true only if
both site calls publish true , publishes false if either site publishes false , and
does not publish otherwise (i.e., if neither site has published, or only one site
has published and the publication is true ), (2) logical-or publishes false only
if both site calls publish false , publishes true if either site publishes true , and
does not publish otherwise. These connectives are often called “Parallel-and”
and “Parallel-or”, respectively, to differentiate them from their strict counter-
parts which require both sites to publish before they can compute the result.
We show the program for parallel-or; the program for parallel-and is a dual of
this program. Site or , defined in Section 2.4 (page 27), already implements this
specification. It remains to tie the call to or with the values received from the
sites.

or(p,q)
<p< M()
<q< N()

Here, if either p or q becomes bound to true , then the expression publishes true

immediately, regardless of whether the other variable is bound or not. Observe
that if both p and q are true then the expression publishes 3 values, all true .
We can force termination of the computation after the first publication by using
the pruning combinator:

b <b< (or(p,q)
<p< M()
<q< N() )

Parallel-or on helpful sites If both sites Mand N are finite and helpful, we
get a simpler program for parallel-or:

( M() | N() ) >p> Ift(p) >> true ; false

If either site publishes true , then the expression publishes true . If neither site
publishes true , then ( M()| N())>p> Ift(p) halts; therefore, the expression
publishes false . As before, to avoid multiple publications of true , we can
employ the pruning combinator.

true << (( M() | N() ) >p> Ift(p) ) ; false

Observe that if Mpublishes false and N never publishes but sends only a neg-
ative response, then the expression publishes false ; this is unlike the previous
solution in which no value is published in this case.
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2.5.4 Probabilistic computation

Site call Random(n) , where n is a non-negative integer, publishes a random
non-negative integer smaller than n with uniform probability. This site is in the
Orc standard library and it is available in one form or another in nearly every
programming language. Note that Random(0) is same as stop.

First, we use Random to define a few auxiliary sites. The site defined be-
low publishes a random boolean value, both values being published with equal
probability. We use site equals where equals(n,0) publishes true if n is zero
and false otherwise.

def randomBool() = Random(2) >n> equals(n,0)

As an example of the use of this site, execute one of f and g non-deterministically,
both choices being equally likely.

RandomBool() >b> ( Ift(b) >> f | Iff(b) >> g)

Next, we define a biased boolean; biasedBool(p) publishes true with prob-
ability p and false with probability 1 − p, where p is a real number between
0 and 1. We implement this site by choosing a random number uniformly in a
large interval, say 1000, and publishing true if and only if the number is strictly
less than p × 1000. Site call Lt(n,m) returns true if and only if n is strictly
less than mand false otherwise, and Times(x,y) publishes x times y .

def biasedBool(p) =
Random(1000) >n> Times(p,1000) >m> Lt(n,m)

The following site publishes a signal immediately with probability p and
never responds with probability 1 − p.

def randomResponse(p) = biasedBool(p) >b> Ift(b)

Now consider a site that publishes a boolean value or never responds. Sup-
pose it publishes with probability r , and in case it publishes it publishes true

with probability p. We need to simulate such a site in testing the parallel-or
program of Section 2.5.3.2 (page 38), for instance.

def randomBoolResponse(r,p) =
randomResponse(r) >> biasedBool(p)

Next, consider a more sophisticated simulation application in which a site
responds with a boolean with probability as above, but its response is delivered
at a time that is uniformly distributed up to t .

def randomBoolTimeResponse(r,p,t) =
randomBoolResponse(r,p) >b>
Random(t) >w>
Rwait(w) >> b
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2.5.5 Reactive Programming

Reactive programming has acquired many different connotations since it was
first introduced by Manna and Pnueli [33]. Roughly speaking, a reactive pro-
gram interacts with its environment during its execution. The interaction could
take many forms: reading input from a sensor, sending a file to a printer and
responding to possible printer failure, altering the settings on Mars Rover ...
A reactive program may not have all its inputs when it starts executing; it
acquires the required inputs during its execution. It may run forever if inputs
are continually supplied to it. A mobile phone is an example of a perpetually
running reactive program that responds to the inputs from its user.

In this section, we develop a very small reactive program, the control of a
book-reader device. The operation of the device is as follows. Once the device
is powered on, its first page (numbered 0) is rendered and displayed. The user
can navigate to the next or previous page by pressing forward or backward

button; the next (previous) page is the current page if there is no higher (lower)
numbered page. If the user presses no button for T time units, the device is
switched off.

There are several domain-dependent sites in this case. Site render is called
with a page number as input; it retrieves the page, renders and displays it,
and then publishes a signal. Any call to render invalidates all ongoing render-
ings. Sites forward and backward publish a signal when the user presses the
corresponding button. Site switchoff switches off the device.

Below, bookReader(n) renders and displays the page numbered n and waits
for user input simultaneously. If there is a user input, it terminates all ongoing
computations and displays the next or previous page. If there is no user input
for T time units, it switches off the device. Below, Addmod(n) publishes n+1 if n

is not the highest page number, otherwise it publishes n. Similarly, Submod(n)

publishes n-1 if n is positive and 0 otherwise. The program assumes that the
device is switched on. It starts by rendering page 0.

def bookReader(n) =
( Ift(b) >> (bookReader(m) <m< Addmod(n) )

| Iff(b) >> (bookReader(m) <m< Submod(n) )
)

<b< ( render(n) >> stop
| forward() >> true
| backward()) >> false
| Rwait(T) >> switchoff() >> stop

)

bookReader(0)

Observe that a user input overrides any rendering operation. If the user
presses, say, the forward button quickly several times, then the intermediate
pages are not rendered or displayed. In fact, every press of the forward button
immediately terminates all ongoing computations.

This example, though simple and simplified, is typical of event-driven sys-
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tems. Such a system waits for external stimuli, such as button presses and sensor
readings, and internal stimuli, typically the passage of time. Each stimulus is
handled by a separate piece of code. We have shown orchestration of the pieces
for a very simple example.

2.6 Concluding Remarks

The goal of this chapter was to introduce the Orc calculus and demonstrate
that the calculus can express solutions to a variety problems that arise in pro-
gramming, concurrent programming in particular. The calculus is unusual in
that it is not self contained, but has to make use of sites some of which may be
externally defined. As our examples show, a library of standard sites is often
sufficient to solve intricate problems by suitably orchestrating the calls to them.

Orc expressions may publish an arbitrary number of values. This contrasts
with most programming languages where an expression returns a single value.
Orc’s choice is dictated by the nature of concurrent computations: an expression
may consist of two independent expressions each of which may return a value.
Since Orc sites may be recursive, an expression that calls a site may publish
an unbounded number of values. Since stop is an expression, it is possible for
an expression to publish no value. Admitting an arbitrary number of publica-
tions has simplified our theory considerably. In particular, any combinator can
combine any two Orc expressions; there are no restrictions at all.

A calculus does not make a programming language. It is frustrating to pro-
gram basic arithmetic operations by making site calls; moreover, site definitions
can not even be nested. The goal of the calculus is to provide the minimal
machinery so that its semantics can be described easily and a programming lan-
guage can be built around it. We give the semantics in Chapter 3 and propose
a programming language in Chapter 4 that adds a few elementary features and
a standard library to the calculus.
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Chapter 3

Orc Semantics

3.1 Introduction

We introduced the Orc calculus in Chapter 2 without defining a formal syn-
tax or semantics. The goal of that chapter was to acquaint the reader with the
Orc combinators, their (approximate) meanings and the style of concurrent pro-
gramming espoused by Orc. In this chapter, we define the syntax and semantics
of Orc rigorously. The semantic description is given in two parts, first without
the notion of real time and next with real time.

Describing formal semantics is a large and complex undertaking for any large
and complex system. For such systems, typically, formalism is abandoned, to be
replaced with a description whose precision varies widely. Quite often, mean-
ings are described for the common cases, in prose and with examples, but the
uncommon or boundary cases are simply ignored. A colleague of mine once
enquired about the meaning of a particularly troublesome program written in a
certain hardware design language; the language designer responded with “who
would ever write such a program?”. This may sound blasphemous to a theorist,
but it is perfectly reasonable for a language whose domain of applications is
well-understood. The domain of concurrent applications is not yet clearly un-
derstood; applications range from circuit design to running Olympic games. We
are still in the early days of concurrent programming to rely on approximate
meanings of our language constructs.

There are three important ways in which we utilize the formal semantics of
Orc. First, it provides a guarantee to an Orc programmer about the meaning of
a program. Second, it provides the specification for an implementation. Third,
it permits derivations of algebraic identities among Orc expressions that are
useful both for programmers, in structuring their programs, and implementers,
in automatically reducing programs to normal forms for efficient execution.

A complex language like C++, for instance, has a formal semantics given by
its compiler. It meets the needs of the programmers to the extent that they
can run experiments to test their hypotheses about semantics. It meets the

43



44 CHAPTER 3. ORC SEMANTICS

needs of the implementers to the extent that they have to conform to an earlier
implementation. But such a semantics is not concise. We advocate a semantics
that is not only formal, but concise, that permits succinct derivation of facts
and settles arguments quickly. To that end, we propose a very simple set of
rules that describe the meaning of each Orc combinator in isolation. Since Orc
calculus imposes no constraints on the compositions of expressions, the rules
can be applied hierarchically to derive meanings of arbitrary programs.

Roadmap for this chapter We describe the syntax of Orc by a grammar in
Section 3.1 (Table 3.1). Next, we define an asynchronous semantics in which
time plays no role; see Section 3.4 (page 46); the rules are summarized in Fig-
ure 3.1 (page 81). Certain expressions can be shown to be equivalent using the
semantics. Two different notions of equivalence are introduced: strong equiva-
lence in Section 3.6 (page 56) and weak equivalence in Section 3.8.3 (page 73).
A number of useful identities for strong equivalence are developed in Section 3.7
(page 65) and for weak equivalence in Section 3.8.4 (page 74) and Section 3.8.5
(page 75), that are used in the rest of the book.

Section 3.9 (page 75) contains a synchronous semantics in which passage of
time is taken into account. The synchronous semantics is an enhancement of
the asynchronous semantics; each transition carries a time of occurrence with
it. We define equivalence in the synchronous theory in a similar manner and
show that the corresponding identities still hold. A summary of synchronous
semantics rules appears in Figure 3.3 (page 83).

The complete theory needs an astounding number of proofs that will be a
book on its own. We prove a few select identities that capture most of the
essential ideas.

Notation Orc expressions are written in mathematical font in this chapter.

3.2 Syntax

The syntax of Orc is given in Table 3.1. An expression is either (1) stop, (2) a
site call, written as e(x̄), where e is either a site name or a variable that would
be bound to a site name, and x̄ is a list of variables (actual parameters), (3) an
expression built out of two constituent expressions using a combinator, or (4) a
site definition followed by an expression. The combinators in decreasing order of
precedence are: sequential, parallel, pruning and otherwise. A declaration is a
site definition that has a name followed by a list of variables, x̄, that constitute
its formal parameters, and a body that is an expression. A program is an
expression.

Internal and External Site A site defined within an Orc program is an in-
ternal site. A site defined externally (not within an Orc program) is an external
site. Their semantic treatment differ, because an external site’s execution is
outside the control of Orc. Operational semantics for external sites has to rely
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f ,g ∈ Expression ::=
stop Basic Expression
e(x̄) Site Call
f | g Parallel Combinator
f >x> g Sequential Combinator
f <x< g Pruning Combinator
f ; g Otherwise Combinator
D # f prefixing declaration

D ∈ Declaration ::=
def E(x̄) = f Site Definition

Program ::= f

Table 3.1: Syntax of Orc Calculus

on the specifications of such sites but not the transformation of their code, as
we do for internal sites.

3.3 Asynchronous Semantics

Substitution, Binding Expression (x := c).f is obtained from f by sub-
stituting every free occurrence of x by c, where c is a value, a variable or an
expression. We generalize substitution to a set of pairs, {(x0 := c0) , (x1 := c1),
· · · }, whereby distinct free variables x0, x1, · · · , are replaced by c0, c1, · · · . Let
B denote such a set of pairs; B.f denotes the expression obtained from f by
making the substitutions B in f .

Formally, B.f is defined in Table 3.2. There B.x̄ stands for the list obtained
by substituting every variable name in x̄ by the corresponding value (or variable)
from B and leaving all other variable names unchanged. Substitution (B\x)
where x is a variable, is same as B except that the substitution for variable
x, if any, is removed. Observe that a site or expression name may also be a
variable (see Section 2.4.1 on “closure”); hence, the substitution also applies to
such variables. Note that if x is not a free variable in f , then B.f = (B\x).f
for any substitution B. Further, (B\x)\y = (B\y)\x, for all x and y even when
they are identical variables. Empty substitution, denoted by φ, has no effect on
an expression.

Application of substitution has higher priority than any Orc combinator.
We use the notation (B.B′).f and B.B′.f to denote B.(B′.f).

In (x := c), if c is a value and not a variable name or expression, we call the
substitution a binding. Sequential and pruning combinators have component
expressions whose publications result in bindings. Substitution of a variable by
another variable or expression is required when parameters of a site are replaced.
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{}.f = f
B.stop = stop
B.(e(x̄)) = (B.e).(B.x̄)
B.(f | g) = B.f | B.g
B.(f >x> g) = B.f >x> (B\x).g
B.(f <x< g) = (B\x).f <x< B.g
B.(f ; g) = B.f ; B.g
B.( def E(x̄) = f ) = def E(x̄) = (B\x̄).f
B.(D # f) = B.D # B.f

Table 3.2: Definition of substitution application

Operational Semantics Orc has a small-step operational semantics given
by a labeled transition system. The states correspond to Orc expressions and
labels are the events. A transition f

a→ f ′ denotes that execution of expression
f may cause event a and a subsequent move to expression f ′. A rule of the
form

f
a→ f ′

f | g
a→ f ′ | g

denotes that if f moves with event a to expression f ′ (this is called the pre-
condition of the transition), then expression f | g may move with event a to
expression f ′ | g. The rule merely shows a possible transition; the transition is
not guaranteed to happen in any particular execution even if the precondition
holds.

Events There are three kinds of events: (1)
√

M(v̄) denotes the event of
calling site M with a list of actual parameters v̄, (2) !c denotes publication of
value c and ! publication of a signal, and (3) τ is an event corresponding to an
internal transition that is not intended to be observable by the environment of
the expression.

3.4 Transition Rules

The transition rules are explained below for each syntactic form and summarized
in Figure 3.1.

3.4.1 Expression stop

There is no transition starting from stop.
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3.4.2 External Site Call and Response

First, we show that lenient calls to external sites can be replaced by strict calls.
Consider the site call M(x1, · · · , xn). Any such site M can be regarded as n+1
sites M0, M1, · · · , Mn that collaborate to simulate M . The initial site call is
made to M0 and Mi is called only when variable xi gets bound to a value.
Thus, the call M(x1, · · · , xn) can be replaced by M0() | M1(x1) | · · · | Mn(xn)
where each call is strict. The response of original M may be received from any
number of Mis. Henceforth, we restrict ourselves to defining the semantics of
strict site calls for external sites. Even though this translation shows that a
strict call need not have more than one parameter, we define the semantics for
an arbitrary number of parameters because the same notation is used for calls
to internal sites.

It is common in small-step operational semantics to extend the underlying
language to represent intermediate states. First, we allow e(p̄) as an expression
where e is a site (a value or a variable) and p̄ a list that may include both
values or variables. Expression e(p̄) denotes the state where some of the actual
parameters have been bound to values. Next, we allow ?M(p̄) as an expression,
denoting that a call has been made to site M and its response is pending.

A strict site call is made only if the site name and all its parameters are
bound to values. The rule for such a call is given by:

M(v̄)
√

M(v̄)→ ?M(v̄) (SiteCall)

where all items in v̄ are values and M is bound to a site name. Note that ?M(v̄)
should actually be a handle uniquely identifying the call in an execution, because
the same site may be called with identical parameter values in an execution. We
have chosen a non-unique representation here only to simplify the presentation.

We repeat the material from Section 2.2.2 (page 21) regarding the kinds of
responses. A site sends three kinds of responses: (1) non-terminal response that
has an associated value indicating that the computation at the site may not have
ended, (2) terminal response with a value indicating that the computation has
ended, so there will be no further response, and (3) terminal response without
a value indicating the end of computation. Call a response, terminal or non-
terminal, a positive response if it carries a value. A negative response does
not carry a value, and it is always terminal. A helpful site is one that sends a
terminal response whenever its computation on behalf of a call ends.

There is no order among the non-terminal responses, i.e., the caller may
receive these responses in any order unrelated to the the order of sending by
the site. The terminal response, if any, is always received after all non-terminal
responses.

Below, publication of value v is written as !v and of a signal as !.

?M(v̄) receives a non-terminal response !c

?M(v̄)
!c→ ?M(v̄)

(NT-Res)
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?M(v̄) receives a terminal response !c

?M(v̄)
!c→ stop

(T-Res)

?M(v̄) receives a negative response

?M(v̄)
τ→ stop

(NegRes)

The responses of some of the fundamental sites are as follows. Ift(b) is
equivalent to signal if b is true and to stop otherwise, Iff (b) is equivalent to
signal if b is false and to stop otherwise, and a constant site, such as 3, sends
only a terminal response with value 3.

Convention We use τ , the internal event, for calls to common sites and con-

stant sites. Thus, we use 3
τ→ ?3, rather than 3

√
3→ ?3. This convention treats

such calls as internal events rather than events observable by the environment
of the expression. It allows us to derive a number of useful identities involving
the common sites.

3.4.3 Internal Site Call and Response

The semantics of internal sites, the sites defined within an Orc program, are de-
fined differently from those for external sites because we can exploit the available
code of an internal site. Each call to an internal site is replaced by the body of
the definition with actual parameter values substituted for the formal parame-
ters.

Consider a site definition def E(x̄) = g, which we abbreviate to D in the
following discussion. This definition precedes an expression, as in D # f . Any
transition of f is unaffected by the presence of such a definition.

f
a→ f ′

D # f
a→ D # f ′ (DefPass)

The next rule allows us to get rid of a definition. We would expect to have
a rule of the form D # f

τ→ (g/E).f , that is, substitute the site name by its
body in f . This is an acceptable rule if the definition is not recursive, i.e., g
has no occurrence of the site name E. In case the site is recursively defined, g
has an occurrence of E and (g/E).f would have an occurrence of E; having lost
the site definition, we would be unable to have any further transition with E.
To overcome this problem, we encode the site definition by its closure, a triple
〈E, x̄, g〉, and substitute all occurrences of E in f by this triple. The following
transition is allowed provided g has no free variable other than the ones in x̄,
or E; free variables of an expression are defined formally in Table 3.4 (page 67).
In particular, a closure is a value and it has no free variable.

D is def E(x̄) = g
free(g) ⊆ {E} ∪ {x̄}

D # f
τ→ (E := 〈E, x̄, g〉).f

(DefScope)
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A subexpression E(p̄) of f is replaced by (E := 〈E, x̄, g〉)(p̄) by application of
the (DEFSCOPE) rule. Expression (E := 〈E, x̄, g〉)(p̄) is not an Orc expression,
but an intermediate expression for which we need a transition rule. First, the
actual parameters p̄ are substituted for the formal parameters x̄ in g; note that p̄
may include both values and variables that are not yet bound to values, because,
unlike for an external site call, the execution of an internal site commences as
soon as it is called even though all parameters may not be bound. Next, 〈E, x̄, g〉
is substituted for E to enable further recursive expansion.

〈E, x̄, g〉(p̄)
τ→ (E := 〈E, x̄, g〉).(x̄ := p̄).g (DefCall)

Note that an internal site call is executed leniently so that the execution of
the body may begin even before all the formal parameters are bound.

Internal Site Response Just like a external site, an internal site responds by
sending positive and negative responses. Each publication corresponding to an
internal site call is a non-terminal response. It can be shown that any internal
site that calls only helpful sites is helpful. The halting of such a site can be
detected just like halting of any Orc expression, see Section 3.7.5 (page 70).
The implementation sends a negative response on detection of halting.

3.4.4 Parallel Combinator

Expression f | g is executed by executing each of its component expressions
independently. Therefore, any transition in f or in g is a transition in f | g.

f
a→ f ′

f | g
a→ f ′ | g

(ParL)

g
a→ g′

f | g
a→ f | g′

(ParR)

3.4.5 Sequential Combinator

Expression f >x> g has two kinds of transitions corresponding to (1) non-
publication and (2) publication transitions of f . A non-publication transition
of f (written as “non-pub” in the rules) is also a transition of f >x> g. A
publication transition of f creates an instance of g with the published value
substituted for all occurrences of x in g, and the event itself is recorded as an
internal event. Expression g is a template that is instantiated for each publica-
tion of f ; transitions within the instances of g are not part of the transitions of
f >x> g. They will be recorded elsewhere (in a parallel combinator).

f
a→ f ′ non-pub a

f >x> g
a→ f ′

>x> g

f ≫ g
a→ f ′

≫ g

(SeqN)
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f
!c→ f ′

f >x> g
τ→ f ′

>x> g | (x := c).g

f ≫ g
τ→ f ′

≫ g | g

(SeqP)

3.4.6 Pruning Combinator

This and the following section (Section 3.4.7) logically belong after the definition
of strong equivalence among expressions, Section 3.6.2 (page 57), because the
notion of strong equivalence is required to define a transition rule in each of
these sections. None of the transition rules discussed here (or, for that matter,
for the other combinators) is used in any of the sections upto Section 3.7. The
sequence of presentation, though unusual, first shows the transition rules which
motivates the need for defining bisimulation and strong equivalence.

We explain strong equivalence in informal terms here. Roughly, strongly
equivalent expressions f and g, written as f ∼= g, are indistinguishable in
their behaviors, i.e., f and g can be substituted for each other within any
expression and the resulting expressions are strongly equivalent. In particular,
an expression that is equivalent to stop can not make any transition, and it may
be replaced by stop within any other expression.

Expression f <x< g has four kinds of transitions corresponding to: (1)
transitions of f , that are recorded as transitions of f <x< g, (2) non-publication
transitions of g, that are recorded as transitions of f <x< g, (3) a publication
transition of g, that causes termination of the remaining computation of g,
substitution of the published value for x in f and an internal event of f <x< g,
and (4) the case where g ∼= stop, which we explain next.

Consider the expression f <x< stop. It is clear that x will never be bound to
a value. To denote that variable x will never be bound, we bind x to a fictitious
value, 6 !, with the meaning that if x is a free variable in expression e(p̄), then
(x := 6 !).e(p̄) is equivalent to stop, i.e., it has no transition. So, if e = x or one
of the free variables in p̄ is x, then e(p̄) may be replaced by stop. Free variables
of an expression f are defined in Table 3.4 (page 67). The substitution rules
from Table 3.2 (page 46) apply for 6 ! as well.

f
a→ f ′

f <x< g
a→ f ′

<x< g

f ≪ g
a→ f ′

≪ g

(PruL)

g
a→ g′ non-pub a

f <x< g
a→ f <x< g′

f ≪ g
a→ f ≪ g′

(PruN)

g
!c→ g′

f <x< g
τ→ (x := c).f

f ≪ g
τ→ f

(PruP)
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g ∼= stop

f <x< g
τ→ (x := 6 !).f

f ≪ g
τ→ f

(PruH)

Note: Rule (PRUP) shows that after g publishes a value its execution does not
play a role in further execution of f <x< g; that is, it is terminated. Therefore,
any internal site for which g may have a pending call is also terminated.

3.4.7 Otherwise Combinator

Expression f ; g has three kinds of transitions corresponding to: (1) non-
publication transitions of f , that are recorded as transitions of f ; g, (2) a
publication transition of f , that is recorded as a transition of f ; g and results
in discarding g, (3) f is equivalent to stop, which causes the execution of g to
begin.

f
a→ f ′

f ; g
a→ f ′ ; g

(OthN)

f
!c→ f ′

f ; g
!c→ f ′

(OthP)

f ∼= stop

f ; g
τ→ g

(OthH)

3.4.8 Trace

A trace of an expression is the sequence of events at any point during its execu-
tion. Let relation →∗ be the transitive closure of the transition relation → ,
together with the empty move ǫ. Below, we denote concatenation by juxtapo-
sition so that as is a followed by s. Formally, →∗ is defined by

f
ǫ→∗ f

f
a→ f ′′, f ′′ s→∗ f ′

f
as→∗ f ′

If f
s→∗ f ′, we say that s is a trace of f . We have included f

ǫ→∗ f
to guarantee that the set of traces of an expression is prefix-closed. Every
trace is finite in length. Henceforth, we abbreviate f

a→ f ′′, f ′′ s→∗ f ′ to
f

a→ f ′′ s→∗ f ′.

Example

For the expression ((M(x) | x) >y> R(y)) <x< (N() | S()) we show the deriva-
tion of a trace in detail. Here M , N , R and S are sites. In this execution N()
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publishes value 5. The derivation shows the event that happens for each transi-
tion of the main expression. The event of the main expression is typically caused
by a transition of a subexpression; we show the derivation for the corresponding
subexpression within braces following the event.

((M(x) | x) >y> R(y)) <x< (N() | S())√
S()→ {

S()
√

S()→ ?S() from (SITECALL)

N() | S()
√

S()→ N() | ?S() from (PARR)
apply (PRUN)

}
((M(x) | x) >y> R(y)) <x< (N() | ?S())

√
N()→{ similar to the above
}

((M(x) | x) >y> R(y)) <x< (?N() | ?S())

τ→ {
?N()

!5→ ?N() from (POSRES)

?N() | ?S()
!5→ ?N() | stop from (PARL)

apply (PRUP)
}

(M(5) | 5) >y> R(y)

√
M(5)→{

M(5)
√

M(5)→ ?M(5) from (SITECALL)

M(5) | 5
√

M(5)→ ?M(5) | 5 from (PARL)
apply (SEQN)

}
(?M(5) | 5) >y> R(y)

τ→ {
?5

!5→ stop from (POSRES)

?M(5) | 5
!5→ ?M(5) | stop from (PARR)

apply (SEQP)
}

(?M(5) | stop) >y> R(y) | R(5)

The trace corresponding to this execution is:

√
S()

√
N() τ

√
M(5) τ ✷
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3.5 Strong Bisimulation

We develop a theory that allows us to prove that two expressions are equivalent.
Strong equivalence of f and g implies that their trace sets are identical. But,
more generally, it implies that f and g may be substituted for each other within
any expression and the resulting expressions are equivalent. Thus, f and g are
indistinguishable to any observer.

Equivalence plays a central role in Orc. Orc interpreter uses a number of
heuristics to improve performance that are based on replacing an expression
by an equivalent one. Orc programmer needs to know a few identities among
the expressions for effective programming. We state and prove a number of
identities in Section 3.7.3 (page 67). Some of these identities are intuitively
obvious from the informal semantic description given in Chapter 2; their proofs
validate the intuition.

We develop two notions of equivalence, strong and weak. Weak equivalence
ignores the τ events; strong equivalence does not ignore any event. We define
these notions below using the notion of bisimulation. There is a vast literature
on bisimulation; see Milner [36, 38] who has developed the theory based on the
earlier work of Park [43]. We give a very brief overview of the theory that is
sufficient for our purposes.

Alpha Equivalence There is a very simple form of equivalence, Alpha Equiv-
alence, obtained by renaming the bound variables. Rename the bound variables
of an expression with names that do not occur in that expression; the resulting
expression is equivalent to the original. See Table 3.4 (page 67) for a definition
of free variables of an expression; the remaining variables are bound.

3.5.1 Definition of Strong Bisimulation

Bisimulation is reminiscent of state minimization in finite state machines. A
typical strategy in state minimization is to first postulate an equivalence relation
S over the states, and then show that each transition in the machine respects
S in the following sense: for any pair of states (f, g) in S and any transition
from f , there is a transition with identical label from g and both transitions
lead to equivalent states (under S ). It follows, by induction on the number of
transitions, that the sequence of labels along all finite paths, i.e., the languages,
are identical for equivalent states.

Bisimulation is a generalization of this idea. The machines need not have
finite number of states, nor does S have to be an equivalence relation. Different
transitions from a state may be labeled with the same symbol. In our study,
each state corresponds to an expression, and the transitions and their labels
are given by the semantic rules. Henceforth, we use “state” and “expression”
interchangeably. The sequence of labels along a path from an expression is a
trace of that expression. Our interest is in proving that certain expressions have
the same set of traces.
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Definition: Strong Bisimulation

A binary relation S over expressions is a strong bisimulation if for every
(f ,g) in S (also written as f S g)

for every f
a→ f ′, there is some g

a→ g′ such that f ′ S g′, and

for every g
b→ g′′, there is some f

b→ f ′′ such that f ′′ S g′′. ✷

Example

We show that f | g and g | f are strongly bisimilar. Define relation S by
f | g S g | f , for all f and g. In order to prove that S is a strong bisimulation
we need to show that (1) for every transition of f | g there is a matching
transition of g | f and the resulting pair of expressions are again in S , and
conversely, (2) for each transition of g | f . We will only show (1) since the proof
of (2) is symmetric.

Any transition of f | g is one of two types: a transition of f that results in
a transition of f | g by applying (PARL), or a transition of g that results in a
transition of f | g by applying (PARR). We consider each of these transitions
in turn.

• Transition f
a→ f ′: Applying (PARL), we have f | g

a→ f ′ | g. We display

the matching transition g | f
a→ g | f ′, which is justified by applying (PARR)

with f
a→ f ′. Now, we have f ′ | g S g | f ′ from the definition of S , using

f ′ and g in place of f and g.

• Transition g
b→ g′: The proof is similar to above. ✷

This proof, in particular, establishes that the trace sets of f | g and g | f
are identical. We show a number of short-cuts later that simplify bisimulation
proofs.

3.5.2 Properties of Strong Bisimulation

Pairs (f ,g) in a strong bisimulation are said to be strongly bisimilar. The follow-
ing theorem shows that for strongly bisimilar expressions, the single transition
in the definition of bisimulation can be generalized to any finite sequence of
transitions. Therefore, strongly bisimilar expressions have identical trace sets.

Theorem 3.1. Let f S g where S is a strong bisimulation. Then, for every
f

u→∗ f ′, there is some g
u→∗ g′ such that f ′ S g′. Conversely, for every

g
v→∗ g′′ there is some f

v→∗ f ′′ such that f ′′ S g′′.

Proof: We prove the first part, that for every pair of expressions f and g, where
f S g, for every f

u→∗ f ′ there is some g
u→∗ g′ such that f ′ S g′. The proof

in the other direction is similar. Proof is by induction on n, the length of u.
For n = 0, both f and g include the trace of length 0, the empty trace, by

definition of trace, and the resulting expressions, f and g, are strongly bisimilar.
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Next, suppose the assertion holds for all strongly bisimilar expressions for traces
of length n, for some n, n ≥ 0. Let f

as→∗ f ′ where s is a trace of length n; we
show that there is some g

as→∗ g′ and f ′ S g′.

f
a→ f ′′ s→∗ f ′, for some f ′′ , from f

as→∗ f ′

g
a→ g′′, where f ′′ S g′′ , f S g, S is a strong bisimulation

g′′
s→∗ g′ and f ′ S g′ , f ′′ S g′′ and induction on s

g
as→∗ g′ and f ′ S g′ , from above two facts ✷

Corollary 3.1. Strongly bisimilar expressions have the same trace sets.

This theorem provides a convenient tool to show that two expressions have
the same trace sets: define a relation S that includes the given expressions, and
prove that S is a strong bisimulation. Bisimulation is an inductive (actually,
co-inductive) way of establishing equality. Not all equalities can be proved using
bisimulation. That is, Theorem 3.1 provides only a sufficient condition for the
equality of trace sets; two expressions may have the same trace sets but they
may not be strongly bisimilar. The example in Figure 3.2 (page 82) is from
Milner [36]. The trace sets of X and P are identical, but they are not bisimilar,
because neither Y nor Z is bisimilar to Q.

The following proposition is from Milner [36], Chapter 4. See this reference
for the proofs (item (5), below, is not mentioned in that reference, but it is easy
to prove from the others).

Proposition 3.1.

1. The identity relation is a strong bisimulation.

2. The inverse of a strong bisimulation is a strong bisimulation.

3. The relational product of strong bisimulations is a strong bisimulation.

4. The union of strong bisimulations is a strong bisimulation.

5. The reflexive, symmetric and transitive closure of a strong bisimulation is
a strong bisimulation.

3.5.3 The Largest Strong Bisimulation

There are many strong bisimulations in general. Since our interest is in identify-
ing as many bisimilar pairs of expressions as possible, we explore the possibility
of defining a “largest” bisimulation. Indeed there is one such relation that we
write as ∼ . It is the union of all strong bisimulations. From the previous
proposition, since the union of strong bisimulations is a strong bisimulation,
∼ is a strong bisimulation. The following proposition, from Milner [36], gives
additional important properties of this relation.

Proposition 3.2.
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1. ∼ is the largest strong bisimulation, i.e., any strong bisimulation is a
subset of ∼ .

2. ∼ is an equivalence relation.

3. (converse of the bisimilarity property for ∼ ) For any f and g, suppose

for every f
a→ f ′, there is some g

a→ g′ such that f ′ ∼ g′, and

for every g
b→ g′′, there is some f

b→ f ′′ such that f ′′ ∼ g′′.

Then, f ∼ g.

3.6 Strong Equivalence

We expect two expressions to be equivalent if they may engage in the same
sequence of events. But that is not enough. Equivalent expressions should
be interchangeable; that is, they can be substituted for each other within any
expression without altering the latter’s behavior. To see the implication of this,
consider expression x with only a free variable x and expression stop. Neither
expression has a transition; so, x ∼ stop. Yet, the two expressions may behave
differently in the same context: 0 >x> x is different from 0 >x> stop.

We overcome this difficulty by considering the various ways to bind the free
variables of an expression. Binding encodes the context in which an expression
f may be embedded, such as within f <x< g where a publication of g binds
the free variable x of f . We will consider a restricted class of bisimulations, the
ones that are closed under bindings, for equivalence.

3.6.1 Binding-Closure

A relation S is closed under binding, or simply closed, if for every f , g and
binding B,

f S g implies B.f S B.g. ✷

So, ∼ is not closed because x ∼ stop but (x := 0).x 6∼ (x := 0).stop.
The following proposition is analogous to Proposition 3.1. The proofs are

straightforward.

Proposition 3.3.

1. The identity relation is closed.

2. The inverse of a closed relation is closed.

3. The relational product of closed relations is closed.

4. The union of closed relations is closed.

5. The reflexive, symmetric and transitive closure of a closed relation is
closed.
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3.6.2 Definition of Strong Equivalence

The strong equivalence relation, written as ∼= , is the union of all closed bisim-
ulations. ✷

Example

We prove that f | g ∼= g | f for all f and g. We proved in Section 3.5.1 that
f | g S g | f where S is a strong bisimulation. It remains to show that S is
closed, i.e., given f | g S g | f for all f and g we show that B.(f | g) S B.(g | f)
for all bindings B. From Table 3.2 (page 46), B.(f | g) = B.f | B.g and
B.(g | f) = B.g | B.f . Since f | g S g | f for all f and g, replacing f by B.f
and g by B.g, the desired result follows.

The following proposition is analogous to Proposition 3.2.

Proposition 3.4.

1. ∼= is the largest strong bisimulation that is closed under binding. That
is, ∼= is a closed strong bisimulation and any closed strong bisimulation
is a subset of ∼= .

2. ∼= is a subset of ∼ .

3. ∼= is an equivalence relation.

4. Given that f ∼= g, for every binding B, B.f ∼= B.g.

5. For expressions f , g and binding B, suppose that

for every B.f
a→ f ′, there is some B.g

a→ g′ such that f ′ ∼= g′, and

for every B.g
b→ g′′, there is some B.f

b→ f ′′ such that f ′′ ∼= g′′.

Then, f ∼= g.

Proof: Proof of (1) is straightforward. To see (2), observe that ∼= is a bisim-
ulation and ∼ is the largest bisimulation. For (3), let ∼=∗ be the reflexive,
symmetric and transitive closure of ∼= . We show that ∼=∗ = ∼= which proves
that ∼= is an equivalence relation.

Since ∼= is a strong bisimulation so is ∼=∗, from Proposition 3.1. Further,
since ∼= is closed so is ∼=∗, from Proposition 3.3. Therefore, ∼=∗ is a closed strong
bisimulation. Since ∼= is the largest closed strong bisimulation, ∼=∗ ⊆ ∼= .
Now, ∼= ⊆ ∼=∗. Therefore, ∼=∗ = ∼= .

Proof of (4) follows from the fact that ∼= is closed under binding.
To prove (5), for the given f and g define relation S as follows: S =

{(B.f, B.g)| B is any binding}. We show that ( ∼= ∪ S ) is a closed strong
bisimulation.

First, we show that S is closed. Let (f̄ , ḡ) ∈ S . Then (f̄ , ḡ) = (B.f, B.g),
for some binding B. For any binding B′, we show that (B′.f̄ , B′.ḡ) ∈ S .
(B′.f̄ , B′.ḡ) = (B′.(B.f), B′.(B.g)) = ((B′.B).f, (B′.B).g) ∈ S , by definition



58 CHAPTER 3. ORC SEMANTICS

of S because (B′.B) is a binding. Since both ∼= and S are closed, ( ∼= ∪ S )
is closed.

Next, ( ∼= ∪ S ) is a strong bisimulation because the conditions for bisimi-
larity apply for every pair (f, g) in ∼= and in S . Hence, ( ∼= ∪ S ) is a closed
strong bisimulation, and, therefore, a subset of ∼= . Using empty binding B,
(B.f, B.g) = (f, g) ∈ S ⊆ ∼= . Therefore, f ∼= g. ✷

3.6.3 Strategies for Equivalence Proofs

In a proof of P ∼= Q expressions P and Q typically contain variables that
denote subexpressions. For example, in proving f | g ∼= g | f , the variables are
f and g. These variables are not Orc variables, but meta-variables that denote
that they may be replaced by any expression. We write P (f, g, h) to denote that
expression P contains meta-variables f , g and h, and perhaps others that are
not of significance in the ensuing discussion. We construct two kinds of proofs
in this chapter: (1) congruence proofs of the form P (f) ∼= P (g) given that
f ∼= g, and (2) identities of the form P (f, g, h) ∼= Q(f, g, h) given certain
conditions on the meta-variables f , g and h.

Proof of an identity P (f, g, h) ∼= Q(f, g, h) involves the following steps:
(1) postulate binary relation S by P (f, g, h) S Q(f, g, h), (2) show that
S is a strong bisimulation, and (3) S is closed. Then, S ⊆ ∼= and
P (f, g, h) ∼= Q(f, g, h).

Though the definition of bisimulation can be applied directly, the proof is
often long and tedious. Many proof steps can be omitted if P and Q have
similar structures. Often the properties of Orc transitions can be exploited to
omit certain proof steps. We develop a few such heuristics next.

3.6.3.1 Structure Preserving Transitions

We show that any transition of P (f) arising out of a non-publication transition
of f can be ignored in bisimulation proofs. Thus, the only transitions of f that
need to be considered are publications and a transition due to rule (OTHH) of
the otherwise combinator.

Observation 3.1. Let P (f) be an expression in which f occurs at most once.

Consider a non-publication transition f
a→ f ′ that causes a transition of P (f).

Then the transition of P (f) is P (f)
a→ P (f ′). ✷

This observation claims that a non-publication transition causes f to be
replaced by f ′ in P (f); thus, the structure of P is retained. For example, given

that f
a→ f ′, f | g

a→ f ′ | g. This applies even when f is not an immediate

subexpression of the larger expression, as in (f | g) ≫ h
a→ (f ′ | g) ≫ h.

The requirement that there be at most one occurrence of f eliminates invalid
transitions such as f | f

a→ f ′ | f ′. Further, a transition of f may not cause a
transition of P (f), as in h ≫ f .

The proof of the observation is by induction on the structure of P . Consider
the transitions in the semantic rules (DEFPASS), (PARL), (PARR), (SEQN),
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(PRUL), (PRUN) and (OTHN). (Some of these rules also cover publication
transitions though they must be considered in a bisimulation proof.) Each of
them retain structure.

Lemma 3.1. Let P (f) and Q(f) have exactly one occurrence of f in each. Any

non-publication transition of f
a→ f ′ that causes a transition of P (f) and Q(f)

may be omitted in bisimulation proof of P (f) ∼ Q(f).

Proof: A bisimulation proof of P (f) ∼ Q(f) starts by postulating relation S
where P (f) S Q(f), for all f . We have to show that for any transition a of
P (f) there exists a corresponding transition of Q(f) such that the resulting
expressions P ′ and Q′, respectively, satisfy P ′ S Q′, and conversely for the
transitions of Q(f). Now, if a is a non-publication transition f

a→ f ′ then:

P (f)
a→ P (f ′) , from Observation 3.1

Q(f)
a→ Q(f ′) , from Observation 3.1

P (f ′) S Q(f ′) , definition of S

Therefore, the bisimulation conditions are always satisfied for such transi-
tions. ✷

This lemma is particularly useful in dealing with sequential and pruning
combinators.

3.6.3.2 Binding-Closure Proofs

Any equivalence proof, say of P ∼= Q, requires both a proof of bisimulation
and a proof of binding-closure: postulate a relation S by P S Q, show that
S is a strong bisimulation and that S is binding-closed, i.e., B.P S B.Q for
every binding B. We can often eliminate the binding-closure proof. The key
observation is that P and B.P always have the same structure, only the meta-
variables of P are replaced by their bounded versions to obtain B.P . For exam-
ple, f | g has the same structure as B.(f | g) because, from Table 3.2 (page 46),
B.(f | g) = B.f | B.g. Replacing f by B.f and g by B.g gives B.(f | g). The
more interesting cases are for the sequential and pruning combinators. Then,
B.(f >x> g) = B.f >x> (B\x).g and B.(f <x< g) = (B\x).f <x< B.g.
So, the replacements are (f := B.f, g := (B\x).g) for the former and (f :=
(B\x)f, g := B.g) for the latter.

Henceforth, assume that every expression has at most one occurrence of any
specific meta-variable. We show the meta-variables f and g, as in P (f, g), only
when we wish to emphasize their occurrence in P , other meta-variables of P are
not shown.

The discussion above can be expressed as follows. For any B and P (f, g),
B.P (f, g) = P (f ′, g′) where f ′ is the transformation of f under binding B, and
similarly g′. For ease of formal manipulation we write fB,P (f,g) for f ′. Thus,
fB,f >x> g = B.f and gB,f >x> g = (B\x).g. Then, for an expression P with
meta-variable f , we have:

B.P (f) = P (fB,P (f)) (*)
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If P has more meta-variables, say f and g, B.P (f, g) = P (fB,P (f,g), gB,P (f,g)).

Define P and Q to be similar if for every binding B and every meta-variable
f , fB,P = fB,Q. Similarity means that every binding transforms P and Q
to similar expressions. As an example, f | g and f ; g are similar because
f

B,f | g
= B.f = fB,f ; g and g

B,f | g
= B.g = gB,f ; g. However, f >x> g

and g >x> f are not similar because fB,f >x> g = B.f whereas fB,g >x> f =
(B\x).f . Note that similar expressions have the same meta-variables.

Lemma 3.2. Given P S Q and that P and Q are similar, S is closed.

Proof: For any P and Q such that P S Q we show that B.P S B.Q. We prove
the result when P and Q have a single meta-variable f ; extensions to more
variables is straightforward. We write P (f) and Q(f) for P and Q below.

B.P (f)
= {Using (*)}

P (fB,P (f))
= {From definition of similar, fB,P (f) = fB,Q(f)}

P (fB,Q(f))
S {Given: P (f) S Q(f) for all f . Use fB,Q(f) for f}

Q(fB,Q(f))
= {Using (*)}

B.Q(f) ✷

It is easy to establish if P and Q are similar by inspection. In fact, as we
show next, similarity is assured in congruence proofs so that all binding-closure
proofs can be eliminated.

Binding Closure in Congruence Proofs A congruence proof establishes
P (f) ∼= P (g) given that f ∼= g. The following lemma shows that the binding-
closure part of the proof can be omitted. First, note that

fB,P (f)
∼= gB,P (g) (**)

because the same binding B′ is applied to f and g in P (f) and P (g), respectively,
so that fB,P (f) = B′.f and gB,P (g) = B′.g, for some B′. And, given f ∼= g,
B′.f ∼= B′.g, from Proposition 3.4, part(4) (page 57).

Lemma 3.3. Let P (f) S P (g) for all f and g such that f ∼= g. Then S is
closed.

Proof: P and Q may have meta-variables other than f . Let h be one such
variable. We show the proof when h is the only such variable; extensions to
more variables is straightforward.

Given is relation S where P (f, h) S P (g, h) for all f and g such that f ∼= g
and all h. We show that B.P (f, h) S B.P (g, h) for all f and g such that f ∼= g.
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B.P (f, h)
= {Using (*)}

P (fB,P (f,h), hB,P (f,h))
= {hB,P (f,h)) = hB,P (g,h), the terms depend only on the structure of P}

P (fB,P (f,h), hB,P (g,h))
S {From (**), fB,P (f)

∼= gB,P (g). Using the definition of S }
P (gB,P (g), hB,P (g,h))

= {Using (*)}
B.P (g, h) ✷

3.6.3.3 Fundamental Identities with the Parallel Combinator

The next section, Section 3.6.3.4, depends on a number of identities involving
the parallel combinator which we list below.

Parallel-combinator Identities

1. (zero) f | stop ∼= f and stop | f ∼= f

2. (commutativity) f | g ∼= g | f

3. (associativity) f | (g | h) ∼= (f | g) | h

4. (congruence) Given that f ∼= g, we have f | h ∼= g | h and h | f ∼= h | g,
for any h.

We have already seen the proof of commutativity in the examples in Sec-
tions 3.5.1 and Section 3.6. The remaining identities are proved similarly. These
identities also hold if ∼= is replaced by ∼ .

3.6.3.4 Bifurcation

In contrast to non-publication transitions that retain the structure of the sur-
rounding expression (see Section 3.6.3.1), publications always change the struc-
ture. The most problematic involves the sequential combinator. For instance,
in proving f >x> h ∼= g >x> h given that f ∼= g, we postulate relation S
by f >x> h S g >x> h for all f , g and h where f ∼= g. In proving that S
is a bisimulation, we will have to consider the publication transition f

!c→ f ′.

There is a matching transition of g, g
!c→ g′ since f ∼= g. These transitions,

respectively, cause:

f >x> h
τ→ f ′

>x> h | (x := c).h, and

g >x> h
τ→ g′ >x> h | (x := c).h,

Now, we need to show f ′
>x> h | (x := c).h S g′ >x> h | (x := c).h. But

this proof can not be completed because the structures of the expressions are
now different so that relation S does not hold over them. A similar problem
arises in proofs with the pruning combinator when the right side expression
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publishes. One possible solution for this problem is to do the bisimulation proof
with a more general relation S′ where f >x> h | p S′ g >x> h | q for all f , g, h,
p and q where f ∼= g and p ∼= q. This complicates the proof considerably. We
prove a theorem that ameliorates this problem. The theorem is a generalization
of “upto bisimulation” result of Milner (see Chapter 4, Lemma 5 in [36]), but
it applies only to Orc expressions.

Definition: Bifurcation For relations S and T their bifurcation is a relation.
It is written as S | T and is given by: f (S | T ) g if there exist f0, f1, g0 and
g1 such that

f ∼= f0 | f1, g ∼= g0 | g1, f0 S g0, and f1 T g1

Bifurcation over more than two relations is similarly defined. We often write

f ∼= f0 | f1 (S | T ) g0 | g1
∼= g

to express the relationships between the expressions.

The following proposition lists a number of useful properties of bifurcation
that are used in the sequel. Here, R, S and T are binary relations and id is the
identity relation.

Proposition 3.5. (Properties of Bifurcation)

1. Bifurcation is commutative, i.e, (S | T ) = (T | S).

2. Bifurcation is associative, i.e, R | (S | T ) = (R | S) | T .

3. Bifurcation is monotonic in both arguments, i.e., given that S ⊆ S′ and
T ⊆ T ′, (S | T ) ⊆ (S′ | T ) and (S | T ) ⊆ (S | T ′).

4. S ⊆ (id | S) and S ⊆ (S | ∼=).

5. ∼= = (id | ∼=) = (∼= | ∼=)

6. If both S and T are binding-closed, then so is (S | T ).

Proof: Proofs of parts( 1), (2) and (3) are straightforward. For part( 4), we
show that given f S g, we have f (id | S) g. This is because

f S g
⇒ {id is reflexive, so stop id stop; definition of bifurcation}

stop | f (id | S) stop | g
⇒ {f ∼= stop | f , g ∼= stop | g from Section 3.6.3.3}

f (id | S) g

The other part of part( 4) follows:
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S
⊆ {first part of ( 4)}

id | S
⊆ {id ⊆ ∼= , monotonicity of bifurcation (part 3)}

∼= | S
= {commutativity of bifurcation (part 1)}

S | ∼=

For part( 5), first we show that ∼= ⊆ (id | ∼=) ⊆ (∼= | ∼=).

S ⊆ (id | S) , first part of part( 4)
∼= ⊆ (id | ∼=) , using ∼= in place of S above

(id | ∼=) ⊆ (∼= | ∼=) , monotonicity (part 3) with id ⊆ ∼=
∼= ⊆ (id | ∼=) ⊆ (∼= | ∼=) , from above two

Now, we show that (∼= | ∼=) ⊆ ∼= . Combined with ∼= ⊆ (id | ∼=) ⊆
(∼= | ∼=), proven above, this completes the proof. We show that for any f and
g where f (∼= | ∼=) g, we have f ∼= g.

f (∼= | ∼=) g , given
f ∼= f0 | f1 (∼= | ∼=) g0 | g1

∼= g
, definition of bifurcation

f0
∼= g0 and f1

∼= g1 , from above
f0 | f1

∼= g0 | g1 , congruence result from Section 3.6.3.3
f ∼= g , f ∼= f0 | f1 and g ∼= g0 | g1

Proof of part 6 is straightforward, using the fact from Table 3.2 that B.(f0 | f1) =
B.f0 | B.f1 .

In preparation for the main theorem, we prove the following lemma.

Lemma 3.4. Let S be a binary relation such that given f S g
for every f

a→ f ′ there is some g
a→ g′ such that f ′ (S | ∼=) g′, and

for every g
a→ g′′ there is some f

a→ f ′′ such that f ′′ (S | ∼=) g′′.
Then, (S | ∼=) is a strong bisimulation.

Proof: We show that the conditions in the definition of strong bisimulation are
met by (S | ∼=). Let f (S | ∼=) g. For any f

a→ f ′ we show g
a→ g′ such that

f ′ (S | ∼=) g′, and conversely. This proves the result.
Given f (S | ∼=) g, we have f ∼= f0 | f1 (S | ∼=) g0 | g1

∼= g. From

f ∼= f0 | f1 and f
a→ f ′, since ∼= is a bisimulation, there is some f0 | f1

a→ f2

such that f ′ ∼= f2. Any transition of f0 | f1 is due to either a transition of f0

or f1. We consider the two cases separately.

• f0
a→ f ′

0:

f0 | f1
a→ f ′

0 | f1 = f2 , f0
a→ f ′

0 and rule (PARL)
f ′ ∼= f ′

0 | f1 , f2 = f ′
0 | f1

there is some g0
a→ g′0 where f ′

0 (S | ∼=) g′0
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, f0 S g0 and lemma conditions

g0 | g1
a→ g′0 | g1 , g0

a→ g′0 and rule (PARL)
f ′
0 | f1 ((S | ∼=) | ∼=) g′0 | g1 , f ′

0 (S | ∼=) g′0, f1
∼= g1

f ′
0 | f1 (S | (∼= | ∼=)) g′0 | g1 , associativity of bifurcation

f ′
0 | f1 (S | ∼=) g′0 | g1 , (∼= | ∼=) = ∼= from Proposition 3.5, Part( 5)

f ′ (S | ∼=) g′ , f ′ ∼= f ′
0 | f1, where g′ ∼= g′0 | g1

• f1
a→ f ′

1:

there is some g1
a→ g′1 where f ′

1
∼= g′1

, from f1
∼= g1

g0 | g1
a→ g0 | g′1 , g1

a→ g′1 and rule (PARR)

f0 | f1
a→ f0 | f ′

1 , f1
a→ f ′

1 and rule (PARR)
f0 | f ′

1 (S | ∼=) g0 | g′1 , f0 S g0, f ′
1
∼= g′1

f ′ (S | ∼=) g′ , f ′ ∼= f0 | f ′
1, let g′ ∼= g0 | g′1

Theorem 3.2. (Bifurcation Theorem) Let S be a binary relation such that
given f S g

for every f
a→ f ′ there is some g

a→ g′ such that
f ′ S g′, f ′ ∼= g′, or f ′ ( S | ∼=) g′, and (C1)

for every g
a→ g′′ there is some f

a→ f ′′ such that
f ′′ S g′′, f ′′ ∼= g′′, or f ′′ ( S | ∼=) g′′. (C2)

Then, f ∼ g. Further, if S is closed then f ∼= g.

Proof: First, note that the conditions (C1, C2) hold trivially for relation id.
Next, that if the conditions (C1, C2) hold for any two relations then they hold
for the union of the relations. Therefore, the conditions hold for S′ = S ∪ id.

Now we show that both relations S′ and ∼= are subsets of ( S′ | ∼=).

S′ ∼=
⊆ {from Proposition 3.5, part 4} ⊆ {Proposition 3.5, part 5 }

S′ | ∼= id | ∼=
⊆ {id ⊆ S′ , Proposition 3.5, part 3 }

S′ | ∼=

Therefore, condition (C1) can be simply written as:

given f S′ g for every f
a→ f ′ there is some g

a→ g′ such that f ′ (S′ | ∼= ) g′,
and similarly for (C2).

Apply Lemma 3.4 to conclude that (S′ | ∼=) is a bisimulation. Now S ⊆ S′ ,
and from Proposition 3.5, part( 4), S′ ⊆ (S′ | ∼=). So, S ⊆ ( S′ | ∼= ).
Hence S is a subset of a bisimulation; so, for every f S g, f ∼ g. Further, if
S is closed then so is S′ because S′ is the union of two relations that are
closed. Then so is (S′ | ∼=), from Proposition 3.5, part 6. So, if S is closed
(S′ | ∼=) is a closed bisimulation, i.e., (S′ | ∼=) ⊆ ∼= . Thus, S ⊆ ∼= ; so, for
every f S g, f ∼= g. ✷
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Note: The theorem does not establish that S is a strong bisimulation nor that
it is closed, merely that S ⊆ ∼= .

Caveats in Equivalence Proofs A proof of f ∼= g has to display a relation
S such that S ⊆ ∼= and f S g. For the first part, show that S is a
closed strong bisimulation, or, more generally, that it is a subset of a closed
strong bisimulation. It is not sufficient to display S that is: (1) a closed subset
of a strong bisimulation, or (2) a strong bisimulation and a subset of a closed
set. Given f S g we can not conclude that f ∼= g in either case. The first
scenario merely implies that S is closed but not necessarily a bisimulation.
For a counterexample with the second scenario, use ∼ for S ; ∼ is a strong
bisimulation and it is a subset of the universal relation that includes all pairs of
expressions and, hence, closed.

3.7 Asynchronous Semantics: Identities

An equivalence relation is a congruence if equivalent expressions can be substi-
tuted for each other in any context. To show that ∼= is a congruence we have
to show that P (f) ∼= P (g) whenever f ∼= g. It is sufficient to show that
every Orc combinator preserves ∼= , that is, given f ∼= g, f ∗ h ∼= g ∗ h and
h∗f ∼= h∗g, for every expression h and every Orc combinator ∗; see Table 3.3.
We give a sample proof in Section 3.7.2.

The fact that ∼= is a congruence is fundamental to Orc, both in theory and
practice. It permits us to substitute strongly equivalent expressions for each
other in any context. A number of optimizations in the Orc interpreter depend
on this result.

We state and prove a number of other identities in Sections 3.7.3 and 3.7.4.
First, we define the notions of silent and halting formally.

3.7.1 Silent, Halting

In Section 2.3, we called an expression silent if it never publishes. We can now
define the term formally. Expression n is silent if n ∼= stop ≪ n. It can be
shown, using bisimulation and binding-closure, that n is silent if and only if
n ∼= n ≫ stop.

Expression f halts (or f is halting) means f ∼= stop.
A halting expression is clearly silent. However, an expression may be silent

but not halting. Consider metronome(1) ≫ stop, where metronome(t), as de-
fined in Section 2.5.2.2 (page 34), publishes a signal every t time units. Execu-
tion of metronome(1) ≫ stop continues indefinitely without publishing a value;
so, this expression is silent though not halted. It is quite common in Orc pro-
grams for expressions to repeatedly read data from a channel, say, and engage
in computations that write to other channels, but never publish.

We can describe may other characterstics of expressions using the equivalence
relation. For example, that f never publishes and never eventually halts is
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expressed by f ≫ stop ∼= f ; g, for all g. That f publishes if it eventually halts
is given by f ; g ∼= f , for all g. A more elaborate property is f publishes once
and then halts or never publishes is expressed by f >x> x ∼= x <x< f .

3.7.2 Strong Equivalence is a Congruence

We show that all Orc combinators preserve strong equivalence, i.e., given that
f ∼= g, the identities in Table 3.3 hold for all h. We can obtain similar identities
by replacing >x> by ≫ and <x< by ≪ . Further, prefixing a definition D
to equivalent expressions results in equivalent expressions. And, a definition D
in which the bodies are equivalent expressions and the site name and parameter
lists are identical are equivalent. Below, D is any definition.

f | h ∼= g | h
f >x> h ∼= g >x> h
f <x< h ∼= g <x< h
f ; h ∼= g ; h
D # f ∼= D # g

h | f ∼= h | g
h >x> f ∼= h >x> g
h <x< f ∼= h <x< g
h ; f ∼= h ; g
(def E(x̄) = f) # h ∼= (def E(x̄) = g) # h

Table 3.3: Strong Equivalence Preservation

The congruences involving the parallel combinator have been discussed in
Section 3.6.3.3 (page 61).

Simplifications in Congruence Proofs Congruence proofs admit several
simplifications. In proving P (f) ∼= P (g) given f ∼= g, it is typical to define
relation S by P (f) S P (g) for all f and g where f ∼= g, and then prove
that S is a closed strong bisimulation. The bisimulation proof need only show
that for every transition of f , f

a→ f ′, there is a transition g
a→ g′ such that

resulting states of P (f) and P (g) are equivalent; the corresponding proof for
every transition of g is unnecessary because by reversing the roles of f and g the
same proof suffices. Next, slightly extending the result of Lemma 3.1 (page 59),
there is no need to consider the non-publication transitions of f . Finally, we
can skip the proof that S is closed, using Lemma 3.3 (page 60).

Proof of a congruence, f >x> h ∼= g >x> h, given f ∼= g: We prove one
of the hardest congruences, f >x> h ∼= g >x> h. The proof itself is very short
because of the simplifications discussed above. The proof is further simplified
by applying the Bifurcation Theorem (Theorem 3.2, page 64).

Define f >x> h S g >x> h, where f ∼= g and h is arbitrary. We show
that S ⊆ ∼= , thus proving this result.

In the bisimulation part of the proof, we need consider only the transitions
of f and g only, because only such transitions cause transitions of f >x> h and
g >x> h. We consider only transitions of f and omit those of g, by symmetry,
as discussed above under simplifications. Further, non-publication transitions
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free(stop) = {}
free(E(p̄)) = free(p̄)
free(e(p̄)) = free(p̄) ∪ {e}
free(f | g) = free(f) ∪ free(g)
free(f >x> g) = free(f) ∪ (free(g) − {x})
free(f <x< g) = (free(f) − {x}) ∪ free(g)
free(f ; g) = free(f) ∪ free(g)

Table 3.4: Free variables; e is a variable and E a bound name.

of f can be ignored, as discussed in Lemma 3.1 (page 59). Also, binding closure
proof can be omitted for a congruence. The only remaining part is to consider

the publication transition of f , f
!c→ f ′, and show that the conditions of the

bifurcation theorem are met.

f
!c→ f ′ , assume

f >x> h
τ→ f ′

>x> h | (x := c).h , semantic rule (SEQP)

there is some g
!c→ g′ where f ′ ∼= g′ , from f ∼= g

g >x> h
τ→ g′ >x> h | (x := c).h , semantic rule (SEQP)

f ′
>x> h S g′ >x> h , f ′ ∼= g′ and definition of S

f ′
>x> h | (x := c).h (S | ∼=) g′ >x> h | (x := c).h

, definition of bifurcation
S ⊆ ∼= , Bifurcation theorem (page 64)

3.7.3 Identities

The identities, given below, are grouped into five categories, one for each of the
four combinators and a category about the distributivity of one combinator over
another. The identities for >x> and <x< can be specialized by replacing the
combinators by ≫ and ≪ , respectively, and dropping the constraints, if any,
on x.

In the identities, we write free(f) for the set of free variables of f , formally
defined in Table 3.4. In that table, for a list of parameters p̄, free(p̄) is the set
of variables in p̄. Note that x 6∈ free(f) implies that B.f = (B\x).f , for any
binding B. And, free(B.f) ⊆ free(f), for any binding B because a binding does
not introduce new variables.

Parallel Combinator We repeat these identities here from Section 3.6.3.3
(page 61) for completeness.

1. (zero of | ) f | stop ∼= f and stop | f ∼= f

2. (commutativity of | ) f | g ∼= g | f

3. (associativity of | ) f | (g | h) ∼= (f | g) | h
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Sequential Combinator

1. (left zero of >x> ) stop >x> f ∼= stop

2. (associativity of >x> ) f >x> (g >y> h) ∼= (f >x> g) >y> h,
if x 6∈ free(h)

The first identity shows that stop is a left zero. Note that stop is not a
right zero, f >x> stop 6∼= stop. Associativity shows that under a side condition,
x 6∈ free(h), this combinator is associative. (By convention, f >x> g >y> h
is interpreted as (f >x> g) >y> h.) The side condition is required: consider
(0 >x> x) >y> add(x, y) and 0 >x> (x >y> add(x, y)), where add publishes
the sum of its parameters. In (0 >x> x) >y> add(x, y), the parameter of add
is a free variable of the entire expression, whereas in 0 >x> (x >y> add(x, y))
it is bound. This difference is exploited in the binding (x := 1). Then, (x :=
1).((0 >x> x) >y> add(x, y)) = (0 >x> x) >y> add(1, y), which publishes
1+0 = 1. And, (x := 1).(0 >x> (x >y> add(x, y)) = 0 >x> (x >y> add(x, y)),
which publishes 0 + 0 = 0.

Pruning Combinator The following identities hold for all f , g, h and silent
n; see Section 3.7.1 (page 65) for definition of silent.

1. (right zero of ≪ ) f ≪ stop ∼= f

2. (generalization of right zero) f ≪ g ∼= f ≪ (stop ≪ g) ∼= f | (stop ≪ g)

3. (relation between ≪ and <x< ) f ≪ g ∼= f <x< g, if x 6∈ free(f).

4. (commutativity) (f <x< g) <y< h ∼= (f <y< h) <x< g
if x 6∈ free(h), y 6∈ free(g), and x, y are distinct.

From (1) stop behaves as a right zero of ≪ . A generalization of (1) appears
in (2); the term stop ≪ g behaves as g but never publishes. The relationship
between ≪ and <x< is shown in (3). Identity (4) shows that the combinator
is commutative under mild restrictions. In that identity, distinctness of x and
y is important: (x <x< 2) <x< 3 6∼= (x <x< 3) <x< 2.

The associativity identity, (f <x< g) <y< h ∼= f <x< (g <y< h), does not

hold. Here, g
!c→ g′ transforms the left expression to (x := c).f <y< h and the

right one to (x := c).f , and these two expressions are not equivalent.

Observe that f <x< stop
τ→ (x := 6 !).f , from (PRUH). So, the two expres-

sions are not strongly equivalent; they can be shown to be weakly equivalent,
using the definition of weak equivalence from Section 3.8 (page 72).

We can derive the following identities from the ones given above.

• stop is silent, from (right zero) using stop for f and the definition of silent.

• stop ≪ g is silent, from part (2) using stop for f . In fact, stop <x< g is
also silent.
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• (pruning with silent expression) f ≪ n ∼= f | n, from part (2) and defi-
nition of silent.

• (f ≪ g) ≪ h ∼= (f ≪ h) ≪ g, from commutativity.

• (Generalization of part 3) f ≪ g ∼= f <x< g, if (x := 6 !).f ∼= f :

f <x< g
∼= {(x := 6 !).f ∼= f}

(x := 6 !).f <x< g
∼= {x 6∈ free((x := 6 !).f). From part (3) above}

(x := 6 !).f ≪ g
∼= {(x := 6 !).f ∼= f}

f ≪ g

Otherwise Combinator

1. (associativity of ; ) (f ; g) ; h ∼= f ; (g ; h)

This identity is a generalization of the similar identity for sequential composition
in traditional programming languages. Observe that stop ; f 6∼= f because
the left expression produces a τ event before it starts behaving like the right
expression f . Similarly, f ; stop 6∼= f because in case f = stop, the left expression
generates a τ event whereas the right expression has no transition at all. If we
ignore the τ events, then these become identities. The expressions are then said
to be weakly equivalent, a notion we define in Section 3.8 (page 72).

Distributivity The following identities show how one combinator distributes
over another.

1. ( | over >x> ; left distributivity)
(f | g) >x> h ∼= f >x> h | g >x> h

2. ( | over <x< ) (f | g) <x< h ∼= (f <x< h) | g, if x 6∈ free(g)

3. ( >y> over <x< ) (f >y> g) <x< h ∼= (f <x< h) >y> g
if x 6∈ free(g), and x and y are distinct.

4. ( <x< over otherwise) (f <x< g) ; h ∼= (f ; h) <x< g, if x 6∈ free(h).

Distributivity identities are the most difficult ones to justify intuitively;
therefore, formal proofs are essential. There seems to be no distributivity iden-
tity of ( | over ; ) or ( >x> over ; ).

There is no “right distributivity” identity of | over >x> similar to the left
distributivity: f >x> (g | h) ∼= f >x> g | f >x> h. This identity holds only
with additional restrictions on f , that it be “functional”. That is, f publishes
at most one value and the same value each time and it calls only functional
sites or common sites. Thus, an expression that returns a random number is
not functional, nor is one that creates a site and publishes its identity.
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3.7.4 Proofs of the Identities

The proofs of the identities follow the pattern we have shown in Section 3.7.2
(page 66). The proofs often appeal to the bifurcation theorem, Theorem 3.2
(page 64). Further, some of the proofs make use of the other identities. In
particular, associativity of the sequential combinator, proven below, assumes
the left distributivity of | over >x> .

Proving Associativity of the Sequential Combinator: We show

f >x> (g >y> h) ∼= (f >x> g) >y> h, if x 6∈ free(h).

Define f >x> (g >y> h) S (f >x> g) >y> h, for every f , g and h where
x 6∈ free(h). We show that S ⊆ ∼= , thus proving this result. The main tool
is the bifurcation theorem, Theorem 3.2. By inspection of the two expressions
we can establish that they are similar (see Section 3.6.3.2, page 59), therefore,
according to Lemma 3.2, the binding-closure condition of the theorem is met.
To establish the other conditions of the theorem, we need consider only the
publication transitions, according to Lemma 3.1 (page 59), and only those of f
because only the transitions of f cause transitions in the expressions on both
sides.

f
!c→ f ′ , assume

f >x> (g >y> h)
τ→ f ′

>x> (g >y> h) | (x := c).(g >y> h)
, semantic rule (SEQP)

f >x> (g >y> h)
τ→ f ′

>x> (g >y> h) | ((x := c).g) >y> h
, from Table 3.2 (page 46) and x 6∈ free(h)

We show a matching transition of the right expression:

f >x> g
τ→ f ′

>x> g | (x := c).g

, from f
!c→ f ′ and rule (SEQP)

(f >x> g) >y> h
τ→ (f ′

>x> g | (x := c).g) >y> h
, from above and rule (SEQN)

(f >x> g) >y> h
τ→ (f ′

>x> g) >y> h | ((x := c).g) >y> h
, left distributivity of | over >x>

f ′
>x> (g >y> h) | ((x := c).g) >y> h (S | ∼=)

(f ′
>x> g) >y> h | ((x := c).g) >y> h, definition of bifurcation

S ⊆ ∼= , Bifurcation Theorem (page 64)

3.7.5 Halting Revisited

We show the conditions under which an expression halts, that is it is equivalent
to stop. These conditions can be used to implement the semantic rule (PRUH)
for the pruning combinator, (OTHH) for the otherwise combinator and to send
a negative response to an internal site call. Halting of any Orc expression can
be detected using these rules provided the expression calls only helpful sites.
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1. If f is a (strict) site call in which x is a parameter then (x := 6 !).f halts,
from the definition of strict.

2. If f ∼= stop and g ∼= stop, then f | g ∼= stop, from the identities of the
parallel combinator.

3. If f ∼= stop, then f >x> g ∼= stop, from the identities of the sequential
combinator.

Expression f <x< g never halts because (1) if g does not halt it makes some
transition, and so does f <x< g, and (2) if g halts, then f <x< g makes a τ
transition according to rule (PRUH).

Expression f ; g never halts: if f never halts, then either rule (OTHN) or
(OTHP) can be applied, and if f halts, then (OTHH) can be applied.

3.7.6 A Summary of the Identities

• (Identities of | )

1. (zero of | ) f | stop ∼= f and stop | f ∼= f

2. (commutativity of | ) f | g ∼= g | f

3. (associativity of | ) f | (g | h) ∼= (f | g) | h

• (Identities of >x> )

1. (left zero of >x> ) stop >x> f ∼= stop

2. (associativity of >x> ) f >x> (g >y> h) ∼= (f >x> g) >y> h,
if x 6∈ free(h).

• (Identities of <x< )

1. (right zero of ≪ ) f ≪ stop ∼= f

2. (generalization of right zero) f ≪ g ∼= f ≪ (stop ≪ g) ∼= f | (stop ≪ g)

3. (relation between ≪ and <x< ) f ≪ g ∼= f <x< g, if x 6∈ free(f).

4. (commutativity) (f <x< g) <y< h ∼= (f <y< h) <x< g
if x 6∈ free(h), y 6∈ free(g), and x, y are distinct.

• (Identities of ; )

1. (associativity of ; ) (f ; g) ; h ∼= f ; (g ; h)

• (Distributivity Identities)

1. ( | over >x> ; left distributivity) (f | g) >x> h ∼= f >x> h | g >x> h

2. ( | over <x< ) (f | g) <x< h ∼= (f <x< h) | g, if x 6∈ free(g).

3. ( >y> over <x< ) (f >y> g) <x< h ∼= (f <x< h) >y> g
if x 6∈ free(g), and x and y are distinct.

4. ( <x< over otherwise) (f <x< g) ; h ∼= (f ; h) <x< g, if x 6∈ free(h).
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3.8 Weak Bisimulation

We remarked earlier that stop ; f is not strongly equivalent to f because the for-
mer produces a τ event and only then behaves like f ; the two expressions would
be identical if we ignore this τ event. To this end, we define weak bisimulation
and weak equivalence by ignoring the τ events. Weak bisimulation and weak
equivalence have many of the properties of their strong counterparts. In par-
ticular, weakly equivalent expressions may be substituted for each other within
any expression and the resulting expressions are weakly equivalent.

3.8.1 Definition of Weak Bisimulation

We define weak bisimulation in a manner analogous to strong bisimulation. For

sequence of events s and t, let s
\τ
= t denote that s and t are identical after

removing τ events from both sequences. Note that
\τ
= is an equivalence relation.

The definition of weak bisimulation makes use of →∗ , the transitive closure of
→ , defined in Section 3.4.8 (page 51).

Definition: Weak Bisimulation A binary relation S over expressions is a
weak bisimulation if for every (f ,g) in S (also written as f S g)

for every f
a→ f ′, there is some g

a′

→∗ g′ such that f ′ S g′ and a
\τ
= a′, and

for every g
b→ g′′, there is some f

b′→∗ f ′′ such that f ′′ S g′′ and b
\τ
= b′. ✷

Pairs (f ,g) in a weak bisimulation are said to be weakly bisimilar. Then a
transition of f may be matched by a sequence of transitions of g, and conversely.
Analogous to Theorem 3.1 (page 55), we have

Theorem 3.3. Let f S g where S is a weak bisimulation. Then, for every

f
u→∗ f ′, there is some g

u′

→∗ g′ such that f ′ S g′ and u
\τ
= u′. Conversely, for

every g
v→∗ g′′ there is some f

v′

→∗ f ′′ such that f ′′ S g′′ and v
\τ
= v′.

Proof: We show that for every trace s of f that has length n, where n ≥ 0, g

has a trace t where s
\τ
= t. Proof is by induction on n, the lengths of traces,

and is similar to the proof of Theorem 3.1 (page 55). ✷

Analogous to Proposition 3.1 (page 55), we have the following proposition.

Proposition 3.6.

1. The identity relation is a weak bisimulation.

2. The inverse of a weak bisimulation is a weak bisimulation.

3. The relational product of weak bisimulations is a weak bisimulation.

4. The union of weak bisimulations is a weak bisimulation.
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5. The reflexive, symmetric and transitive closure of a weak bisimulation is
a weak bisimulation. ✷

3.8.2 The Largest Weak Bisimulation

Analogous to the largest strong bisimulation, ∼ , we define ≈ as the union of
all weak bisimulations. Analogous to Proposition 3.2 (page 55), we have:

Proposition 3.7.

1. ≈ is the largest weak bisimulation, i.e., any weak bisimulation is a subset
of ≈ .

2. ≈ is an equivalence relation.

3. (converse of the bisimilarity property for ≈ ) For any f and g, suppose

for every f
a→ f ′, there is some g

a′

→∗ g′ such that

f ′ S g′ and a
\τ
= a′, and

for every g
b→ g′′, there is some f

b′→∗ f ′′ such that

f ′′ S g′′ and b
\τ
= b′.

Then, f ≈ g. ✷

From the definition of weak bisimilarity, it follows that

Proposition 3.8. Expressions that are strongly bisimilar are also weakly bisim-
ilar, i.e., ∼ ⊆ ≈ . ✷

Proposition 3.9. If the only transition of f is f
τ→ f ′, then f ≈ f ′.

Proof: We use property (3) from Proposition 3.7: the τ transition of f is
matched by the empty trace of f ′ and any transition a of f ′ is matched by
the trace τa of f . ✷

3.8.3 Weak Equivalence

Analogous to the strong equivalence relation, define weak equivalence relation,

written as
≈
= , as the union of all closed weak bisimulations. The following

proposition is analogous to Proposition 3.4 (page 57).

Proposition 3.10.

1.
≈
= is the largest weak bisimulation that is closed under binding. That

is,
≈
= is a closed weak bisimulation and any closed weak bisimulation is

a subset of
≈
= .

2.
≈
= is a subset of ≈ .
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3.
≈
= is an equivalence relation.

4. Given that f
≈
= g, for every binding B, B.f

≈
= B.g.

5. For expressions f , g and binding B, suppose that

for every B.f
a→ f ′, there is some B.g

a′

→∗ g′ such that

f ′ ≈
= g′, and a

\τ
= a′, and

for every B.g
b→ g′′, there is some B.f

b′→∗ f ′′ such that

f ′′ ≈
= g′′ and b

\τ
= b′.

Then, f
≈
= g. ✷

Analogous to the bifurcation theorem, Theorem 3.2 (page 64), we have:

Theorem 3.4. (Weak-Bifurcation Theorem) Let S be a binary relation such
that given f S g

for every f
a→ f ′ there is some g

a′

→∗ g′ such that

f ′ S g′, f ′ ≈
= g′, or f ′ (S |

≈
=) g′, and a

\τ
= a′, and (C1)

for every g
a→ g′′ there is some f

a′

→∗ f ′′ such that

f ′′ S g′′, f ′′ ≈
= g′′, or f ′′ (S |

≈
=) g′′ and a

\τ
= a′. (C2)

Then, f ≈ g. Further, if S is closed then f
≈
= g. ✷

3.8.4 Congruences under Weak Equivalence

All Orc combinators preserve weak equivalence, i.e., given that f
≈
= g, the

identities in Table 3.5 hold for all h. We can obtain similar identities by replacing
>x> by ≫ and <x< by ≪ . Also, as in strong equivalence, prefixing by a
definition preserves weak equivalence, and replacing the body of a definition by
a weakly equivalent expression results in an weakly equivalent definition. In

Table 3.5, f
≈
= g, h is arbitrary and D is any definition. We prove one of these

results below.

f | h
≈
= g | h

f >x> h
≈
= g >x> h

f <x< h
≈
= g <x< h

f ; h
≈
= g ; h

D # f
≈
= D # g

h | f
≈
= h | g

h >x> f
≈
= h >x> g

h <x< f
≈
= h <x< g

h ; f
≈
= h ; g

(def E(x̄) = f) # h
≈
= (def E(x̄) = g) # h

Table 3.5: Weak Equivalence Preservation

Proof of h <x< f
≈
= h <x< g, given f

≈
= g:

Postulate relation S by,
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h <x< f S h <x< g, for all f , g and h, where f
≈
= g.

Because of the symmetry in both sides, we will only consider the transitions
of h <x< f . Further, non-publication transitions of f and g can be ignored,
as discussed in Lemma 3.1 (page 59). Similarly, all transitions of h can also be
ignored because they do not change the structure of the resulting expressions.
Also, binding closure proof can be omitted for a congruence. The only remaining

part is to consider the publication transition of f , f
!c→ f ′, and show that the

conditions of the weak bifurcation theorem, Theorem 3.4, are met.

• Publication transitions of f : Let f
!c→ f ′. Given f ≈ g, there is some

g
τ∗!cτ∗

→ ∗ g′ such that f ′ ≈ g′. Then, g
τ∗

→∗ g′′′ and g′′′
!c→ g′′ for some g′′ and

g′′′.

h <x< g
τ∗

→∗ h <x< g′′′ , given g
τ∗

→∗ g′′′ repeatedly apply (PRUN)

h <x< g′′′
!c→ (x := c).h , given g′′′

!c→ g′′ apply (PRUP)

h <x< g
τ∗!c→∗ (x := c).h , combining the above two

h <x< f
!c→ (x := c).h , given f

!c→ f ′ apply (PRUP)

The resulting expressions in the last two lines of the proof are both (x := c).h;
so, they are weakly bisimilar. Apply the weak bifurcation theorem to conclude
the proof. ✷

3.8.5 Identities under Weak Equivalence

All the identities for strong equivalence hold for weak equivalence as well. Ad-
ditionally, we have

(left unit of ≫ ) signal ≫ f
≈
= f

(right unit of >x> ) f >x> x
≈
= f

(left zero of ; ) stop ; f
≈
= f

(right zero of ; ) f ; stop
≈
= f

(Ift properties) Ift(true)
≈
= signal Ift(false)

≈
= stop

(Iff properties) Iff (true)
≈
= stop Iff (false)

≈
= signal

3.9 Synchronous Semantics

The asynchronous semantics is appropriate for an execution in which time plays
no particular role. The sites are called sometime after the call becomes due,
values are published anytime after they are available, and decisions about the
order of execution of independent events are left to the scheduler. Elimination
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of explicit real time is based on Dijkstra’s famous dictum [13] that indepen-
dent processes execute at unknown but finite speeds1 . For example, from the
asynchronous semantics, x <x< (1 | 1000) publishes either “1” or “1000” de-
pending on the behavior of the scheduler; for the Orc programmer the choice is
non-deterministic.

This picture changes when we introduce the common site Rwait in an ex-
pression. Expression x <x< (Rwait(1) ≫ 1 | Rwait(1000) ≫ 1000) definitely
publishes “1”; it is no longer a choice of the scheduler. A time order has been
imposed on the events.

The timed semantics of Orc is a simple extension of the asynchronous se-
mantics, by associating a non-negative real number as a time component with

each event. Transition f
t,a→ f ′ denotes that f may move to f ′ with a as

its first event exactly t time units after the execution of f starts. Thus, the
time associated with a transition is relative to the start of evaluation of the
expression.

The rules for common sites are in the form, for example,

3
0,τ→ ?3, ?3

0,!3→ stop

(Here, we have applied the convention of using τ as the call event for common
sites.) The rule for Rwait is similar, except that the response is received at a
later time.

Rwait(t)
0,τ→ ?Rwait(t), ?Rwait(t)

t,!→ stop

3.9.1 Time-shifted Expressions

Suppose we have f
t,a→ f ′. We may expect to conclude that f | g

t,a→ f ′ | g,

using (PARL). However, this is incorrect. For example, from ?Rwait(1)
1,!→ stop

we can not conclude ?Rwait(1) | ?Rwait(3)
1,!→ stop | ?Rwait(3). The passage

of 1 unit of time has altered the expression ?Rwait(3) so that it behaves as
?Rwait(2); it will publish in 2 time units, not 3. That is, we should deduce

?Rwait(1) | ?Rwait(3)
1,!→ stop | ?Rwait(2).

A time-shifted expression f t, where t ≥ 0, is the expression resulting from
f after its execution of t time units without occurrence of an event. Thus,
?Rwait(3)1 = ?Rwait(2). If it is not possible for t time units to elapse without
f engaging in an event, f t is defined to be ⊥. For instance, ?Rwait(1)2 = ⊥
because ?Rwait(1) definitely publishes before 2 time units have elapsed. Ex-
pression ⊥ has no transition. Any expression containing ⊥ as a subexpression

is ⊥; this is where ⊥ is different from stop. Transition f
t,a→ ⊥ denotes that f

does not engage in the given transition.

1“(otherwise) it will make the proper working (of a program) a rather unstable equilib-
rium, sensitive to any change in the different speeds, as may easily arise by replacement of a
component by another say, replacement of a line printer by a faster model ...”
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stopt = stop
?Rwait(s)t = ?Rwait(s − t) if s ≥ t, ⊥ otherwise

?M(v̄)
s,a→ M ′

?M(v̄)t s−t,a→ M ′, if s ≥ t
?M(v̄)t = ⊥, if s < t

e(x̄)t = e(x̄) if e is not bound
(f | g)t = f t | gt

(f >x> g)t = f t
>x> g

(f <x< g)t = f t
<x< gt

(f ; g)t = f t ; g
(D # f)t = D # f t

Table 3.6: Definition of Time-shifted Expressions

We define f t formally in Table 3.6 (page 77). To understand the definitions
first look at the ones corresponding to the combinators, the last four in that
table, as they are easier to justify. The definition for the parallel combinator is
justified because the two subexpressions act independently, and any transition
in one, say f at time t, affects g by only “aging” it to gt. For (f >x> g)t, only
f is aged since its execution starts as soon as the execution of (f >x> g) starts,
but since g’s execution does not start until it is spawned by a publication of f ,
there is no change in that subexpression. For (f <x< g)t, executions of both
f and g start as soon as f <x< g starts; so, both start aging right-away. The
argument for (f ; g)t is similar to that for (f >x> g)t.

Next, we need to define e(x̄)t where e denotes a site; the name e may or may
not be bound, and none, some or all of its parameters may be bound. A site
call can start only if its name is bound; so e(x̄)t = e(x̄) where e is not bound.
We consider the remaining cases next. Observe that for any expression f , f0

should be just f . So, we consider the case for t > 0.

If the name of a site, say M , is bound, then its execution must have started
already and it must have been transformed to ?M(p̄). So, we need not de-

fine M(x̄)t for t > 0; we need only define ?M(x̄)t. If ?M(x̄)
s,a→ M ′ then

?M(v̄)t s−t,a→ M ′, provided s ≥ t; if s < t then ?M(v̄)t = ⊥.

Applying this rule to ?Rwait(s), since ?Rwait(s)
s,!→ stop, we have

?Rwait(s)t s−t,!→ stop for s ≥ t, and ?Rwait(s)t = ⊥ for s < t.

Therefore, for s ≥ t, ?Rwait(s)t = ?Rwait(s− t). For every other common site
M , and t > 0, ?M t = ⊥. Thus, ?Signal1 = ⊥, and so is ?Ift(true)2.

Next, consider E(p̄) where E is an internal site name. Similar arguments
show that its execution must have started and transformed it to (p̄/x̄).f where
[E(x̄) = f ] is the site definition. Therefore, this case needs no further consider-
ation. This completes the explanation of the definitions in Table 3.6.
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We leave it to the reader to show that if f t s,a→ f ′ is a transition then so is

f
s+t,a→ f ′. And, (fs)t = fs+t.

3.9.2 Synchronous Semantic Transition Rules

The synchronous semantic rules, given in Figure 3.3 (page 83), are identical to
their asynchronous counterparts of Figure 3.1 (page 81). The only enhancement
is the inclusion of a time component in each transition and the replacement of
expressions by their time-shifted counterparts.

3.9.3 Trace, Bisimulation, Equivalence

3.9.3.1 Trace in Timed Semantics

As in Section 3.4.8 (page 51), we define the trace relation, →∗ , as the transi-
tive closure of the transition relation → , together with the empty transition ǫ.
That is,

f
ǫ→∗ f

f
t,a→ f ′′, f ′′ s→∗ f ′

f
(t,a)s−→∗ f ′

Consider trace (t0, a0) · · · (ti, ai) · · · (tn, an) of expression f . Here a0 starts
t0 time units after the start of execution of f , and ai starts ti units after ai−1,
i > 0. Define absolute time Ti of ai to be the time at which ai occurs after the
execution of f starts. So,

Ti =

{

t0 if i = 0
Ti−1 + ti if i > 0

The end time of a trace is the absolute time of its last event, or 0 if the trace is

empty. For traces u and v, u
\\τ
= v holds if and only if:

1. u and v have the same end times, and

2. u and v have the same sequence of non-τ events with the same absolute
times.

It is easy to see that
\\τ
= is an equivalence relation. And, for any sequence

s of (0, τ) events only, s
\\τ
= ǫ. Further,

Observation 3.2. Given u
\\τ
= v and u′ \\τ

= v′, uu′ \\τ
= vv′. ✷

This result relies on the fact that u and v have the same end times so that
u′ and v′ start at the same time.

3.9.3.2 Strong and Weak Bisimulation

Definition of strong bisimulation is exactly the same as before for the asyn-

chronous case. Weak bisimulation is also the same except that
\\τ
= replaces

\τ
=

in the definition, as follows.
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Definition: Weak Synchronous Bisimulation A binary relation S over
expressions is a weak synchronous bisimulation if for every (f ,g) in S (also
written as f S g)

for every f
a→ f ′, there is some g

a′

→∗ g′ such that f ′ S g′ and a
\\τ
= a′, and

for every g
b→ g′′, there is some f

b′→∗ f ′′ such that f ′′ S g′′ and b
\\τ
= b′. ✷

We have exactly the same theorem, Theorem 3.1 (page 55), for both syn-
chronous and asynchronous strong bisimulations. We repeat the theorem here.

Theorem 3.5. Let f S g where S is a strong bisimulation. Then, for every
f

u→∗ f ′, there is some g
u→∗ g′ such that f ′ S g′. Conversely, for every

g
v→∗ g′′ there is some f

v→∗ f ′′ such that f ′′ S g′′. ✷

Corollary: Strongly bisimilar expressions have identical trace sets in timed
semantics. ✷

The theorem corresponding to weak bisimulation, Theorem 3.3 (page 72),

is the same except that
\\τ
= replaces

\τ
= . Its proof does require an additional

fact, Observation 3.2 given above.

Theorem 3.6. Let f S g where S is a weak bisimulation. Then, for every

f
u→∗ f ′, there is some g

v→∗ g′ such that f ′ S g′ and u
\\τ
= v. Conversely, for

every g
v→∗ g′′ there is some f

u→∗ f ′′ such that f ′′ S g′′ and u
\\τ
= v.

Proof: Proof is as before, except that Observation 3.2 is essential in the in-
ductive case. Given f

a→ f ′′ u→∗ f ′ and that S is a weak bisimulation,

there is some g
a′

→∗ g′′ such that f ′′ S g′′ and a
\\τ
= a′. Applying induc-

tion on f ′′ S g′′ and f ′′ u→∗ f ′, there is some g′′
u′

→∗ g′ such that f ′ S g′ and

u
\\τ
= u′. Thus, we have shown g

a′u′

−→∗ g′ where f ′ S g′ and au
\\τ
= a′u′; the lat-

ter follows from the observation above. Proof in the other direction is similar. ✷

Corollary: Given weakly bisimilar expressions f and g, for any trace s of f

there is a trace t of g where s
\\τ
= t, and conversely. ✷

Equivalence The propositions for asynchronous strong bisimulation, Propo-
sitions 3.1 (page 55) and 3.2 (page 55), and for asynchronous weak bisimulation,
Propositions 3.6 (page 72) and 3.7 (page 73), apply in the synchronous case as
well. We define equivalence, both strong and weak, in exactly the same way.
Consequently, all the identities developed for the asynchronous case apply to
the synchronous case as well. We can prove additional identities involving time,
such as, Rwait(0) ∼ signal and Rwait(s) ≫ Rwait(t) ≈ Rwait(s + t).
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3.10 Concluding Remarks

A more elegant treatment of semantics uses structural equivalence [38]. We
start with the following equivalences.

1. (x := 6 !).e(x) ≡ stop,

2. f | g ≡ g | f

3. (f | g) | h ≡ f | (g | h)

4. f | stop ≡ f

5. stop >x> f ≡ stop

6. f <x< stop ≡ (x := 6 !).f

Then, one of the rules, (PARL) or (PARR), can be dropped because parallel
combinator is symmetric, from (2).

Our intent was to introduce the minimum required number of concepts.
Therefore, we have chosen not to introduce structural equivalence.

A real-time rewriting semantics of Orc appears in Meseguer and Al Turki [2].

Acknowledgement Manfred Broy pointed out an oversight in one of the
semantic rules in an earlier version.



3.10. CONCLUDING REMARKS 81

M(v̄)
√

M(v̄)
→ ?M(v̄) (SiteCall)

?M(v̄) receives a non-terminal response !c

?M(v̄)
!c
→ ?M(v̄)

(NT-Res)

?M(v̄) receives a terminal response !c

?M(v̄)
!c
→ stop

(T-Res)

?M(v̄) receives a negative response

?M(v̄)
τ
→ stop

(NegRes)

f
t,a
→ f ′

D # f
t,a
→ D # f ′

(DefPass)

D is def E(x̄) = g
free(g) ⊆ {E} ∪ {x̄}

D # f
τ
→ (〈E, x̄, g〉/E).f

(DefScope)

〈E, x̄, g〉(p̄)
τ
→ (〈E, x̄, g〉/E).(p̄/x̄).g

(DefCall)

f
a
→ f ′

f | g
a
→ f ′ | g

(ParL)

g
a
→ g′

f | g
a
→ f | g′

(ParR)

f
a
→ f ′ non-pub a

f >x> g
a
→ f ′

>x> g

f ≫ g
a
→ f ′

≫ g

(SeqN)

f
!c
→ f ′

f >x> g
τ
→ f ′

>x> g | (x := c).g

f ≫ g
τ
→ (f ′

≫ g) | g

(SeqP)

f
a
→ f ′

f <x< g
a
→ f ′

<x< g

f ≪ g
a
→ f ′

≪ g

(PruL)

g
a
→ g′ non-pub a

f <x< g
a
→ f <x< g′

f ≪ g
a
→ f ≪ g′

(PruN)

g
!c
→ g′

f <x< g
τ
→ (x := c).(f)

f ≪ g
τ
→ f

(PruP)

g ∼= stop

f <x< g
τ
→ (x := 6 !).f

f ≪ g
τ
→ f

(PruH)

f
a
→ f ′

f ; g
a
→ f ′

; g
(OthN)

f
!c
→ f ′

f ; g
!c
→ f ′

(OthP)

f ∼= stop

f ; g
τ
→ g

(OthH)

Figure 3.1: Asynchronous Semantics of Orc
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Figure 3.2: P and X have identical trace sets, but they are not bisimilar
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M(v̄)
0,
√

M(v̄)
→ ?M(v̄) (SiteCall)

?M(v̄) receives a non-terminal response !c, t units after the call

?M(v̄)
t,!c
→ ?M(v̄)

(NT-Res)

?M(v̄) receives a terminal response !c, t units after the call

?M(v̄)
t,!c
→ stop

(T-Res)

?M(v̄) receives a negative response t units after the call

?M(v̄)
t,τ
→ stop

(NegRes)

f
t,a
→ f ′

D # f
t,a
→ D # f ′

(DefPass)

D is def E(x̄) = g
free(g) ⊆ {E} ∪ {x̄}

D # f
0,τ
→ (〈E, x̄, g〉/E).f

(DefScope)

〈E, x̄, g〉(p̄)
0,τ
→ (〈E, x̄, g〉/E).(p̄/x̄).g

(DefCall)

f
t,a
→ f ′

f | g
t,a
→ f ′ | gt

(ParL)

g
t,a
→ g′

f | g
t,a
→ f t | g′

(ParR)

f
t,a
→ f ′ non-pub a

f >x> g
t,a
→ f ′

>x> g

f ≫ g
t,a
→ f ′

≫ g

(SeqN)

f
t,!c
→ f ′

f >x> g
t,τ
→ f ′

>x> g | (x := c).g

f ≫ g
t,τ
→ (f ′

≫ g) | g

(SeqP)

f
t,a
→ f ′

f <x< g
t,a
→ f ′

<x< gt

f ≪ g
t,a
→ f ′

≪ gt

(PruL)

g
t,a
→ g′ non-pub a

f <x< g
t,a
→ f t

<x< g′

f ≪ g
t,a
→ f t

≪ g′

(PruN)

g
t,!c
→ g′

f <x< g
t,τ
→ (x := c).(f t)

f ≪ g
t,τ
→ f t

(PruP)

g ∼= stop

f <x< g
0,τ
→ (x := 6 !).f

f ≪ g
0,τ
→ f

(PruH)

f
t,a
→ f ′

f ; g
t,a
→ f ′

; g
(OthN)

f
t,!c
→ f ′

f ; g
t,!c
→ f ′

(OthP)

f ∼= stop

f ; g
0,τ
→ g

(OthH)

Figure 3.3: Synchronous Semantics of Orc



84 CHAPTER 3. ORC SEMANTICS



Chapter 4

Orc Programming Language

4.1 Introduction

Orc calculus, described in Chapter 2, provides only minimal facilities for actual
programming. The purpose of the calculus is to exhibit the smallest number
of concepts adequate for our purpose; it constitutes a “model of limitation” in
that the inadequacies of the theory, the negative results, can be explored within
the calculus. A programming language constitutes a “model of computation” in
that the solutions of actual problems, the positive results, can be demonstrated
easily. In this sense, Orc calculus is analogous to the λ-calculus and the Orc
language to a functional programming language. The gap between the calculus
and the language is, however, narrower in Orc. The language features of Orc are
mere syntactic sugar that are easily translated to a program in Orc calculus,
possibly employing sites from the Orc standard library. The Orc translator
converts an Orc language program to the calculus notation and an interpreter
executes the calculus directly. We show the translations of all the language
features in this chapter.

The Orc combinators can be superposed on any host language that supports
site calls and that can accommodate concurrent computations; Launchbury and
Trevor [31] have ported the Orc combinators to Haskell [15] by judicious use of
monads. We could have used a traditional language like Java as the host. We
decided to design Orc language so that it departs very little from the calculus,
include concurrency as the default mode for control flow, and allow complete
freedom in designing and using sites.

Like a functional programming language Orc avoids mutable variables. Sites
coded in other programming languages, which includes many library sites1 ,
may maintain and update mutable stores. Unlike a functional programming
language, however, Orc’s expressions may publish multiple values, exploit real
time and engage in non-deterministic computations.

The description of Orc language in this chapter mentions only the features

1All sites defined in the standard library are coded in Java, Scala or Orc as of this writing.
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that are essential to understanding the programs in this book. See the website
at [16] for a complete description of the language and the standard library.

A Small Example We give a small example that illustrates some, but not
all, of the features of the Orc language. We show its translation below.

The following program runs a series of trials. Each trial consists of rolling a
pair of dice. A trial succeeds if the total shown by the two dice is 7. Site call
exp(n) publishes the number of successful trials in n trials.

def roll() = Random(6) + 1

def exp(0) = 0
def exp(n) = exp(n-1) + ( if roll() + roll() = 7 then 1 else 0)

The program includes two sites, roll and exp . Site roll() publishes a
random value between 1 and 6; it makes use of the standard library site, Random,
where Random(n) , for positive integer n, publishes a random integer i, 0 ≤ i < n.
Site exp is “clausally defined”; the first definition applies if the site argument
is zero and the second definition applies if it is non-zero. In the first case the
number of successful trials is 0 since the number of trials is 0. In the second
case, the number of successful trials in n trials is the sum of the number in n-1

trials and in a single trial; the latter is 1 provided the two dice rolls add up to
7 and 0 otherwise.

We show a translation of the definition of exp into Orc calculus2.

def exp(n) =
( Ift(b) >> 0
| Iff(b) >>

( add(x,y)
<x< ( exp(m,c) <m< sub(n,1) ) )
<y< ( ( Ift(bb) >> 1 | Iff(bb) >> 0 )

<bb< equals(p,7)
<p< add(q,r)

<q< roll()
<r< roll() )

) <b< equals(n,0)

The symbol “+” in the original program is replaced by a call to the standard
site add . The arguments of add are variables, not expressions, as is demanded
in the Orc calculus. So, in the translated version, the arguments are replaced
by variables that are bound to the values of these expressions. Site sub(x,y)

returns x-y , and equals returns true if its two arguments are equal and false

otherwise.

2The translations given in this chapter are not necessarily the ones in the Orc implemen-
tation; the latter includes many optimizations. The site names in the standard library are
possibly different from the ones shown here.
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The original program does not use any of the concurrency combinators of
Orc explicitly. In fact, the program looks entirely functional and deterministic,
with the sole exception of the site call Random(6) . Yet, each nested expression
translates into a use of the pruning combinator, making this program implicitly
concurrent without any programmer intervention. We will show that all 2n calls
to roll may be executed concurrently.

Road map for this chapter Orc language includes two novel features be-
sides the combinators: (1) deflation, described in Section 4.3.3 (page 90), that
allows an Orc expression to appear in full generality wherever a variable can be
used, such as for actual parameters in site calls, and (2) a very general notion of
object classes, described in Section 4.6 (page 113), that allows not only data en-
capsulation, but concurrent instantiations and invocations of object instances,
possibly depending on the passage of real time; in particular, an instance may
engage in autonomous computation without an explicit method call. The re-
maining features of Orc language are either syntactic sweeteners or well-known
features from functional programming. These features include various standard
data types and data structures (Section 4.3, page 88), use of patterns in access-
ing data and binding them to the component variables (Section 4.3.5, page 94),
and clausal definitions of sites (Section 4.4.2.3, page 101). Those familiar with
functional programming may still need to understand how concurrency com-
binators and site calls are integrated with traditional functional programming
features. We show the translation of each feature into Orc calculus.

4.2 Preliminaries

We discuss some preliminary material in this section.

Syntax for Comments An inline comment starts with two dashes, --, and
runs to the end of the line. A multi-line comment starts with {- and ends with
-} . Multi-line comments can be nested, so {- starts a new multi-line comment,
and -} ends the current multi-line comment.

Characterstics of Sites Orc calculus makes few demands on a site. A site
may be called in a procedural style and it may respond with zero or more values.
While a theory can be built on these minimal assumptions, programmers often
have, or need, additional information about sites that they can exploit. We
describe some useful site characterstics that may, possibly, appear in a site
specification; some of these have been described in the earlier chapters.

A site that always responds with a terminal response when its computation
on behalf of a call ends is helpful, see Section 2.2.2 (page 21). It can be shown
that any site whose definition includes calls only to helpful sites is helpful, see
Section 3.7.5 (page 70). Henceforth, any expression that calls only helpful sites
is termed helpful.
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A pure site implements a mathematical function. The site always publishes
just a terminal response; therefore, it is helpful. The response is deterministic.
It has no side effect discernible to the caller of the site. The standard library
includes a number of pure sites including the traditional ones for operations on
numeric and boolean data. Site Ift is pure even though it does not respond
with a value if its argument is false , but sends only a negative response. Site
Rwait is also a pure site though its response is delayed. It behaves like any
other pure site whose computation consumes a noticable amount of real time.

A quasi-pure site always publishes just a terminal response, like a pure site.
Further, its side effects, if any, are unobservable to the caller. However, the
response may not be deterministic, as in Random. Note that a call to Randomhas
the side effect of changing the seed that will be used to compute the next random
number, though the side effect is internal to the site and can not be directly
observed by a caller. All factory sites in the standard library, see Section 4.5
(page 106), are quasi-pure. For example, a call to the factory site Channel

publishes a site that behaves like a FIFO channel; different calls return different
instances of channel and the side effects are entirely internal to Channel . By
contrast, site Println always publishes just a signal as a terminal response, but
has the side effect of displaying its argument string that is observable; so it is
not pure or quasi-pure.

Halted and Silent expression We informally described the notions of halted
and silent expressions in Section 2.3 (page 23) and formally in Section 3.7.1
(page 65). An expression halts or is halted if it can not engage in any activity.
Expressions stop and stop >> 3 are halted. An expression is silent if it never
publishes. A halted expression, therefore, is silent. A silent expression may
still call sites and continue executing forever, as in metronome(1)>> stop; see
Section 2.5.2.2 (page 34) for a definition of metronome . Halting of an expression
can be detected only if it calls helpful sites.

4.3 Basic Data and Control Structures

The standard data types of the Orc language are: number, boolean and string,
and the unitary data signal ; we cover the standard data types in Section 4.3.1.
The data structuring mechanisms are: tuple, list and record, which we cover in
Section 4.3.4 (page 91). Orc also includes pattern construction mechanisms as
described in Section 4.3.5 (page 94). We describe conditional expression, a syn-
tactic convenience, in Section 4.3.2 and the deflation mechanism in Section 4.3.3
(page 90).

Most of material on basic data types and structures is standard. There
is one important aspect in which Orc’s treatment of this material is different:
exceptions arising in function evaluation. In imperative or functional programs
every expression is required to return a value. So, precise rules have to be
formulated for exception handling, say for division by zero. Orc expressions
need not publish a value. Thus, Orc elides the question “what is the value of



4.3. BASIC DATA AND CONTROL STRUCTURES 89

3/0?” by letting 3/0 halt without publishing. A computation may still proceed
in other concurrent threads, or the entire computation may terminate without
any publication. The implementation (since it is coded in Java) issues an error
message, but it has no bearing on the computation proper.

4.3.1 Primitive Data Types

Orc calculus has no built in data type or data structure. Orc language includes
numeric, boolean and string constants along with the standard operators on
them. The operators are written in the traditional infix or prefix style, as
appropriate. The constants are translated to calls on constant sites. Expressions
such as x+y and ˜b are translated to add(x,y) and not(b) , respectively, which
are sites in the standard library3 . The available arithmetic operators are the
standard ones, such as add, multiply and remainder (written as %) with their
traditional priorities, and minimum and maximum over two arguments, written
as min and max, respectively. The boolean operators are ˜ (logical negation),
&& (logical and) and || (logical or). For strings s and t , s+t denotes their
concatenation. Other operations on strings are taken from the Java library and
described in the Orc language manual [16]. The sites corresponding to these
operations are pure.

Notation for Arithmetic Relations The standard arithmetic relations are:
= (equals), /= (not equals), :> (greater than), <: (less than), => (greater than
or equal to) and <= (less than or equal to). The symbols :> and <: have been
chosen to avoid confusion with the sequential and the pruning combinators that
use > and <.

Example

Numbers: 5, -2.71e-5 , 1+2 , min(-1,2.71828) , 3/0

Booleans: false , true && (false || true) , 0.4 = 2.0/5

String: "Orc" , "ceci nest pas une |" , "Try"+ "Orc"

4.3.2 Conditional Expression

A conditional expression of the form if e then f else g, where e, f and g are
expressions, is similar to such constructs in traditional programming languages.
First, e is executed and any one value published by it is chosen arbitrarily,
as described in Section 4.3.3. If the value is true/false , then the execution
continues with f/g . If e does not publish or the published value that is chosen
is non-boolean, then the expression halts.

Orc combinators have higher precedence than the key words, if, then and
else, so if e * e’ then f * f’ else g * g’ , where each * denotes any
Orc combinator, is if (e * e’) then (f * f’) else (g * g’) .

3The names of sites in the standard library may be different from the ones used in the
book. The site names used here are for illustrative purposes only.
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Example

if true then "blue" else "green" , publishes "blue"

if "fish" then "yes" else "no" , halts
if false then 4+5 else 4+true , halts
if true then 0/5 else 5/0 , publishes 0

Conditional Expression Translation Expression if e then f else g is
translated to ( if b then f else g)<b< e which is further translated to
( Ift(b)>> f | Iff(b)>> g)<b< e . The use of the pruning combinator to
choose a single value is the norm, as explained next.

4.3.3 Deflation

Each argument of a site call in Orc calculus is required to be a single variable.
Orc language allows any expression to appear as an argument. Since Orc ex-
pressions may publish multiple values, a single value for the argument has to
be extracted from an expression. Deflation is a translation mechanism that
extracts a single value from an expression that may publish many values. Ex-
pression C(..., e, ..) , where expression e occupies a position where only a
single value is expected, is translated to C(..., x, ..)<x< e where x is a fresh
variable. The context C may contain multiple nested expressions to be deflated,
so this translation may be applied multiple times. For example, the expression
M(e,f,g) , where M is a site and e, f and g are expressions, is translated to
M(x,y,z)<x< e <y< f <z< g ; parenthesization is unnecessary since the vari-
ables are independent. And, deflation is also applied across multiple levels of
nesting: N(M(e,f,g)) , where N is a site, is translated to
N(t)<t< (M(x,y,z)<x< e <y< f <z< g) .

From the semantics of the pruning combinator, the two parts in a deflated
expression are evaluated concurrently. Therefore, all arguments of a site call
are always evaluated concurrently. In fact, concurrency is the norm, and it is
implemented without programmer intervention. It can be exploited if multiple
processors are available. But there is no obligation that the actual execution
be concurrent in an asynchronous program (where real time plays no role); in
a single processor implementation, the calls are made in some order chosen by
the scheduler. In a synchronous program, where calls to real-time dependant
sites appear (See Chapter 10), the arguments of a site call have to be evaluated
concurrently.

Comingling Orc combinators in expressions Deflation allows comingling
of Orc combinators arbitrarily with other operators within expressions. We
consider some examples.

• The expression (1|2) * (10|100) is translated to:

Times(x,y) <x< (1|2) <y< (10|100)
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Therefore, the first argument of Times is either 1 or 2 and the second
is either 10 or 100 ; the expression publishes a single value from the set
{10,100,20,200} .

• (Non-Deterministic Choice) Choose f or g non-deterministically and ex-
ecute it: if (true|false) then f else g. As an extension of this ex-
ample, execute f if call to site Mreceives a response within 100 time units
and execute g otherwise:
if (M()>> true | Rwait(100)>> false) then f else g.

• (Translating part of the Dice roll Program) Given below is a translation
of exp(n-1)+ ( if roll()+ roll()= 7 then 1 else 0) that appears
as part of the dice roll program of Section 4.1. First, replace +, - and =

by calls to add , sub and equals to get

add(exp(n-1),
( if equals(add(roll(),roll()), 7) then 1 else 0)

)

Next, apply deflation starting with the arguments of the inner add and
then equals . Then, translate the conditional expression and finally apply
deflation on the outer add .

add(x,y)
<x< ( exp(m,c) <m< sub(n,1) )
<y< ( ( Ift(bb) >> 1 | Iff(bb) >> 0 )

<bb< equals(p,7)
<p< add(q,r)

<q< roll()
<r< roll() )

Observe that the two calls to roll() are made concurrently. More subtle
is the fact that the expressions corresponding to variables x and y are also
concurrently executed. Therefore, all calls to roll() in the execution,
2 × n such calls, are made concurrently.

4.3.4 Data Structures

Orc language includes the data structures tuple, list and record. The syntax
of each is described below. Each data structure is translated as a call on a
constructor site with the elements of the data structure as arguments; the site
returns the corresponding structured value. The elements may be expressions
which are deflated concurrently before the call. Every constructor site corre-
sponding to a data structure is pure, and it is strict in the sense that values of
all the arguments are required in order for the site to publish a value. Therefore,
if any of the expressions corresponding to an argument is halted, the call itself
is halted. If no expression is halted but some expression is silent, the call is
silent.
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There are additional sites specific to each data structure that are described
below. The component of structured values are typically accessed through pat-
tern matching (see Section 4.3.5, page 94).

4.3.4.1 Tuple

A tuple is a sequence of at least two values. Orc does not have 0-tuples or
1-tuples. A tuple expression is written as (e 0,...,e i,...) , where each ei is
an expression. This expression publishes (v 0,...,v i,...) where all eis are
executed concurrently and each ei deflates to value v i. The tuple elements
may be of different types. Pure sites fst and snd publish the first and second
components of their argument tuple, respectively, if the argument tuple has
exactly two components, otherwise they halt.

Example

(0,true,’’last’’) publishes (0,true,’’last’’)

((0,0 * 0),(1,1 * 1),(2,2 * 2)) publishes ((0,0),(1,1),(2,4))

fst(((0,0 * 0),(1,1 * 1),(2,2 * 2))) publishes (0,0)

Example

• This example implements timeout. If expression f publishes value v within k

time units then the following expression publishes the tuple (true,v) and halts;
otherwise, in case of timeout, it publishes (false, signal) . The publication
can be analyzed by other parts of the program to determine if there was a
timeout, and retrieve v in case there was not one.

x <x< ( f >y> (true,y) | Rwait(k) >y> (false,y) )

• It is required to execute two expressions f and g concurrently and wait for a
result from each before proceeding. We used the following program for fork-join
in Section 2.5.1.7 (page 32).

Tuple(x,y) <x< f <y< g

Site call Tuple(x,y) can be replaced by just (x,y) . We can do even better;
simply write (f,g) for the whole expression, because, using deflation, this is
(x,y)<x< f <y< g .

• We introduced phase synchronization in Section 2.5.1.8 (page 32). Given
expressions M()>x> f and N()>y> g , it is required to execute them indepen-
dently except that f and g be started only after both Mand N have responded.
Combining them merely through a parallel combinator does not have the de-
sired effect. The solution in Section 2.5.1.8 can be slightly simplified by using
the tuple constructor directly.

(M(),N())
>z>
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( fst(z) >x> f
| snd(z) >y> g

)

We will shortly see how to eliminate fst and snd using pattern matching.

4.3.4.2 List

Tuples represent sequences of fixed length and, possibly, varying element types.
Lists are intended for sequences with varying length and a fixed element type.
An empty list is written as [] . A list expression is [e 0,...,e i,...] where
each ei is an expression. This expression publishes [v 0,...,v i,...] where
each ei concurrently deflates to value vi. The list elements could be of different
types, though it is strongly recommended that they be of the same type. The
list constructor is written as a colon (: ) infix style; it is a pure site with two
arguments, an item and a list.

Site head publishes the first element of the argument list, and tail the
remaining list after removal of the head item. Both sites are pure and head

([]) and tail([]) are silent. Library site each takes a list as argument and
publishes all its elements in arbitrary order.

Example

[true && true] = [true]
[5, 5 + true, 5] is silent
3:[5, 7] = [3, 5, 7]
3:[ ] = [3]
3:[ [ ] ] = [3,[]]
each([3, 5, 7]) -- publishes 3, 5 and 7 in arbitrary order

4.3.4.3 Record

A record is a set of keys with associated bindings, where a key is a variable
name and a binding is a value. Expression {. k 0= e0,...,k i= ei,..., k n=

en.} has distinct keys k i and the corresponding bindings ei. Given that each ei

deflates to vi, the expression publishes {. k 0= v0,...,k i= v i,..., k n= vn.} .
Expression {. .} denotes an empty record.

Elements of a record r can be accessed through its keys: r.k publishes the
binding of key k ; it is silent if it does not have a key k or r is silent. Given
records r and s, r+s is a record that includes all keys and their bindings from
both records; if a key appears in both records, the binding from the last record
is retained. Therefore, + is associative, but not commutative. And, the record
{. k 0= e0,...,k i= ei,..., k n= en.} is same as
{. k 0= e0.} + ... + {. k i= ei.} + ... + {. k n= en.} .

Example

This example combines list, record and tuple. Given below is a list of records
where each record has three keys —name, college , accepted — and the value
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associated with name is a tuple of two strings, with college a string and with
accepted a boolean.

[
{. name = ("Harry Q.","Error"), college = "CMU",

accepted = false .},
{. name = ("Sally", "Hacker"), college = "M.I.T.",

accepted = true .},
{. name = ("D. F.", "Virus"), college = "Podonk U.",

accepted = true .}
]

4.3.5 Pattern

Tuple, list and record expressions publish structured values. We are often in-
terested in deconstructing the structure and binding its component values to
variables. For example, given that t is a tuple of two components, we can bind
f and s to the first and second components by fst(t)>x> snd(t)>y> ... .
A much simpler way is to use patterns whereby the site calls for necessary de-
construction are generated by the compiler. For this example, we will write
t >(x,y)> ... .

4.3.5.1 Pattern Structure

A pattern is either a (1) literal, (2) variable, (3) wild-card, or (4) a structure
(tuple, list or record) each component of which is a pattern. A literal is a
constant, as described in Section 4.3.1 (page 89), a variable is simply a variable
name and a wild-card is written as _. The only restriction on a pattern is that
the variables in it be distinct; so, (x,x,y) is an illegal pattern. Here are some
examples of patterns.

Example

4 -- a pattern that is just a literal
x -- a pattern that is just a variable
_ -- a pattern that is just a wild-card
(3,4) -- Tuple pattern with two literals
(_,4) -- Tuple pattern that includes a wild-card
[x,y] -- List pattern that includes variables
(x,_,(y,[(_,_),(z,4)])) -- nested pattern

4.3.5.2 Pattern Match

Pattern p matches value v, primitive or structured, if it is possible to replace
every variable in p by a value to obtain v. Here, we regard every wild-card in p
as a distinct variable. We explain how a pattern match and the corresponding
bindings are determined in a top-down style; there is also a slight exception in
the case of record structures, which we describe below.
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If p is a literal, it matches v if and only if v is exactly the same literal. If p is
a variable or wild-card, it always matches v with v as the value of the variable.
If p is a tuple or list, then it matches v if and only if v has the same structure
and each of their corresponding components match (hierarchically). If p is a
record then it matches v if and only if v is a record, the key names in p is a
subset of the key names in v, and the corresponding key bindings match; subset
matching is the only exception to the general rule.

Example

Pattern Structured value Matches? Variable Binding

(x,y) ((3,4),4) Yes x = (3,4), y = 4

(_,_) (3,4) Yes
h:t [1, 2, 3] Yes h = 1, t = [2, 3]

{. a = x .} {. a = "no", b=[2] .} Yes x = "no"

(x,y) [3,4] No
(x,(y,z)) ((3,4),4) No

4.3.5.3 Pattern Usage

Patterns can be used whenever an expression publishes a structured value that
has to be deconstructed for use in other expressions. For example, (f,g) im-
plements a fork-join of the expressions f and g, and publishes a tuple; we may
access the individual components of the tuple by (f,g)>(x,y)> ... . There-
fore, patterns may be used in place of just variables in sequential and pruning
combinators, and in definitions of sites. We show some examples below.

Example

• Dismantle a tuple

(3,6,9) >(x,y,z)> ( x | y | z )

publishes the elements of a triple in arbitrary order.

• Convert a set of tuples to a set of lists

( (3,4) | (2,6) | (1,5) ) >(x,y)> [x,y]

publishes [1, 5], [2, 6], [3, 4] in arbitrary order.

• Deconstruct an argument

def sum(y) = if (y = []) then 0 else (y >x:xs> x + sum(xs))

Site sum publishes the sum of the elements of its argument list.

• Using wild-card



96 CHAPTER 4. ORC PROGRAMMING LANGUAGE

(0,(2,2),[5,5,5]) >(_,(_,x),_)>
[[1,3],[2,4]] >[[_,y],[_,z]]>
[x, y, z]

publishes [2, 3, 4] .

• Filtering

((false, true) | (true, false) | (false, false)) >(true, x)>
x

publishes the second component of each tuple whose first component is true ;
in this case just one false is published.

• Pattern matching with records

{. name = ("Harry Q.","Error"), college = "CMU",
accepted = false .}

>{. name = (first,last), accepted = true .}>
first+" " + last + "’s application was accepted"

does not publish, whereas

{. name = ("Sally", "Hacker"), college = "M.I.T.",
accepted = true .}

>{. name = (first,last), accepted = true .}>
first+" " + last + "’s application was accepted"

publishes "Sally Hacker’s application was accepted" .

• Pattern in site definition

def implies(false, _) = true

This definition defines a site only for the first argument false ; it publishes true

no matter what the second argument is. If it is called with the first argument
true , the site execution halts, and so does the site call itself. Such patterns
appear in clausal definitions of sites; see Section 4.4.2.3 (page 101).

Pattern Usage in Combinators Given f >p> g where p is a pattern, any
publication of f that fails to match p is simply ignored. In particular, if f

publishes exactly one value that does not match p, then f >p> g halts at that
point. This is particularly useful for matching a value v against a sequence
of patterns in order: v >p_1> 1 ; v >p_2> 2 ; v >p_3> 3 ... publishes i

where p_i is the first pattern in the sequence that matches v . Similarly, in
f <p< g any publication of g that fails to match p is ignored, and the execution
of g continues.

The wild-card pattern matches every value. So, f >_> g is same as f >> g

and f <_< g is f << g .
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4.4 Declaration

The only form of declaration in Orc calculus is site definition. We describe
enhancements of site definition, including patterns in formal parameters, in
Section 4.4.2.2 (page 100). Orc language also includes other forms of declaration:
val (see Section 4.4.1) and def class (see Section 4.6, page 113). Orc language
syntax from Table 3.1 (page 45) have been extended by these constructs in
Table 4.1, below.

f ,g ∈ Expression ::=
stop Basic Expression
e(x̄) Site Call
f | g Parallel Combinator
f >x> g Sequential Combinator
f <x< g Pruning Combinator
f ; g Otherwise Combinator
D # f prefixing declaration

D ∈ Declaration ::=
def E(x̄) = f Site Definition
val x = f Val declaration
def class E(x̄) = f Class declaration

Program ::= f

Table 4.1: Orc Language Syntax

As before, a declaration is terminated by a #. The # is optional, i.e., it can
be replaced with a white space if the next non-white space is an alphanumeric
symbol. We omit it wherever possible, yet we sometimes use it for readability
even though it may be optional. As before, the expression part in a declaration
is called its goal expression.

4.4.1 val

Declaration val x = g binds x to the first publication of g and terminates
the execution of g. This can be used to rewrite an expression with a pruning
combinator, f <x< g , such that the relative positions of f and g are switched
and variable x appears first:

val x = g
f

This syntactic sweetener is so useful that direct use of the pruning combina-
tor is mostly unnecessary.

Multiple val declarations may appear consecutively; they are merely nestings
of the pruning combinator.
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val radius = 1.0
val pi = 3.1416 #
(2 * pi * radius, pi * radius ** 2)

This stands for
((2 * pi * radius, pi * radius ** 2)<pi< 3.1416)<radius< 1.0

It should be clear from this example why we prefer to use val instead of the
pruning combinator in such cases.

Let us define a pair of sites, perim and area , to compute the circumference
and the surface area of a circle.

val pi = 3.1416
def perim(r) = 2 * pi * r
def area(r) = pi * r ** 2

Suppose we want to access pi only in the two sites shown above. We can
create a rudimentary package facility using nesting of declarations, embedding
sites and other vals within a val.

val circle =
val pi = 3.1416
def perim(r) = 2 * pi * r
def area(r) = pi * r ** 2 #

(perim,area)

Now, the names pi , perim and area are inaccessible from outside the declara-
tion of circle . And, circle is a tuple of two site closures. These sites may be
accessed as follows to compute the circumference and surface area for a specific
radius : circle >(p,a)> (p(radius),a(radius)) .

Suppose we wish to have access to the two sites perim and area all over
the program, but call them circumference and surface_area . We can add
to the given program:

val (circumference,surface_area) = circle

A val declaration is used to assign a name to a value that we plan to use
multiple times in the program. Here is a small relational database.

val applicants =
[

{. name = ("Harry Q.","Error"), college = "CMU",
accepted = false .},

{. name = ("Sally", "Hacker"), college = "M.I.T.",
accepted = true .},

{. name = ("D. F.", "Virus"), college = "Podonk U.",
accepted = true .}

]

We may write programs using applicants to stand for the corresponding list:

each(applicants) >a>
(

a >{. name = (first,last), accepted = true .}>
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first+" " + last + "’s application was accepted"
| a >{. name = (first,last), accepted = false .}>

first+" " + last + "’s application was rejected"
)

publishes in arbitrary order:

"Harry Q. Error’s application was rejected"
"Sally Hacker’s application was accepted"
"D. F. Virus’s application was accepted"

A val declaration can contain any Orc expression; therefore, the value as-
signed to the variable may be non-deterministic or based on real time. Here is a
reworking of timeout from Section 2.5.2.5 (page 35) that binds true to variable
x if f publishes within k time units and false otherwise.

val x = f >> true | Rwait(k) >> false

The expression in val may never publish a value though it may continue to
execute. This is often a convenient way to do a background computation, such
as monitoring a program execution or collecting statistics.

Translation of val Expression ( val x = g # f) is translated to f <x< g .
So, ( val _ = g # f) is f << g .

4.4.2 Site Definition

We have described site definition and closure in Section 2.4 (page 27). Sites
may be nested to any depth within other declarations. Orc language includes
additional syntactic constructs relating to sites, mutual recursion, patterns in
parameters and clausal definitions, that we describe in the following sections.

4.4.2.1 lambda construct

It is sometimes useful to introduce an anonymous site whose definition is directly
used in place of a call to the site. Such a site has a parameter list and a body
but no name. The site closure, without the name, is then available to be used
wherever the site name could have been used. An expression of the form

lambda(X) = f

where X is a list of parameters and f is any expression, is equivalent to

def temp(X) = f # temp

where temp is a fresh name. This program merely publishes the closure corre-
sponding to temp , exactly what the lambda construct does.

As a small example, consider a site with three arguments; the first one is a
site that is to be applied to the other two arguments.

def apply(fun,x,y) = fun(x,y)

We wish to replace fun by addsq which is defined as:
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def addsq(x,y) = x ** 2 + y ** 2

The call apply(addsq,3,4) is equivalent to:

apply( lambda(x,y) = x ** 2 + y ** 2,3,4)

The advantage of this form is that it eliminates the name addsq . We see more
substantive examples of lambda usage later in this chapter.

Site Composition Let f be a site without any argument that publishes at
most one value and g a site that takes just one argument and publishes an
arbitrary number of values. Then the composition of f and g is a site that first
executes f and supplies its publication to g as argument, as defined below.

def comp(f,g) = ( lambda() = g(f()) )

For example, comp( lambda()= 3, lambda(x)= 2 * x)() publishes 6.
For the more general case where f has, say, 2 arguments, but at most one

publication, define composition by

def comp2(f,g) = ( lambda(x,y) = g(f(x,y)) )

As an application of comp2, define arithmetic and geometric mean of two
real numbers by the following closures. Each of these closures take two real
numbers as arguments.

val amean = comp2( lambda(x,y) = x+y, lambda(v) = v/2+0.0 )
val gmean = comp2( lambda(x,y) = x * y, lambda(v) = sqrt(v) )

We observe that site composition is not necessarily associative, unlike com-
position in functional programming.

4.4.2.2 Patterns in Formal Parameters

The parameter in a site definition may be a pattern. When such a site is called,
the actual and formal parameters have to match. The argument values are
matched against the pattern as described in Section 4.3.5.2 (page 94). The
matching and execution of the site body are performed along with the evalua-
tions of the arguments, as described below.

The arguments of the call are evaluated concurrently. Any time a pattern
match fails, because a literal value in the site definition does not match the
corresponding argument value, some argument evaluation halts where the ex-
pected value is supposed to match a literal, or the structures are different, the
call halts. When it is determined that the pattern match will succeed, even
though some of the arguments may not have been evaluated, the execution of
the site’s body starts. Subsequently, some of the arguments will be bound to
values or their evaluations may halt without publishing a value. In the first
case, the corresponding formal parameter is bound to the same value. In the
latter case, the corresponding formal parameter is bound to the fictitious value,
6 !, introduced in Section 3.4.6 (page 50). Recall that any strict site call in which
6 ! is an argument is equivalent to stop.

Consider
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def test(false,x) = ...

For a call test(p,q) , where p and q are expressions, both arguments are eval-
uated concurrently. If the evaluation of p halts or if it is a value other than
false , then the call halts. If p is false , then the evaluation for q continues
(unless it is already complete) concurrently with the execution of the body of
test . If the evaluation of q halts without publishing a value, x is assigned the
fictitious value 6 !. If the evaluation of q publishes value v , then x is bound to
v. If the evaluation of q never publishes nor halts, then x is never bound to a
value.

4.4.2.3 Clausal Definition

A site may be defined by a sequence of clauses : repeated site definitions with
the same identifier but different parameters. A clause defines the behavior of
the site for a subset of its possible argument values. A clausal definition is useful
when different subsets of argument values have substantially different behaviors.

Each clause in a site definition must have the same number of parameters.
The clauses are tested in sequence from top to bottom to identify one whose
parameters match the actual parameters of the call. If no clause matches, then
the site call halts. Clauses may include patterns for their parameters, and the
patterns are matched exactly as described in Section 4.4.2.2, above.

We saw an example of clausal definition at the beginning of this chapter:

def exp(0) = 0
def exp(n) = ...

The first clause, def exp(0)= 0 , describes the site behavior if the call argument
is 0, and the next clause, def exp(n)= ... for all other argument values. When
exp is called with some parameter value v , the clauses are tested in sequence
from top to bottom to identify the first one whose parameters match v ; body
of the first such clause is executed.

Example

• Fibonacci: Here is a definition of Fibonacci in clausal form.

def fib(0) = 0
def fib(1) = 1
def fib(n) = fib(n-1) + fib(n-2)

Here is a more efficient version of Fibonacci.

def fib(n) =
def H(0) = (0,1)
def H(n) = H(n-1) >(x,y)> (y,x+y)

H(n) >(x,_)> x

• List of random bits: The following site publishes a list of random bits where
the list length is specified as the parameter.
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def randlist(0) = []
def randlist(n) = Random(2): randlist(n-1)

• Exhaustive clausal definition: The following definition of a site enumerates
all its parameter values.

def implies(false,false) = true
def implies(false,true) = true
def implies(true,false) = false
def implies(true,true) = true

We may write this definition more simply:

def implies(true,false) = false
def implies(_,_) = true

• Areas of Geometric Figures: The following site computes the areas of certain
geometric figures.

def area(("rectangle",x,y)) = x * y
def area(("square",s)) = area(("rectangle",s,s))
def area(("circle",r)) = 3.1416 * area(("square",r))

Observe that the pattern in the formal parameter is a tuple in each case. There-
fore, each clause has just one parameter, though the tuples are of different
length.

• Clausal Definition with real-time computation: Given below is a site that has
a list of sites as its argument. It calls all argument sites concurrently to request
a bid for an auction. A site may return a bid, an integer. If it does not respond
within 8 seconds, its bid is taken to be 0. The site publishes the highest bid.

def auction([]) = 0

def auction(b:bs) =
max(b() | Rwait(8000) >> 0, auction(bs))

Site max publishes the maximum value of its two arguments. The first argument
of max implements a simple time out: if a response from b is received within
8 seconds, the response value is used, otherwise, Rwait(8000) completes and
the value of the first argument is 0. The second argument of max is simply a
recursive call to obtain the highest bid from the sites in the tail of the argument
list. The two arguments of max are evaluated concurrently; therefore all bidders
will be called concurrently.

Translating Clausal definition A site with an empty parameter list does
not have a clausal definition, because all except the first clause are redundant.
For a site with a single parameter a clausal definition is of the following form
where a, b and c are constants, variables or wild-card (all clauses after a variable
or wild-card for a parameter pattern are redundant):
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def fun(a) = f
def fun(b) = g

...
def fun(c) = h

Transform this code fragment to

def fun(x) =
x >a> f; x >b> g; ... ; x >c> h

Unfortunately, this translation is incorrect. If the argument matches the pattern
a and f is stop, then the next pattern b will be matched against the argument.
To avoid this problem, first match the patterns and publish an index corre-
sponding to the pattern that matched, and then choose the proper clause body
to execute. Below n represents the number of clauses.

def fun(x) =
(x >a> 0; x >b> 1; ... ; x >c> n) >v>
( v >0> f

| v >1> g
| ...
| v >n> h

)

If none of the patterns match, the otherwise construct halts and so does the site
call.

For a site with multiple parameters, we give the translation for a special case:
all patterns are strict. So, values of all parameters have to be known before the
matching clause can be identified. For the general case of lenient patterns, the
translation is more elaborate and we omit it here. The translation for the special
case resembles the one given above, by treating the actual parameter list as a
tuple value and the formal parameter list of each clause as a tuple pattern. For
example,

def fun(a,a’) = f
def fun(b,b’) = g

...
def fun(c,c’) = h

is translated to

def fun(x,y) =
((x,y) >(a,a’)> 0; (x,y) >(b,b’)> 1; ... ; (x,y) >(c,c’)> n)

>v>
( v >0> f

| v >1> g
| ...
| v >n> h

)
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4.4.2.4 Mutual Recursion

Sites may be mutually recursive. There is no special syntax for mutual recursion;
mutually recursive definitions appear contiguously in the program text. We
consider a small example, removing redundant white space from a string.

Given a list of symbols, it is required to publish the same list by (1) removing
all white spaces in its beginning, and (2) reducing all other blocks of consecu-
tive white spaces to a single white space. Thus, given the input string (where +

denotes a white space) +++Mary++++had+a++little+++lamb++ , the program
should publish Mary+had+a+little+lamb+ and then halt. The problem is eas-
ily solved using a finite state transducer, as shown in Figure 4.1; here x refers
to a non-white space. The initial state, first , ignores all white space, and on
reading a non-white space reproduces it and transits to state next . State next

reproduces every non-white space, and on reading a white space reproduces it
and transits to state first .

Figure 4.1: White Space Compression

We can represent this finite state machine by a program where each state
corresponds to a site. The input is given as a list of symbols. We use pattern
matching to extract the head and tail of a non-empty list.

def compressWhite(str) =
def first ([]) = []
def first(" ":xs)= first(xs)
def first(x:xs) = x:next(xs)

def next([]) = []
def next(" ":xs) = " ":first(xs)
def next(x:xs) = x:next(xs)

first(str)

Translating Mutual Recursion We encode a set of mutually recursive sites
by a single site, F. Parameters of F mimic the parameters of the original sites,
but there is an additional parameter, b, that identifies the specific site that is
being called. Site F is clausally defined corresponding to each constituent site.
A call to an original site is replaced by call to F with the appropriate value of
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b. We illustrate the procedure with the pair of sites first and next defined
above.

Introduce a new site firstnext that has a boolean parameter b to identify
the site being called, true for first and false for next .

def firstnext(true, []) = []
def firstnext(true, " ":xs) = firstnext(true,xs)
def firstnext(true, x:xs) = x:firstnext(false,xs)

def firstnext(false, []) = []
def firstnext(false, " ":xs) = " ":firstnext(true,xs)
def firstnext(false, x:xs) = x:firstnext(false,xs)

Next, we redefine the original sites so that they can be called from outside
the body of F. For the example above:

def first(p) = firstnext(true,p)
def next(p) = firstnext(false,p)

Any use of first as an argument to another site, i.e., as a closure, within
the definition of firstnext is replaced by

lambda(x) = firstnext(true,x)

4.4.2.5 Effect of Concurrent Calls

A site may be called concurrently from several parts of a program. The site
behavior may be different for the same set of sequential and concurrent invo-
cations. The difference is not merely because of interference due to concurrent
executions, but that the site computation may be time-based. To illustrate the
difference, we consider the well-known site map over lists: map(f,xs) , where f

is a site and xs a list of possible arguments of f , publishes a list of the same
length as xs . The element in the published list corresponding to element x of
xs is f(x) . In a language like Haskell [15] this may be coded by

map(_, []) = []
map(f, x:xs) = y : map(f,xs)

where y = f(x)

This piece of code may apply f to each element of the list in arbitrary order.
Since f is side-effect free, execution is sequential, and each application of f

publishes the same value each time it is called with the same argument, the
resulting mapped list is identical no matter the order in which f is applied.

The Orc program below explicitly specifies that f should be applied over the
elements of the list sequentially from left to right. Observe that there is at most
one instance of f executing at any time.

def seqmap(_, []) = []
def seqmap(f, x:xs) = f(x) >y> (y : seqmap(f,xs) )

And, the following program applies f sequentially from right to left.
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def seqmap’(_, []) = []
def seqmap’(f, x:xs) = seqmap’(f,xs) >ys> (f(x) : ys)

Site parmap , which is defined below, applies f concurrently over the elements
of xs . Deflation forces all calls to parmap to unfold concurrently. Assume for
the moment that concurrent executions of f do not interfere.

def parmap(_, []) = []
def parmap(f, x:xs) = f(x) : parmap(f,xs)

The three versions may publish different results if, for example, f waits for
a day and then queries a news site. Queries will be staggered by a day each in
both seqmap and seqmap’ whereas they will be made simultaneously in parmap .

4.5 Factory Sites

A higher-order site is one that accepts a site as argument of a call or publishes a
site as a result. In this section we introduce a number of standard factory sites
that are higher-order sites, similar to a class in object-oriented programming [19,
35]. A factory site creates and publishes an instance, called an object, that has
its own store, and has methods by which the store may be accessed and/or
updated. The methods of an object are sites. An example of a factory site
is channel that creates an unbounded channel. A factory site may be called
repeatedly to create multiple instances of similar objects.

Methods as Sites In object-oriented programming languages, obj.m() de-
notes a call on method mof the object obj . Instances of factory sites typically
include methods, and we adopt a similar notation in calling them. For exam-
ple, channel c might include methods get and put to get values from and put
values on that channel, respectively. Such calls would be written as c.get() ,
or to put a particular value, c.put(6) . Actually, the channel object is an Orc
record in which the keys are the methods and the bindings are closures (denoting
sites). Therefore, c.put(6) retrieves the closure corresponding to c.put and
calls it with argument 6. We show translations of factory sites with methods in
Section 4.6.6.

It is possible for an object to have just one method. In that case, typically,
the object is itself a site that is called directly.

Dots are left associative, so a.b.c(x) is ((a.b).c)(x) .

Atomicity An object with methods is atomic if concurrent executions of mul-
tiple methods have the same effect as executing the methods sequentially in
some order. An implementation can not serialize the execution simply by the
sequence in which the calls are made. For example, a call waiting to receive an
item from a channel that is empty at the time of the call must permit execution
of a method that puts an item in the channel.
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A site specification should describe if it creates atomic objects. All factory
sites in the standard library create atomic objects. Objects created by classes,
see Section 4.6, page 113, are not necessarily atomic.

4.5.1 Factory site Ref

A call to Ref() publishes a site that behaves as a rewritable storage location,
also called a reference. A reference is a site with two methods, read and write .
The read method publishes the current value stored at the location; it blocks if
no value has been stored yet. The write method overwrites the stored value at
the location by the argument of the call and publishes a signal; it never blocks.
There is no restriction on the kind of value that can be stored at a location.

Ref() >r> r.write(3) >> r.read()

publishes 3.

A call to Ref may optionally include the initial value to be stored at the lo-
cation. Thus, Ref(3)>r> r.read() is another way of writing the last example.

If the site published by Ref is to be used over a wide scope, it is preferable
to write:

val r = Ref()

which permits r to be used over the scope of the declaration of this val.

Notation We introduce the following abbreviations for any site that has meth-
ods named read and write :

r? is translated to r.read() , and
r := x to r.write(x)

Using this notation, Ref()>r> r.write(3)>> r.read() may be written as
Ref()>r> r := 3 >> r? .

A common source of error in connection with Ref is to use r where r? is
intended, the former publishes the location whereas the latter publishes the
value stored at the location. Imperative programming languages do not usually
support publishing a location, just the value at a location. So, they use r for
the value stored at location r , different from our usage.

4.5.2 Factory site Cell

A call to Cell() creates a write-once storage location. It has the same two
methods as Ref , read and write , with similar meanings and notational abbre-
viations, except that a call to write halts if the location already has a value.
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4.5.3 Factory site Semaphore

A call to Semaphore(k) publishes a semaphore with initial value k , where k

is a non-negative integer. A semaphore has two associated methods: acquire

and release , commonly known as P and V, respectively, in the literature. The
acquire method decrements the value of the semaphore provided it is positive
and then publishes a signal; if the semaphore value is zero, the call is blocked,
and the caller remains waiting for the value to become positive. The release

method increments the value of the semaphore, and then publishes a signal.
Execution of a release is never blocked, and may, possibly, unblock a blocked
caller to acquire . It follows that the semaphore value is always non-negative
since it is decremented only if it is positive.

A semaphore guarantees weak fairness for its callers to acquire : (1) a
release unblocks an arbitrary blocked caller to acquire if there is more than
one such caller, and (2)for any particular semaphore, an execution has either
a finite number of release s or every blocked caller to acquire is eventually
unblocked.

A semaphore is used to serialize concurrent computations, as in the following
example.

Example

Define a site that increments the value at the reference taht is supplied as the
site argument; assume that the value stored at the reference is integer. Here is
a possible program.

def inc(r) = r := r? + 1

The body of inc will be expanded to include a call to r.read followed by
a call to add and then a call to r.write . Site inc may be called concurrently,
as in inc(r)| inc(r) . Concurrent executions of inc may interfere; as a result
inc(r)| inc(r) may not increase the value stored at r by 2. We can remedy
this problem using a semaphore.

val s = Semaphore(1)
def inc(r) = s.acquire() >> r := r? + 1 >> s.release()

Note that s is declared outside the site body so that it retains its value across
different calls to inc .

This solution has one major drawback. Given inc(r)| inc(t) , where r

and t are two different references, their incrementations will be serialized be-
cause a single semaphore controls access to all references. This is particularly
troublesome if reference r , say, has not been initialized whereas t has been;
then, incrementation of t will have to wait until r gets initialized; so, it may
wait forever. We can resolve this problem by associating a different semaphore
with each reference, and calling inc with both the semaphore and the reference
as arguments.

def inc(r,s) = s.acquire() >> r := r? + 1 >> s.release()
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This requires that whenever a reference is created, a semaphore is created as
well and associated with it. We can define a factory site Ref’ using the class
construct (see Section 4.6) that publishes a tuple (r,s) , where r is a reference
and s the associated semaphore.

4.5.4 Factory site Channel

A call to factory site Channel() creates and publishes an asynchronous un-
bounded FIFO channel (also called a buffer). There are two methods on a
channel, put and get . The number of items in a channel is the number of com-
pleted puts minus the completed gets; the channel is empty if the number of
items in it is zero and non-empty otherwise. Upon creation, a channel is empty.
The call c.put(v) for a channel c appends v as the last item of c and then
publishes a signal; this operation is never blocked and the resulting channel is
non-empty. The call c.get() removes the first value from c and publishes it,
or blocks waiting for a value if the channel is empty.

The following program publishes the value 10 after a 1000 msec delay.

val c = Channel()
Rwait(1000) >> c.put(10) >> stop

| c.get()

Site Channel() is among the most important of the standard factory sites.
It can be used to simulate a Semaphore , Ref or Cell . It is the basis for creating
process networks in which processes (also called actors) compute autonomously
and interact with other processes using channels; see Section 8.2 (page 208).
Below, we show few small examples of the use of channels.

Producer-Consumer The producer-consumer paradigm, see Dijkstra [13],
is a simple process network in which a channel is used as a buffer to smooth
the variation in the speeds of independent computations. Site producer()

generates an item each time it is called. A call to consumer(v) consumes item
v and publishes a value. It is required to call both producer and consumer
repeatedly to produce and consume values. A possible solution is shown below
in which site repP calls producer() repeatedly and publishes all the values
that it generates.

def repP() = producer() >x> (x | repP() )

repP() >v> consumer(v)

A drawback of this solution is that the values produced may be consumed
out-of-order. A more serious objection is that concurrent executions of different
instances of consumer may interfere. We remedy both problems in the solution
below, employing a channel in on which the producer puts all its publications;
the consumer consumes one item at a time from this channel and puts its
publications on channel out . Below, repeatP calls producer() repeatedly and
publishes all the values that it generates; similarly, repeatC removes each item
from channel in , consumes it and puts the result on channel out .
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val in = Channel()
val out = Channel()
def repeatP() = producer() >x> in.put(x) >> repeatP()
def repeatC() =

in.get() >x> consumer(x) >v> out.put(v) >> repeatC()

repeatP() | repeatC()

Sequencing Computations We show how to run two computations sequen-
tially using a channel. It is required to first execute expression f and then g

after f halts; if f never halts g is never executed. This is a considerable gener-
alization of sequencing in imperative or functional programming because f may
publish multiple values or no value and may or may not halt. If f publishes
exactly one value and then immediately halts, f >x> g suffices. If f publishes
no value and then halts, f ; g suffices. For the general case, we convert f to
f’ where f’ behaves as f but does not publish; publications of f are stored
in channel ch . Then f’ ; g has nearly the behavior we desire, except for the
publications of f . We add a parallel computation, rep(ch) , to repeatedly read
from ch and publish the values.

def rep(c) = c.get() >x> (x | rep(c) )
val ch = Channel()

f >x> ch.put(x) >> stop ; g
| rep(ch)

Multiple publications with Pruning Let expression g publish tuples; the
first component, called a tag, is a boolean, and the second component is the
value. It is required to publish all the values that g publishes until it publishes
a tuple with false tag, and then terminate g.

Since g may have to be terminated, g has to appear in the right side of a
pruning combinator. A normal application of the pruning combinator, as in
f <P< g , where P is any pattern, can transfer at most one publication of g to
f , because a publication that does not match P is discarded and a publication
that matches P terminates g. Using a channel, however, we can communicate
all the desired publications of g to f . In the solution below, every publication of
g with a true tag is put on channel c . The right side of the pruning combinator
publishes a signal only when g publishes a false tag. We use site rep defined
in the previous example.

val c = Channel()

rep(c) <<
(g >x> v >>

( v >(true,v’)> c.put(v’) >> stop
| v >(false,_)> signal

)
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)

4.5.5 Factory site Array

The call to factory site Array(n) creates and publishes a site that behaves like
an array of references. In the following discussion, call this publication ar . The
call ar(i) , for 0 ≤ i < n, publishes the corresponding reference. Just as any
other reference, ar(i).write(v) (or equivalently ar(i):= v ) assigns value v

to element ar(i) , and ar(i).read() (or ar(i)? ) publishes its value. All array
elements are initialized to a special value null. The length of ar is published by
ar.length? . Note that an array of zero length is permissible. This is useful
if arrays of different lengths have to be created depending on the value of a
non-negative parameter.

Array(3) >a> a(2) := 2 >> a(2)?

publishes 2. Here is a more elaborate example.

val ymc =
Array(3) >d>
d(0) := "yellow" >>
d(1) := "magenta" >>
d(2) := "cyan" >>
d

Variable ymc is an array with three elements; elements are references with values
"yellow" , "magenta" , "cyan" . Observe the computation within the val to
assign values to array elements, ending with the publication of the entire array.

We show how to create arrays with specified indices (not just starting at 0)
and multidimensional arrays in Section 5.4.7.

We often want to create an array of specific objects, not just references. The
program fragment below creates an array of 3 channels.

val chs =
Array(3) >ar>

ar(0) := Channel() >>
ar(1) := Channel() >>
ar(2) := Channel() >>
ar

Now chs is an array of references each of which has a channel as a value. For
example, chs(2) is a reference to a channel, not a channel itself; chs(2)? is the
channel and we can call chs(2)?.put(5) , for instance. To simplify access to
the channels, define site chacc that allows direct access to channel i by calling
chacc(i) .

def chacc(i) = chs(i)?

This solution, to create an array of channels and call them directly bypassing
the references, is quite elaborate. The need to define an array of objects, and
refer to its elements directly without going through a layer of reference value,
is so common that we introduce another factory site, Table , to do just that.
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4.5.6 Factory Site Table

Table is a site derived from Array . A call to Table(n,fun) , where n is a
natural number and fun a site over natural numbers, publishes a site fun’ that
mimics fun over the first n natural numbers, as follows. When Table(n,fun)

is called fun(i) , for all natural numbers i , 0 ≤ i < n, are called concurrently
and their first publications are stored in an array as the corresponding values of
fun’ . Then fun’ always returns the stored value. Even though fun may be non-
deterministic or time-dependent, fun’ always returns the same value. The call
to Table does not return a value until all calls to fun have completed. Therefore,
if fun(i) halts for some i , 0 ≤ i < n, so does Table(n,fun) . If no fun(i)

halts, but the computation is silent for some, then so is Table(n,fun) . The
only operation on Table(n,fun) is to access one of its elements by executing
fun’(i) . In particular, the elements of a Table can not be overwritten with
new values.

We show how to cache an array of immutable values, such as an array of fixed
integers, as well as create arrays of objects, such as channels and semaphores,
using this feature. Consider:

val p = Table(5,id)
val q = Table(5,Semaphore)
val r = Table(5,Ref)

Given that id is the identity site, p(i) publishes i and it can be replaced
anywhere by i . We may regard p as an array where p(i) is i . The declaration
for q is more interesting; q(i) is the value published by Semaphore(i) , that
is, a semaphore with initial value i . Different calls to q(i) publish the same
semaphore. We can update the semaphore value by calling q(i).acquire()

and q(i).release() , but q(i) never publishes a different semaphore nor any
other object. And, r is an array of references where r(i) is initialized to i .

Quite often, we want to call Table(n,fun) where fun has no parameter,
such as Channel() to construct an array of channels. We can define an auxiliary
site Channel’ , say, that has one parameter, which the site ignores and publishes
a channel; then use Table(n, Channel’) . We use the lambda construct de-
scribed in Section 4.4.2.1 (page 99) to define and use Channel’ anonymously.

val sq = Table(5, lambda(i) = i * i)
val ch = Table(5, lambda(_) = Channel())
val s0 = Table(5, lambda(_) = Semaphore(0))

Here, sq is an immutable array of the squares of the first 5 natural numbers.
And, ch is an array of channels. Unlike q of the previous example, s0 is an
array of semaphores each of which is initialized to 0.

If Table is often called with a second argument that is a site without pa-
rameters, it may be useful to use Table0 , defined below, instead.

def Table0(n,f) = Table(n, lambda(_) = f())
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Example

This example illustrates the use of an array of channels. A multiplexor process
reads inputs from n input channels in a round robin fashion where n is defined
elsewhere and writes each value to an output channel. First, we declare in

as an array of n channels, and then define the site, mux, corresponding to the
multiplexor.

val in = Table0(n,Channel)
val out = Channel()

def mux(i) =
in(i).get() >x> out.put(x) >>
mux((i+1) % n) -- "% n" is the value modulo n

mux(0)

Implementation of Table A Table is defined as a site, similar to the one
used for creating an array of channels in Section 4.5.5. Below, ar is the array
where the table elements are stored, fill(i) populates the first i elements of ar

concurrently. Site araccess publishes the value of ar(i) , and Table publishes
the site araccess .

def Table(n, fun) =
val ar = Array(n)

def fill(0) = signal
def fill(i) = ((ar(i) := fun(i)), fill(i-1)) >> signal

def araccess(i) = ar(i)?

fill(n-1) >> araccess

4.6 Class

The class construct allows coding of factory sites in Orc. It is sometimes more
convenient to build a site in Orc, rather than in Java, Scala, or other object-
oriented languages, because the site’s internal structure is best expressed by an
orchestration.

Like a typical class in object-oriented programming, a class in Orc provides
an abstraction mechanism that encapsulates the implementation details of data
structures and exposes only the method names by which they can be accessed or
updated. Unlike a typical object, however, the methods of a class instance may
be invoked concurrently, as is the case with site invocations in Orc. Further, an
object may engage in autonomous computations without explicit method calls,
for example sending monthly statements to bank customers (a periodic compu-
tation), alerts to listeners based on weather data (an event-driven computation),
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or rearranging the internal data structure for more efficient subsequent access,
such as doing a garbage collection (a background computation). Specifically, a
composite site can be used to: (1) create objects with methods that may be
concurrently invoked, (2) extend behaviors of existing sites, and (3) create ac-
tive sites that are executed autonomously, and not necessarily through explicit
method calls.

4.6.1 Class Syntax

A composite site is defined like a prime site except that def for a prime site
is replaced by def class. A class definition is a declaration that may appear
anywhere that a def or val may appear, see Orc syntax in Table 4.1 (page 97).
Therefore, a class may be nested within another declaration and it may include
other declarations, def, val or def class.

A class may be defined by a set of clauses, exactly as a prime site definition.
In that case all clauses must include the same set of names for declarations:
def, val and class. Classes may be mutually recursive, just like prime sites.

4.6.2 Class Semantics

A call to a class creates an object that is simply a record. Every declaration
within the class becomes a part of the object: a val declaration binds a name to
a value, a prime site definition is a method of the object, and a class definition
is a class associated with the object that may be further instantiated. While
the names of prime and composite sites defined within a class are available as
keys of the record, the names associated with vals are not exported.

A class instance, an object, includes mutable variables defined using val.
Different instances of that class will create different instances of the mutable
variables. val declarations are analogous to private fields in object-oriented
programming. A class declaration typically includes a val. Otherwise, class
instances have no mutable store associated with them and the methods can be
coded directly as prime sites.

Each def within the body of the class creates a method of the instantiated
object; a method is itself a site. The methods of an object are called using
dot access, which simply accesses the fields of the corresponding record. When
a method is called, the corresponding site is executed, perhaps accessing the
mutable objects created by vals. If a class includes no def, its instances have
no methods; they can only engage in autonomous computations defined by the
goal expression.

Each def class within the body of a class is simply a class which is associ-
ated with each instance. Like any other class, such a class may be instantiated
and its methods called.

The methods of an object may be executed concurrently through concurrent
invocations. Multiple calls to the same method may even be executed concur-
rently with each other. The methods are not necessarily atomic; so if a method
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accesses mutable store, care must be taken to ensure that multiple method invo-
cations do not interfere with each other in unexpected ways. A method may be
made atomic through locking, for instance; see the example in Section 4.6.3.1.

Terminology We have two kinds of site declarations in Orc: (1) a site de-
fined using the def construct is called a prime site, (2) a site defined using the
def class construct is called a composite site. A composite site is also called
just a class and its instances objects.

Note: In Chapter 3, a site defined in an Orc program was called internal in order
to contrast it with external sites whose codes were not available. The only form
of declaration in the Orc calculus uses def, so the internal sites considered in
that chapter are prime sites. In the Orc language, an additional form of internal
site, defined using def class, is available, and we use the new terminology to
distinguish between them.

Semantical difference between Prime and Composite Site Both prime
and composite sites, being sites, obey all the semantic rules for sites. Addition-
ally, a composite site satisfies all the semantic rules for prime sites except for
the following two differences. These differences are practical design decisions,
motivated by our experience in solving a wide variety of problems.

1. (Publication) A prime site publishes the values resulting from the execu-
tion of its goal expression. A composite site executes its goal expression
just like a prime site, but its publications are ignored. Unlike a prime site
a composite site publishes exactly one value, the object.

Since a class is a site, a call to it is lenient as for a prime site; so, the goal
expression’s execution may begin even before the parameters are bound.
However, a class needs all its formal parameter values before it can publish
the object.

2. (Resilience) In executing an expression of the form f <x< g , execution of
g is terminated when g publishes. The executions of sites called from g

may or may not be terminated since such sites are not necessarily under
the control of Orc implementation. A site called from g whose execution
continues under these circumstances is called resilient. A class and the
methods of its instances are resilient, like most external sites.

4.6.3 Example of Class

4.6.3.1 Simple Counter

The following example implements a factory site for a simple counter. There are
three methods: inc , which increments the value of the counter and publishes a
signal; dec , which decrements the value of the counter and publishes a signal;
and mag, which publishes the current value (magnitude) of the counter. The
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initial magnitude of the counter is supplied as an argument at the time of class
instantiation. The implementation stores the magnitude in a reference.

def class ctr(n) =
val r = Ref(n) -- n is the initial counter value
def inc() = r := r? + 1
def dec() = r := r? - 1
def mag() = r?

{- A ctr instance has no ongoing computation -}
stop

Below, we instantiate and use the simple counter.

val c = ctr(2)

c.dec() >> c.mag()

publishes 1.
Next, we instantiate two counters and access them concurrently. The con-

current accesses do not interfere because they refer to different mutable stores.

{- Test concurrent accesses -}

val c1 = ctr(2)
val c2 = ctr(0)

c1.dec() >> c1.mag()
| c2.dec() >> c2.inc() >> c2.mag()

Value 1 is published by the first alternative in the goal expression, as before,
and 0 by the second alternative.

Concurrent Method Invocations Concurrent invocations of methods may
interfere. Class construct does not automatically create atomic methods. In
the program below, concurrent calls access and update the same counter con-
currently, with disastrous results.

{- Test with multiple instances of ctr -}

val c = ctr(1)

c.dec() >> c.mag()
| c.dec() >> c.mag()

If each method is atomic, i.e., a method call executes to completion before the
next call to the method is started, we would expect one component expression to
publish 0 and the other to halt. Since the methods are not atomic, it is possible
to get two publications with value 0 (which is what happens in our tests with
the Orc interpreter).

We can force a method to be atomic by using lock-based access. Below,
executions of any pair of methods are mutually exclusive. This example also
illustrates how to build an enhanced class without altering the underlying class.
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def class ConcCtr(n) =
val c = ctr(n)
val sem = Semaphore(1)

def inc() =
sem.acquire() >> c.inc() >> sem.release()

def dec() =
sem.acquire() >> c.dec() >> sem.release()

def mag() =
sem.acquire() >> c.mag() >x> sem.release() >> x

{- There is no ongoing computation -}
stop

Observe that each method must eventually release the semaphore so that com-
peting method calls may acquire the semaphore and execute.

Inheritance We implement a primitive form of inheritance whereby we mod-
ify the behavior of one of the methods. Here, a call to dec when the counter value
is 0 is blocked until it becomes positive and then the counter is decremented.
We introduce semaphore valsem that has the same value as the counter.

def class BlockedConcCtr(n) =
val c = ConcCtr(n)
val valsem = Semaphore(n)

def inc() = c.inc() >> valsem.release()
def dec() = valsem.acquire() >> c.dec()
def mag() = c.mag()

{- There is no ongoing computation -}
stop

Since we are using ConcCtr in this implementation at most one method of a class
instance c may execute at any point. Hence, there is no race condition or other
forms of interference in accessing the common store. There is no possibility of
decrementing the counter to a negative value, because a call to dec is blocked
until the counter value becomes positive.

4.6.3.2 Broadcast

All the goal expressions for classes shown so far have been merely stop. We show
an example in which the goal expression of the class is engaged in a never-ending
computation without publishing a value. Class Broadcast is instantiated with
a channel source as its argument. The goal expression of a class instance
repeatedly reads any available value from source and sends it to a set of listeners
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along their individual input channels. Below, listeners is a reference whose
value is a list of channels, the input channels of the listeners. Listeners may be
added with the addListener method which is called with the input channel of
the listener as an argument. As before, rep(c) repeatedly reads from channel
c and publishes the value it reads, and each(cs) , where cs is a list, publishes
the elements of cs in arbitrary order.

def class Broadcast(source) =
val listeners = Ref([])

def addListener(ch) =
listeners? >fs>
listeners := ch:fs

{- The ongoing computation of a broadcast -}
rep(source) >item> each(listeners?) >sink> sink.put(ite m)

This class does not allow removing a listener from the broadcast list; that can
be added as an additional method to the class.

4.6.3.3 Symmetric Cell

We introduced factory site Cell() , a write-once store, in Section 4.5.1. A write
operation on a cell halts if it has already been assigned a value and a read
operation is blocked, waiting for a value to be assigned, if it is unassigned. For
some applications, see Section 7.5.2 (page 200), it is useful to have a symmetric
version of Cell() in which a read operation halts, instead of blocking, if the
cell is unassigned.

Below, symCell implements such a store. Its data structure includes a
reference r whose content is a list, and c a Cell . If the instance of symCell

is unassigned, which is the case initially, r contains an empty list and c is
unassigned. If the instance has been assigned value x , r contains [x] and c

a signal. The read method, shown below, halts if r contains an empty list
because the pattern match in r? >[x]> x fails. If the instance has a value, the
pattern match succeeds and read publishes the value. The write method first
attempts to store a signal in c , and if successful, stores the value in r .

def class symCell() =
val (r,c) = (Ref([]), Cell())

def read() = r? >[x]> x
def write(x) = c := signal >> r := [x]

stop

Linearizability The implementation of symCell does not use any lock for
its operations beyond the atomicity provided in the operations on r and c .
So, executions of concurrent reads and writes may potentially interfere. We



4.6. CLASS 119

show that each operation may be regarded as atomic even though the steps of
the operations may be interleaved. We draw upon the theory of linearizability,
first promulgated in Misra [39] and later refined and generalized in Herlihy and
Wing [20]. The essential result is that to prove atomicity it suffices to show
that at any point in the computation on an instance of symCell there exists a
linear order of executions of the completed operations on it that yields exactly
the same result for each operation.

At any point in a computation, r = [] if and only if no write has completed,
because the first completed write stores its argument value as its last (atomic)
step in r . If there is no completed write, then all the completed reads have
halted, and they may be ordered arbitrarily. If there is a completed write, let
w be the first write to have completed; w is well-defined since the order of the
last step of a write determines the first completed write. The argument value of
w is stored in r permanently because any writing into r is preceded by writing
to cell c . Order the completed operations as follows: all completed reads that
have halted precede w; all completed reads that return a value succeed w and all
other completed writes succeed w. Note that any extension of the computation
preserves this order because w remains fixed.

4.6.4 Export control of methods

The current implementation of class exports all the prime and composite sites
defined within it so that they can be accessed from outside the class definition.
It is often useful to specify a subset of the sites for export. We show a strategy
of export control that can be easily automated. We illustrate the technique
using the example of class ctr , defined in Section 4.6.3.1 (page 115).

Class ctr includes three site definitions, inc , dec and mag. Suppose we
wish to export only inc and mag. Call this class ctrSmall , and define it as
follows. Note that ctr’ has exactly the same definition as ctr except for its
formal parameters which appear as formal parameters of ctrSmall .

def ctrSmall(n) =
def class ctr’() =
val r = Ref(n) -- n is the initial counter value

def inc() = r := r? + 1
def dec() = r := r? - 1
def mag() = r?

stop # -- end of ctr’ definition

val c = ctr’()

{.
inc = c.inc
mag = c.mag

.}
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Now, ctrSmall publishes an object exactly as ctr does except that the
former has a restricted set of available methods.

4.6.5 Halting the Execution of a Class Instance

Creating an instance of a class also starts execution of the goal expression of
that instance. This execution is autonomous, and it can not be interrupted or
halted. We show how a class can be designed so that its caller can halt the
execution of the instance in the future.

The essential idea is to introduce a method in the class, call it terminate ,
that can be called to halt the execution of an instance. The goal expression of
the class is modified so that it halts if the terminate method has been called,
in the style of interruption discussed in Section 2.5.2.6 (page 36). Introduce a
semaphore that is initially 0 and set it to 1 when terminate is called. The goal
expression of the class is modified such that it continually checks the semaphore
value and halts its execution if the semaphore value is 1. Below, ge denotes the
orginal goal expression.

val s = Semaphore(0)

def terminate() = s.release()

-- Goal expression ge is modified to

(x >> stop) <x< (ge | s.acquire())

4.6.6 Translation of Class

We show the translation in two parts, the first part implements the publication
requirement and the second, additionally, implements resilience.

4.6.6.1 Implementing Publication Requirement

A class is translated to a prime site. The body of the site is identical to that
of the original class except that the goal expression of the site is different. The
prime site’s goal expression has two subexpressions that run concurrently: (1)
ge >> stop, where ge is the goal expression of the class, to ensure that ge

is executed but its publications are discarded, and (2) a subexpression that
publishes a record with all the methods of the class and their bindings.

We illustrate the translation using the class ctr , defined previously and
reproduced below for convenience. We write the goal expression as ge here to
better explain how it will be translated; the goal expression of the original class
ctr is stop.

def class ctr(n) =
val r = Ref(n)

def inc() = r := r? + 1
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def dec() = r := r? - 1
def mag() = r?

{- Below, the goal expression, ge, is stop -}
ge

The translation of ctr is as follows.

def ctr(n) =
val r = Ref(n)

def inc() = r := r? + 1
def dec() = r := r? - 1
def mag() = r?

{- Goal expression of ctr(n) -}

ge >> stop -- ge is stop in this example

| {.
inc = inc,
dec = dec,
mag = mag

.}

An instance of ctr , say c in val c = ctr(5) , is just a record with key values
inc , dec and mag that are bound to the closures of the similarly named sites.
Thus, c.inc refers to the site for the specific instance c . Creating this closure
needs the value of r , a free variable in that site. Computation of the value of a
free variable, in general, may be time-consuming, or even be suspended waiting
for other variables to be bound. The other component of the goal expression
is ge >> stop, which starts executing immediately at the time of the site call,
even before the class publishes its value.

4.6.6.2 Implementing Resilience Requirement

The given translation does not implement resilience. If the goal expression
or a method call is expected to continue computation even when its caller is
terminated, we have to enhance this translation. For example, if a program
includes val c = ctr(5) , then the execution of ctr terminates as soon as it
publishes its first value, the record containing the method names. Therefore,
the execution of the original goal expression of the class is also terminated. This
does not present a problem for the specific case of ctr whose goal expression is
stop. But it will have disastrous consequences for Broadcast , say.

We make use of a site from the standard library, Resilient , that takes the
closure of an internal site as its argument and returns an equivalent site whose
execution continues even after its caller is terminated. We modify the previous
translation as follows. Introduce a new definition ctr’ that mimics ctr(n) of
the previous translation. Next, apply Resilient to the methods of ctr’ and its
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goal expression so that they are not terminated when the caller is terminated.
Then, embed ctr’ in ctr(n) . Note that the goal expression of ctr(n) first
executes Resilient(ctr’) which publishes a closure whose execution publishes
the desired instance of ctr(n) .

def ctr(n) =
def ctr’() =

val r = Ref(n)

def inc() = r := r? + 1
def dec() = r := r? - 1
def mag() = r?

{- Goal expression of ctr(n) -}

ge >> stop -- ge is stop in this example

| {.
inc = Resilient(inc),
dec = Resilient(dec),
mag = Resilient(mag)

.}

# -- End of the definition of ctr’

Resilient(ctr’) >newctr> newctr()

Custom Classes The translation shown here can be used as a template to
create classes that obey different rules, say about resilience or export control.
For example, the user may define a prime site according to this template that
effectively defines a class in which only some of the methods are resilient, or the
class itself is non-resilient. Also, only a limited set of methods may be exported,
or some variables defined by val could be exported by modifying the contents
of the exported record.

4.7 Concluding Remarks

We have described the Orc language in some detail, with many examples, to
highlight the integration of functional features with imperative, non-deterministic
and time-dependent aspects. Though many of the features, such as data types,
patterns and clausal definitions of functions are well-known, their integration
in Orc requires special attention, particularly for concurrent execution. For ev-
ery feature of Orc language, we have shown a translation to Orc calculus. The
implementation of the language closely follows the translations given in this
chapter, though there are several key optimizations.
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Programming Idioms

5.1 Introduction

We have seen a number of examples of the use of Orc combinators in the previous
chapters. Since these combinators are quite different from any in the literature,
we illustrate their use on a number of simple programming problems in this
chapter. The programming patterns illustrated here are applicable in many
areas of programming.

One of the novel features of Orc is the use of light-weight concurrency for
program structuring. Typically, concurrency is introduced in a program to
enable its execution on multiple processors. Or, it is used to model the entities
in the problem domain, such as multiple servers or user programs, that are
concurrently active. Concurrency is not typically used as a tool for program
structuring where only a single processor is available and the problem admits
of a sequential solution.

Orc’s concurrency combinators can be used in the traditional ways. Addi-
tionally, we argue that concurrency is a structuring principle in its own right,
even for problems that are typically solved by sequential programs. We illustrate
such structuring on a variety of problems in this chapter.

5.2 Enumeration

“Programs to solve combinatorial search problems may often be sim-
ply written by using multiple-valued functions. Such programs, al-
though impossible to execute directly on conventional computers,
may be converted in a mechanical way into conventional backtrack-
ing programs.” – R.W. Floyd[18]

An enumeration problem usually asks for all (or some) values satisfying
a predicate. Enumerations could be quite easy —enumerate all integers in a
certain range— to intractable or even impossible —enumerate all programs

123



124 CHAPTER 5. PROGRAMMING IDIOMS

that halt. We consider a few enumeration problems in this section that admit
relatively easy solutions.

A functional programming language like Haskell [15] is excellent at solving
enumeration problems. Solutions can often be described recursively. Haskell
also includes a “list comprehension” feature to specify a list of values that satisfy
a list of constraints.

Orc is not specifically designed for solving combinatorial problems like enu-
meration. For complex enumerations, as for every other problem, it is best to use
sites that excel at solving such problems. But a small amount of enumeration is
essential in practical programming, and Orc can succinctly solve many simple
enumeration problems. Even though Orc does not include list comprehension,
its sequential combinator is effective in encoding a series of constraints.

The enumeration programs that we show in this section publish the values
in arbitrary order. It is equally easy to publish a single list that includes all the
enumerated values, provided the enumeration problem is finite. We show the
solution to an infinite enumeration problem in this section, and ordered infinite
enumeration in Section 8.2.2. Lazy execution and infinite list enumeration are
discussed in Section 6.3 (page 165).

5.2.1 Partially Ordered Enumeration: Dovetail

The abstract version of dovetail computation is illustrated by the following prob-
lem: given a boolean matrix that is infinite in both dimensions, find a matrix
element that is true , if one exits. Clearly, searching the matrix in order by
rows or columns is ineffective, because such a search may never terminate along
a row, say, while a matrix element in a different row may be true .

Before attacking this problem, we solve a very simple enumeration problem:
enumerate all 2-tuples of positive integers that add up to a given value, n, and
the first element of the tuple does not exceed the second element. The strategy
is to enumerate all integers j, 1 ≤ j ≤ n/2, as the first element and n− j as the
second element. Below, enumtuple(n) publishes all such tuples for integer n;
for n < 2 the program halts.

def enumtuple(2) = (1,1)

def enumtuple(n) =
upto(n/2) >i> i+1 >j> (j,n-j)

Note that upto(n/2) publishes all natural numbers below n/2 ; so, the expres-
sion upto(n/2)>i> i+1 publishes all positive integers up to n/2 , and including
it if n is even.

Applying the enumeration for infinite matrix search We can apply the
following strategy to solve the problem of searching an infinite matrix. Assume
that indices in both dimensions are positive integers. For any integer n, 2 ≤ n,
examine all matrix elements whose indices add up to n. Do this search in
increasing order for all n. It is clear that the search will look at every matrix
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element; element with index (p, q) will be examined when n = p+ q. This is the
essence of dovetail computation. Note that while there is a strict order over n
there is no order over the tuples that add up to n, and we enumerate them in
arbitrary order. Thus, the enumeration of indices is partially ordered.

We now have all the ingredients for a solution. Below, ibm represents the
infinite boolean matrix; typically, ibm would be a site that has two positive
integers as arguments and that publishes the value of the corresponding matrix
entry. Site dovetail(n) publishes true if ibm(p, q) is true for some (p, q), where
p+q ≥ n. It first examines all entries (p, q), where p+q = n, in arbitrary order.
If some entry is true , the index of the entry is published and the execution
terminates. If none of the entries is true , then dovetail(n+1) is called.

def dovetail(n) =
enumtuple(n) >(p,q)> ibm(p,q) >b> Ift(b) >> (p,q)

; dovetail(n+1)

The computation never terminates if all matrix entries are false .

This strategy can be easily generalized to do a dovetail computation over a
d dimensional infinite matrix, by enumerating d-tuples that sum to a specific
value.

Computing 2-Taxicab numbers An integer is a n-taxicab number if it can
be expressed as a sum two cubes of positive integers in at least n different ways.
Often, the n-taxicab number is defined to be the smallest such number. Here,
we sketch a strategy to compute all 2-taxicab numbers, i.e., numbers that can
be written as x3 + y3 and u3 + v3 where (x, y) 6= (u, v). The smallest such
number1 is 1729 which is 93 + 103 and 13 + 123.

The straightforward computation involves enumerating all positive integers
and then determining for each if it is a 2-taxicab number. This is a very ex-
pensive computation procedure. Instead, we enumerate all numbers p3 + q3 by
first enumerating (p, q) that sum to a specific value. That is: (1) starting at 2,
enumerate integers n in increasing order, (2) for each n, enumerate (p, q) such
that p + q = n (3) for each (p, q), let s = p3 + q3, (4) store s in a database D if
s 6∈ D, and publish s if s ∈ D and s has not been published earlier.

5.2.2 Partitioning a number

A partition of a positive integer n is a multiset of positive integers whose sum
is n. We represent a multiset by a list, and we take the sum of the items of an
empty list to be 0. It is required to publish all partitions of any given n. For
n = 3 , the partitions are [3], [2,1] and [1,1,1] .

1This number has a famous history. G. H. Hardy relates a conversation with Srinivasa
Ramanujan: “I remember once going to see him when he was lying ill at Putney. I had ridden
in taxi-cab No. 1729, and remarked that the number seemed to be rather a dull one, and that
I hoped it was not an unfavourable omen. ”No”, he replied, ”it is a very interesting number;
it is the smallest number expressible as the sum of two [positive] cubes in two different ways.”
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It is quite easy to write a site definition that first enumerates all integers x

from 1 through n, for each such x enumerates all partitions of n-x recursively,
and for each such partition xs reports x:xs as a partition of n. Unfortunately,
this procedure publishes lists that are permutations of each other but that cor-
respond to the same partition, so that both [1,2] and [2,1] are reported as
partitions of 3.

To overcome this problem, we represent a multiset uniquely by a list whose
items are non-increasing in value from left to right. The strategy is still the same
as described above, but we need a more general site, parts(n,p) , that publishes
all non-increasing lists corresponding to the partitions of n in which all elements
are at most p, where p ≥ 0. Then, partition(n) is simply parts(n,n) .

The definition of parts is given below. In the general case for positive n,
upto(p)>x> x+1 publishes all values in the range 1 to p and each such value is
called q in the ensuing computation; for every q, parts(n-q,q) publishes every
partition of n-q in which the parts do not exceed q and each such list is called
qs in the ensuing computation; and for all such q and qs , q:qs is a publication
of parts(n,p) . Observe the manner in which the sequential combinator is
used to create a branching structure of computation. The definition of parts

includes the possibility of n being zero or negative that may arise as a result of
the recursive calls.

def parts(n,p) =
Ift(n <: 0) >> stop

| Ift(n = 0) >> []
| Ift(n :> 0) >>

upto(p) >x> x+1 >q> parts(n-q,q) >qs> q:qs

def partition(n) = parts(n,n)

5.2.3 Permutations

The use of the sequential combinator in enumeration is highlighted, yet again,
in the following example that enumerates all permutations of the first n positive
integers, where n ≥ 0. For n = 0, the only publication is an empty list. For
positive n, all permutations of numbers 1 through n are published (in arbitrary
order), each as a list. In all cases, n! lists are published.

The enumeration strategy is as follows for positive n. Enumerate all per-
mutations of the first n − 1 positive numbers. For each such permutation zs,
insert n in all possible ways in zs, and publish the resulting n lists. Site call
insert(zs) inserts n in all possible ways in zs and publishes the resulting lists
in arbitrary order. All these lists are computed concurrently. The code for in-
sert operation consists of two separate cases: (1) insert n as the head of zs, and
(2) insert n as a non-head item, using the sequential combinator for insertion.

def perm(0) = []
def perm(n) =



5.2. ENUMERATION 127

def insert([]) = [n]
def insert(x:xs) = n:x:xs | insert(xs) >ys> x:ys

perm(n-1) >zs> insert(zs)

5.2.4 Infinite Set Enumeration

Many infinite enumeration problems can be solved using the branching structure
provided by the sequential combinator along with recursion. The following
program publishes all binary strings including the string of length 0. A binary
string is represented by a list of 0s and 1s. The published strings are in no
particular order. It is not even true that the strings are published in order of
their lengths.

Note that the definition of bin uses “unguarded recursion” in the second
alternative where bin is called immediately after its invocation without any
other intervening action. Concurrent computation in the first alternative ensures
that its publication can be used to advance the computation in the second
alternative.

def bin() =
[]

| bin() >xs> (0:xs | 1:xs)

bin()

5.2.5 Divide and Conquer

Many enumeration problems employ “Divide and Conquer” where a divide pro-
cedure partitions the problem into several subproblems so that the solutions
of the subproblems can be combined to obtain a solution of the original prob-
lem. Typically, the subproblems are similarly divided unless they can be solved
directly and their solutions combined. The solution of the original problem
specifies the division and combination procedures, and how to solve the small-
est problem instances. Each of the subproblems can often be solved recursively
and concurrently.

The following site enumerates all binary trees of n nodes. A tree is repre-
sented as follows: the empty tree (with 0 nodes) is given by the empty list, and
a non-empty tree is given by a list of two items corresponding to the left subtree
and the right subtree.

The enumeration strategy is an elementary application of divide and conquer:
enumeration of a tree of n nodes, for positive n, amounts to enumerating all
binary trees of size i, 0 ≤ i < n, as left subtree and of size (n − i − 1) as right
subtree (the remaining node is the root of the tree). Each sub-enumeration
problem is solved recursively. The smallest problem corresponding to n = 0 is
solved directly.
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def enumTree(0) = []
def enumTree(n) =

upto(n) >i>
enumTree(i) >x>
enumTree(n-i-1) >y>
[x,y]

For example, enumTree(3) publishes:

[[], [[], [[], []]]]
[[[], []], [[], []]]
[[], [[[], []], []]]
[[[], [[], []]], []]
[[[[], []], []], []]

A major drawback of this style of enumeration is that the same subtree
may be computed several times. For n exceeding 10, say, enumTree(2) will be
executed many times for both left and right subtrees. The problem becomes
acute for higher values of n. A better strategy is to enumerate the trees in
order of increasing size using the trees already enumerated. This is a form of
memoization, which we discuss in Section 7.4.

5.3 Controlling Execution Order

We consider various ways of ordering the executions of different expressions in
a program. We cast the problem as a search problem, though the strategies for
ordering are applicable more generally.

Let f and g be two computations that search different parts of a search
space. Assume that each of these computations either publishes a single value,
the result of a successful search, or halts (silently) on failure. It is required to
publish any successful search result, or halt (silently) if neither search succeeds.
The searches are non-interfering in that they do not modify any store that is
accessed by both f and g. In many cases, f and g may themselves be recursively
defined to further divide the search space.

We can identify at least 3 search strategies by executing f and g in different
orders. In fact, these strategies are about the scheduling of computations f and
g; they can be applied in any context, not just for searches.

1. Execute f and g concurrently: This is simply f | g . If only one search
result is needed, we write the program as:

val x = f | g
x

2. Execute f and g sequentially: Here, f ; g solves the problem, because if
f fails then it eventually halts and g is executed. Again, if only a single
search result is needed we use:

val x = f ; g
x
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3. Execute f and g concurrently, but with priority for f : Start both f and g

concurrently, but publish a result from f if it succeeds, otherwise from g.
Observe that f ; g does not solve the problem because g is not started
until f fails.

(x ; y)
<x< f
<y< g

This solution has one drawback. The computation of g is not terminated
as soon as f publishes a value. We modify the program slightly so that if f

publishes then g also publishes the same value, and hence its computation
is then terminated.

(x ; y)
<y< x | g
<x< f

We rewrite this program more transparently using variable z that is bound to
a value as soon as f publishes, or f halts and g publishes.

val z =
val x = f
val y = g

x ; y

z

Search strategies may make use of real-time. If f publishes a result within
the first t time units, then publish this result discarding any publication of g;
if f does not publish within t , then publish result from f or g whichever is
computed first. We have seen this form of priority in Section 2.5.2.3; in the
current setting, this amounts to:

val x = f | (Rwait(t),g) >(_,v)> v
x

Round-robin execution of f and g based on time-out is yet another scheduling
strategy. There are many elaborate search strategies that depend on the specifics
of the problem. We show a few below for the example of subset sum.

Subset Sum We illustrate execution ordering on a particularly simple prob-
lem. Given an integer n and a multiset of integers as a list xs it is required to
determine if there is a sublist of xs that adds up to n; further, publish one or
all such sublists.

This problem is typically solved using backtracking, which is appropriate
when we are required to express the solution using a single thread of computa-
tion. We present a number of solutions, based on the strategies we have just
discussed, which are either concurrent, sequential or a mixture of the two. In
this example, concurrency does not involve access to shared data, but merely
managing a number of computation threads.
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5.3.1 Subset Sum in Parallel

We define parsum(n,xs) , where n is an integer and xs a list of integers, that
publishes all sublists of xs that sum to n; there may be no such sublist and then
parsum(n,xs) is silent.

It is easy to understand the first two clauses of the program, below. If n = 0
and the given list is empty, then the unique solution is the empty list. If n 6= 0
and the given list is empty then there is no solution. The crux of the design is
in the last clause. Consider two mutually exclusive cases for a solution sublist:
(1) the first element of the list, x , is included in the solution, and (2) x is not
included in the solution. Since these two cases are exclusive, enumeration for
the two cases may proceed concurrently without interference.

def parsum(0,[]) = []
def parsum(n,[]) = stop
def parsum(n, x:xs) =

parsum(n-x,xs) >ys> x:ys | parsum(n,xs)

A call to parsum(-5,[-2,4,1,-3,8,-7]) publishes

[-2, 4, -7]
[4, 1, -3, -7]
[-2, -3]

whereas parsum(6,[2,5,1]) is silent.
This program is easily modified, using the otherwise combinator, to publish

a value in all cases indicating the presence or absence of solutions.

5.3.2 Any solution in Subset Sum

We modify the program given above so that it publishes just one solution if one
exists and is otherwise silent. The solution uses the pruning combinator.

def anysum(0,[]) = []
def anysum(n,[]) = stop
def anysum(n, x:xs) = zs

<zs< (anysum(n-x,xs) >ys> x:ys | anysum(n,xs) )

5.3.3 Subset Sum using Backtracking

We show a backtracking solution that publishes the first solution. We take
“first” to mean the smallest in a total order of the sublists, which we define
next.

Elements of xs have natural numbers as indices, starting at 0 for the head
element. The index of a sublist is the list of indices of its elements. Define a
sublist to be smaller than another if its index is lexicographically smaller.

Site seqsum(n,xs) , where n is an integer and xs a list of integers, publishes
the smallest sublist of xs that sums to n. As before, there may be no such
sublist and then seqsum(n,xs) is silent. The code is identical to that for
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parsum except that the parallel combinator in the last clause is replaced by
the otherwise combinator. Thus, all sublists in which the first element x of the
input list is included are searched before any in which x is excluded, and this
strategy is applied recursively for all elements of the input list.

def seqsum(0,[]) = []
def seqsum(n,[]) = stop
def seqsum(n, x:xs) =

x:seqsum(n-x,xs) ; seqsum(n,xs)

A call to seqsum(-5,[-2,4,1,-3,8,-7]) publishes [-2, 4, -7] .

5.3.4 Subset Sum using Concurrency and Backtracking

Next, we implement strategy (3), discussed earlier, in which the searches are
run concurrently but the lexicographically smallest sublist that meets the search
criterion is published. The program is a slight modification of seqsum.

def parseqsum(0,[]) = []
def parseqsum(n,[]) = stop
def parseqsum(n, x:xs) =

val z =
val p = x:parseqsum(n-x,xs)
val q = parseqsum(n,xs)

(p ; q)
z

A call to parseqsum(-5,[-2,4,1,-3,8,-7]) publishes [-2, 4, -7] , as ex-
pected. Observe that both searches in the last clause may fail so that neither p

nor q is assigned a value. Then p ; q halts.

5.3.5 Subset Sum using Umbrella Search

The next program combines the strategies of parsum and seqsum so that the
search tasks are forked out concurrently for a few specified levels and then each
search proceeds sequentially, a strategy we call umbrella search2 . Umbrella
search may be based on real-time rather on the number of levels, as we show
in Section 5.3.6 (page 132). Below, umbrellasum has 3 arguments; its first
argument is the number of levels for which concurrent search tasks are forked,
and the other two arguments, as before, are n and xs . The search publishes at
most one result.

def seqsum(0,[]) = []
def seqsum(n,[]) = stop
def seqsum(n, x:xs) =

x:seqsum(n-x,xs) ; seqsum(n,xs)

def umbrellasum(_,0,[]) = []
def umbrellasum(_,n,[]) = stop

2The name “Umbrella Search” is due to David Kitchin.
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def umbrellasum(0,n, xs) = seqsum(n, xs)
def umbrellasum(nl,n, xs) =
val z =

x:umbrellasum(nl-1, n-x,xs) | umbrellasum(nl-1, n,xs)
z

A call to umbrellasum(4,-5,[-2,4,1,-3,8,-7]) publishes [-2, 4, -7] , as
expected.

5.3.6 Subset Sum using Timed Umbrella Search

The next program employs umbrella search in which the transition between
parallel and sequential searches is triggered by the passage of time rather than
a pre-determined number of levels. Here, parallel searches run for the first t time
units, and then sequential searches. Below, timedsum(t,n, xs) has t as the
time parameter, and n and xs have their usual meanings. It includes definition
of site search’ that works exactly like the umbrellasum of Section 5.3.5 except
that the test for levels in umbrellasum is replaced by a test that determines if
t units have elapsed since the site invocation. A mutable variable b is initially
set true and set false after the passage of t units. The goal expression of
timedsum calls search’ and concurrently calls Rwait(t) to set b appropriately.

def timedsum(t,n, zs) =
val b = Ref(true)

def search’(0,[]) = []
def search’(n,[]) = stop
def search’(n, x:xs) =

if b? then
( val z = search’(n-x,xs) >ys> x:ys | search’(n,xs)

z)
else (x:search’(n-x,xs) ; search’(n,xs) )

search’(n, zs) | Rwait(t) >> b := false >> stop

--Test input; run in parallel for 1 msec.

timedsum(1,-5,[-2,4,1,-3,8,-7,6,-1,3,-8])

-- output
[3, -8]

5.3.7 Recursive Descent Parsing, 2-function calculator

Recursive descent parsing of a string according to a given grammar illustrates
searching over a parse tree. We illustrate the procedure for computing the value
of an arithmetic expression with just plus and times as the only operators. The
grammar for such expressions is given below.
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A grammar (in BNF) consists of a set of productions where each production
defines a non-terminal. A production consists of one or more alternatives. Each
alternative is a string of terminals and non-terminals. We liken the alterna-
tives to the parallel combinator and concatenation of symbols to the sequential
combinator. Accordingly, we translate a grammar to an Orc program in an
almost-mechanical fashion.

expr ::= term | term + expr
term ::= factor | factor * term
factor ::= number | (expr)
number ::= digit | digit number
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Here, an expr is a properly formed arithmetic expression, written as a string
of symbols consisting of unsigned integers as the operands and + and * as the
operators. Thus, ((31 * 5))+(03+3) is a proper expr , whereas 3** 5 is not.
Observe that the grammar is not left-recursive, i.e., in a production defining
some non-terminal, the non-terminal does not appear as the leftmost string in
any alternative of that production.

Normally, the user would provide the input as a string. The standard site
characters converts its argument string to a list of symbols (a symbol is a string
of length 1). So, characters("3+4") publishes ["3","+","4"] . Henceforth,
we assume that input is available as a list of symbols. Further, we assume that
the list contains no white space. All white spaces in the beginning of the list
and around the operators + and * may be removed using a lexical scanner site.

To parse an expression we introduce a site for each non-terminal. Each site
takes a list of symbols xs as argument. For every prefix of xs that is an instance
of the given non-terminal, the site publishes a pair (n,ys) where n is the value
of the non-terminal derived from the prefix and ys is the remaining suffix of
xs . Thus, given ["3","+","4"] as input to site expr , the two prefixes that
are expr are ["3"] and ["3","+","4"] , and the corresponding publications
are (3,["+","4"]) and (7,[]) . If no prefix is an instance of the given non-
terminal, then there is no publication and the call halts silently.

To see how a production in the grammar is turned into a site definition,
consider the production

expr ::= term | term + expr

The following definition of site expr consists of two parallel branches, one for
each alternative. The first one corresponds to the alternative term ; it publishes
whatever term(xs) publishes. The second one corresponding to term + expr

first applies term(xs) to obtain pairs (n,ys) , and for each such pair determines
if ys is of the form "+":zs , for some zs . If that is the case, it calls expr(zs)

which publishes pairs (m,ws) . Then, xs has a prefix that is an expr whose
value is n+m and the remaining suffix is ws; therefore, this alternative publishes
(n+m,ws) . The computation is carried out for all possible prefixes matching
this pattern because of the branching structure of the computation induced by
the sequential combinator. Also, note the use of pattern matching to dissect
the input string.
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def expr(xs) = term(xs)
| term(xs) >(n,ys)>

ys >"+":zs> expr(zs) >(m,ws)> (n+m,ws)

We make one small optimization for the final program. There is no need to
compute term(xs) in both alternatives. This computation may be done just
once and reused. This amounts to applying the right distributivity of | over
>x> (see Section 3.7.3). Another way to view this transformation is as a rewrite
of the production:

expr ::= term ( ǫ | + expr)

The resulting program is

def expr(xs) =
term(xs) >(n,ys)>
( (n,ys) | ys >"+":zs> expr(zs) >(m,ws)> (n+m,ws) )

We apply this transformation also to the production for term . The pro-
duction for factor is translated directly. The production for number needs a
different treatment. It is not possible to compute the value of a number from
its first digit and the value of the remaining suffix; 10 and 100 will compute to
the same value from the first digit 1 and the suffix whose value is 0. So, we
introduce an auxiliary site number’ that has two arguments, a number i and a
list xs . It computes the value of the number whose prefix is number i and whose
suffix is the longest possible prefix of xs ; it publishes the value of the number
and the remaining suffix of xs . Thus, number’(35,["0","1","+"]) publishes
(3501,["+"]) and number’(35,["+"]) publishes (35,["+"]) . Site number

calls number’ only if the next symbol in its input is a digit. The definition of
digit follows the grammar directly.

The program is shown in Figure 5.1. A given list xs is a valid expression
only if expr(xs) publishes (n,[]) , for some n. The value of the expression is
n in that case.

Recursive descent is a simple parsing technique. It is not particularly effi-
cient. The purpose of the example is to demonstrate that divide and conquer
applied to the parsing problem leads to a simple solution in Orc that mirrors
the structure of the grammar.

An Aside, 4-function Calculator We complete the design of the calculator
to include the other two arithmetic operators, subtraction and division. The
extensions do not show any new Orc programming technique; they merely com-
plete a job (literally) half done. There is, however, an interesting question about
subtraction that we solve here.

First, the extension for division is straightforward. The grammar is extended
by adding a suitable alternative.

term ::= factor ( ǫ | * term | / term)
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So, the definition of site term is similarly extended by adding an alternative.
Note that the added alternative uses ((n+0.0)/m,ws) instead of (n/m,ws) ,
because the latter truncates the result to an integer value if the operands are
integer, whereas the former carries out the division in floating point mode.

def term(xs) =
factor(xs) >(n,ys)>
( (n,ys)

| ys >" * ":zs> term(zs) >(m,ws)> (n * m,ws)
| ys >"/":zs> term(zs) >(m,ws)> ((n+0.0)/m,ws)

)

Next, consider an extended grammar that includes subtraction. The obvious
production is:

expr ::= term ( ǫ | + expr | - expr)

This grammar is perfectly adequate for syntax checking, but inadequate for
computing the value of an expression from the values of its components. Given
an expression of the form t0− t1 + t2, where each ti is a term, the expression will
be parsed as an initial term t0 and a remaining expression t1 + t2. The value of
the original expression can not be computed from those of t0 and t1 + t2. That
is, the syntax does not reflect the semantics. This problem can be overcome by
defining the grammar for expr differently.

expr ::= expr ( ǫ | + term | - term)

However, the grammar is now left-recursive, and the direct translation we have
been employing so far is inapplicable.

We overcome the problem by introducing a new non-terminal, expr’ , which
is an expression whose initial term is known to be negated. Thus, the parse of
t0 − t1 + t2 will identify t0 as a term and t1 + t2 as expr’ .

expr ::= term ( ǫ | + expr | - expr’)

expr’ ::= term ( ǫ | + expr | - expr’)

Observe that expr and expr’ generate the same set of strings (a fact that can
be proved by induction on the number of steps in a derivation). Yet, the latter
reflects the semantics of the expression. The value of expr’ is computed by
subtracting the value of its first term from the value of the remaining expression.
The complete program is shown in Figure 5.2.

Using Mutable storage in Parsing The parsing strategies defined so far
represent the string to be parsed by a list of symbols. Each site calls a site by
sending it a list. Since the lists are read-only, we can avoid the overhead of
parameter passing by storing the input list in an array, and simply passing two
indices to designate a sublist in the array. See discussion of mutable store in
Chapter 7.
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5.3.8 Angelic and Demonic Non-determinism

Computer science has two prevalent ways of dealing with the “fork in the road”
dilemma: take both roads or take either one arbitrarily. The first strategy is
usually called angelic non-determinism, and the second demonic.

Angelic non-determinism is often used in the theory of non-deterministic
automata where an input string is accepted if any possible execution of the
automaton can lead to an accepting state. It is suitable for solving search
problems where all states in a search space are to be explored, and the search
space is described by successive transitions from an initial state to other states.
An implementation on a uniprocessor typically uses backtracking whereas a
multi-processor may explore a (bounded) number of paths concurrently. An-
gelic non-determinism is typically introduced by a programmer to simplify the
description and structure of a program. Therefore, it is sometimes known as
internal non-determinism.

Demonic non-determinism is typically externally imposed, though it may
also be introduced by a programmer to simplify the description of a program
or speed-up its execution. A program that is waiting to receive data from two
external sources contends with demonic non-determinism; it can not predict the
source from which it will next receive its data, so the program has to account
for either possibility in its subsequent execution. Demonic non-determinism is
also employed internally (i.e., deliberately) in randomized algorithms to either
simplify the program structure or improve its performance, see Lehmann and
Rabin [32] for an example (that is also described in Section 9.1.4, page 243).

Language features for non-determinism typically support demonic, leaving
the programmer to explicitly implement angelic non-determinism where needed.
To the best of our knowledge, no existing programming language (other than
Orc) permits combination of both forms of non-determinism in a single program.

Orc includes combinators for both angelic and demonic non-determinism.
The execution of f | g starts concurrent executions of both f and g, and,
more generally, f >x> g explores execution of g for all possible publications
of f . These combinators can be used to implement angelic non-determinism.
Demonic non-determinism is implemented by the pruning combinator where
in f <x< g , execution of f must contend with any publication of g. Perhaps
the simplest Orc program to illustrate demonic behavior is one that chooses to
execute either f or g arbitrarily:

if (false | true) then f else g

which is translated to

( Ift(b) >> f | Iff(b) >> g)
<b< (false | true)

The demonic choice in the first line is illusory, because only one of the alterna-
tives will be executed determined by the value of b The demonic choice in the
second line is real.

We have already seen a number of examples of the use of both combinators.
We show a small example next that highlights the intermingling of both forms
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of non-determinism using the Orc combinators. Here, angelic non-determinism
allows us to explore all possible paths in a search space, and demonic permits
a more efficient evaluation strategy when only some of the paths need to be
explored.

Exploring a Game Tree We design a program to explore a finite game tree
to compute whether a player has a winning position. We consider a two person
game with players A and B. The players move alternately. For a position p in
the game the player to move (the mover at p) loses if he has no available move.
Assume that the moves can not go on forever. Therefore, the moves and the
positions can be depicted by a finite game tree, and each position is a winning
position for one of the players.

Suppose A is the mover at position p. A is a winner, i.e., has a winning
position, if there is some move at p to a position q such that q is a losing position
for B. And, A has a losing position at p if there is no such move, that is, for all
moves at p player B wins at all subsequent positions. The proposition defining
a winning position can be written as: there exists a move at p to some position
q such that for all moves from q to positions r there is a move from each r such
that ... The proposition is an alternation of existential and universal quantifiers
over moves. It combines alternate demonic and angelic non-determinism.

Below, site wins computes if the mover at a given position is a winner. A
call to wins(p) , where p is a position, publishes true if the mover at p is a
winner and false otherwise. The site call moves(p) publishes all positions
reachable by making a single move at position p; if there is no available move
at p then moves(p) is silent. Site moves encodes the rules for legal moves; it is
defined elsewhere.

def wins(p) =
b <b< (

(moves(p) >q> Iff(wins(q)) >> true)
; false

)

All moves from p are explored using the sequential combinator. If any move leads
to a losing position for the opponent, further explorations are abandoned and
true is published by a demonic choice. And, false is published only if no move
shows a losing position for the opponent. The recursive computation ensures
alternate applications of angelic and demonic non-determinism. The program
is easily modified to compute a winning strategy from a given position, i.e., a
sequence of moves for the winning player corresponding to any set of moves by
the opponent. The winning strategy is chosen non-deterministically when there
are several possible such strategies.

5.4 Programming with Closure

We introduced closure in Section 2.4 (page 27). It is a value that encodes a site
with a subset (possibly none) of its parameters. We show a number of examples
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of the use of closure in this section.

In some cases, a class definition can be replaced by just a site definition. In
case the class has just one method the class can be coded as a site that publishes
a closure corresponding to the method. This is often a major simplification. (A
class that has no method can also be written as a simple def. Such classes are
used for doing background computations without publishing, such as monitoring
of the computation, collecting statistics and garbage collection.)

5.4.1 Information Hiding

Consider a small example in which several concurrent threads increase a shared
variable, total . Each thread calls score(x) to increase total by x and re-
ceives the current value of total on completion of the site call. We employ
a semaphore, sem, to allow at most one caller to have access to total at any
time.

val total = Ref(0)
val sem = Semaphore(1)

def score(x) =
sem.acquire() >>
total := total? + x >>
total? >v>
sem.release() >>
v

There are two major objections to this solution. First, variables total and
sem are exposed to computations outside score where they may be inadver-
tently modified. Second, the same program can not be used to run several
independent instances of score with different associated total s; we have to
rewrite this program for each instance with different names for the mutable
variables. This problem becomes acute if the number of instances is not known
a-priori but instances are created dynamically.

We can solve both problems using closure. Enclose the given program within
another site definition that publishes site score when it is called.

def cumulative() =
val total = Ref(0)
val sem = Semaphore(1)

def score(x) =
sem.acquire() >>
total := total? + x >>
total? >v>
sem.release() >>
v

score
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Now, variables total and sem are local to cumulative() . Each call to
cumulative() returns a closure that can be used by the concurrent threads
exactly as they used site score earlier. Further, different calls to cumulative

() returns different instances of score . A typical usage may be

val score1 = cumulative()
val score2 = cumulative()

score1(2) | score1(3) | score2(5) | score2(7)

5.4.2 Performance Profiling

Consider a site that has a single argument, and that publishes a single value
for any argument and then halts. We create a site that accepts any such site f

as argument and publishes a site f’ that mimics f , by publishing exactly the
same value that f publishes for any argument, and additionally, the amount of
time consumed for f ’s computation on any argument.

The implementation makes use of the factory site Stopwatch that is de-
scribed in Section 10.2. A Stopwatch instance has methods start() and
pause() where the former starts the stopwatch and the latter pauses it and
publishes the elapsed time at that moment.

def profile(f) =
val sw = Stopwatch()

def f’(x) = sw.start() >> f(x) >v> (sw.pause(),v)

f’

To compute the running time of f on x , call profile(f)(x) . Calling
profile(Rwait)(100) publishes (100, signal) , as we would expect.

A slightly different program for computing the running time is shown in
Section 10.1.4 (page 251).

5.4.3 Access rights management

The problem of access rights management is best explained by a small example.
The copy site, shown below, continually reads an item from an input channel
channel in and writes it to channel out .

def copy(in,out) = in.get() >x> out.put(x) >> copy(in,out)

Now, copy needs to apply only the get method to in and put method to
out , yet it has access to all available methods of both channels. This violates
good programming practice. Henceforth, whenever it is convenient, we restrict
the access rights of a site: a site is given access to only those methods of its
argument sites that are essential for its execution. Using this principle, we
rewrite copy as
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def copy(read,write) =
read() >x> write(x) >> copy(read,write)

where a typical call to copy is of the form copy(in.get,out.put) . Thus, a
site is passed closures, such as read and write , that include only a subset of
the methods of the associated object.

More generally, let b be an object with methods p, q and r . To restrict
access on b to methods p and q only, define

val bpq = {. p = b.p, q = b.q .}

Now, bpq.p and bpq.q act as b.p and b.q whereas bpq.r is unavailable. A
site call may pass bpq as an argument, instead of b, in order to restrict access
of the called site to only these two methods of b.

5.4.4 Session id Management

Many client-server interactions are structured as sessions, where a session in-
cludes several calls by the client and corresponding responses by the server.
The server typically identifies the client and the session using a key, called a
session id. The client supplies the session id with each call. In high security
applications the session id may change with each call during a single session.
The client starts a session with a key of its choice and the server publishes for
each call the result of its computation and the key to be used for the next call.

We use the generic term ticket for such a key, whether it changes or not,
that the client supplies with each call. We show how to interpose a site between
the client and the server so that the ticket is managed transparently without
the client’s involvement.

Below, site ticket_wrapper is called with the identity of the server S, a
closure, as its argument. It publishes a closure S’ that the client calls instead
of S. The closure stores, and updates, the ticket value in a mutable variable.
In the following implementation a random 30 bit number is used as the initial
ticket.

def ticket_wrapper(server)

val id = Ref(Random(2 ** 30))

def newserver(x) = server(x,id?) >(v,t)> id := t >> v

newserver

-- Usage with a specific server S

val S’ = ticket_wrapper(S)

S’(arg) -- Successive calls to S’

Multiple callers may call ticket_wrapper with the same or different server
as argument. The calls may even be concurrent. Different callers will carry
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different streams of tickets and engage in separate dialogs. These calls do not
interfere because ticket_wrapper does not read or write any external variable.

A ticket is a useful programming paradigm even in non-security applications.
A server can identify a client by its ticket and tailor its response accordingly. For
example, consider a server that manages a long sequence of data, say a genetic
sequence or a video file. Each client receives the entire sequence, one item with
each call. The server may maintain a database of all the clients and the portion
of the sequence they have seen so far so that it can respond appropriately to
their next calls. Or, more simply, it hands out a ticket when it responds to a
call, in addition to the item from the sequence; the ticket is the index to the
item in the sequence the client should receive next.

5.4.5 Task Scheduling

A particularly simple view of task scheduling is that there is a fixed set of tasks
each of which is a site. Execution of a task either ends with the publication of a
signal or the task is never started, so it halts. There is a given policy according
to which the tasks are to be executed. The effect of the execution of a task is
irrelevant to the scheduler.

Below, the task scheduler is called with a list of tasks, each a closure without
argument, and policy , a closure without argument. A call to policy publishes
an index to a task in the list. The corresponding task is executed by calling the
associated closure. The steps are repeated after the task execution terminates.
The implementation below first transfers the tasks to an array so that random
access to a task using its index is efficient.

def schedule(fs,policy) =
val tasknum = length(fs)
val taskarray = Array(tasknum)

{- function populate() transfers from fs to taskarray -}

def populate(_,[]) = signal
def populate(i,g:gs) = taskarray(i) := g >> populate(i+1,gs

)

def exec() = policy() >j> taskarray(j)?() >> stop ; exec()

{- Goal of Scheduler -}

populate(0,fs) >> exec()

This form of task scheduling constitutes the essence of the UNITY [6] pro-
gramming theory where tasks are called actions. Given below is a short program
written in the UNITY notation. The program includes two variables, x and y ,
and two actions, written as guarded commands separated by || that modify
these variables.

x,y = 0,0
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x < y --> x:= x + 1
|| y:= y + 1

Below, the program is translated to Orc where the variables are Refs and
each action is a site. The policy is to pick one of the actions randomly for
execution. If the guard of the chosen action is not true, then the action execution
has no effect. The Orc program prints a line identifying the action and the
resulting values of the variables.

val (x,y) = (Ref(0),Ref(0))

def f1() =
Ift(x? <: y?) >> x := x? + 1 >> Println((1,x?,y?))

def f2() =
y := y? + 1 >> Println((2,x?,y?))

def policy() = Random(2)

schedule([f1,f2], policy)

The more general task scheduling problems in which the tasks are created
and/or deleted during an execution can also be cast in this form.

5.4.6 Currying

Currying is a term used in functional programming for partial evaluation of a
function of multiple arguments. The function is evaluated at some (or all) of
its arguments and a closure published (in case the function is evaluated at all
its arguments the resulting value may be regarded as a closure, a function of
0 arity). A curried site in Orc publishes a closure, as shown in the following
example.

A call to the following uncurried site, div(d,i) where d and i are integers,
publishes true if d divides i and false otherwise:

def div(d,i)= (i%d = 0) .

A curried version of div is shown below. It has just one argument d, and it
publishes a site (a closure) that behaves as div(d,i) given argument i .

def divides(d)= lambda(i)= (i%d = 0) .

The call protocols for these examples are: div(3,15) and divides(3)(15) .
We may curry any number of arguments and nest the curried definition as

in the following examples.

def add() = lambda(x,y,z) = x+y+z
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def add’() = lambda(x) =
lambda(y) =

lambda(z) = x+y+z

-- Usage
add()(2,3,5)
add’()(2)(3)(5)

Currying is effectively applied within a definition where a site is called mul-
tiple times with different arguments where the values of some of the arguments
are fixed. Consider the following small example where site divsome has the
specification: divsome(d)(i) , where d and i are integers, publishes true if i

is divisible by some integer k, 2 ≤ k ≤ d, and false otherwise. We show two
different curried definitions of divsome . The first one is explicitly concurrent
and the second one achieves concurrency through a recursive definition.

def divsome(d) =
lambda(i) =

b <b<
(upto(d-1) >k> Ift(divides(k+2)(i)) >> true ; false)

and,

def divsome(1) = ( lambda(i) = false)
def divsome(d) =

lambda(i) = divides(d)(i) || divsome(d-1)(i)

Site divsome may be used in a very inefficient to test to determine if an
integer greater than 1 is composite:

def composite(j) = divsome(j-1)(j)

5.4.7 Multidimensional Structures

Factory site Array creates a 1-dimensional array whose lower index is 0. We
show how to create arrays with specified indices (not just starting at 0) and
multidimensional arrays. Closures play a crucial role in the construction.

It is easy to create an array with arbitrary upper and lower indices. Below,
Array’(m,n) creates an array with lower bound m and upper bound n for the
index; so, the array has n − m + 1 elements.

def Array’(lo,hi) =
val ar = Array(hi-lo+1)

def access(i) = ar(i-lo)

access

The site publishes a closure that allows access to a specific item. A typical usage
is
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val a = Array’(-3,2)

a(-3) := 0

Site matrix , below, defines a matrix with specified lower and upper bounds
for each dimension. The elements of the matrix are stored in an array and
site call access(i,j) retrieves the appropriate element from the array. The
published value of matrix is a closure, access , that takes two indices and
retrieves the corresponding matrix element.

def matrix2((lo1,hi1),(lo2,hi2)) =
val mat = Array((hi1-lo1+1) * (hi2-lo2+1))

def access(i,j) = mat((i-lo1) * (hi2-lo2+1)+j)

access

-- Typical usage

matrix2((-2,0),(-1,3)) >a>
a(-1,2) := 5 >> a(-1,2)?

Beyond 2-dimensional Matrix We extend the template for 2-dimensional
matrix to construct higher dimensional matrices in a uniform manner, as shown
in Figure 5.3 (page 152). We define a single site, matrix , that accommodates
any number of dimensions. We explain its construction below.

The input parameter for matrix is a list of bounds where a bound is a pair
of integers, lo and hi with lo ≤ hi, that describes the possible values of the
index for that dimension. An instance of a matrix, say

val m3 = matrix([(-2,0),(-1,3),(1,3)])

may access its individual items using the accepted matrix notation, as in m3

(-1,2,1) . This last requirement will turn out to be the most difficult one to
satisfy.

First, given a list of bounds bounds compute the size of the matrix and
allocate storage for it in an array of the same size. This is the right place to
check if the bounds are appropriate, that the lower bound for a dimension does
not exceed its upper bound. In case it does, the call halts. Additionally, the
site could print an error message, which we do not implement here.

{- Argument of size is a list of bounds.
size Publishes the number of matrix elements.

-}
def size([]) = 1
def size((lo,hi):bs) = Ift(lo <= hi) >> (hi-lo+1) * size(bs)

val ar = Array(size(bounds))
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Next, given a list of indices compute the location of the matrix element. Site
call item(is) , where is is a list of indices, publishes the corresponding matrix
element. An auxiliary site index computes the linear index of the element from
the list index is . Site index checks to ensure that each index falls within the
bounds for that dimension and halts if it does not.

def item(is) =

{- index(acc,xs,is) has
acc: accumulator for index computation
xs : list of bounds
is : list of indices

Compute acc+j where j is the linear index
of the element at is.

-}

def index(acc,[],[]) = acc

def index(acc, (lo,hi):xs, i:is) =
Ift(lo <= i && i <= hi) >>
index(acc * (hi-lo+1)+(i-lo), xs, is)

ar(index(0,bounds,is))

Site item can be used to access the matrix items. However, item takes a list
of indices as argument whereas we would like to access the elements using their
normal matrix notation; that is, we would like to write m3(-1,2,1) rather than
m3([-1,2,1]) . One possible approach would be define another site access

and have matrix publish the closure access , as shown below. There is a def

for each dimension that the user may possibly need.

def access() = item([])
def access(i) = item([i])
def access(i,j) = item([i,j])

.

.

Current implementation of Orc supports only fixed arity for sites, so this
definition of access is illegal. So, we modify the solution as follows. Let
access take a list as input and publish a closure corresponding to the length of
the list, as in

def access([_,_]) = lambda(i,j) = item([i,j])

The call matrix(bounds) publishes access(bounds) , a closure that accepts as
many indices as the length of the list as argument and publishes the correspond-
ing matrix element. The complete program appears in Figure 5.3 (page 152).
The program allows for up to 3-dimensional matrices; extension for any specific
dimension involves defining access for that dimension using the given template.
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Shared data structure In many applications with two dimensional and
higher dimensional matrices it is required to partition a matrix into subma-
trices. We extend the definition of matrix to allow such partitioning. In fact,
we allow any submatrix of a given matrix to be named and treated like a matrix
on its own. Different submatrices may overlap so that modification of the value
of an element in one submatrix may be reflected in another, as in a shared data
structure.

This extension requires a change in the interface and the manipulations of
closures in the implementation. First, a matrix is defined as a class, simply called
matrix’ , that includes a single method submatrix . For instance, execution of

val mat = matrix’([(-3,2),(-5,-3),(2,10)])

results in mat being bound to a matrix object with the given bounds. It is no
longer possible to access the elements of mat simply by writing mat(0,-1,2) ,
say. Instead,

val lu = mat.submatrix([(-1,1),(-1,-1),(2,3)])

for example, binds lu to a submatrix of mat as specified by the bounds. Now
the elements of lu can be accessed, as in lu(0,-1,2) . The entire matrix can
be accessed by creating a submatrix with the original dimensions.

val whole_mat = matrix’([(-3,2),(-5,-3),(2,10)])

The implementation of matrix’ is nearly the same as of matrix . In addition
to modifying the interfaces, as described above, the goal expression of site item

is modified to use the dimensions of the specified submatrix, not that of the
original matrix (as was the case in the definition of matrix ). The entire program
is shown in Figure 5.4 (page 153).

A worthwhile extension is to allow each submatrix to specify the coordinate
system to address its elements. This coordinate system may be different from
that of the original matrix. For example, lu may designate that its “leftmost”
corner element, i.e., the one with index (-1,-1,2) in the original matrix, be
accessed using index (1,0,0) , say. It is sufficient to specify the coordinate
transform for just one element, as above, and then the coordinates of all other
elements can be determined. We have not shown this extension here; it is easy
to modify matrix’ to accomodate ths extension.

Multidimensional Table We extend Table , which is 1-dimensional, to mul-
tiple dimensions. The definition multiTable(ld,fun) , shown in Figure 5.5,
has the dimensions as a list in ld as for a multidimensional matrix; addition-
ally, argument fun is a site of the same arity as the length of list ld . The
program instantiates a matrix of the appropriate size, computes fun for each
matrix location and stores it there. It publishes a closure that allows access to
the contents of each matrix location as in a Table .

The goal expression enumerates all indices by calling enum and populates the
matrix by calling pop which invokes fun . The program, shown in Figure 5.5,
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allows for up to 3-dimensions; extension for any specific dimension involves
defining pop and acc for that dimension following the given template.

A mesh of processes can be nicely described using a 2-dimensional table. A
mesh is a 2-dimensional grid where a process is located at each grid point and
is connected by channels to its four immediate neighbors in the horizontal and
vertical directions. The processes at the mesh boundary have fewer neighbors.
A mesh structure is often used in solving heat transfer problems using finite
difference approximation of Laplace equations. We develop the skeleton of such
a solution, below.

Arguments of site laplace , below, are the dimensions of the grid and other
parameters, not shown, that are specific to the problem. Instantiate the in-
coming channels to the processes as in and the outgoing channels as out using
multidimensional tables. Processes are set up as sites. The computation of the
process at a typical grid point (i,j) is shown below as point(i,j) . A process
reads data along incoming channels from its four neighbors, computes and then
writes to its outgoing channels, as a step. (We do not show the processes at the
boundary of the grid.) The steps are repeated until some convergence criterion
is met. We show a template for an unending computation.

def laplace(m,n, ...) =

val in =
multiTable([(0,m-1),(0,n-1)], lambda(i,j) = Channel())

val out =
multiTable([(0,m-1),(0,n-1)], lambda(i,j) = Channel())

def read(i,j) = in(i,j).get()
def write(i,j,x) = out(i,j).put(x)

def point(i,j) =
(read(i-1,j),read(i+1,j),read(i,j-1),read(i,j+1))
>(u,v,x,y)>

-- using input (u,v,x,y) solve one step for point (i,j).
-- Put result in variable res

...

>> (write(i-1,j,res),write(i+1,j,res),
write(i,j-1,res),write(i,j+1,res))

>> point(i,j)

-- Goal of laplace: start all step(i,j) concurrently

upto(m) >i> upto(n) >j> point(i,j)
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5.4.8 Warshall’s Algorithm for Graph Transitive Closure

We illustrate the application of closure in coding an algorithm due to War-
shall [46] that computes the transitive closure of a finite, directed graph. Given
is a boolean matrix c where c(i, j) = true if and only if there is an edge from
node i to node j; assume that the graph has n nodes numbered 0 through n−1.
The transitive closure matrix t has t(i, j) = true if and only if there is a path
from node i to node j. If for every i, c(i, i) = true then t computes paths of
length 0 or more; if c(i, i) = false then t computes paths of length 1 or more,
which is often useful in determining if a node belongs to a loop.

Warshall’s algorithm computes a succession of matrices ck, for 0 ≤ k ≤ n,
where ck(i, j) = true if and only if there is a path from node i to node j in
which all intermediate node numbers are less than k. It follows that c0 = c and
cn = t, and

ck+1(i, j) = ck(i, j) ∨ (ck(i, k) ∧ ck(k, j)) (W)

Thus, ck+1 may be computed from ck in O(n2) elementary steps resulting in a
O(n3) algorithm for transitive closure.

We encode equation (W) in two different ways to illustrate different aspects
of closure.

Connection Matrix given as a closure Let matrix c be given by a site
c, i.e., a closure, where edge (i, j) exists if and only if c(i, j) publishes true .
We code Warshall’s algorithm below in which each intermediate matrix is also
represented by a closure. Here, step(c,k) assumes that argument c is ck and
it publishes ck+1, using equation (W). The auxiliary site loop applies step

in increasing order of k starting at k = 0 . The entire algorithm is started by
calling warshall(w,n) where w is a closure representing the initial matrix, and
n describes the dimension of the matrix.

def warshall(w,n) =

def step(c,k) =
lambda(i,j) = c(i,j) || ( c(i,k) && c(k,j) )

def loop(c,k) =
if k = n then c else (step(c,k) >d> loop(d,k+1) )

loop(w,0)

The program shown above does not actually publish the transitive closure
matrix. What it publishes is a site that can be called to retrieve the value of any
specific element of the transitive closure matrix. Its computation time is largely
independent of the size of the graph. The actual computation takes place when
the site t published by warshall(w,n) is called, as in,

warshall(w,n) >t> t(i,j)
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for some specific i and j . Then closure t unfolds to publish the transitive closure
value at (i,j) . The execution time would be Ø(n3) for any such computation.

This style of computation is extremely inefficient if even a few elements of t

are to be retrieved. If it is required to print the entire transitive closure matrix,
there will be considerable duplication of computation steps. The solution given
below is a better alternative in such cases.

Connection Matrix given as a Table Assume that the input matrix is
given as an immutable multidimensional table, multiTable , as defined in Sec-
tion 5.4.7. The modified transitive closure program is nearly identical to the
one above except that step(c,k) takes a multiTable c which is actually ck

and publishes a multiTable corresponding to ck+1.

def warshall’(w,n) =

def step(c,k) =
multiTable(

[(0,n-1),(0,n-1)],
lambda(i,j) = c(i,j) || ( c(i,k) && c(k,j) )

)

def loop(c,k) =
if k = n then c else (step(c,k) >d> loop(d,k+1) )

loop(w,0)

The publication of warshall’(w,n) is a multiTable t representing the
transitive closure matrix. Computation of t(i,j) takes constant time.

5.5 Concluding Remarks

This chapter has illustrated a variety of combinations of Orc expressions to solve
a number of small problems. Clearly, the same types of combinations can be
applied to larger expressions, or program components by treating them as sites.
We shall see other kinds of programming idioms in the following chapters.
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def calculate2(xs) =

def expr(xs) =
term(xs) >(n,ys)>
( (n,ys) | ys >"+":zs> expr(zs) >(m,ws)> (n+m,ws) )

def term(xs) =
factor(xs) >(n,ys)>
( (n,ys) | ys >" * ":zs> term(zs) >(m,ws)> (n * m,ws) )

def factor(xs) =
number(xs) | xs >"(":ys> expr(ys) >(n,")":zs)> (n,zs)

def number’(i,[]) = (i,[])
def number’(i,x:xs) =

digit(x) >v> number’(10 * i+v,xs); (i,x:xs)

def number([]) = stop
def number(x:xs) = digit(x) >v> number’(v,xs)

def digit(x) =
x >"0"> 0

| x >"1"> 1
| x >"2"> 2
| x >"3"> 3
| x >"4"> 4
| x >"5"> 5
| x >"6"> 6
| x >"7"> 7
| x >"8"> 8
| x >"9"> 9

expr(xs) >(n,[])> "expression value = " + n;
"expression is illegal"

-- Usage

characters("3 * (4+6 * (2+3)+8)+19 * 2") >xs> calculate2(xs)

-- publishes: "expression value = 164"

Figure 5.1: 2-function Calculator
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def calculate4(xs) =

def expr(xs) =
term(xs) >(n,ys)>
( (n,ys)

| ys >"+":zs> expr(zs) >(m,ws)> (n+m,ws)
| ys >"-":zs> expr’(zs) >(m,ws)> (n+m,ws)

)

def expr’(xs) =
term(xs) >(n,ys)>
( (-n,ys)

| ys >"+":zs> expr(zs) >(m,ws)> (-n+m,ws)
| ys >"-":zs> expr’(zs) >(m,ws)> (-n+m,ws)

)

def term(xs) =
factor(xs) >(n,ys)>
( (n,ys)

| ys >" * ":zs> term(zs) >(m,ws)> (n * m,ws)
| ys >"/":zs> term(zs) >(m,ws)> ((n+0.0)/m,ws)

)

def factor(xs) =
number(xs) | xs >"(":ys> expr(ys) >(n,")":zs)> (n,zs)

def number’(i,[]) = (i,[])
def number’(i,x:xs) =

digit(x) >v> number’(10 * i+v,xs); (i,x:xs)

def number([]) = stop
def number(x:xs) = digit(x) >v> number’(v,xs)

def digit(x) =
x >"0"> 0

| x >"1"> 1
| x >"2"> 2
| x >"3"> 3
| x >"4"> 4
| x >"5"> 5
| x >"6"> 6
| x >"7"> 7
| x >"8"> 8
| x >"9"> 9

expr(xs) >(n,[])> "expression value = " + n;
"expression is illegal"

Figure 5.2: 4-function Calculator
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def matrix(bounds) =

{- Argument of size is a list of bounds -}
def size([]) = 1
def size((lo,hi):bs) =

Ift(lo <= hi) >> (hi-lo+1) * size(bs)

val ar = Array(size(bounds))

def item(is) =

{- index(acc,xs,is) has
acc: accumulator for index computation
xs : list of bounds
is : list of indices

Compute acc+j where j is the linear index
of the element at is.

-}

def index(acc,[],[]) = acc

def index(acc, (lo,hi):xs, i:is) =
Ift(lo <= i && i <= hi) >>
index(acc * (hi-lo+1)+(i-lo), xs, is)

ar(index(0,bounds,is)) -- Goal of item(is)

-- Define up to 3 dimensional matrices.

def access([]) = lambda() = item([])
def access([_]) = lambda(i) = item([i])
def access([_,_]) = lambda(i,j) = item([i,j])
def access([_,_,_]) = lambda(i,j,k) = item([i,j,k])

access(bounds) -- Goal of matrix(bounds)

-- Usage

val mat = matrix([(-3,2),(-5,-3),(2,10)])
mat(0,-4,5) := 0+(-4)+5 >> mat(0,-4,5)?

-- publishes 1

Figure 5.3: Multidimensional matrix
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-- Define a matrix with a method to name submatrix
def class matrix’(bounds) =

{- Argument of size is a list of bounds -}
def size([]) = 1
def size((lo,hi):bs) =

Ift(lo <= hi) >> (hi-lo+1) * size(bs)

val ar = Array(size(bounds))

def submatrix(dim) =
def item(is) =

{- index(acc,xs,is) has
acc: accumulator for index computation
xs : list of bounds
is : list of indices

Compute acc+j where j is the linear index
of the element at is.

-}

def index(acc,[],[]) = acc

def index(acc, (lo,hi):xs, i:is) =
Ift(lo <= i && i <= hi) >>
index(acc * (hi-lo+1)+(i-lo), xs, is)

-- Goal of item(is)
ar(index(0,dim,is))

-- Define up to 3 dimensional matrices.

def access([]) = lambda() = item([])
def access([_]) = lambda(i) = item([i])
def access([_,_]) = lambda(i,j) = item([i,j])
def access([_,_,_]) = lambda(i,j,k) = item([i,j,k])

{- Goal of submatrix -}
access(dim)

{- Goal of matrix -}
stop

-- Usage

val mat = matrix’([(-3,2),(-5,-3),(2,10)])

val lu = mat.submatrix([(-1,1),(-1,-1),(2,3)])

lu(0,-1,2) := 1 >> lu(0,-1,2)?

-- publishes 1

Figure 5.4: Submatrix



154 CHAPTER 5. PROGRAMMING IDIOMS

def multiTable(ld,fun) =
val mat = matrix(ld)

-- Site enum enumerates all index lists with the bounds
-- given in its argument.

def enum([]) = []
def enum((lo,hi):xs) =

upto(hi-lo+1) >i> enum(xs) >ys> (i+lo):ys

-- Populate the table.
-- Define up to 3 dimensional tables.

def pop([]) = mat() := fun()
def pop([i]) = mat(i) := fun(i)
def pop([i,j]) = mat(i,j) := fun(i,j)
def pop([i,j,k]) = mat(i,j,k) := fun(i,j,k)

def acc([]) = lambda() = mat()?
def acc([_]) = lambda(i) = mat(i)?
def acc([_,_]) = lambda(i,j) = mat(i,j)?
def acc([_,_,_]) = lambda(i,j,k) = mat(i,j,k)?

-- Goal of multiTable(ld,fun)
enum(ld) >is> pop(is) >> stop ; -- populate the table
acc(ld)

Figure 5.5: Multidimensional Table



Chapter 6

Programming with Lists

An Orc program may communicate with a site using a variety of data structures,
each implemented as a site. A list is one such data structure. Other common
data structures are channel, which is available in the Orc standard library, html
pages and XML records. Lists are the dominant data structure in functional
programming. Even though they are not as important in Orc, they are still
very useful, and we often use lists for data manipulation internally within Orc
programs.

Section 6.1 describes how the well-known list operations are coded in Orc,
particularly for concurrent execution. In Section 6.2 (page 161) we introduce a
data structure, powerlist [41, 42, 1, 26, 29, 5], that is especially suited for parallel
algorithms. Orc is not designed for lazy execution; yet, we can define and
manipulate lists, both finite and infinite, in a lazy style in Orc, see Section 6.3
(page 165).

6.1 Parallel List Operations

A list, as defined in typical functional languages and Orc, is an inherently se-
quential data structure. The list elements can only be accessed one at a time
from head onwards. Any parallelism in operating on a list comes from applying
some operation on one or more elements near the head of the list and simul-
taneously operating on the remaining part of the list. We show algorithms for
several classical list operations.

6.1.1 Map

The map over a list applies a given function, f , to each list element and publishes
the resulting list. The definition in Haskell is:

map(_,[]) = []
map(f, x:xs) = f(x) : map(f,xs)

155
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This is exactly the parallel list map in Orc, which we reproduce here from
Section 4.4.2.5. Site parmap applies a site f , instead of a function, in parallel
over the elements of xs ; deflation forces all calls to parmap to unfold concur-
rently.

def parmap(_, []) = []
def parmap(f, x:xs) = f(x) : parmap(f,xs)

As an example of the use of parmap , consider broadcasting a message to a
list of listeners . A message is sent to an individual listener r by executing
send(r) . Then the broadcast is simply

parmap(send, listeners)

For completeness, we reproduce from Section 4.4.2.5 the map program that
applies f sequentially from left to right.

def seqmap(_, []) = []
def seqmap(f, x:xs) = f(x) >y> (y : seqmap(f,xs) )

6.1.2 Filter

Given is a list and a site test that publishes a boolean value when called with
any element of the list as argument. It is required to publish the sublist on which
test is true. The following Orc program applies test on the head element of
the list and filters the remaining list simultaneously. This has merit only if
multiple invocations of test can be executed simultaneously. The algorithm
runs in time linear in list length because the result sublist can be formed only
sequentially.

def filter([]) = []
def filter(x:xs) =

(test(x) , filter(xs)) >(b,ys)> ( Ift(b) >> x:ys ; ys)

A variation of filter is to publish a single boolean value, true if the filtered
list is non-empty and false if it is empty. This is same as computing logical
or over the test values. We can use the parallel-or idiom from Section 2.5.3.2
(page 38).

def parallel_or([]) = false
def parallel_or(x:xs) =

val b = Ift(test(x)) >> true | parallel_or(xs)

b ; false

6.1.3 Fold

Given a non-empty list [x0, x1, ..., xn] and a site f of two arguments, we
consider a simple fold operation defined as
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fold([x0]) = x0
fold([x0, x1, ..., xn]) = f(x0, fold([x1, ..., xn])

A sequential implementation in Orc mimics the definition:

def fold(_,[x]) = x
def fold(f,x:xs) = f(x,fold(xs))

If f is strict, then an execution of f requires values of both its arguments, x

and fold(xs) . Therefore, inductively, the computation is sequential. If f has
no special property, then we can do no better. If f is an associative operator
then we can apply f to several elements of the list concurrently, assuming that
the list elements can be accessed in parallel. If f is, additionally, commutative,
then we can squeeze even more concurrency out of the solution.

6.1.3.1 Associative Fold

We show a parallel implementation of associative fold that builds a sequence
of lists. The initial list is the given one; assume that it is non-empty. Each
subsequent list is about half the size of the previous list, obtained by folding
disjoint pairs of adjacent items. Site pairfold builds such a reduced list from
an argument list. The associative fold site, afold , calls pairfold repeatedly
until the reduced list has just one item, which is the required result of fold.

The steps within one instance of pairfold may be performed in parallel,
though different instances of pairfold have to be executed in sequence.

def afold(f, [x]) = x
def afold(f, xs) =

def pairfold([]) = []
def pairfold([x]) = [x]
def pairfold(x:y:xs) = f(x,y) : pairfold(xs)

afold(f, pairfold(xs))

The number of calls to pairfold is logarithmic in the initial list size. If the
list elements can be accessed simultaneously, a reduced list can be formed in
constant time, proportional to the time required to compute one instance of f

(assuming that list formation from its elements takes constant time).

Note: Even though the original list is non-empty, pairfold([]) may still be
called from the body of pairfold .

Map and Associative Fold A commonly occurring situation is to first
apply a map m and then fold f to a non-empty list of elements. Clearly, we
can apply the operations in sequential order. A better solution, when f is
associative, is to apply the map to a list element when it is retrieved for the first
time and use afold . This requires a slight change in the afold program. The
first pass over the list applies both map and fold over the list, and subsequent
passes just fold the list using afold .
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def map_afold(m,f, [x]) = m(x)
def map_afold(m,f, xs) =

def map_pairfold([]) = []
def map_pairfold([x]) = [m(x)]
def map_pairfold(x:y:xs) = f(m(x),m(y)) : map_pairfold(xs)

afold(f, map_pairfold(xs))

6.1.3.2 Associative Commutative Fold

The associative fold algorithm of the previous section sequentializes the phases
of the computation. As a result, elements that have already been computed
during a phase and are ready to be folded must wait until all elements of a
phase have been computed. The next program avoids this problem if the fold
operator f is both associative and commutative.

The strategy is to continually read two items from the list, fold them and
append the result to the list until there is just one item in the list. The final item
is the desired result. Multiple threads can run concurrently. Unfortunately, the
list data structure is not appropriate for such a strategy. It is much better to use
a channel that permits both adding and removing items at the same cost. First,
we describe how the elements of a channel are folded, and then, very briefly,
sketch how to transfer the items from a list to a channel.

Folding items from a channel Suppose that the first n elements of a chan-
nel c are to be folded. If n is 1, the first element is read from the channel
and published. If n exceeds 1, then f(fold(n/2), fold(n/2)) performs fold
simultaneously for two halves of the items in the channel (assuming that n is a
power of 2), and applies f to the results of these two folds. For general values of
n, the two occurrences of n/2 are replaced by the ceiling and floor of n/2; since
integer division rounds down the fractional value to the next lower integer, floor
of n/2 for positive n is simply n/2 and the ceiling is n − n/2.

def chFold(c,1) = c.get()
def chFold(c,n) = f(chFold(c,n/2) , chFold(c,n-n/2))

The solution is parallel. Yet, it suffers from a major shortcoming. Each
recursive call partitions the channel elements into two halves, and the halves
have to be computed independently and then folded. Consequently, interme-
diate results computed in different halves can not be folded immediately. We
overcome this problem in the next solution by writing intermediate results back
to the channel where they can be immediately used for folding.

A “thread” is a snippet of computation that reads two values from the
channel, folds them and writes the result to the channel. It does not publish a
value. The code for a thread is:

c.put(f(c.get(), c.get())) >> stop
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Observe that both values from the channel are retrieved in parallel. Below,
threads(k) starts k threads concurrently.

def threads(0) = stop
def threads(k) =

threads(k-1)
| c.put(f(c.get(), c.get())) >> stop

We note two facts about threads(k) given that the initial number of items
in the channel is n: (1) upon completion of the execution of threads(k) the
channel contains n−k items whose fold yields the same result as the fold on the
initial channel content, and (2) the computation is guaranteed to be completed
if n > k. Henceforth, F denotes the result of fold applied on the initial channel
content. We sketch proofs of these two assertions.

At any point in the execution of threads(k) , let chs be the multiset of
items in the channel and ths be the multiset of items that have been read by
the threads that are still executing. First, we show that fold applied to the
elements of (chs ∪ ths) yields F . Initially, ths is empty, so the claim is true
vacuously. The operations that affect chs and ths are: (1) a thread reading an
item from the channel, and (2) a thread writing a value to the channel. In (1),
(chs ∪ ths) does not change, so the result holds. In (2), a thread writes f(x, y)
corresponding to two items x and y. Before the write, both x and y belonged to
ths, hence to (chs ∪ ths). After a write the thread is no longer executing; so, x
and y have been removed from ths and f(x, y) added to chs. Effectively, x and y
have been replaced by f(x, y) in (chs ∪ ths), thus keeping the fold of (chs ∪ ths)
invariant. On completion of threads(k) , there is no executing thread, so ths
is empty. Hence, the fold of chs at that point is F . Each thread consumes two
items and writes one item to the chnnel. So, threads(k) consumes k items,
leaving n − k items in the channel on its completion.

The termination argument requires n > k. Without this assumption, there
could be a deadlock among the executing threads: given n ≤ k, each thread may
read one item from the channel, thus consuming all the items, and no thread
can then proceed, each waiting to read one more item from the channel. Given
n > k some thread among the k threads will be able to read two items from the
channel, using the pigeon-hole principle. So, some thread will fold two items,
write the result to the channel and complete its execution, thus converting the
problem to one with k−1 threads and k or more items in the channel, a situation
that is handled by the inductive hypothesis.

The correctness argument suggests that we may execute threads(n-1) ,
which is both guaranteed to complete and leave a single value in the channel
that is the desired result. This observation leads to the following program.

def cfold(c,n) =
def threads(0) = stop
def threads(k) =

threads(k-1)
| c.put(f(c.get(), c.get())) >> stop



160 CHAPTER 6. PROGRAMMING WITH LISTS

threads(n-1) ; c.get()

Transferring items from a list to a channel If it is required to apply as-
sociative and commutative fold over a list, it is best to transfer the list elements
to a channel and apply fold. We show two different algorithms for this com-
putation depending on whether the list length is available initially (typically,
length(xs) , for a list xs , can be computed in constant time, because most
implementations of list retain its length).

Unknown List length If the list length is not available initially, then one
strategy is to first transfer the list elements to a channel and count the number
of elements during the transfer. Then cfold(c,n) may be executed where c is
the name of the channel. We show an alternate algorithm that runs the transfer
and fold concurrently.

Below, the primary site is combine . When combine(xs, n) is called, it
operates on list xs and channel c whose length is n. The site concurrently
transfers items from xs to c and applies fold to the items in both. Initially,
in the goal expression, c is empty and n is 0. Note that we use the pruning
combinator wherever possible to initiate concurrent computation.

def list_cfold(f, xs) =
val c = Channel()

def combine([], 0) = stop
def combine([], 1) = c.get()
def combine([], n) = (c.get(), c.get()) >(x,y)>

(combine([], n-1) << c.put(f(x,y)) )

def combine([x], n) = combine([], n+1) << c.put(x)
def combine(x:y:rest, n) =

combine(rest, n+1) << c.put(f(x,y))

combine(xs, 0)

Known List length Below, list_cfold_n(f,xs,n) is called with pa-
rameters f and xs as in list_cfold and n which is the length of xs .

The execution strategy is a follows. Execution of xfer(xs) transfers all
items from list xs to channel c , and combine(m) publishes fold of m items from
channel c . The goal expression xfer(xs)| combine(n) starts executing even
when c does not have n items; execution of combine(n) waits for xfer(xs) to
transfer an item to the channel if it can not proceed.

def list_cfold_n(f,xs,n) =
val c = Channel()

-- Transfer all items of the argument list to channel c
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def xfer([]) = stop
def xfer(x:xs) = xfer(xs) << c.put(x)

-- combine(m) computes fold of m items from channel c

def combine(1) = c.get()
def combine(m) =

c.get() >x> c.get() >y>
( c.put(f(x,y)) >> stop | combine(m-1))

{- Goal of list_cfold_n -}
xfer(xs) | combine(n)

6.2 Powerlist

Parallel operations on an Orc list are difficult because a list is an inherently
sequential data structure. In this section, we consider a list structure, called
Powerlist [41, 42, 1, 26, 29, 5], that permits parallel access to its elements. It is
expected that the powerlist operators can be implemented efficiently on some
computing platform, such as a hypercubic architecture, in constant or logarith-
mic time. We can express a number of data parallel algorithms succinctly using
this structure. A powerlist is implemented by a site. We give a very short in-
troduction to powerlist, and show a small number of examples of its usage. We
refer the reader to the original sources for more details.

A powerlist is a finite list consisting of 2n elements, for some n ≥ 0. The list
is enclosed within angular brackets to distinguish it from sequential lists. Thus,
〈2〉 and 〈2, 3〉 are powerlists, a smallest list being one with a single element. The
type of a powerlist is given by the type of its elements — all of which have the
same type — and its length. A powerlist may include powerlists as elements,
to represent matrices and other higher-dimensional structures.

A powerlist may be constructed out of two powerlists of the same size and
type using either of the following operators. The tie operator, written as || ,
concatenates the elements of the component powerlists1 . The zip operator,
written as ⊲⊳ , interleaves the elements of the two lists starting with the first
list. Both operators are written infix. Thus, 〈1, 2〉 || 〈3, 4〉 is 〈1, 2, 3, 4〉 whereas
〈1, 2〉 ⊲⊳ 〈3, 4〉 is 〈1, 3, 2, 4〉. These operators are analogous to cons on sequential
lists. We apply the usual pattern matching on these operators. We show a few
small examples next.

Note: The examples in this section are written using mathematical font because
the tie and zip operations on powerlists can not be displayed using the typewriter
font.

1This operator was written as a single vertical bar in earlier papers. We adopt a new
notation here to distinguish it from parallel composition combinator of Orc.
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The following site reverses a powerlist.

def rev(〈x〉) = 〈x〉
def rev(p || q) = rev(q) || rev(p)

We could have written the last clause in the definition using ⊲⊳ instead of || :

def rev(p ⊲⊳ q) = rev(q) ⊲⊳ rev(p)

Sites rr and rl rotate a powerlist by one place to the right and left, respec-
tively.

def rr(〈x〉) = 〈x〉 def rl(〈x〉) = 〈x〉
def rr(u ⊲⊳ v) = rr(v) ⊲⊳ u def rl(u ⊲⊳ v) = v ⊲⊳ rl(u)

A more involved permutation arises in Fast Fourier Transform [9]. Assign
an n-bit index in standard order to each element of a powerlist P . It is required
to permute P to P ′ such that the element with index b in P has index b′ in P ′

where b′ is the reversal of the bit string b. Site inv, defined below, implements
the desired permutation. It can be understood as follows. The effect of the
permutation is that the highest bit of an index becomes its lowest bit; thus, the
left half of the list (those whose highest bits are 0) are the elements with even
indices in the resulting list, i.e., the first sublist that is obtained by unzipping
P ′. Since all bits are reversed, the same scheme has to be applied recursively.

def inv(〈x〉) = 〈x〉
def inv(p || q) = inv(p) ⊲⊳ inv(q)

The definition of inv may be likened to a De Morgan law in boolean alge-
bra, where tie and zip are logical “and” and “or”, respectively, and inv is the
negation. The analogy suggests that the following identity holds; its proof can
be established easily using induction.

def inv(p ⊲⊳ q) = inv(p) || inv(q)

Notational Convention For the examples with powerlists we coerce an oper-
ator that is applicable to the elements of powerlists to the powerlists themselves.
Let p and q be powerlists of the same length and + a binary operator appli-
cable to an element of p and the corresponding element of q; then p + q is the
powerlist obtained by applying + to the elements of p and q pointwise. Also,
x+p, where x is an element and p a powerlist, is a powerlist obtained by apply-
ing x+ to each element of p. Programs employing these conventions are easily
translated to programs in Orc; the conventions are not generally useful outside
the powerlist theory, so they are not part of the Orc language.
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Associative Fold, Prefix Sum It is easy to program associative fold: con-
struct the fold of the two halves independently and then combine the two values
using the given function.

def fold( , 〈x〉) = x
def fold(f, p || q) = f(fold(f, p), fold (f, q))

There seems to be no faster way to compute the result if f is also commu-
tative.

Next, we show computation of the prefix sum, which applies fold to every
non-empty prefix of the argument powerlist. Henceforth, for notational con-
venience, we write the fold function as a binary infix operator ⊕. As before,
the function is associative, and we further assume that it has a left zero el-
ement, Zero, such that Zero ⊕ x = x, for every x. The prefix sum of list
〈x0, x1, .., xi, .., xN 〉 is 〈x0, x0 ⊕ x1, .., x0 ⊕ x1 ⊕ .. xi, .., x0 ⊕ x1 ⊕ .. ⊕ xN 〉.

The following algorithm is due to Ladner and Fischer [30], see Misra [41] for
a derivation. The algorithm first applies ⊕ to adjacent elements x2i, x2i+1 to
compute the list 〈x0⊕x1, .. x2i⊕x2i+1, ..〉. This list has half as many elements as
the original list; its prefix sum is then computed recursively. The resulting list is
〈x0 ⊕x1, .., x0 ⊕x1 ⊕ ..⊕x2i ⊕x2i+1, . . .〉. This list contains half of the elements
of the final list; the missing elements are x0, x0 ⊕x1 ⊕x2, .., x0 ⊕x1 ⊕ ..⊕x2i, ...
These elements can be computed by “adding” x2, x4, .., appropriately to the
elements of the already computed list.

First, we define a site to insert Zero as the leftmost element of a powerlist
and discard its rightmost element.

def rs(〈x〉) = 〈Zero〉
def rs(p ⊲⊳ q) = rs(q) ⊲⊳ p

The Ladner-Fischer scheme is defined by site lf .

def lf 〈x〉 = 〈x〉
def lf (p ⊲⊳ q) =

val t = lf (p ⊕ q)
(rs(t) ⊕ p) ⊲⊳ t

Polynomial Evaluation A polynomial with coefficients pj , 0 ≤ j < 2n,
where n ≥ 0, may be represented by a powerlist p whose jth element is pj. The
polynomial value at some point x is

∑

0≤j<2n

pj × xj . For n > 0, this quantity is

∑

0≤j<2n−1

p2j × x2j +
∑

0≤j<2n−1

p2j+1 × x2j+1

=
∑

0≤j<2n−1

p2j × (x2)j + x × ∑

0≤j<2n−1

p2j+1 × (x2)j .

The coefficients in the two summands are merely the ones with even and
odd indices, which can be extracted by applying zip to “deconstruct” the list.
The following site, ep, evaluates a polynomial using this strategy.
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def ep(〈c〉, x) = c
def ep(p ⊲⊳ q, x) = ep(p, x2) + x × ep(q, x2)

Fast Fourier Transform For a polynomial p of degree n, its Fourier trans-
form is the polynomial evaluated at a list of points 〈ω0, ω1, .. , ωn−1〉, where ω
is the nth principal root of 1. An efficient algorithm [9] can compute this trans-
form in O(n log n) sequential steps or O(log n) parallel steps. We merely present
the algorithm below, see [41] for a derivation. Below, assume that powers(m)
publishes 〈ω0, ω1, .. , ωm−1〉 where ω is the (2 × m)th principal root of 1; this
computation is similar to that of polynomial evaluation.

def FFT (〈x〉) = 〈x〉
def FFT (p ⊲⊳ q) =

val (p′, q′) = (FFT (p),FFT (q))
val u = powers(length(p))

(p′ + u × q′) || (p′ − u × q′)

Observe that both operators for powerlist construction, tie and zip, are used in
the algorithm, much like in the definition of inv.

Sorting Networks Given a powerlist, our goal is to sort its elements in as-
cending order from left to right. We present two remarkable algorithms for par-
allel sorting due to Batcher[4]. We merely present the algorithms here; see [41]
for the correctness of these powerlist algorithms.

A general method of sorting is given by

def sort(〈x〉) = 〈x〉
def sort(p ⊲⊳ q) = sort(p) merge sort(q)

where merge (written as a binary infix operator) creates a single sorted powerlist
out of the elements of its two argument powerlists each of which is sorted. In
this section, we show two different methods for implementing merge.

A binary comparison operator, l, is used in these algorithms. The operator
(written infix) is applied to a pair of equal length powerlists, p and q; it creates
a single powerlist out of the elements of p and q by

p l q = (p min q) ⊲⊳ (p max q)

That is, the 2ith and (2i + 1)th items of p l q are (pi min qi) and (pi max qi),
respectively.

Bitonic Sort A sequence of numbers x0, x1, .., xi, .., xN is bitonic if there
is an index i, 0 ≤ i ≤ N , such that x0, x1, .., xi is monotonic (ascending or
descending) and xi, .., xN is monotonic. The function bi, given below, applied
to a bitonic powerlist returns a sorted powerlist of the original items.
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def bi(〈x〉) = 〈x〉
def bi(p ⊲⊳ q) = bi(p) l bi(q)

For sorted powerlists u and v, the powerlist (u || rev(v)) is bitonic; thus u
and v can be merged by applying bi to (u || rev(v)). The form of the recursive
definition suggests that bi can be implemented in O(log N) parallel steps, where
N is the length of the argument powerlist.

Batcher Merge The following site merges two sorted powerlists of the
same length, using O(log N) parallel steps, where N is the length of each
argument powerlist.

def bm(〈x〉, 〈y〉) = 〈x〉 l 〈y〉
def bm(r ⊲⊳ s, u ⊲⊳ v) = bm(r, v) l bm(s, u)

6.3 Lazy lists

6.3.1 Lazy, Eager, Strict, Lenient Executions

In executing a function or procedure call f(e) in any language, we can distin-
guish four styles of execution2 , corresponding to two styles for the evaluation
of e and two for the execution of f . The evaluation of e is eager if it begins
immediately; it is lazy if it begins only when the value of e is needed. The
execution of f is lenient if it begins even before the value of e is available; it is
strict if it begins only after e’s value is available.

The evaluation in ML [37] is eager and strict, whereas in Haskell [15] it is
lenient and lazy. Orc is lenient and eager. The remaining possibility, strict
and lazy, makes no sense because it requires f to start only after e has been
evaluated and e’s evaluation to start only when f ’s execution needs it. Table 6.1
shows the execution styles of these languages and Orc.

Lazy Eager
Strict ML

Lenient Haskell Orc

Table 6.1: Execution Styles

Eager execution in Orc implies that in f | g executions of f and g must
start immediately. Otherwise, real-time based computations, in particular time-
out, can not be implemented. Thus,

Rwait(1) >> 1 | Rwait(2) >> 2

2These observations are due to David Kitchin.
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will definitely publish 1, because Rwait(1) and Rwait(2) will be executed
eagerly, and so also expression 1 following the response of Rwait(1) . In com-
putations where real time plays no role, executions of both f and g in f | g

may start asynchronously at arbitrary times. This execution style can not be
distinguished from the lenient and eager style of Orc because it satisfies the
asynchronous semantics of Orc, as described in Section 3.3 (page 45).

It is possible to write Orc programs that effectively mimic strict or lazy
execution styles. A site definition f(x,y) in Orc can be made strict very easily:
replace the body of f(x,y) by x >> y >> f(x,y) so that f ’s execution starts
only after both x and y are bound to values. A similar transformation can be
made at the caller’s end in case the definition of f is not accessible.

Lazy execution, on the other hand, requires some more work. Though the
semantics of the calculus is eager, some of the language features are translated in
such a manner that the execution becomes lazy. Most prominently, conditional
expression if e then f else g is translated to

( Ift(b) >> f | Iff(b) >> g) <b< e

This implies that g is not executed if e is true; in fact neither f nor g is executed
if e isilent or non-boolean. We discuss lazy execution in detail next.

6.3.2 Lazy Execution

Lazy evaluation3 is a powerful mechanism for function evaluation. In a pro-
gramming language like Haskell [15], a function may have an argument whose
evaluation would never complete because it might be an infinite list. In typi-
cal lazy evaluation the function evaluation and argument evaluation are run in
tandem, the argument is evaluated only when it is needed and only as much of
it as needed.

We show how Orc can simulate lazy evaluation. Consider the very simplest
case, a site definition f(x) where x is to be bound to some primitive data value.
To evaluate x only when needed, change the site definition to f(x’) where x’ is
a closure that publishes the value of x when it is called. Every occurrence of x in
the body of f is replaced by x’() . Thus, x is evaluated only when needed. Now,
the caller of f has to create the appropriate closure corresponding to x’ and
supply that as a parameter of call to f . Further, the same value of x must be
supplied by different calls to x’ since x can be bound to only one value. So, x’

must memoize the computed value, see Section 7.4 (page 193) for memoization
strategies.

This simple strategy does not work if x is structured data. In that case,
lazy execution demands that computation of x need to proceed only up to the
point to enable f to commence its execution; not all of x need be computed.
For example, x may be a list and only one item of the list may be needed for

3“lazy Evaluation” is the preferred term in functional programming because the goal of
execution is to evaluate an expression to publish its value. We use “lazy execution” for Orc
because an execution does not merely evaluate but may also produce side effects and, possibly,
publish multiple values.
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the execution of f to proceed. In fact, x may be an infinite list and computing
all of it would be impossible. Our strategy for lazy execution in this case is
the standard one, as in ML. We illustrate the techique only for lists. Similar
techniques can be used to compute arbitrary structured data in a lazy manner.

6.3.2.1 Definition of Lazy List

A lazy list is either empty, denoted by [] , or a list of two items [v,th] , where
v is the head element and th a closure of 0 arguments that publishes a lazy list
when it is called. An infinite lazy list is a lazy list that is never empty. As an
example,

def ones() = [1,ones]

represents an infinite lazy list of 1’s. Henceforth, we call the closure associated
with a lazy list a thunk to distinguish it from more general forms of closures.

Note: Observe that a thunk, like ones , may appear unguarded in the definition
of the corresponding site. Unguarded recursion of a site, that is, making a call
to a site within its own definition, though useful (see Section 5.2.4, page 127,
for an example), requires a great deal of care. ✷

An infinite list is always lazy. A finite lazy list can be easily created from a
finite list. First, define site nil that publishes an empty list. The thunk nil is
used in many of the examples.

def nil() = []

Then the lazy lists corresponding to finite lists ["0"] and ["1"] are

val zero = ["0",nil]
val one = ["1",nil]

Unlike the lazy lists of functional programming languages, Orc lazy lists
need not be deterministic. Below, random_stream() publishes a lazy list that
represents an infinite sequence of random bits.

def random_stream() = [Random(2), random_stream]

Note: Our definition of lazy list subverts a principle of good programming: the
two elements of the list are of different types. While Orc supports mixing types
in the list elements, it is strongly recommended that this practice be avoided.
We can overcome the problem by defining a lazy list as a tuple, (v,th) . Or, we
can define lazy list by a class. We have chosen the current definition to simplify
notation in the descriptions of the algorithms.

6.3.2.2 Common Operations on Lazy Lists

Corresponding to sequential map operation on finite lists, we have:

def lazymap(f,[]) = []
def lazymap(f,[x,th]) = [f(x), lambda() = lazymap(f,th())]
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The operation corresponding to filter on finite lists is given below, where
p is a predicate on the elements of the list.

def lazyfilter([],_) = []
def lazyfilter([v,th],p) =
def rest() = lazyfilter(th(),p)

if p(v) then [v,rest] else rest()

The following site prints the elements of a lazy list successively on the display
device. It uses the standard site Println that prints its actual parameter on a
single line.

def lazyprintln([]) = stop
def lazyprintln([v,th]) = Println(v) >> lazyprintln(th())

The elements of a lazy list may be time-separated in their publications.
Below, movie(stream,t) publishes the elements of the infinite lazy list stream

separated by time t each. This can be used to separate video frames by about
1/24th of a second to play a movie (but all movies are finite, and a separate
clause must be added to the definition to account for this).

def movie([v,th],t) = v | Rwait(t) >> movie(th(),t)

We combine some these operations to define the list of all natural numbers,
all even natural numbers and all odd natural numbers.

def nats() =
[0, lambda() = lazymap( lambda(z) = 1+z, nat() )]

def evens() =
[0, lambda() = lazymap( lambda(z) = 2+z, evens() )]

def odds() =
[1, lambda() = lazymap( lambda(z) = 2+z, odds() )]

Alternatively, we can define evens() by doubling each element of nats() using
lazymap , and, similarly for odds() .

Fair Merge A fair merge of two infinite lists list1 and list2 is a list
that includes both list1 and list2 as sublists, retaining the duplicates, if
any, that appear in both lists. There is, however, no a-priori knowledge of the
relative order among the elements of the different sublists in the published list.
Below, we use a random bit generator to select the argument list from which
the next item is chosen for publication.

def fairmerge([v,th],[v’,th’]) =
if Random(2) = 0 then

[v , lambda() = fairmerge(th(),[v’,th’]) ]
else

[v’, lambda() = fairmerge([v,th],th’()) ]

Assume that the random bit generator is at least random to the extent that it
does not publish the same bit forever from any point onward. Then it can be
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asserted that the next element of every argument list will eventually be selected
for inclusion in the published list. Thus, the list fairmerge(evens(),odds())

is a list of all natural numbers in which the even numbers appear in order and
so do the odd numbers, but their relative order is arbitrary.

It is instructive to solve the fair merge problem in a slightly different manner.
Define a site fairmerge’ that takes three arguments, the two lists and an
infinite list of random bits according to which the two lists are to be merged.

def fairmerge’([v,th],[v’,th’],[b,bs]) =
b >0> [v , lambda() = fairmerge’(th(),[v’,th’],bs()) ]

| b >1> [v’, lambda() = fairmerge’([v,th],th’(),bs()) ]

Site fairmerge is then easily defined using random_stream defined previ-
ously.

def fairmerge(list1,list2) =
fairmerge’(list1,list2,random_stream())

Fibonacci Sequence A nice exercise in lazy execution is to publish the
sequence of Fibonacci numbers. It also illustrates the use of mutual recursion
in defining lazy lists. For the informal description, let fib be the sequence of
Fibonacci numbers. Then fib = 0 : 1 : (fib + tail(fib)) where fib + tail(fib)
denotes the item by item sum of the two sequences. It is easy to verify that this
is a proper definition of the Fibonacci sequence: writing fibi as the ith item of
fib, for i ≥ 0, we deduce from the given equation that fib0 = 0, fib1 = 1 and
fibi+2 = fibi + (tail(fib))i = fibi + fibi+1.

Site lazysum publishes the item by item sum of two infinite lazy lists.

def lazysum([x,th],[y,th’]) =
[x+y, lambda() = lazysum(th(),th’())]

Below, site fib represents the Fibonacci sequence. Its head element is 0 and
tail is the site tfib . And, tfib ’s definition is derived from

fib = 0 : 1 : (fib + tail(fib)), which gives
tail(fib) = 1 : (fib + tail(fib))

def fib() = [0,tfib]
def tfib() = [1, lambda() = lazysum(fib(),tfib())]

Replacing fib by its body in the definition of tfib we get

[1, lambda() = lazysum(fib(),tfib())]
= [1, lambda() = lazysum([0,tfib],tfib())]

Thus, we eliminate mutual recursion to get:

def tfib() = [1, lambda() = lazysum([0,tfib],tfib())]
def fib() = [0,tfib]

The same algorithm, using channels, is implemented in Section 8.2.4.
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Performance Issues Orc does not support lazy execution by default, so the
implementation is not optimized for this form of execution. It would be much
faster to compute certain infinite lists by retaining part of the state information
in their arguments, as we show below, for natural number sequence.

def cheapnat(i) = [i, lambda() = cheapnat(i+1)]
val cheapnats = cheapnat(0)

Or, for Fibonacci,

def cheapfib(a, b) = [a, lambda() = cheapfib(b, a+b)]
val cheapfibs = cheapfib(0,1)

We next show a number of standard examples of lazy execution.

6.3.2.3 Prime numbers using Sieving

First, define a site sieve that takes an infinite lazy list of positive integers as
argument and publishes another infinite lazy list in which no element is divisible
by any previous element. Next, define the sequence of primes to be the result
of sieving the list of natural numbers beginning at 2.

To define sieve , first define site notdiv where notdiv(m,n) publishes true

if n is not divisible by m, and false otherwise. Then the procedure for sieving
a lazy list [x,th] is to: (1) keep x as the head element of the published list
since, vacuously, it is not divisible by any prior element, (2) apply lazyfilter

to th() , with notdiv(x) as the predicate, to remove all multiples of x , and (3)
sieve the resulting list. Note that the list of natural numbers starting at 2 is
obtained by removing the first two elements of nats() , defined earlier.

def notdiv(m,n) = (n%m /= 0)

def sieve([x,th]) =
[x,
lambda() =

sieve(lazyfilter(th(), lambda(n) = notdiv(x,n)))
]

def primes() = nats() >[_,u]> u() >[_,v]> sieve(v())

6.3.2.4 Hamming Sequence

We solve a problem, attributed to Hamming in Dijkstra [14], using lazy execu-
tion. It is required to publish integers of the form 2i×3j×5k, for all non-negative
integers i, j and k, in increasing order. Denoting the desired infinite list by h,
we have h = 1 : merge(2×h, 3×h, 5×h), where k×h is an abbreviation for the
list obtained by multiplying each item in h by k, and merge is a function whose
arguments are increasing lists and whose value is the list obtained by merging
the argument lists into an increasing list (thus, dropping the duplicates).

First, we develop a site to merge two infinite increasing lists. Definition of
merge is standard.
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def merge([x,cl],[y,cl’]) =
Ift(x <: y) >> [x, lambda() = merge(cl(),[y,cl’]) ]

| Ift(x = y) >> [x, lambda() = merge(cl(),cl’()) ]
| Ift(x :> y) >> [y, lambda() = merge([x,cl],cl’()) ]

Below, hamming involves computation of merge(2×h, 3×h, 5×h). Pointwise
multiplication of a value with all elements of a lazy list is implemented by site
mult .

def mult(i,xs) = lazymap( lambda(z) = i * z,xs)

def hamming() =
val h = hamming

[1, lambda() =
(merge(mult(2,h()),

merge(mult(3,h()),mult(5,h())) )
)

]

The same algorithm is implemented using channels in Section 8.2.4.

6.3.2.5 Enumerating the strings of a Regular Expression

We show a program for enumerating all the strings denoted by a regular ex-
pression. The number of such strings is quite often infinite, thus requiring lazy
execution. The program is inspired by the solution in McIlroy [34].

A regular expression is defined over a specified alphabet. A regular expres-
sion is either: (1) a single symbol of the alphabet, or for regular expressions e
and f (2) (alternation) e ∪ f , (3) (concatenation) e.f , or (4) (Kleene closure)
e∗. An example of a regular expression over the alphabet of binary digits is
(0 ∪ (1.1))∗. Alternation, e ∪ f , is typically written as e | f ; we have chosen a
non-standard notation in order to avoid confusion with the usage of | in Orc.

Each regular expression denotes a non-empty set of strings4 . The deno-
tations appear in Table 6.2 where e is the denotation of expression e. Here,
symbol a is a generic symbol from the alphabet. We have overloaded the use
of ∪; it is used both for alternation of regular expressions as well as for set
union. The symbol ⊗ stands for a form of Cartesian product of two sets where
the tuple of strings from the two sets is replaced by their concatenation. The ǫ
in the definition of e∗ is the empty string, written as "" in the program. The
definition of e∗ is given by a recursive equation where we take the denotation
to be the smallest set (the least fixed-point) satisfying the equation. It can be
shown that a unique smallest set exists.

Suppose that there is a given total order over the symbols of the alphabet.
Define a total order on the strings over the alphabet as follows: (1) a shorter
string is smaller than a longer one, (2) for two strings of equal length, the

4Standard definition of regular expression includes empty set of strings as a possible deno-
taton. We have eliminated this possibility in favor of a simpler presentation.
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a = {a}
e ∪ f = e ∪ f

e.f = e ⊗ f
e∗ = {ǫ} ∪ (e ⊗ e∗)

Table 6.2: Regular Expression Denotations

string that is lexicographically smaller is smaller. Thus, ǫ is the smallest string,
“11” < “000” and “01” < “10”.

We show a program to publish the denotation of a given regular expression
as a list of strings in strict order. The essential programming problem is to
implement ∪, ⊗ and Kleene closure over ordered lists so that the published lists
are ordered.

Implementing ∪: An implementation of ∪, given by site union below,
takes two ordered lazy lists of strings as arguments and publishes an ordered
lazy list that represents their union. The program for union is very similar to
that of merge of Section 6.3.2.4 except that the order relations are different.
Strings are compared lexicographically in Orc, so “11” > “000” in Orc whereas
“11” < “000” according to the order relation we have just defined. So, strings
are first compared by length and only if they are of equal length, they are
compared lexicographically.

We define site compare where compare(s,t) publishes "lt" , "eq" or "gt"

depending on whether string s is less than, equal to or greater than t . We use
a helper site comp to compare strings of equal lengths.

def compare(s,t) =
def comp(x,y) =

Ift(x <: y) >> "lt"
| Ift(x = y) >> "eq"
| Ift(x :> y) >> "gt"

-- Goal Expression of compare

Ift(s.length() <: t.length()) >> "lt"
| Ift(s.length() = t.length()) >> comp(s,t)
| Ift(s.length() :> t.length()) >> "gt"

Site union is the counterpart of merge except that it includes additional
clauses in its definition to take the union of finite lazy lists.

def union([],[]) = []
def union([],v) = v
def union(u,[]) = u
def union([s,th],[t,th’]) =

compare(s,t) >v>
(
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v >"lt"> [s, lambda() = union(th(),[t,th’]) ]
| v >"eq"> [s, lambda() = union(th(),th’()) ]
| v >"gt"> [t, lambda() = union([s,th],th’()) ]
)

Implementing ⊗: The Cartesian product over lazy lists is implemented
by site prod ; note that Orc uses + for string concatenation. If either argument
list is empty, the resulting list is empty. Otherwise, the argument lists are
(x : xs) and (y : ys), for lazy lists xs and ys. The Cartesian product of (x : xs)
and (y : ys) has 3 component lists: [x + y], [x] ⊗ ys and xs ⊗ (y : ys). Each of
the component lists is ordered, by assumption. Further, x + y is the smallest
string in the product. So, the head element of the result list is x + y, and its
tail is obtained by doing a union over the remaining two component lists.

def prod([],_) = []
def prod(_,[]) = []
def prod([x,th],[y,th’]) =

[x+y,
lambda() = union(

lazymap( lambda(z) = x+z,th’()),
prod(th(),[y,th’])

)]

Implementing Kleene Closure: The denotation of e∗, given in Ta-
ble 6.2, is {ǫ} ∪ (e ⊗ e∗). This equation seemingly provides a direct procedure
for the computation of the denotation making use of the sites already defined.

def Kleene_closure(xs) =
union(["",nil], prod(xs, Kleene_closure(xs)) )

However, this computation is unending because the head element of the resulting
list can not be computed. Therefore, we rewrite the definition by considering
two separate cases. (1) xs contains the empty string: then, xs is of the form
["",th] and it is sufficient to compute Kleene_closure(th()) , (2) xs does
not contain the empty string: from the defining equation, the result list contains
the empty string and prod(xs, _) does not contain the empty string since xs

does not contain it; so, head element of the result list is "" and its tail is the
thunk that publishes prod(xs, Kleene_closure(xs)) .

def Kleene_closure(["",th]) = Kleene_closure(th())
def Kleene_closure(xs) =

[ "",
lambda() = prod(xs, Kleene_closure(xs))

]

We show the complete program in Figure 6.1 (page 175).
A small test of the program for the regular expression (0 ∪ (1.1))∗ is shown

below.
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val zero = ["0",nil]
val one = ["1",nil]

lazyprintln(
Kleene_closure(

union(
zero, prod(one,one) ) ) )

The following strings are printed in order ("" is actually a line with no
content):

"" 0 00 11 000 011 110 0000 0011 0110 1100 1111 00000 ...

6.4 Concluding Remarks

Lists are essential in most functional programming languages, less so in Orc.
Channels provide a more flexible data structure that allow adding and remov-
ing items at equal cost. Further, channels can represent lazy lists more directly.
We rework many of the examples of this chapter in Chapter 8 using channels.
However, a channel is a mutable data structure, so, a list is a preferred alterna-
tive wherever it can be used efficiently.
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def compare(s,t) =
def comp(x,y) =

Ift(x <: y) >> "lt"
| Ift(x = y) >> "eq"
| Ift(x :> y) >> "gt"

Ift(s.length() <: t.length()) >> "lt"
| Ift(s.length() = t.length()) >> comp(s,t)
| Ift(s.length() :> t.length()) >> "gt"

def union([],[]) = []
def union([],v) = v
def union(u,[]) = u
def union([s,th],[t,th’]) =

compare(s,t) >v>
(

v >"lt"> [s, lambda() = union(th(),[t,th’]) ]
| v >"eq"> [s, lambda() = union(th(),th’()) ]
| v >"gt"> [t, lambda() = union([s,th],th’()) ]
)

def prod([],_) = []
def prod(_,[]) = []
def prod([x,th],[y,th’]) =

[x+y,
lambda() = union(

lazymap( lambda(z) = x+z,th’()),
prod(th(),[y,th’])

)]

def Kleene_closure(["",th]) = Kleene_closure(th())
def Kleene_closure(xs) =

[ "",
lambda() = prod(xs, Kleene_closure(xs))

]

Figure 6.1: Enumerating Strings of a Regular Expression
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Chapter 7

Programming with Mutable

Store

7.1 Introduction

Manipulation of mutable store is a rich source of errors. So is the execution
of concurrent threads, even with immutable variables. Their mixture is highly
explosive unless handled with extreme discipline. The danger of overwriting
the mutable store in one thread while concurrently reading the store in another
thread is a classic pattern of error. The care required to distinguish between
mutable and immutable variables is neatly captured in the following example1.

For an immutable boolean variable b, if b then f else g is equivalent to
b >true> f | b >false> g . For a mutable boolean variable c ,
if c? then f else g is not equivalent to c? >true> f | c? >false> g .
To see the difference, note that if c? then f else g, which is translated to
( Ift(x)>> f | Iff(x)>> g)<x< c? , accesses the value of c? just once, and
depending on this value sets the value of the immutable variable x. Conse-
quently, it chooses one of the branches and discards the other depending on
the value of x . But the expression c? >true> f | c? >false> g accesses the
value of c twice, one for each branch independently and possibly at different
times. Each access to c may yield a different result, thus possibly satisfying both
pattern matches and resulting in the executions of both f and g, or satisfying
neither and resulting in no further execution.

As a general principle mutable store should be avoided. Unfortunately, it is
not possible to do so in all situations, mainly because of performance reasons.
Consider solving the following problem in functional programming and also
using mutable store: does a given list contain each one of the first million natural
numbers exactly once? When it is absolutely essential to use mutable store,
there should only be a few such data structures, and, preferably, they should be
accessed through Orc factory sites, such as Ref , Cell , Array , Semaphore and

1Example due to John Thywissen.
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Channel . Other types of mutable store can be created from these factory sites as
a class. Semaphore and channel are probably the easiest sites for disciplined use.
A number of examples that use semaphore, in connection with synchronization
protocols, appear in Chapter 9. Chapter 8 is devoted to a study of channels.

The most problematic mutable variables in concurrent programming are the
Ref variables. Their usage should be limited to a small scope, and concurrent
access to such variables should be designed with extreme care. A Cell is a more
disciplined version of Ref . Since a cell is a write-once variable, every reader of
a cell receives the same value when the read operation succeeds; in particular
concurrent reads and writes do not cause data race. A concurrent program in
which mutable variables are always written with the same value should use cells
for the mutable variables, and completely avoid locking or other synchronization
mechanisms. Section 7.3 contains several examples that illustrate the use of
cells.

7.2 In-situ Array Manipulation

We show a few small examples using arrays in this section. In all these examples,
there is never any contention in access to the array elements. So, no locking or
other special protocol is required.

7.2.1 Random Permutation

A method due to Fisher and Yates [17], also appearing in Knuth [28], randomly
permutes the elements of an array a in place. The crux of the algorithm is in
site randomize where randomize(i) randomizes the initial segment of length i
of a. For a segment of length greater than 1 randomize : (1) swaps the last item
of the segment with a random element of the segment, and then (2) randomizes
the prefix of this segment excluding the last item in a similar fashion. Observe
that the items chosen for swap may be the same elements, in which case the
swap has no effect. The algorithm is entirely sequential. It can be shown that
all permutations are equally likely provided the random number generator is
unbiased.

Below, permute(a) performs the randomization of array a by making a call
to randomize(a.length()) . The helper site swap exchanges the values of the
argument Ref variables and then publishes a signal.

def permute(a) =
def swap(i,j) = (i?, j?) >(x,y)> (i := y, j := x) >> signal

def randomize(1) = signal
def randomize(i) =

Random(i) >r>
swap(a(i-1),a(r)) >>
randomize(i-1)

randomize(a.length?)
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Observe that the logic and control flow of the algorithm are entirely inde-
pendent of the values of the mutable variables. Since the algorithm operates
sequentially, data race is not a problem.

7.2.2 Odd-Even Transposition Sort

Odd-even transposition sort is a simple in-situ sorting algorithm. It is relatively
inefficient as a sequential sorting algorithm, but it may be efficient for parallel
architectures in which the interconnection structure allows efficient communi-
cation among neighbors. We pick this example to demonstrate a mixture of
sequential and concurrent control; the execution consists of sequential phases
where each phase involves concurrent executions of threads.

We are given an array a of n items, a(0) through a(n − 1), that has to be
sorted in place so that a(i) ≤ a(i + 1), for all i, 0 ≤ i < n − 1. The sorting
procedure consists of two phases, even and odd, that are executed alternately
until the array is sorted. In the even phase, the adjacent items a(2 × i) and
a(2× i+1), for all i, are put in order, i.e., if a(2× i) > a(2× i+1), the items are
exchanged. In the odd phase, all pairs a(2× i−1) and a(2× i) are put in order.
The algorithm alternately executes the phases until neither phase exchanges any
pair of items. It can be shown that the array is sorted at that time. Assume
that all items of the array are integers.

Each phase can be executed concurrently for each pair. However, the phases
themselves are executed in a strict sequential order. We show a concise repre-
sentation in Orc that highlights both concurrent and sequential aspects of this
algorithm.

First, we describe the basic site that sorts two elements a(i) and a(j) in
place, where i < j, in non-decreasing order. It publishes true if an exchange
occurs, false otherwise.

def sort2(i,j) = -- i < j
(a(i)?,a(j)?) >(u,v)>
( if u :> v then (a(i) := v, a(j) := u) >> true

else false)

Site phase is used to carry out the computation of a single phase. We
define this site recursively: phase(i) denotes a computation carried over the
first i elements of a in which the rightmost element, a(i − 1), participates in a
comparison (if i ≥ 2). The site publishes a boolean, true if an exchange occurs
during this computation, false otherwise.

def phase(0) = false
def phase(1) = false
def phase(i) = sort2(i-2,i-1) || phase(i-2)

Observe that the standard logical or operation (denoted by || ) is strict; there-
fore, phase(i) publishes its result only on completion of all the subcomputations.

The computation of phase(i) is concurrent for all pairs because of deflation.
A full phase for the entire array is either phase(n) or phase(n−1), one of which
is an odd phase and the other even; it is immaterial which one is started first
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as long as they are executed alternately. The entire computation is a repetition
of phase(n) followed by phase(n − 1) until both phases publish false .

def cyclePhases() =
phase(n) >b> phase(n-1) >c>
( if b || c then cyclePhases() else signal)

We put the pieces together below. Site oddevensort takes an array as ar-
gument, sorts it in place, and publishes a signal on completion.

def oddevensort(a) =
val n = a.length? -- n >= 1

def sort2(i,j) = -- i < j
(a(i)?,a(j)?) >(u,v)>
( if u :> v then (a(i) := v, a(j) := u) >> true

else false)

def phase(0) = false
def phase(1) = false
def phase(i) = sort2(i-2,i-1) || phase(i-2)

def cyclePhases() =
phase(n) >b> phase(n-1) >c>
( if b || c then cyclePhases() else signal)

cyclePhases()

7.2.3 Quicksort

An outstanding example of divide and conquer is quicksort [22]. This is one
of the most studied algorithms in computer science. Its performance has been
studied extensively, by Knuth [27] and Sedgewick [44] in particular. A variety of
implementations exist on different architectures, and many variants of quicksort
have been developed that improve its performance for specific platforms.

The structure of the algorithm has also been studied extensively, mainly in
teaching program development using recursion. Yet, a concise description of the
algorithm that does justice to its various aspects —mutable store, recursion and
concurrency— does not appear in the literature. Functional programs typically
do not admit in-situ permutation of data elements, imperative programs are
typically sequential and do not highlight concurrency, and typical concurrency
constructs do not combine well with recursion. Concurrency turns out to be an
essential ingredient in the simplification of the algorithm description. Further,
it is easy transform the concurrent algorithm for sequential implementation.

We treat this example for its pedagogic value. Presenting quicksort as a
concurrent program shows its structure more clearly, and allows a number of
options for implementation on a multiprocessor. If an application requires a
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high-performance sorting algorithm, the algorithm should be explicitly coded
to exploit the characteristics of the computing platform.

7.2.3.1 The Program Structure

We define a site, quicksort , that takes an array a of numbers as argument, sorts
that array in place in ascending order, and publishes a signal upon completion.
An auxiliary site, segmentsort , defined within quicksort , sorts a segment of
the argument array in place. The goal expression of quicksort is a call on
segmentsort with the entire array as the segment.

Sorting a segment A segment is given by a pair (u, v) of indices into
the array; the items in the segment are a(i), u ≤ i < v. Thus, the length
of the segment is v − u if u ≤ v, and 0 otherwise. For any segment (u, v),
execution of segmentsort(u,v) sorts the segment in place in ascending order,
and publishes a signal upon completion. The goal expression of quicksort is
simply segmentsort(0, a.length?) .

Henceforth, we use “left” of an item or index to denote the item or index with
a smaller index; similarly, “right” . Site segmentsort uses a helper site part

that has three arguments (p, s, t), where p is a number greater than or equal
to a(s)?, and s and t specify a segment. Execution of part(p,s,t) permutes
the items of the segment such that all items in the left of the segment are at
most p and in the right are greater than p; the dividing index between left and
right sub-segments is the value published by part . More formally, execution of
part(p,s,t) publishes m where a(i) ≤ p for all i, s ≤ i ≤ m, and a(i) > p, for
all i, m < i < t. Observe that the left sub-segment is always non-empty because
a(s)? ≤ p, though the right sub-segment may be empty.

The declaration and goal expression of segmentsort are shown below. Site
swap, defined in Section 7.2.1, takes two references as arguments, exchanges
their values, and returns a signal. segmentsort immediately publishes a sig-
nal if the segment length is less than 2, since such a segment is trivially sorted.
Otherwise, part(a(u)?, u, v) publishes m with the given meaning; then a(u)

and a(m) are swapped. The two resulting subsegments are sorted independently
and concurrently by (segmentsort(u, m), segmentsort(m+1,v)) , and a sig-
nal published on their completion.

def swap(i,j) = (i?, j?) >(x,y)> (i := y, j := x) >> signal

def segmentsort(u, v) =

if v - u >= 2 then
part(a(u)?, u, v) >m>
swap(a(u),a(m)) >>
(segmentsort(u, m), segmentsort(m+1,v)) >>
signal

else signal
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Partitioning a segment We define part(p,s,t) using two auxiliary
sites, lr and rl , whose codes are shown below. These sites scan the segment
from the left and right respectively, looking for the first out-of-place element.
Site lr publishes the index of the leftmost item in the segment that exceeds p,
or simply t if there is none. Site rl publishes the index of the rightmost item
that is less than or equal to p; since the value at a(s) is less than or equal to
p such an index always exists.

def lr(i) = Ift(i <: t) >> Ift(a(i)? <= p) >> lr(i+1); i
def rl(i) = Ift(a(i)? :> p) >> rl(i-1) ; i

Observe that the code of lr tests a(i)? only if i < t.

If two out-of-place elements are found by lr and rl , they are swapped using
site swap. Next the unscanned portion of the segment is partitioned further until
the entire segment has been scanned. Sites lr and rl may safely be executed
concurrently since they do not modify the array elements. The goal expression
of part(p,s,t) is:

(lr(s+1), rl(t-1)) >(s’, t’)>
( if(s’ <: t’) then swap(a(s’), a(t’)) >> part(p, s’, t’)
else t’

)

The quicksort program in its entirety is given in Figure 7.1 (page 183).

7.2.3.2 Correctness

The correctness of the program as presented here is fairly standard. The only
involved part is the goal expression of part(p,s,t) shown above. We give an
informal argument of its correctness.

Whenever part(p,s,t) is called either from segmentsort or recursively
from part , s < t holds. The execution of part(p,s,t) starts by executing
both lr(s+1) and rl(t-1) ; the executions are non-interfering and they do not
modify the segment.

Execution of lr(s+1) publishes s′ where:

a(i)? ≤ p, for all i, s + 1 ≤ i < s′, and
either (1) s′ = t or (2) s′ < t and a(s′)? > p (*1)

Similarly, execution of rl(t-1) publishes t′ where:

a(i)? > p, for all i, t′ < i < t, and a(t′)? ≤ p (*2)

Our goal is to show that the execution of part(p,s,t) permutes the items
in the segment and publishes m where:

a(i) ≤ p for all i, s ≤ i ≤ m, and
a(i) > p, for all i, where m < i < t (*3)
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def quicksort(a) =

def swap(i,j) = (i?, j?) >(x,y)> (i := y, j := x) >> signal

def segmentsort(u, v) =

def part(p,s,t) =

def lr(i) = Ift(i <: t) >> Ift(a(i)? <= p) >> lr(i+1); i
def rl(i) = Ift(a(i)? :> p) >> rl(i-1) ; i #

-- Goal expression of part

(lr(s+1), rl(t-1)) >(s’,t’)>
( if(s’ <: t’) then swap(a(s’), a(t’)) >> part(p,s’,t’)
else t’

) #

-- Goal expression of segmentsort

if v - u :> 1 then
part(a(u)?, u, v) >m>
swap(a(u),a(m)) >>
(segmentsort(u, m), segmentsort(m+1,v)) >>
signal

else signal

-- Goal expression of quicksort

segmentsort(0, a.length?)

Figure 7.1: Quicksort
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Following the execution of (lr(s+1), rl(t-1))>(s’, t’)> we have the
following 3 cases.

• s′ < t′: Then, s′ < t because t′ < t. From (*1) and (*2),

a(i)? ≤ p, for all i, s + 1 ≤ i < s′, and a(s′)? > p,
a(i)? > p, for all i, t′ < i < t, and a(t′)? ≤ p

Executing swap(a(s’), a(t’)) has the effect that

a(i)? ≤ p, for all i, s + 1 ≤ i ≤ s′, and
a(i)? > p, for all i, t′ ≤ i < t

Executing part(p, s’, t’) then establishes (*3), using induction on segment
length.

• s′ ≥ t′ and s′ = t: From (*1), the entire segment has items less than or equal
to p (recall that a(s)? ≤ p). In particular, a(t − 1)? ≤ p. From (*2), t′ = t − 1,
which satisfies (*3) with m = t′.

• s′ ≥ t′ and s′ < t: From (*1) and (*2)

a(i)? ≤ p, for all i, s + 1 ≤ i < s′, and a(s′)? > p,
a(i)? > p, for all i, t′ < i < t, and a(t′)? ≤ p

Therefore, t′ = s′ − 1 and (*3) is satisfied with m = t′.

7.2.3.3 Remarks on the quicksort program

The quicksort program is highly concurrent, in sorting multiple segments si-
multaneously as well as scanning a segment from both ends simultaneously.
Curiously, all the Orc combinators are used in this program except the par-
allel combinator. The program can be made entirely sequential by replacing
concurrent execution within each tuple by a sequential combinator. Thus,

(lr(s+1), rl(t-1)) >(s’,t’)>, and
(segmentsort(u, m), segmentsort(m+1,v))

can be replaced, respectively, by

lr(s+1) >s’> rl(t-1) >t’>, and
segmentsort(u, m) >> segmentsort(m+1,v)

The swap site can also be written sequentially.

def swap(a,b) = a? >x> b? >y> a := y >> b := x

Even though the given program is highly concurrent and it manipulates a
shared mutable store, it uses no locking or explicit synchronization. This is
because the algorithm partitions the array into segments each of which is under
the control of a single thread, with one exception. The exception is that a
segment may be scanned simultaneously by both lr and rl , but neither of
them modifies the segment.
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7.3 Graph Traversal

We consider a few graph traversal algorithms that visit the nodes of a graph in
some specified order. In particular, we consider algorithms for marking reach-
able nodes from a specific node, breadth-first and depth-first traversals. In each
case, a mutable store is used to record the nodes that have already been visited.
These algorithms are standard and we refer the reader to a text book for longer
descriptions and proofs of these algorithms. Here, we give a brief sketch of each
algorithm as it pertains to its coding in Orc.

The structure of a directed graph can be given by a site definition by enumer-
ation of the neighbors of each node. For example, the graph shown in Figure 7.2
is represented by

def succ(0) = [1,2]
def succ(1) = []
def succ(2) = [1,3]
def succ(3) = [0]

so that succ(0) is [1,2] and succ(0) is [] . This is an appropriate represen-
tation when the graph structure is immutable. An undirected graph is similarly
represented where the successors are simply the neighbors (i.e., the nodes con-
nected directly to a given node); therefore, each edge (i, j) is represented by
having j in i’s neighbor list and i in j’s.

Figure 7.2: An example of a directed graph

In order to enumerate all successors of a specific node i we use the standard
library site each that publishes all elements of a list. Its definition is:

each([]) = stop
each(x:xs) = x | each(xs)

Thus, each(succ(i)) publishes all successors of node i.

7.3.1 Reachability

First, we start with an elementary algorithm to identify the nodes reachable
from a specific node. Consider a directed graph with a specified root node. It
is required to mark every node that is reachable from root by a path of length 0
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or more. We propose a concurrent algorithm and a sequential algorithm. Each
algoritm publishes a table of cells, one cell per node in the graph, where a cell
is assigned value true if the corresponding node is reachable, and is assigned
false otherwise. Assume that the nodes are numbered consecutively starting
at 0. Henceforth, marking a node means that the corrsponding cell is assigned
true .

7.3.1.1 A concurrent algorithm for reachability

This algorithm implements a flooding technique by first marking root and then
starting the algorithm concurrently from all its successors as if each one is root .
After conclusion of the markings the cells corresponding to the unmarked nodes
are assigned false .

The only point of interest is to eliminate duplicate explorations from a node.
We do so by starting new searches only from freshly marked nodes. Further,
concurrent computations may attempt to mark a node multiple times. Since
marking a node is equivalent to writing to a cell, multiple markings are pre-
vented; at most one value can be assigned to a cell and subsequent attempts for
assignment halt silently.

In Figure 7.3 (page 187), site reachConc marks the reachable nodes and
publishes a table that holds the marking information. Its arguments, (n,root

,succ) , are as follows: there are n nodes in the graph, numbered 0 through
n − 1; reachable nodes from root node are to be marked; and succ represents
the graph structure, as described previously. So, reach(10,0,succ)>t> t(3)

? publishes true if and only if in a given graph of 10 nodes whose structure is
given by succ node 3 is reachable from node 0.

The program uses an auxiliary site sprout . Execution of sprout(i) marks
every unmarked successor of i , applies sprout to the nodes so marked and halts
eventually without publishing a value.

The goal expression applies sprout to the root , and after its termination
assigns false to the cells corresponding to the unmarked nodes and publishes
the table of cells.

7.3.1.2 A sequential algorithm for reachability

A sequential reachability algorithm, reachSeq , defined below, has the same
interface and an analogous goal expression as site reachConc of the concurrent
version. Analogous to the auxiliary site sprout we have a site sproutSeq

that has the same functionality but that executes sequentially. Site sproutSeq

is called with a list of nodes that are to be explored. Its execution marks
every node reachable from any node in the list and then halts. The execution of
sproutSeq([]) merely halts since there is no node to be marked. The execution
of sproutSeq(x:xs) first attempts to mark x . If the attempt succeeds then it
explores all successors of x and then executes sproutSeq(xs) . If the attempt
fails then x is already marked and its successors have been explored already; so,
no further action is required for x and only sproutSeq(xs) is executed.
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def reachConc(n,root,succ) =
val mark = Table(n, lambda(_) = Cell() )

-- Below, mark(i) := true halts if node i is already marked
-- otherwise, it marks node i.

def sprout(i) =
mark(i) := true >> each(succ(i)) >j> sprout(j)

-- Goal Expression of reachConc
sprout(root);
upto(n) >j> mark(j) := false >> stop;
mark

-- usage; first set up the graph
val N = 5
def succ(0) = [1,2,4]
def succ(1) = [3]
def succ(2) = [3,4]
def succ(3) = []
def succ(4) = [1]

-- Goal expression of the program:
-- publish the reachability list from node 4

reachConc(N,4,succ) >r> [r(0)?, r(1)?, r(2)?, r(3)?, r(4) ?]

-- publishes [false, true, false, true, true]

Figure 7.3: Concurrent algorithm for reachability
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def reachSeq(n,root,succ) =
val mark = Table(n, lambda(_) = Cell() )

def sproutSeq([]) = stop
def sproutSeq(x:xs) =

mark(x) := true >> sproutSeq(succ(x));
sproutSeq(xs)

sproutSeq([root]);
upto(n) >j> mark(j) := false >> stop;
mark

Exploring Nodes in Breadth-First Order The order in which the nodes
are marked by reachSeq , given a list of marked nodes (x:xs) , is to mark all
reachable nodes from x before the nodes in xs are explored, i.e., a depth-first
style of marking. Here, we show a breadth-first style algorithm for sequential
marking, i.e., one in which only the immediate unmarked successors of x are
marked and then the nodes in xs are explored.

We consider breadth-first computation in the next section, so we don’t dwell
on this algorithm in any detail. The only goal here is to show how to order
computations a, b and c where a is first attempted, if it succeeds then b is
executed else c is executed. The definition of sproutSeq(x:xs) , above, is
modified so that if the marking of x succeeds then the nodes in xs are explored
followed by the nodes in succ(x) ; if it fails (because x is already marked) only
the nodes in xs are explored. The trick is to encode the success or failure of the
marking of x in a boolean variable b.

def reachSeq’(n,root,succ) =
val mark = Table(n, lambda(_) = Cell() )

def sproutSeq’([]) = stop
def sproutSeq’(x:xs) =

(mark(x) := true >> true; false) >b>
( if b then (sproutSeq’(xs); sproutSeq’(succ(x)) )

else sproutSeq’(xs)
)

sproutSeq’([root]);
upto(n) >j> mark(j) := false >> stop;
mark

7.3.2 Breadth-first Traversal

The goal of breadth-first traversal of a directed graph is to construct a breadth-
first tree over the reachable nodes from node root . Define the distance of any
reachable node as the smallest number of edges on any path from root to that
node. A breadth-first tree has the specified root node as its root. And, a
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reachable node at distance d+1 has a node of distance d as its parent in the
tree.

All breadth-first tree construction algorithms are based on the following
scheme. A node is marked means that its parent has been determined. The
algorithm maintains a set of nodes S and a non-negative integer d with the
invariant: all nodes in S are at distance d and they are all marked. Initially,
d = 0 and S contains only the root, which we mark in a vacuous style. A round
of computation replaces every x, x ∈ S, by its unmarked successors, setting x
as their parent. Thus, a round maintains the invariant with d replaced by d+1.
We discuss a sequential and a concurrent implementation of this scheme.

7.3.2.1 Sequential breadth-first traversal

The algorithm is similar to the reachability algorithm: whenever a successor y
of x is marked, x is designated to be the parent of y in the breadth-first tree.
We maintain a table of cells, as in the reachability algorithm, but a cell for a
node is assigned the name of its parent.

The algorithm implements set S as a list of nodes. All nodes in S have been
marked but their successors may not yet have been marked. Initially, the root

is marked and placed in the list. At each step, the first node x of the list is
removed and all its successors are explored as follows. Any marked successor of
x is discarded; any unmarked successor is marked by setting its parent to x and
placed at the end of the list. It is essential that the node be placed at the end of
the list, which ensures that the distances of the nodes in the list are monotonic.
The execution of the algorithm continues until the list becomes empty. At that
point the set of parents encodes the breadth-first tree.

We start with a helper site expand , where expand(x) is called with a marked
node x . It marks all unmarked successors of x and publishes the list of nodes
so marked. It uses an auxiliary site expand’ where expand’(x, xs) is called
with a marked node x and a list xs , a subset of the successors of x that includes
all unmarked successors of x . And expand’(x, xs) marks all the unmarked
nodes in xs (with parent x) and publishes the list of nodes so marked.

def expand(x) =

def expand’(_,[]) = []
def expand’(x, z:zs) =

(parent(z) := x >> z: expand’(x,zs)) ; expand’(x,zs)

expand’(x,succ(x))

Below, site bfs publishes the parent table representing the breadth-first
tree. Its arguments, (n,root,succ) , are exactly as in the reachability algo-
rithm of Section 7.3.1. The auxiliary site bfs’ takes a list of nodes as its argu-
ment. For a non-empty argument list bfs’ takes the first node of the argument
list, marks its as yet unmarked successors (using site expand ), appends the list
of the nodes so marked to the end of the list and repeats these steps until the
argument list becomes empty. Then it publishes a signal. The goal expression
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def bfs(n,root,succ) =
val parent = Table(n, lambda(_) = Cell() )

def expand(x) =

def expand’(x,[]) = []
def expand’(x, z:zs) =

parent(z) := x >> z:expand’(x,zs) ; expand’(x,zs)

-- Goal of expand
expand’(x,succ(x))

def bfs’([]) = signal
def bfs’(x:xs) = bfs’(append(xs,expand(x)))

-- Goal of bfs
parent(root) := N >> bfs’([root]) >> parent

Figure 7.4: Sequential Breadth-First Traversal

of bfs marks the root , calls bfs’([root]) and then publishes parent . We
take the parent of root to be n, a non-existent node. Site append on lists is in
the standard library.

def bfs(n,root,succ) =
val parent = Table(n, lambda(_) = Cell() )

def bfs’([]) = signal
def bfs’(x:xs) = bfs’(append(xs,expand(x)))

parent(root) := n >> bfs’([root]) >> parent

The complete program is given in Figure 7.4.
The program can be made more compact by defining a single site that takes

three arguments, a node, a list of its successors that are yet to be examined (as
in expand’ , above) and a list as in bfs’ . We show the program in Figure 7.5
without further explanation.

7.3.2.2 Concurrent breadth-first traversal

We develop a concurrent version of breadth-first traversal from the program
in Figure 7.4. The definition of bfs’ offers a rich source of concurrency. The
execution of bfs’(zs) applies expand to each node in zs , appends all the
resulting lists in order and applies bfs’ to the final list. This amounts to first
applying mapwith site expand to the elements of zs ; this step can be performed
concurrently, see Section 6.1.1 (page 155). Then, append , being an associative
operation, can be applied concurrently using the concurrent associative fold
site, afold of Section 6.1.3.1 (page 157). We can gain even more concurrency
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def bfs(n,root,neighbors) =
val parent = Table(n, lambda(_) = Cell() )

def bfs’’(_,[],[]) = signal
def bfs’’(_,[],z:zs) = bfs’’(z,succ(z), zs)
def bfs’’(x,y:ys, zs) =

parent(y) := x >> bfs’’(x,ys,append(zs,[y])) ;
bfs’’(x,ys,zs)

parent(root):= n >> bfs’’(root,succ(root),[]) >> parent

Figure 7.5: A compact program for breadth-first traversal

def conc_bfs(n,root,succ) =
val parent = Table(n, lambda(_) = Cell() )

def expand(x) =
if succ(x) = [] then []
else map_afold

(
lambda(y) = parent(y) := x >> [y] ; [] ,
append,
succ(x)

)

def bfs’([]) = signal
def bfs’(xs) = bfs’(map_afold(expand, append, xs) )

parent(root) := n >> bfs’([root]) >> parent

Figure 7.6: Concurrent Breadth-first Traversal

by combining map and fold into one site which interleaves their executions; see
map_afold of Section 6.1.3.1.

The definition of bfs’ becomes:

def bfs’([]) = signal
def bfs’(xs) = bfs’(map_afold(expand, append, xs) )

Next, we apply a similar transformation to expand with a map and associa-
tive fold operation. We may view expand(x) as taking a list, succ(x) , as input.
The map operation scans an element y of succ(x) , marks it if it is unmarked
and publishes [y] , and publishes [] if y is already marked. The fold operation
is again append ; it simply appends the lists, of length 0 or 1, published for each
element of succ(x) by map. Since map_afold is defined only over a non-empty
list, it is called only if succ(x) is non-empty. The complete program appears
in Figure 7.6.



192 CHAPTER 7. PROGRAMMING WITH MUTABLE STORE

Mapping with expand The map operation in functional programming ap-
plies a true mathematical function to the elements of a list. Since the appli-
cations of functions are non-interfering, a parallel map can apply the mapping
function on all elements of a list simultaneously. In applying map with expand

in Figure 7.6, executions of two expand s may interfere in that both may attempt
to mark a specific node. Yet, their executions are non-interfering in the follow-
ing sense: concurrent execution of multiple expand s marks exactly the union of
all nodes each expand attempts to mark, though the marked nodes may acquire
different parents. For instance, if both nodes p and q have node r as a successor,
and expand(p) and expand(q) both attempt to mark r simultaneously, one of
them will succeed and r will acquire a parent, either p or q. Even though the
result is non-deterministic, it suffices for the construction of the breadth-first
search tree. This property allows us to apply parallel map with expand as the
mapping site.

Non-deterministic outout of concurrent breadth-first traversal The
breadth-first search tree published by conc_bfs is non-deterministic. This is
because the successors of many nodes are explored concurrently, and such ex-
plorations may mark the reachable nodes in undetermined order. As described
above, if both nodes p and q have node r as a successor, and expand(p) and
expand(q) both attempt to mark r simultaneously, one of them will succeed
and r will acquire a parent, either p or q. Both p and q have the same distance
from the root; so, either one is an acceptable choice for parent of r .

7.3.3 Depth-first Traversal

We develop a sequential program for depth-first traversals of undirected graphs.
It is possible to traverse a directed graph in this style, though we will not
develop that program. The traversal program, dfs , publishes a depth-first tree
as described below. Site dfs has the same interface as bfs —the traversal starts
from a specified node called root — except that a list of neighbors is used in
dfs in place of the successors succ of a directed graph as in bfs .

Site dfs uses an auxiliary site dfs’ that takes a node and a subset of its
neighbors as arguments. It builds a depth-first tree from the given node using
only the supplied set of neighbors as children and halts on completion. In
contrast to the breadth-first traversal, dfs’ marks just one neighbor, if possible,
and starts a depth-first traversal from that neighbor. Only after marking all
descendants of this neighbor, dfs’ backtracks to commence the traversal from
the next node in its neighbor list. The goal expression of dfs first marks the
root , then calls dfs’(root,neighbors(root)) , and finally publishes the table
parent that encodes the depth-first tree.

In Figure 7.7, the expression parent(x):= i >> dfs’(x,neighbors(x))

in dfs’ halts if either x is already marked or dfs’(x,neighbors(x)) completes
execution. Either condition starts execution of dfs’(i,xs) .

We show that execution of dfs’(ys) , for any ys , halts eventually. At the
time of the call of dfs’ let p be the number of orphans, the nodes that are as
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def dfs(n,root,neighbors) =
val parent = Table(n, lambda(_) = Cell() )

def dfs’(_,[]) = stop

def dfs’(i,x:xs) =
parent(x) := i >> dfs’(x,neighbors(x)) ;
dfs’(i,xs)

parent(root) := n >> dfs’(root,neighbors(root)) ; parent

Figure 7.7: Depth-First Traversal

yet unmarked, so have no parents. The proof is by induction on the measure
(p, |ys|). We show that each step of execution of dfs’(i,ys) either halts or
decreases this tuple lexicographically. Clearly, the execution halts if ys is [] .
Consider the point where dfs’(i,x:xs) is called. If x is already marked, then
dfs’(i,xs) is executed; inductively, dfs’(i,xs) halts eventually because (p,
|xs|) is lexicographically smaller than (p, |x : xs|). If x is unmarked, then
executing parent(x):= i decreases the number of orphans, thus decreasing p,
and hence the measure.

7.4 Memoization

Memoization is another name for caching the results of a computation that may
be invoked multiple times. On the first invocation the result is computed and
stored, and subsequent invocations receive the stored result avoiding recom-
putation. The poster-child for memoization is the Fibonacci function defined
by

def fib(0) = 0
def fib(1) = 1
def fib(i) = fib(i-1) + fib(i-2)

If the computation follows the recursive definition directly then fib(6) , say,
will call fib(5) and fib(4) , and fib(5) calls fib(4) again. In fact, during
the computation of fib(n) the number of calls to fib(i) , for 0 ≤ i ≤ n, is
fib(n+1− i). Thus, memoization saves an exponential amount of computation
in this case.

Memoization is not appropriate for computations that involve sites that
publish time-sensitive results, nor sites whose publications depend on the state
of the computation. We consider only sites that publish at most one value. This
restriction can be removed by storing all published values when a site is called
for the first time (provided the end of the computation can be detected), and
returning those values when a subsequent call is attempted.
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First, consider memoization of a site f that has no argument, is not recursive
and that publishes just one value. Site memof, below, stores the computed result
in cell res . To indicate if the result has been computed, we use yet another cell,
done .

val done = Cell()
val res = Cell()

def memof() =
res? << (done := signal >> res := f())

In the very first call to memof, a signal is stored in done , f called, the publi-
cation of f , if any, is stored in res and this value is published. Note that reading
from an unassigned cell, res in this case, is blocked until the cell is is assigned
a value. In subsequent calls to memof, the right side of the pruning combinator
halts at the point where the assignment to done is attempted without execut-
ing f() , while the left side of the combinator publishes the value stored in res .
Even if concurrent calls are made to memof, which is likely in a computation
such as Fibonacci, f will be executed just once because the assignment to done

acts as a guard for f ’s execution. Defining res as a cell ensures that the value
is computed and stored just once.

Typically, we would hide the variables done and res within a class, as shown
in Figure 7.8. The class takes a site f as its argument and publishes a site from
which we can extract the memoized equivalent of f .

def class simplememo(f) =
val done = Cell()
val res = Cell()

def main() =
res? << (done := signal >> res := f())

stop

-- typical usage
val memof = simplememo(f).main

-- Now, call memof() in place of f()

Figure 7.8: A class for Memoization

7.4.1 Lazy Table

Orc language provides a very simple memoization scheme in the factory site
Table ; a call to Table(n,fun) calls fun(i) for each each i, 0 ≤ i < n, and
stores the results in an array from which they are retrived on subsequent calls.
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In this case memoization is used not necessarily for performance gain, but to
retrieve the same data value in each call. For example,

val ch = Table(5, lambda(_) = Channel())

defines an array of channels, and guarantees that every access to ch(3) , say,
refers to the same channel.

The standard implementation of Table is eager in the sense that all table
entries are computed at the time of instantiation. We define a lazy table below
in which a table entry is computed at the time of the first access of that entry.
This is useful in the situation where computing a table entry is expensive in
terms of resources, it is immaterial when the entry is computed, and it is likely
that not all entries will be accessed. The price paid in creating a lazy table is
the extra storage for memoization.

Below, site lazyTable has two arguments, n and fun , as in Table. The im-
plementation of lazyTable uses two standard tables, corresponding to variables
res and done , of Figure 7.8 (page 194). An user uses lazyTable(n, fun) in
place of Table(n, fun) , and automatically gets the memoized equivalent.

def lazyTable(n, fun) =
val res = Table(n, lambda(_) = Cell() )
val done = Table(n, lambda(_) = Cell() )

def access(i) =
res(i)? << (done(i) := signal >> res(i) := fun(i) )

access

7.4.2 Memoizing Sites that have arguments

Consider a site, such as fib , that has arguments. Additionally, it includes
clausal definition and recursion. We show its memoization below in which each
recursive call is replaced by a call to the memoized counterpart. The only
real issue is to fix the size of the storage where the results have to be cached.
Therefore, we need to know the largest argument, N, with which fib may be
called. We use a table of size N+1 of cells to hold the value of fib(i) , 0 ≤ i ≤ N ,
and a similar table corresponding to done of Figure 7.8 (page 194).

val N = 100
val done = Table(N+1, lambda(_) = Cell())
val res = Table(N+1, lambda(_) = Cell())

def mfib(0) =
res(0)? <<

(done(0) := signal >> res(0) := 0)

def mfib(1) =
res(1)? <<

(done(1) := signal >> res(1) := 1)
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def mfib(i) =
res(i)? <<

(done(i) := signal >> res(i) := mfib(i-1) + mfib(i-2))

This template may be applied to memoize any site that has arguments. As
in Figure 7.8 (page 194), the entire definition may be enclosed within a class
to prevent external access to N, done and res . Note that there is no real need
to memoize the computations of mfib(0) and mfib(1) ; we could have defined
their values to be 0 and 1, respectively.

Memoization works particularly well for fib because its argument is a small
natural number and the computation of fib(n) requires values of all fib(i) ,
for i smaller than n, multiple times. In the general case, the site may have
multiple arguments and the arguments may be of arbitrary types that may not
map efficiently to a set of consecutive natural numbers. We consider the case
of multiple arguments in the next section.

7.4.3 Automatic Memoization of Recursive Functions

This section may be skipped on first reading.

The memoization technique shown in Section 7.4.2 is quite general. However,
a manual translation of the site definition is required to create the memoized
version. In this section, we show a technique for (almost) automatic memoiza-
tion. We will define a site that accepts a site f as an argument and publishes the
memoized site corresponding to f . The size parameter, similar to N for mfib ,
also has to be supplied as an argument. We illustrate the technique where f

has just one argument, though it is easily generalized to sites with multiple
arguments. This material is inspired by Cook [8]; it mirrors the definition of
inheritance in object oriented programming.

The site to be memoized, f , may have been defined recursively. The first
step is to convert the recursive definition to a non-recursive one; this translation
is manual, though thoroughly routine. A recursive call is replaced by a call to
a site that appears as an additional argument. For example, definition of fib

may be converted to gfib where the recursive call is replaced by a call to an
argument site self .

def gfib(0, _) = 0
def gfib(1, _) = 1
def gfib(n, self) = self(n-1) + self(n-2)

We can retrieve fib from gfib using a fixed point computation as follows.
Below, site fix takes a site f of two arguments and publishes a site of one
argument by treating the second argument as a recursive call.

def fix(f) =
def q(x) = f(x,q)

q
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It is easy to show that fib = fix(gfib) ; that is, fib(i)= fix(gfib)(i)

for all natural numbers i , by induction on i . Note that fib(i) is not the same
as gfib(i, gfib) because the second argument of gfib is a site that has just
1 argument, not two.

Next, we define site memoize that takes as arguments a non-recursive site g

and a size parameter n. Site g has two arguments where the second argument
is for the self-referential call as in gfib ; the second argument is ignored in case
there is no self-referential call. The implementation is the standard one, similar
to the one shown in Section 7.4.2 (page 195), using the two standard tables, res

and done .

def memoize(g,n) =
val res = Table(n+1, lambda(_) = Cell())
val done = Table(n+1, lambda(_) = Cell())

def main(i,self) =
res(i)? <<
(done(i) := signal >> res(i) := g(i,self) )

Now, main is the memoized equivalent of g. It has two arguments exactly
as in g. The next step is to use fix to eliminate the second argument. So,
fix(main) is the memoized equivalent of g. The user’s task is to create a non-
recursive site g from f , like gfib from fib , and call memoize(g,n) to obtain a
memoized site with size parameter n. We show the complete program and its
usage in creating memoized Fibonacci in Figure 7.9.

Sites with Multiple arguments We can memoize sites with multiple argu-
ments in a fashion similar to the one argument case. If each argument can be
mapped easily to consecutive natural numbers, then done and res of Figure 7.9
(page 198) are implemented as multidimensional structures of appropriate di-
mensions (see Section 5.4.7, page 143, for defining multidimensional structures).
If the arguments do not map conveniently to consecutive natural numbers, use
hashing to map them to a limited domain, the size of the has table. During
program execution, the arguments of a call are first hashed and the index to the
hash table is used as the index to res and done .

There is no single memoize site that can accept sites of different arity. A
different memoize site has to be coded for sites having 0 arguments, 1 argument,
... To overcome this problem, convert a site with multiple arguments to one with
a single argument. The single argument is a list that includes all the arguments.
Thus, given site f of three arguments, say, define site f’

def f’([x,y,z]) = body of f, with f replaced by f’
def f(x,y,z) = f’([x,y,z])

Here, external callers may continue calling f with its original interface. But
each call to f in the body of f’ is replaced by a call to f’ with suitable change
in the call interface. Orc allows list members to be of different types; so, this
transformation can be applied to arbitrary sites. If f has no argument, f’ has
empty list as its argument.
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def memoize(g,n) =
val res = Table(n+1, lambda(_) = Cell())
val done = Table(n+1, lambda(_) = Cell())

def main(i,self) =
res(i)? <<
(done(i) := signal >> res(i) := g(i,self) )

def fix(f) =
def q(x) = f(x,q)

q

fix(main) -- Goal of memoize

-- Example: memoize fib

def gfib(0, _) = 0
def gfib(1, _) = 1
def gfib(n, self) = self(n-1) + self(n-2)

val mfib = memoize(gfib,100)

-- Compute fib(50) by calling mfib(50)

mfib(50)

Figure 7.9: Memoization Site
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In order to memoize f , first memoize f’ to obtain memof’ . Then create the
memoized version of f , memof, by

def memof(x,y,z) = memof’([x,y,z])

7.5 Pointer-based Data Structures

Pointer-based data structures, or linked data structures, require manipulation
of mutable store. A pointer in Orc is implemented by a Ref variable whose
value is the location of a Ref variable. That is, given that variables r and s are
both Refs , s := r stores a pointer to r in s . While s? retrieves the current
value of s , which is r , s?? retrieves the value stored in r . We illustrate the
manipulation of pointers in building data structures that expand (and contract)
over time. We use the term node for a single item in the data structure.

We first show that implementation of a stack that includes a single pointer
in each node. Next, we show a more involved example, the implementation of a
binary search tree in which every node includes two pointers. For both cases, we
also show implementations that permit concurrent access to the data structures.

7.5.1 Stack implemented as a singly-linked list

We implement a stack as a singly-linked list. The stack permits two operations:
push(x) adds element x to the top of the stack and publishes a signal, and
pop() removes the top item of the stack, provided the stack is non-empty, and
publishes that item; pop() halts if the stack is empty (it is easy to modify the
implementation so that pop() waits, rather than halts, if the stack is empty
until a push puts an element on the stack.).

A node in the stack has a tuple as value. The tuple consists of an item value
and a pointer to the next node below this node in the stack; the pointer is null
if there is no next node. A pointer is implemented as a list of at most one item;
the list is empty if the pointer is null, otherwise the list holds the location of
the next node. Variable top holds a pointer to the top node of the stack or it
is null if there is no top node.

The implementation is straightforward. Execution of push(x) creates a Ref ,
stores x and the pointer to the current top node of the stack in it, and stores
a pointer to this node in top . Execution of pop() retrieves the tuple from the
top node of the stack, stores the pointer to the next node in top, and publishes
the value of the stored element. If top stores a null pointer, i.e., top? is [] ,
then the pattern match top? >[r]> fails and the execution halts. Initially, top

holds a null pointer.

def class stack() =
val top = Ref([])

def push(x) = Ref((x,top?)) >r> top := [r]
def pop() = top? >[r]> r? >(x,s)> top := s >> x
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stop

The only safe mode of operation with this implementation is sequential access
to the stack: only one method is called at a time. If concurrent calls are made
to any two of the methods, even the same methods, it is very likely that the
method executions will interfere. To allow concurrent calls, but not concurrent
method executions, use a semaphore (a lock) to permit only one method to
execute at a time, as shown below.

def class stack() =
val sem = Semaphore(1)
val top = Ref([])

def push(x) =
sem.acquire() >>
Ref((x,top?)) >r> top := [r] >>
sem.release()

def pop() =
sem.acquire() >>
top? >[r]> r? >(x,s)> top := s >>
sem.release() >> x

stop

7.5.2 Sequential Binary Search Tree

We next show an algorithm with more sophisticated pointer manipulation. In
particular, we permit concurrent access to the data structure, which is imple-
mented without any explicit lock.

We implement a set with two operations: (1) insert(x) inserts item x in
the set provided x is not already in the set; it publishes true if and only if
the item was not already there and the insertion was successful, (2) search(x)

publishes true if and only if x is in the set. The semantics, as described, is for
an implementation with sequential access, and our first implementation is for
sequential access only.

The set is maintained as a binary search tree. We implement each tree
node as a symCell from Section 4.6.3.3. A symCell , like a Cell() , may be
assigned at most once. But unlike a Cell() a read operation on an unassigned
symCell halts instead of blocking. A node is empty if it is unassigned. A node
is full if it contains a tuple with three entries (lp,v,rp) where lp and rp are
pointers, i.e., symCell s to p’s left and right children, respectively, and v is an
element of the set. Either pointer may be null, that is, it references an empty
node. Henceforth, we take the elements of the set to be integers so that their
magnitudes can be compared.
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First, we describe the routine that searches for a given key, key , starting at a
specified node p. The search publishes a tuple (q,b) where q is the node where
the search ends, successfully or unsuccessfully, and b is a boolean denoting the
result of search (true for success and false for failure). The search proceeds as
follows: (1) if p is unassigned then the search ends by publishing (p,false) , (2)
if p contains (lp,v,rp) and: (2.1) key is less than v then the search is started
from lp , (2.2) key is equal to v then the search is successful and it publishes
(p,true) , and (2.3) key is greater than v then the search is started from rp .

def searchloop(p,key) = -- p is a symCell

p? >(lp,v,rp)>
( Ift(key <: v) >> searchloop(lp,key)

| Ift(key = v) >> (p,true)
| Ift(key :> v) >> searchloop(rp,key)

)
; (p,false)

Observe that if p is unassigned, the read operation p? halts. This is detected
using the otherwise combinator and then (p,false) is published.

The tree has a root node, root , that is initially empty.

val root = symCell()

The search routine that searches for a given key simply applies searchloop

starting at root .

def search(key) = searchloop(root,key) >(_,b)> b

To insert a key, first search for it. Let the search publish a tuple (q,b) . If b

is true then the element is already in the tree and insert publishes false ; if
b is false then the element is inserted by storing at q a tuple with item value
key and null pointers for both children, i.e., (symCell(), key, symCell()) ,
and then publishing true .

def insert(key) =
searchloop(root,key) >(q,b)>
( Ift(b) >> false;

q := (symCell(), key, symCell()) >> true
)

We implement an additional operation on the set, sort , that publishes all
elements of the set in increasing order in a list. For an empty tree the published
list is empty. For a nonempty tree the program constructs the lists for the left
and right subtrees, and appends them. The helper site traverse(p) creates
the corresponding list for the elements in the subtree rooted at p.

def sort() =
def traverse(p) =

p? >(lp,v,rp)> append(traverse(lp), v: traverse(rp))
; []

traverse(root)
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The entire program is enclosed within a class definition; it appears in Fig-
ure 7.10.

def class bst() =
val root = symCell()

def searchloop(p,key) = -- p is a symCell

p? >(lp,v,rp)>
( Ift(key <: v) >> searchloop(lp,key)

| Ift(key = v) >> (p,true)
| Ift(key :> v) >> searchloop(rp,key)

)
; (p,false)

def search(key) = searchloop(root,key) >(_,b)> b

def insert(key) =
searchloop(root,key) >(q,b)>

( Ift(b) >> false;
q := (symCell(),key, symCell()) >> true

)

def sort() =
def traverse(p) =

p? >(lp,v,rp)> append(traverse(lp), v: traverse(rp))
; []

traverse(root)

stop

Figure 7.10: Sequential binary search tree implementation

7.5.3 Concurrent binary search tree

The binary search tree program of Figure 7.10 (page 202) will almost surely
break if its methods are called concurrently. We next modify the program to
withstand concurrent access. We can employ the simple solution of using a lock
to ensure that at most one method executes at a time. But we show a more
sophisticated solution that allows concurrent method executions as long as they
are non-interfering, without using explicit locks. A symCell includes an implict
lock for concurrent accesses, and we exploit this feature in the implementation.

A search is a read operation and an insert a write operation; so, we can
use the Readers-Writers solution from Section 9.1.3 (page 239) whereby multi-
ple search operations are permitted simultaneously whereas just one insert

may execute at a time. But we can do even better, by allowing concurrent



7.6. CONCLUDING REMARKS 203

insert operations as long as they do not interfere. Since an insert is a search

followed by a write step, we can let insertions proceed concurrently with other
insertions and searches until there is an attempt to write. If the writes are made
to different locations they can be executed in arbitrary order. Thus, all method
executions may proceed completely concurrently, including executions of multi-
ple insertions, as long as the insertions are in different parts of the tree. Next,
we describe the steps needed when writes are attempted at the same location.

If multiple writes are attempted at the same location, an arbitration is re-
quired. The arbitration is provided automatically by symCell . In Figure 7.10,
the only update of a tree node takes place within site insert in the assignment
q := (symCell(),key, symCell()) . This assignment may not execute for a
specific writer because another writer may have already written into symCell q ;
in that case, the execution of this writer halts and the insertion must be retried.
The retry, as described next, can start from q itself because the nodes in the
path to q have not been modified.

We empoly an auxiliary site insert’ that is called with an argument node
p. It attempts to insert key in the subtree rooted at p. Site insert’ be-
haves almost exactly like the previous insert site; the only difference is that if
the assignment q := (symCell(),key, symCell()) fails then insert’(q) is
called. Thus, assignment to q is replaced by the following code fragment.

q := (symCell(),key, symCell()) >> true;
insert’(q)

Now, insert(key) is simply a call to insert’(root) .

The entire program is shown in Figure 7.11 (page 205). The program uses no
explicit lock. Yet, each operation, insert , search and sort , can be considered
atomic, and at any point in the execution all completed operations can be
linearly ordered so that every search and sort publishes a value consistent with
the operations preceding it, as explained under Linearizability in Section 4.6.3.3.

Progress properties of the program The concurrent binary search tree
does not guarantee that any specific writer, w, will eventually succeed. This is
because there may be an unending stream of writers each of which writes into
a location just before w’s attempt to write into that location. However, this
scenario also establishes that some writer makes progress, not necessarily w.
Therefore, there is system-wide progress though, possibly, individual starvation
for writers.

7.6 Concluding Remarks

Mutable stores are essential in most applications. Orc provides a number of
factory sites to create mutable stores with built-in concurrency access control
mechanisms. A programmer may create even more involved sites using the given
ones as the base.
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We have sketched a few simple applications using mutable store in order
to demonstrate how they are integrated into Orc. We have also shown how
concurrent accesses to mutable stores may be handled. For Ref variables that
are concurrently accessed, the only reasonable solution is to introduce explicit
locks for access. However, other kinds of mutable store, Cell and symCell

for instance, allow disciplined access. A complicated algorithm for concurrent
binary search tree has been coded in Section 7.11 without using explicit locks.
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def class conc_bst() =
val root = symCell()

def searchloop(p,key) = -- p is a symCell

p? >(lp,v,rp)>
( Ift(key <: v) >> searchloop(lp,key)

| Ift(key = v) >> (p,true)
| Ift(key :> v) >> searchloop(rp,key)

)
; (p,false)

def search(key) = searchloop(root,key) >(_,b)> b

def insert(key) =

def insert’(p) =
searchloop(p,key) >(q,b)>
( Ift(b) >> false;

q := (symCell(),key, symCell()) >> true;
insert’(q)

)

insert’(root)

def sort() =
def traverse(p) =

p? >(lp,v,rp)> append(traverse(lp), v: traverse(rp))
; []

traverse(root)

stop

Figure 7.11: Concurrent binary search tree implementation of set
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Chapter 8

Programming with

Channels

8.1 Introduction

Channels are as important for concurrent programming as lists are for sequential
programming. There are a number of reasons why channels are important: (1)
there is a causal order between the send and receive of a message along a chan-
nel; therefore, a channel can be used to implement causal order among different
events of a concurrent program, (2) a channel is a mutable store with disci-
plined access facilities, and (3) a channel can smooth speed variations between
a sender and a receiver, and a bounded channel can be used as a synchroniza-
tion mechanism between them. Additionally, Orc uses channels in a variety of
ways to supplant the powers of the combinators. For example, we may wish a
computation to store all its publications in a channel rather than publish them
directly, see Section 8.2.1. We illustrate a few other channel-based programming
paradigms in Section 8.2. We discuss basic message communicating processes
in Section 8.3 and networks of such processes in Section 8.4. Networks that
have regular connection structures among component processes and those that
evolve over time depending on the computation are discussed in Section 8.5.

One of the great virtues of a FIFO channel is that the sender and the receiver
on a channel may run independently as long as there are items in the channel.
This is because the put and get operations on a channel commute in that the
order of operations is immaterial on a non-empty channel; the resulting states of
the sender, receiver and the channel are identical no matter the order in which
the put and the get occur1 . Commutativity is an important property in a
concurrent system, because the processes whose individual operations commute
can be executed independently without the fear of data-race [25, 40]. Further,
the output of a process is monotone as a function of its inputs for processes

1Hoare uses the term semi-commute since put and get do not commute for an empty
channel.

207



208 CHAPTER 8. PROGRAMMING WITH CHANNELS

with single input channels, in the sense that supplying more data to the process
can only lengthen its outputs; no prior output becomes incorrect as a result of
receiving more input.

8.2 Programming Idioms with Channels

8.2.1 Execution Scheduling

Many complex thread scheduling problems become tractable by using channels;
we show a few examples.

It is required to execute expression f until it publishes a value, then start the
execution of g and continue the execution of f . Note that at most one instance
of g is executed, and all publications of both f and g are to be published. The
problem statement requires the first publication of f to be treated differently
from its other publications. We do so by storing all publications of f in a
channel, and in a separate computation reading and processing the items from
that channel, as follows. The first item read from the channel triggers (1)
publication of that item, (2) initiation of g, and (3) publications of the remaining
items in the channel. We use a helper site pub that continuously reads from its
argument channel and publishes the values.

def pub(ch) = ch.get() >x> (x | pub(ch))

val c = Channel()

f >x> c.put(x) >> stop
| c.get() >x> (x | g | pub(c))

As a second example, it is required to execute expressions f and g until g

publishes; the publication of g is ignored but both f and g are terminated at that
time. Thus, g acts as an interrupter of f . This problem can not be solved using
only the Orc combinators. This is because (1) the termination requirement on
f dictates that it should occur in the right of a pruning combinator, whereas (2)
the use of a pruning combinator dictates that f will be terminated as soon as it
publishes, thus preventing f from publishing more than one value. We overcome
this problem by having f never actually publish, but write its publications on
a channel. We repeat the definition of pub below for completeness.

def pub(ch) = ch.get() >x> (x | pub(ch))

val c = Channel()

pub(c) << ( f >x> c.put(x) >> stop | g )

As a variation of this problem, consider terminating f when g publishes, but
letting g continue its execution. This problem combines elements of both of the
earlier problems. We show a solution below where publications of f and g are
stored in channels c and d respectively, and published by pub(c) and pub(d) .
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def pub(ch) = ch.get() >x> (x | pub(ch))

val c = Channel()
val d = Channel()

g >x> d.put(x) >> stop
| ( (pub(c) | y | y >> pub(d))

<y< ( f >x> c.put(x) >> stop | d.get() )
)

Observe that pub(d) starts execution only after y is bound to a value.

8.2.2 Ordered Output

The publications of an expression have no order. For example, in the following
program nat(i) publishes all natural numbers starting at i , and the goal ex-
pression prints all natural numbers on a display using the standard site Println .
There is no guarantee that the numbers appear in order on the display because
nat(0) publishes in arbitrary order.

def nat(i) = i | nat(i+1)

nat(0) >x> Println(x)

Sometimes it is necessary to establish an order among the publications of an
expression. The expression then should write to a channel instead of publishing,
as shown below for nat(0) . Below, Print(ch) publishes the items from its
argument channel in order.

def Print(ch) = ch.get() >x> Println(x) >> Print(ch)

val c = Channel()
def nat(i) = c.put(i) >> nat(i+1)

nat(0) | Print(c)

Observe that the call c.put(i) is completed before nat(i+1) is called. There-
fore, the numbers are stored in order in channel c . By similar argument, the
numbers are printed in order on the display by site Println .

Publishing all binary strings in order Consider the problem of publishing
all binary strings. A simple solution is given in Section 5.2.4. That solution
publishes the strings in arbitrary order. Here, we propose a solution that writes
the strings to a channel such that the strings are in order.

Below, the program outputs the publications on channel ch . However, it
needs to read its prior outputs in order to compute the next string; so, every
output in ch is replicated in another channel ch’ that is used internally for
computation. Site put2 writes a given string to both ch and ch’ . A binary
string is represented by a list of 0s and 1s, which should be interpreted in the
reverse order of the list.



210 CHAPTER 8. PROGRAMMING WITH CHANNELS

val ch = Channel()
val ch’ = Channel()

def put2(xs) = (ch.put(xs) , ch’.put(xs))

def bin’() =
ch’.get() >xs> ( put2(0:xs) , put2(1:xs) ) >> bin’()

put2([]) >> bin’()

8.2.3 Multi-Reader Channel

A standard channel loses an item once it is read; so two readers on the same
channel will read different items from it. In this section, we develop a more
general version of channel that allows all its readers to read the same sequence
of items. This is useful in situations where the channel contents are needed to
compute the subsequent items to be put in the channel, as in the example in
Section 8.2.2 to write all binary strings to a channel.

We define a multi-reader channel as a class whose argument n is the maxi-
mum number of readers it supports. The readers are numbered 0 through n−1.
The put method on such a channel has the same interface as for a standard
channel. The get method has an argument i, a natural number below n, that
identifies the reader so that this reader is supplied the appropriate next item
from the channel. The implementation shown below is quite simple; it repre-
sents the multi-reader channel by n separate standard channels, ch(0) through
ch(n − 1). A put operation writes into every channel and a get operation by
reader i reads from channel ch(i).

def class MultiReaderChannel(n) =
val ch = Table(n, lambda(_) = Channel() )
val s = Semaphore(1) -- Disallow concurrent puts

def put(x) =
s.acquire() >>
(upto(n) >i> ch(i).put(x) >> stop)
; s.release()

def get(i) = ch(i).get()
stop

-- Usage: Both get operations return 5.

val mrch = MultiReaderChannel(2)

mrch.put(5)
| mrch.get(0)
| mrch.get(1)
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There are more elaborate ways of storing items in a multi-reader channel to
avoid their duplications. One possibility is to store the items in an array if the
channel length is known to be bounded; then, each reader’s state is given by
an index to this array. Another possibility is to keep the items that are unread
by all readers in one channel and the remaining items in separate channels for
each reader.

Next, we show the use of multi-reader channels in enumerating recursively-
defined infinite structures.

8.2.4 Lazy Execution with Channels

We have described lazy execution in some detail in Section 6.3.2 (page 166).
Most of the examples in that section showed manipulations of lazy lists. Here,
we show how to do some of those examples using channels. In executing a site
call f(x) , where x represents a data structure with many items, possibly infinite,
we liken the computation of x to that of a producer and the execution of f to
a consumer. The producer and the consumer may be connected by a bounded
channel that will prevent the producer from over-producing beyond the needs
of the consumer by a bounded amount. If the bounded channel length is 1,
say, then the producer may produce at most 2 more items beyond the need of
the consumer (there could be one item in the channel and the producer may be
waiting to add another item). We can also create bounded channels of length 0
using rendezvous-based communication so that producer may produce just one
more item beyond the consumer’s need; see Section 9.1.1.

Computing Fibonacci sequence lazily A lazy execution that implements
a recursively defined structure both produces and consumes items of the struc-
ture. A simple example, computation of the Fibonacci sequence, illustrates the
situation. We showed in Section 6.3.2 that the Fibonacci sequence may be de-
fined by fib = 0 : 1 : (fib + tail(fib)) where fib + tail(fib) denotes the item
by item sum of the two sequences. We showed a computation procedure by
lazy execution in that section. Here, we redo that example using a multi-reader
channel.

Recursion requires that the output sequence must be read at each step to
continue the computation. So, we use a multi-reader channel with 3 readers.
Reader 0 is external to this program to allow for reading out the Fibonacci
numbers, and readers 1 and 2 are internal readers. During the execution of
fibseq reader 1 reads the entire sequence, fib, and reader 2 reads tail(fib). The
goal expression initially stores values 0 and 1, the first two Fibonacci numbers, in
the channel, and lets reader 2 read and discard the first item so that subsequently
it reads only the items of tail(fib) in fibseq .

val ch = MultiReaderChannel(3)

def fibseq() =
(ch.get(1) + ch.get(2)) >x> ch.put(x) >> fibseq()
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ch.put(0) >> ch.put(1) >> ch.get(2) >> fibseq()

To make the evaluation lazy, note that no more than 2 items need to be
generated beyond what has been consumed at any stage. So, we can use a
bounded version of multi-reader channel in place of the unbounded version used
above. It is easy to design a bounded multi-reader channel in Orc that has the
channel bound and number of readers as parameters.

In many cases, the channel bounds may not be known a-priori or are very
hard to compute. Then, define and use a lazy multi-reader channel in which
an item is put in the channel only if some reader has read all the items from
the channel, otherwise the put is blocked. We leave these generalizations to the
reader.

Hamming Sequence The Hamming sequence is the increasing sequence of
integers of the form 2i × 3j × 5k, for all non-negative integers i, j and k. We
showed a program for enumeration of this sequence in Section 6.3.2.4 (page 170)
using lazy execution. Here, we show how to solve this problem using a multi-
reader channel.

Denoting the desired sequence by an infinite list h, we have h = 1 : merge(2×
h, 3×h, 5×h). Here, k×h is an abbreviation for the list obtained by multiplying
each item in h by k. The merge function has three arguments that are increasing
lists of numbers and the function value is the list obtained by merging the
argument lists into an increasing list (dropping the duplicate values). Our goal
is to compute the items of h in a channel which we also call h.

First, rewrite the equation for h as h = merge(1 : 2 × h, 1 : 3 × h, 1 : 5 × h).
We imagine that there are three logical channels that carry the items of 1 : 2×h,
1 : 3× h and 1 : 5×h. The goal is to create a single channel, h, that carries the
merged values of these three channels.

The program is considerably simplified by having h as a multi-reader channel
that serves as the three logical channels, as well as the channel on which the
outputs are written. So, h has four readers, the one reader external to the
program that is designated as reader 0, and the three readers for the three
logical channels. The first logical channel is simulated by reader 1 reading from
h and multiplying the item read by 2, similarly, readers 2 and 3 multiply the
item read from h by 3 and 5, respectively.

We define site merge below. The arguments x , y and z of merge are the
smallest items from each of the three logical channels that are yet to be output.
In each step, merge picks the smallest of these items, m, writes it to h, and then
reads the next item from every logical channel that supplied m. Observe that a
value, for instance 6, is supplied by 1 : 2× h as well as 1 : 3× h; so, 6 has to be
removed and the next values should be read from both channels. These steps
are repeated forever.

Initially, the first item of each logical channel is 1, that is, 20 × 30 × 50, so
the goal expression is merge(1,1,1) .

val h = MultiReaderChannel(4) -- h has 4 readers
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def merge(x,y,z) =
min(min(x,y),z) >m> h.put(m) >>
( if m=x then 2 * h.get(1) else x,

if m=y then 3 * h.get(2) else y,
if m=z then 5 * h.get(3) else z

)
>(x,y,z)>
merge(x,y,z)

merge(1,1,1)

8.2.5 Exception Handling

An exception is an event that arises rarely in a computation. Exceptions are
either unexpected events, e.g., hardware failure, division by zero, or crash of one
component of a system, or expected though infrequent events, such as reaching
the end of a file during file processing. The unexpected events are “black swans”,
however their occurrences must be anticipated and handled. By contrast, the
end of file event is guaranteed to happen. We may treat all rare events as
exceptions.

The rarity of an exception does not simplify the programming task. Excep-
tion handling requires a thread to report, or raise an exception, and another
thread to detect its occurrence, or catch, and handle it. In Orc terms, a site call
returns a value that carries a special return code, say an indication of division by
zero or the end of file. Though the caller can handle the exception by checking
each return code, doing so makes for a very messy program structure, especially
since site calls may be nested or recursive. We show how channels may be used
to streamline exception handling.

To motivate the problem, consider a situation that may arise during a dialog
between a bank and its customer. While the customer is completing a trans-
action, the bank may randomly request additional authentication information.
The customer, as a human, can cope with such requests easily. For software,
it requires both detection of the request as an exception, transition to an ex-
ception handler and resumption of the original computation on completion of
exception handling; exception handling breaks up the smooth flow of the main
computation. This is exactly the situation a Web programmer faces when he
programs a mashup.

The program structure can be simplified if the customer supplies a channel
name on which the exceptions are reported by the bank. The customer concur-
rently monitors the channel and runs its regular computation. The skeleton of
such a program is shown below. Here request(x) sends a request from a client
to a server. The server may respond to the request by sending a result or it may
request authentication information. The client supplies a channel name, exc ,
to the server for sending exception request, r . The client handles the exception
by sending the authentication information corresponding to r , auth(r) , along
exc using a concurrent thread.
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def request(x) =
val exc = Channel()

server(x,exc)
| exc.get() >r> exc.put(auth(r)) >> stop

The program shown here handles a single exception; further, exception han-
dling is within the code of request . These restrictions can be easily removed.
A channel can hold a sequence of exceptions and a different channel may be used
to communicate the resolutions of the exceptions. Different kinds of exceptions
may be reported on different channels. For example, in a matrix based com-
putation, underflow, overflow, division by zero and singularity of a matrix may
be reported on different channels. The channels may be monitored in different
parts of the program, thus allowing exception handling to be separated from
the code proper.

The exception handlers can be coded in a less obtrusive style as follows.
Each exception handler is a class without any method. Its goal expression waits
to receive the exception report along a specified channel and then handles it.
Instantiating the class makes the handler active. Below, we rewrite the code for
request .

def class exception(ch) =

ch.get() >r> ch.put(auth(r)) >> stop #

val exc = Channel()

val _ = exception(exc)

def request(x) = server(x,exc)

Exception handlers are typically quite elaborate. We have not adequately
addressed all the intricacies in designing elaborate exception handlers, merely
how to use channels to separate the flow of control for the main computation
from exception handling.

8.3 Message Communicating Process

A message communicating process is connected to a set of channels, input chan-
nels from which it may receive data and output channels on which it may send
data; it may send and receive on the same channel. A process computes au-
tonomously, possibly, using some of the data it receives from its input channels,
and, possibly, sending the results of its computation along the output chan-
nels. As before, we assume that the channels are unbounded, first-in-first-out
and error-free, the kind of channel created by the factory site Channel() . In
Section 8.4, we discuss networks constructed from processes and channels. A
network may also be treated as a process within a larger network. In this
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section we consider only primitive processes that do not contain processes as
components.

8.3.1 Simple Processes

We introduce a few simple sites for message handling in this section. The
simplest such site is one that copies items from an input channel to an output
channel forever; it is shown schematically in Figure 8.1.

Figure 8.1: A copy Process

The copy site has been defined in Section 5.4.3 (page 139) and reproduced
here.

def copy(read,write) =
read() >x> write(x) >> copy(read,write)

where a typical call to copy is of the form copy(in.get,out.put) , for channels
in and out . This interface restricts the access rights of copy to only read from
its input channels and only write to its output channels. (In fact, read and
write could be arbitrary sites, not necessarily methods on channels, and copy

merely receives data from one site and sends it to the other site perpetually.)
A closely related site is a multiplexor that copies from many input channels

to a single output channel. We have seen one such site in Section 4.5.6 that
copies values from several input channels in a round-robin fashion to a single
output channel. The round-robin computation may block inputs from being
read if one channel is permanently empty. We design a fair multiplexor below
that reads every input from every channel.

Below, site mux reads inputs from a list of channels, given by its first argu-
ment, and writes to the channel specified in the second argument. Accesses to
all channels are restricted according to the access rights convention.

def mux([],write) = stop
def mux(read:reads, write) =

copy(read,write) | mux(reads, write)

In the second clause, there is a copy computation for each input channel. If
an input channel has a data item, it will be eventually copied over to the output
channel. In this sense, mux implements a “fair merge” , or interleaving, of the
contents of the input channels in arbitrary order.

In many practical applications, such as in sending requests from a multitude
of clients to a server, a multiplexor may need to append the identity of the client
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to the request. Typically, the request from a client already includes the client
identity; otherwise, the multiplexor writes a tuple of the channel name and its
content to the output channel.

Analogous to a multiplexor is a demultiplexor, demux, that copies values
from one input channel to many output channels. Below, the first argument of
demux specifies the input channel and the second argument the list of output
channels to which every data item must be copied. The auxiliary site fanout

writes its first argument’s value on all the channels in the list given by its second
argument, and then publishes a signal.

def demux(read,writes) =
def fanout(x , []) = signal
def fanout(x , write:writes) =

(write(x), fanout(x,writes)) >> signal

read() >x> fanout(x,writes) >> demux(read, writes)

A demultiplexor may, more generally, write the values on a specific set of
channels depending on each input data value. The definition of demux can be
easily modified to accommodate this generality. For example, the following site
directs input x to one of the two output channels, given below by write and
write’ , depending on the boolean result returned by a test site on x .

demux’(read,test,write,write’) =
read() >x> test(x) >b>
( if b then write(x) else write’(x) ) >>
demux’(read,test,write,write’)

Next, we show a site that merges inputs from two channels into a single
output channel according to some order relation. Assume that the data values
in each input channel appear in some total order. The output channel carries the
merged sequence according to the given order. Below, we assume that the data
values are integers. The first two arguments of merge refer to input channels
and the third argument to the output channel. The auxiliary site merge’ takes
the last two data values read from each of the channels, outputs the smaller
one, reads the next value from the appropriate channel and repeats these steps
forever.

def merge(read,read’,write) =
def merge’(x,y) =

if x <= y then
write(x) >> read() >x> merge’(x,y)

else ( write(y) >> read’() >y> merge’(x,y) )

(read(), read’()) >(x,y)> merge’(x,y)

The merge site defined in Section 8.2.4 under “Hamming Sequence” differs
from the one shown here in that the former discards duplicate values from
different channels.
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8.3.2 Transducer

A transducer site, in its simplest form, reads a data value from its input channel,
applies some transformation to it that produces a single result, writes the result
on its output channel, and repeats these steps forever. Such a site is given
below, where its first and last arguments refer to the input and output channels
and the middle argument is a site that transforms the data.

def xduce(read,f,write) =
read() >x> write(f(x)) >> xduce(read,f,write)

The copy site of the previous section is a special case where f is the identity
function.

Site xduce is memoryless; each input is treated independent of all other
inputs. We consider a few variations in which the transducer remembers (part
of) the history of its inputs. First, we consider a site prefixSum that writes the
sum of all the inputs it has read so far as its output, starting after it reads its
first input. The auxiliary site sum outputs the sum of all the items read so far
plus its argument value with which it was initially called.

def prefixSum(read,write) =
def sum(s) = read() >x> write(s+x) >> sum(s+x)

sum(0)

A transducer may not produce an output for each input. Below, site mean

repeatedly produces the mean value of a block of n consecutive numbers, n > 0,
from the input, so, a single value is output for n input values. The auxiliary
site avg reads all the items for a single block and outputs its mean. It has
arguments (s,k) where s is the sum of the values read so far in the current
block and k the number of items remaining to be read in the block.

def mean(read,write,n) =
def avg(s,0) = write((s+0.0)/n)
def avg(s,k) = read() >x> avg(s+x,k-1)

avg(0,n) >> mean(read,write)

Expression (s+0.0)/n in the first clause of avg ensures that the division is
performed over floating point numbers.

8.4 Simple Networks

A process network [23] consists of a set of processes (also called actors in the
literature [21, 3]) that are connected by a set of channels. The processes compute
autonomously, and receive and send data (called messages) along the channels
incident on them. In many networks, the set of processes, channels and their
interconnections are static, but in more general networks the interconnection
structure may evolve over time. In most cases, each channel has a single reader
and a single writer process, that call its get and put methods respectively. A
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static network can be depicted schematically by a directed graph where a node is
a process, an edge a channel and the direction of the edge denotes the direction
of data flow. An edge e may be directed to another edge e’ to denote that
writing to e is same as writing to e’ .

Process network is an important paradigm in programming of concurrent
systems. A network can be implemented in a distributed fashion: a process can
be implemented by a physical processor and a channel by a physical channel
linking the processors. Networks can also be efficiently implemented on multi-
core architectures where a channel is implemented as a buffer in some memory.

Many programming tasks can be naturally decomposed into a set of nearly
independent subtasks each of which can be programmed as a process; the data
communicated among the subtasks travel along the channels. The decomposi-
tion results in a modular program structure that is both easier to design and
comprehend. A network can also be treated as a process that is embedded
within a larger network, leading to hierarchical and recursive network construc-
tions. Finally, a process network can be depicted pictorially, which helps in
understanding the task partitioning and data flow.

We study process networks in this section mainly for their use in distributed
and multi-core implementations. We show how to construct networks in a sys-
tematic fashion, using site instances for processes and channel instances for
channels. We need only the parallel and sequential combinators of Orc in rep-
resenting a network. (We also use val for instantiating channels which is trans-
lated to a program fragment using the pruning combinator.) We use unbounded,
error-free channels in our examples, but bounded or unreliable channels, or
rendezvous-based communication (see Section 9.1.1) can also be programmed
in Orc.

In Section 8.5, we build networks in which arbitrarily many processes are
dynamically initiated, interrupted, resumed or terminated. The networks may
be structured in a hierarchy where a process itself may be a network to any
arbitrary depth, and connections among network components are established
either statically by naming channels explicitly, or by sending a channel name
as a data item as in the π-calculus [38]. The networks may also be defined
recursively.

Instantiating multiple channels The following definition is useful for in-
stantiating a set of channels; it creates a list of channels of specified length each
of which is then given a name.

def listofChannel(0) = []
def listofChannel(n) = Channel() : listofChannel(n-1)

To create 3 channels, called ch1 , ch2 and ch3 , we need only write

val [ch1,ch2,ch3] = listofChannel(3)

instead of enumerating each channel individually, as in

val ch1 = Channel()
val ch2 = Channel()
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val ch3 = Channel()

8.4.1 Translating Orc Programs

We show a few Orc program templates that can be translated directly to process
networks.

Orc Sequential Combinator Consider an Orc definition

def f(x) = g(x) >y> h(y)

where both g and h publish exactly one value for each input and neither includes
a recursive call to f . It is required to apply f to all values in an input channel
and publish the outputs on a given output channel in the order in which the
inputs are received.

We introduce an intermediate channel int so that a transducer correspond-
ing to g reads from the input channel and writes to channel int , and a trans-
ducer corresponding to h reads from int and writes to the output channel; see
Figure 8.2.

Figure 8.2: Implementing Orc Sequential Combinator

def seqNet(read,g,h,write) =
val int = Channel()

xduce(read, g, int.put)
| xduce(int.get, h, write)

This is an example of a simple 2-stage pipeline. A multi-stage pipeline can be
constructed by repeated application of this paradigm. Section 8.4.3 (page 222)
shows how multiple copies of g and h can be used in a network so that concurrent
processing is applied not merely across the two stages of the pipeline, but also
for different input data items.

Fork-Join Consider an Orc definition

def f(x) = (g(x) , h(x))

where both g and h publish exactly one value for each input and neither includes
a recursive call to f . It is required to apply f to all values in an input channel
and publish the output tuples on an output channel in the order of inputs.

We build a network using component processes from Section 8.3.1. First,
we employ the demux process from Section 8.3.1 to continuously read from the
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input channel using read and copy their values into two intermediate channels,
intin and intin’ . Next, we have two transducer processes, for g and h, that
read their inputs from intin and intin’ and write the results to intout and
intout’ , respectively. Finally, a tupler process combines the inputs from
intout and intout’ and writes tuples to the output channel of the network.
The schematic of the computation is shown in the network of Figure 8.3

Figure 8.3: Implementing Fork-Join

The corresponding Orc program is given by:

def tupleNet(read,g,h,write) =

def tupler(read, read’, write) =
write((read() , read’() )) >>
tupler(read, read’, write)

val [intin, intin’, intout, intout’] = listofChannel(4)

demux(read, [intin.put, intin’.put])
| xduce(intin.get , g, intout.put )
| xduce(intin’.get, h, intout’.put)
| tupler(intout.get, intout’.get, write)

If-Then-Else Consider an Orc definition

def f(x) = if test(x) then g(x) else h(x)

where test(x) publishes a boolean value, both g and h publish exactly one
value for each input, and none of these sites includes a recursive call to f .

A simple translation would use a process to implement each of test , f and g.
The process corresponding to test will have two output channels, one directed
to f and the other to g; every input x for which test(x) is true is sent to f

and the other inputs to g. There will be a collector process that merges the
outputs of f and g and outputs the results on the output channel of the network.

This simple solution does not preserve the order of inputs at the output
since the collector process is an unordered merge. We modify this solution as
follows to fix this problem. Inputs to the network are assigned strictly increasing
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integers, called sequence numbers, that become part of each input. The collector
process applies ordered merge of Section 8.3.1, slightly modified to accommodate
the tuple data structure. The program is shown below and the process network
in Figure 8.4.

Figure 8.4: Implementing If-Then-Else

def ifthenelse(read,test,f,g,write) =

def seqnbr(read,write) =
def sequence(i) =

read() >x> (write(i,x)) >> sequence(i+1)

sequence(0)

def fork(read,write,write’) =
read() >(i,x)>
( if test(x) then write(i,x) else write’(i,x) ) >>
fork(read,write,write’)

def transduce(read,s,write) =
read() >(i,x)> (write(i,s(x))) >> transduce(read,s,writ e)

def collector(read,read’,write) =
def merge’((i,x),(j,y)) =

if i < j then
write(x) >> read() >(i,x)> merge’((i,x),(j,y))

else
(write(y) >> read’() >(j,y)> merge’((i,x),(j,y)))

(read(), read’()) >((i,x),(j,y))> merge’((i,x),(j,y))

val [ch1,ch2,ch3,ch4,ch5] = listofChannel(5)

seqnbr(read,ch1.put)
| fork(ch1.get,ch2.put,ch3.put)
| transduce(ch2.get, f, ch4.put)
| transduce(ch3.get, g, ch5.put)
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| collector(ch4.get,ch5.get,write)

8.4.2 Task Decomposition

We consider a problem, due to Conway [7], mainly for its historical significance.
This was one of the first problems posed and solved using coroutines, a precursor
of process networks. It refers to many ancient devices, such as punch card input.

A sequence of cards, each with 80 symbols, are to be read from a card
reader and the sequence of symbols in the cards to be printed on a line printer
that prints lines consisting of 125 symbols. The sequence of input symbols are
modified according to the following rules: (1) an extra white space is inserted
at the end of each card, (2) a pair of consecutive asterisks (**) are replaced by
a single ↑; more precisely, a sequence of 2 × k asterisks are replaced by k ↑s
and 2 × k + 1 asterisks by k ↑s followed by an asterisk, (3) the end of input is
denoted by a special symbol # in a card column; this symbol and all following
symbols are to be ignored, and (4) the last output line is padded at the end by
white spaces, if needed, to fill the line.

A concise solution appears in Hoare [23] using his notation for communi-
cation sequential processes. The essence of the solution is to decompose the
problem into 3 simpler tasks that are structured as a 3-stage pipeline. The pro-
cesses corresponding to the tasks are disassembler , squasher and assembler .
The disassembler process reads each input card as a list of 80 symbols and
outputs each symbol, inserting an extra white space at the end of each card,
until a # is detected; it outputs the #. The squasher process reads inputs from
the disassembler and squashes pairs of asterisks to an ↑ and outputs the re-
sulting sequence of symbols. The assembler process reads each symbol from
squasher and outputs each line as a list of 125 consecutive symbols until it
detects a #; then it inserts white spaces to fill the current line and outputs the
result. The translation of this strategy to an Orc program is straightforward.

8.4.3 Load Balancing

Consider a transducer whose computation is time-intensive for each input. If
its inputs arrive at a high rate, its computation would be unable to keep up
with the arrivals. To process the inputs quickly, we may implement several
copies of the transducer, where each copy reads from the input channel, applies
the required transformation and writes the result on the output channel. A
schematic of such a network is shown in Figure..; the corresponding program is
shown below.

xduce(read, f, write) | xduce(read, f, write)

The program, though simple, has one major drawback; it does not preserve
the order of the input at the output. To overcome this problem, we introduce a
distribute process that divides the input stream among the two transducers,
sending input items alternately to the two copies of the transducer. Also, a



8.4. SIMPLE NETWORKS 223

collect process collects the outputs of the transducers alternately and writes
them on the output channel. The process network is shown in Figure... and the
program appears below.

def loadBalance2(read,f,write) =

def distribute(read, intwrite, intwrite’) =
read() >x> intwrite(x) >>
read() >x> intwrite’(x) >>
distribute(read, intwrite, intwrite’)

def collect(intread, intread’, write) =
intread() >x> write(x) >>
intread’() >x> write(x) >>
collect(intread, intread’, write)

val [inch,inch’,outch,outch’] = listofChannel(4)

distribute(read, inch.put, inch’.put)
| xduce(inch.get, f, outch.put)
| xduce(inch’.get, f, outch’.put)
| collect(outch.get, outch’.get, write)

A more elaborate strategy is to have each transducer read an input whenever
it is free. Each input carries a distinct sequence number (see the translation
of If-Then-Else in Section 8.4.1), the collector merges the outputs according to
their sequence numbers and writes the merged sequence on the output channel.
Further, the number of transducers to be created could be specified as a param-
eter of the program. In Section 8.5, we show how to create a network with any
specified number of copies of a transducer.

8.4.4 Packet Reassembly

We have seen a relatively trivial program in Section 8.3.1 for copying items from
an input channel to an output channel. Here, we consider a variation where the
items in the input channel may be slightly out of order, and the copying program
has to reestablish the proper order. This is a problem of considerable importance
in network protocols: a long message, such as a video file, is typically broken up
into packets that are sent as individual messages to a recipient; the packets may
not arrive in the same order in which they were sent; therefore, the recipient
has to assemble the packets in the correct order to recreate the message.

A sender divides a message into packets and assigns consecutive integers as
sequence numbers to the packets, starting with sequence number 0. A packet
is thus a tuple (n, v) where n is its sequence number and v its content. The
packets received by the recipient may not have retained their original order; so,
the consecutive packets read by the receiver may be out of order. However,
we do not expect the packets to be completely shuffled. Let pi be the position
of the packet with sequence number i in the received sequence. In a flawless
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transmission, pi = i. For realistic transmissions,

|i − pi| ≤ k, for some small positive integer k (Shuffle Constraint)

We call k the shuffle radius and 2×k the shuffle diameter. The packet reassembly
problem is to output the contents of the packets in order of their sequence
numbers. Henceforth, we use symbol d for the shuffle diameter, 2 × k.

From the shuffle constraint we have i − k ≤ pi ≤ i + k.

pi ≤ i + k from the shuffle constraint
i + k ≤ pi+2×k replacing i by i + 2 × k in i − k ≤ pi

pi ≤ pi+d combining above two, using d for 2 × k (S)

Since no two packets occupy the same position in the received sequence,
pi 6= pi+d; hence, and pi < pi+d. Therefore, the packets whose sequence numbers
are identical modulo d are received in order.

The program, below, contains two site definitions, input and output , that
are executed as concurrent threads. The input thread receives packets and
stores them internally, as follows. There are d internal channels numbered 0
through d − 1. A received packet with sequence number n is stored in the
channel numbered n modulo d (written as n%d). From (S) above, the packets
in any internal channel are in order of their sequence numbers. The output

thread scans the internal channels forever in cyclic order starting at the channel
numbered 0. In each scan an item is removed from the corresponding channel
and output, and the next channel is then scanned. If the channel being scanned
is empty, the output thread merely waits until a packet is stored in that channel
by the input thread.

def reassembly(read,write,d) = -- Shuffle diameter d, d > 0

val ch = Table(d, lambda(_) = Channel())

def input() = read() >(n,v)> ch(n%d).put(v) >> input()

def output(i) = -- scan internal channel i
ch(i).get() >v> write(v) >> output((i+1)%d)

input() | output(0)

The sizes of the internal channels depend on the relative speeds of input and
output sites. Assuming that both sites are able to operate at about the same
speed, each internal channel will rarely have more than a single packet.

Observe that for a perfect input channel, d is zero, and the program will
break down. To remedy the problem, define d to be 2 × k + 1. The inequalities
in (S) still hold, and, hence, the program is still valid.

A variation of this problem that is more realistic in practice is that a few
packets may actually violate the shuffle constraint and arrive too late. It is
then easy to modify the solution with time-out to account for such “straggler”
packets; the input thread simply asks for retransmission on time-out.
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8.4.5 A network of transducers; Variance computation

Consider a sensor that produces a reading of some physical device, say the tem-
perature inside an industrial furnace, at regular intervals. The sensor readings
are expected to be almost identical over time, but any significant deviation has
to be checked out by a human controller. The controller could look at each
sensor reading. But a better strategy is to look at the variance over n readings,
where n is a given parameter. We show a process network that computes the
variance for each block of n readings and outputs the value on a channel. The
computation is similar to, though more elaborate than, the computation of the
mean, shown in Section 8.3.2.

For a non-empty data set X , E(X) is the mean, i.e., the sum of the elements
of X divided by the size of the data set. The variance is given by the formula
E(X2)−E(X)2, where X2 is the data set obtained by squaring each element of
X . The form of the expression suggests a network for its computation. Define
two process networks, sqmean and meansq, to compute E(X2) and E(X)2,
respectively, over data sets of size n. A subtract process, similar to tupler of
Section 8.4.1, collects E(X2) and E(X)2 from sqmean and meansq, computes
E(X2) −E(X)2 and outputs the result. The networks sqmean and meansq are
very similar; in sqmean, the inputs are first squared and then fed to the network
to compute the mean, whereas these two processes are applied in reverse order
in meansq. Both sqmean and meansq are examples of 2-stage pipeline described
in Section 8.4.1. The definitions of sites demux (from Section 8.3.1) and mean

(from Section 8.3.2) are repeated here for completeness.

def variance(n,read,write) =

def squarer(read,write) = xduce(read, lambda(x) = x * x,write)

def demux(read,write,write’) =
read() >x> (write(x), write’(x)) >>
demux(read,write,write’)

def mean(read,write) =
def avg(s,0) = write((s+0.0)/n)
def avg(s,k) = read() >x> avg(s+x,k-1)

avg(0,n) >> mean(read,write)

def sqmean(read,write) = -- square the mean
val c = Channel()
mean(read,c.put) | squarer(c.get,write)

def meansq(read,write) = -- mean the square
val c = Channel()
squarer(read,c.put) | mean(c.get,write)

def subtract(read,read’,write) =
(read(),read’()) >(sqm,msq)>
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write(msq-sqm) >> subtract(read,read’,write)

val [ch1,ch2,ch3,ch4] = listofChannel(4)

demux(read,ch1.put,ch2.put)
| sqmean(ch1.get,ch3.put)
| meansq(ch2.get,ch4.put)
| subtract(ch3.get,ch4.get,write)

8.5 Regular and Dynamic Networks

For the process networks we have seen so far the interconnection structure has
to be enumerated explicitly; we call these enumerated networks. In such net-
works, the component processes are often heterogeneous. Enumerated networks
are typically small. By contrast, large networks contain a number of similar pro-
cesses or have regular connection structures. For example, an n-stage pipeline
will have a number of transducers connected in a linear fashion; the process
behaviors are similar, though not identical because they will typically apply dif-
ferent transformations to data. Such networks can be described succinctly using
recursion where a component process may be a network. Removing the distinc-
tion between process and network is a great convenience, both for conceptual
clarity as well as for hierarchical and recursive designs. We show a number of
examples of such networks in this section.

8.5.1 Pipeline

We construct an n-stage pipeline of transducers below. Site pipe(read,fs

,write) has the structure of xduce from Section 8.3.2 except that fs is a
non-empty list of sites. The sites in fs constitute the pipeline in the order given
in the list.

def pipe(read, [f], write) = xduce(read, f, write)
def pipe(read, f: fs, write) =
val int = Channel()
xduce(read, f, int.put) | pipe(int.get, fs, write)

The entire pipeline may be regarded as a single process in the hierarchical
construction of a network. For example, we may extend load balancing (see
Section 8.4.3) where each xduce process is replaced by a pipeline.

8.5.2 Multi-copy Load Balance

We construct a generalization of the load-balance network of Section 8.4.3. Be-
low, site loadbalance(n,read,f,write) instantiates a network in which n

copies of a transducer for site f read items from an input channel using read

and write their outputs to the output channel using write . We employ the sites
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distribute and collect defined in Section 8.4.3 to distribute the computation
among the n copies and collect the outputs in the right order.

The simplest solution is to define the network recursively based on the value
of n. For n = 1, the network is simply a transducer for f . For the general case,
we use the program from Section 8.4.3, except that each copy of the transducer
is replaced by a network of size n/2. For the moment, assume that n is a power
of 2 so that the division is perfect.

def loadBalance(1,read,f,write) = xduce(read,f,write)

def loadBalance(n,read,f,write) =

def distribute(read, intwrite, intwrite’) =
read() >x> intwrite(x) >>
read() >x> intwrite’(x) >>
distribute(read, intwrite, intwrite’)

def collect(intread, intread’, write) =
intread() >x> write(x) >>
intread’() >x> write(x) >>
collect(intread, intread’, write)

val [inch,inch’,outch,outch’] = listofChannel(4)

-- Goal expr. Two subnetworks in place of two xduce.
distribute(read, inch.put, inch’.put)

| loadBalance(n/2, inch.get, f, outch.put)
| loadBalance(n/2, inch’.get, f, outch’.put)
| collect(outch.get, outch’.get, write)

For values of n that are not powers of 2, use the ceiling and floor of n/2; in
Orc these are n/2 and n − n/2, respectively.

The constructed network essentially consists of a pair of trees that are joined
at their terminal nodes; see Figure ... Transducers are located at the terminal
nodes. One tree is a distribution network that routes an input item from the
root to a transducer at a terminal node and the other a collector network that
collects the outputs of the transducers at its root. Therefore, an input is copied
about log n times before it reaches the destination transducer and similarly an
output of a transducer is copied about log n times before it becomes an output of
the network. These are unacceptable costs for large n. So, we devise a network
that distributes and collects directly to and from the transducers, using an array
of channels.

Below, ch and ch’ are arrays of n channels each. Transducer i , repre-
sented by xducer(i) , has ch(i) as its input channel and ch’(i) as its output.
Site distribute distributes the input items among ch in a round-robin style;
site collect collects the outputs from ch’ similarly. The network consists of
distribute , collect and the transducers.

def loadBalance’(1,read,f,write) = xduce(read,f,write)
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def loadBalance’(n,read,f,write) =

val ch = Table(n, lambda(_) = Channel())
val ch’ = Table(n, lambda(_) = Channel())

def distribute(i) =
read() >x> ch(i)?.put(x) >> distribute((i+1) % n)

def collect(i) =
ch’(i)?.get() >x> write(x) >> collect((i+1) % n)

def xducer(i) =
ch(i)?.get() >x> ch’(i)?.put(f(x)) >> xducer(i)

distribute(0) | upto(n) >i> xducer(i) | collect(0)

8.5.3 Networks computing recursively defined functions

The networks defined so far compute non-recursively defined functions over a
data stream. We show how to compute a recursively-defined function, Fibonacci,
on a stream of argument values. The network structure mirrors the recursive
definition. We emphasize yet again that such a solution is not recommended
for actually computing the Fibonacci function. There are more efficient alter-
natives. The example merely illustrates how a definition can be systematically
translated to a network.

We define a network, fibnet(N,read,write) , where site read continually
reads the input arguments of Fibonacci and write outputs the values of the Fi-
bonacci function at those arguments, retaining the input order. Value of N is the
maximum value of any input number; it is necessary to specify a maximum value
so that the entire network can be constructed before the computation begins
(we show a network in Section 8.5.4 whose structure evolves as the computa-
tion proceeds . A similar technique can be used to eliminate N as an explicit
parameter). For N = 0 and N = 1, the network consists of a single process
that outputs the result immediately. For higher values of N , The network con-
sists of 4 processes, reader , writer and and two copies of fibnet , where the
component fibnet processes have N − 1 and N − 2 as arguments.

The reader process continuously reads input x, writes x on a channel, called
local below, that is directed to the writer and and writes x− 1 and x− 2 on
the channels directed to the component fibnet processes. The writer process
continuously reads input x from local , outputs x provided it is at most 1,
otherwise, waits to receive the outputs of the component fibnet processes,
adds them and outputs the result. The order of inputs is preserved at the
output, which can be shown using an inductive argument on N .

def fibnet(0,read,write) = copy(read,write)
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def fibnet(1,read,write) = copy(read,write)

def fibnet(n,read,write) =

val [in1,in2,out1,out2,local] = listofChannel(5)

def reader() =
read() >x> local.put(x) >>
( if x :> 1 then (in1.put(x-1) , in2.put(x-2))
else signal

) >>
reader()

def writer() =
local.get() >x>
( if x <= 1 then write(x)
else ( (out1.get(), out2.get() ) >(x,y)> write(x+y))

) >>
writer()

reader()
| fibnet(n-1, in1.get, out1.put)
| fibnet(n-2, in2.get, out2.put)
| writer()

We can reduce the size of the network by having just one fibnet network
as a component, instead of two. The reader process sends both x−1 and x−2
to the component fibnet and the writer reads two outputs of that component
corresponding to the Fibonacci values of x − 1 and x − 2.

8.5.4 Dynamic Networks

The networks described so far have been static; the network structure is de-
termined before any input is supplied to it and the course of the computation
does not alter the network structure. In practice, network structures are often
dynamic in that new processes are added and existing processes deleted during
a computation. Deletion of a process is a difficult problem in general. The
simplest deletion procedure is to stop supplying any data to the process, con-
sume all its outputs and then remove the process (for garbage collection). It is
difficult to ensure that a process has output all it has to output at any stage in
a computation.

Here, we show how to add new processes during a computation. A process is
easy to create: instantiate a site by calling it with appropriate parameters and
create the channels linking this process to the existing processes in the network.
We choose a relatively simple combinatorial problem to illustrate process cre-
ation, computation of all prime numbers by using the “sieve of Eratosthenes”.
At any stage the network would have produced n prime numbers, and it has n
sieve processes connected as a pipeline, n ≥ 0. The ith sieve process filters the
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numbers it receives by dividing them by the ith prime; the ones that are divisible
are discarded and the others are output on its output channel. The very first
sieve receives a stream of candidates for prime numbers from a process called
cand below, and the last sieve is connected to a manager process that outputs
the prime numbers and creates new sieve processes as needed. The number of
sieves in the network is unbounded. The structure of the network is shown in
Fig...

It follows from this description that any number output by the ith sieve is
relatively prime to the first i primes. Consequently, the first output of the ith

sieve is the (i+1)th prime number. The manager reads the first number output
by a sieve, it outputs this number on a specified channel primes , and then
creates the next sieve process. It can be shown that the sequence of numbers
written on primes is the sequence of prime numbers.

def Eratosthenes(primes) =

def cand(write) = -- output 2 and positive odd integers.
def cand’(i) = write(i) >> cand’(i+2)
write(2) >> cand’(3)

def sieve(read,d,write) = -- sieve using prime number d.
read() >i>
( if i%d = 0 then signal else write(i) ) >>
sieve(read,d,write)

def manager(read,write) =
{- read a number; it is the next prime, output it,

and create a sieve for it. -}

val ch = Channel() -- output channel of the new sieve

read() >i> write(i) >>
( sieve(read,i,ch.put)

| manager(ch.get,write)
)

-- Goal of Eratosthenes(primes)
-- initially, there is no sieve, only cand and manager.

val candch = Channel() -- carries 2 and all odd integers
cand(candch.put) | manager(candch.get, primes.put)

-- Usage of Eratosthenes: channel p will contain the primes

val p = Channel()

Eratosthenes(p)
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8.6 Concluding Remarks

We have studied the process network style of programming in which the only in-
teraction among components is through message passing over channels. A chan-
nel, though a mutable data structure, supports disciplined access to its data.
So, it is simpler to develop and reason about the programs written in this style
provided a given problem can be solved in this manner. In many situations other
kinds of process interactions are essential. For instance, low-level synchroniza-
tions in operating system kernels are often implemented by semaphores rather
than message communications. Processes, being autonomous, can not interrupt
other processes, nor can the halting of a network be detected easily. Inter-
ruption and halt detection can be implemented in Orc using the pruning and
otherwise combinators, respectively, though these combinators fall outside the
channel-based programming paradigm. Large applications require a judicious
combination of a variety of programming styles, and channel-based program-
ming is just one such style.
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Chapter 9

Synchronization

9.1 Synchronization

Perhaps the most fundamental paradigm in concurrent programming is syn-
chronization among processes. Synchronization of a group of processes forces a
process in the group to wait until some or all of the processes in that group have
completed some specific activity. One of the simplest forms of synchronization
is between a sender and a receiver along a channel; the receiver is forced to
wait until the sender has completed putting some data in the channel. In this
case and many other cases, synchronization is accompanied by transfer of data
or access to shared data. Bounded channel and semaphore provide the basic
ingredient for solving a variety of synchronization problems.

We study a number of synchronization problems in this section, among them
rendezvous in which both a sender and a receiver are forced to wait for each
other, phase synchronization in which a group of processes execute a sequence
of phases in lock-step, the readers-writers problem in which there are two sets
of processes with different privileges for access to shared data. We show solu-
tions to the classical dining philosophers problem that encodes the elements of
concurrent resource sharing. We consider encoding transactions in Orc that is
suitable for the most elementary form of transactional programming.

Callback A technique of particular importance in synchronization is callback.
It is a mechanism to decouple the site call and the site response. The caller
C of a site S specifies, as part of its call, what S must do after its response is
ready. Typically, C specifies the name of another site S′, or a closure, that S
has to execute when it is ready to deliver its response. This frees C to engage in
other activities until the response becomes available; in particular, it may read
the response at a more opportune moment. It also frees site S to aggregate all
the calls it receives and respond to them in a different order. We show the use
of callback to solve the 2-party rendezvous and the readers-writers problem.

233
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9.1.1 Rendezvous

A rendezvous occurs between a pair of processes that we call the sender and
the receiver. The sender has some data to send and the receiver, as usual,
waits to receive the data. In channel-based communication the sender is al-
lowed to deposit the data item in the channel and proceed without concern for
whether it will ever be read. A bounded channel restricts the sender’s behavior
in that it can not indefinitely deposit data without a receiver reading them.
Rendezvous imposes an even stricter control: the sender can proceed only after
each data that is deposited has been read. Thus, reading and writing of data
are synchronized. There is no need for the receiver to send an acknowledgement
upon reading; acknowledgement is implicit in the rendezvous protocol. Ren-
dezvous is the means of communication and synchronization in several process
calculi [24, 36, 38].

9.1.1.1 2-party Rendezvous

We regard rendezvous as communication over a bounded channel of length 0
where a sender performs a put and a receiver a get . There may be multiple
senders and receivers on the channel, as is typical for any other channel. Also,
as is typical, a receiver has to wait for the data to be deposited in the channel
before it can read it. But atypically, a sender has to wait until there is a waiting
receiver before it can deposit a piece of data. The channel length never exceeds 0
because any deposited item is immediately consumed. We simulate rendezvous
using a bounded channel of length 1. Such a channel does not quite solve the
rendezvous problem because it allows a sender to proceed without waiting for a
receiver. To overcome this problem, we introduce a semaphore that counts the
number of waiting receivers. A sender is allowed to deposit a data item only if
the semaphore value is positive. Observe that the semaphore value is initially
0 denoting that there are 0 waiting receivers.

def class zeroChannel() =
val s = Semaphore(0)
val w = BoundedChannel(1)

def put(x) = s.acquire() >> w.put(x)
def get() = s.release() >> w.get()

stop

Any instance of zeroChannel() can be used by a group of senders and re-
ceivers for their rendezvous-based communication. Observe that both senders
and receivers can not wait without one of them proceeding. Further, the
bounded channel in the solution can not remain full if there is a waiting re-
ceiver, though there may be a waiting sender and an empty channel forever.

There may be a small time lag between a sender depositing an item in the
channel and a waiting receiver reading it, thus allowing the sender to proceed
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while the receiver has not completed its operation. This is unavoidable in any
implementation that uses an asynchronous protocol.

Pairwise synchronization A special case of rendezvous is pair-wise synchro-
nization without any data transfer. Here, the sender has no data to deposit,
it engages in a rendezvous merely for synchronization. Both put and get op-
erations publish signals upon completion. We may modify the solution above
by having put write a signal to the bounded channel w. But an even simpler
solution uses a semaphore in place of the bounded channel, as shown below.

def class pairSync() =
val s = Semaphore(0)
val t = Semaphore(0)

def put() = s.acquire() >> t.release()
def get() = s.release() >> t.acquire()

stop

Observe that put and get are symmetric operations, i.e., there is no distinction
between a sender and a receiver.

2-party Rendezvous using Callback The rendezvous solutions given so
far do not quite meet a requirement that we did not specifically pose. To see
the problem, suppose that each sender and each receiver has a piece of data. A
rendezvous results in exchanging their data. The problem is symmetric between
senders and receivers. We require that when a set of senders and receivers engage
in rendezvous sender s receives the data from receiver r if and only if r receives
the data from s.

The class zeroChannel , suitably generalized, does not meet this require-
ment. The following scenario in zeroChannel describes the essence of the prob-
lem. Receiver r1 executes s.release() and waits to read data and sender s1

executes both operations in put(x) . But before r1 could read the data receiver
r2 executes both operations in get() , thus reading the data from s1. Even
though s1 had performed the initial part of its rendezvous with r1 its second
part is with r2. The problem shows up more clearly in the data exchange prob-
lem because the requirement given earlier is not met: r2 gets the data from s1

though s1 may not get the data from r2.
One way to solve the problem is to ensure mutual exclusion among the

senders and among the receivers, so that at most one receiver may execute
a get operation and one sender a put operation. Mutual exclusion can be
implemented by introducing two new semaphores, one for the put and the other
for the get . We prescribe a more transparent solution using callback.

The following solution encodes data exchange. We introduce an internal
channel q on which all receivers store callback information. Each receiver first
creates two bounded channels, u and v , of size 1, stores its data in u and puts
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the tuple (u,v) in channel q. Then it waits to read data from v . A sender
get a tuple (u,v) from q, reads the data from u and stores its data in v , thus
completing the operation.

def rendezvous2() =
val q = Channel()

def put(x) = q.get() >(u,v)> v.put(x) >> u.get()

def get(x) =
val u = BoundedChannel(1)
val v = BoundedChannel(1)

u.put(x) >> q.put((u,v)) >> v.get()

stop

This solution creates two bounded channels for each call to get , though the
implementation will collect the discarded channels during a garbage collection.

Note: Site put needs only write access to v and read access to u. However, all the
methods of both channels are exposed by storing them in q. It is necessary to
store only (u.get,v.put) , a tuple of closures, in q. We adopt such a convention
in Section 8.3.1.

9.1.1.2 Multi-party Rendezvous

We consider a generalization of the 2-party rendezvous protocol to n parties,
n ≥ 2. Each party has a specific role in the rendezvous, analogous to the send
and receive in a 2-party rendezvous. Each party contributes some data and waits
to receive some data on completion of the rendezvous. The contributed data
constitute the input list (of length n) of the rendezvous. After all the parties
have contributed their data, a given rendezvous function f is applied to the
input list to form an output list of length n. The ith party in the rendezvous
receives the ith item of the output list, after which it may proceed with its
computation.

Multi-party rendezvous is an extremely powerful synchronization mecha-
nism. By choosing different rendezvous functions, a variety of synchronization
problems can be solved. The send-receive protocol of the previous section, Sec-
tion 9.1.1.1, is solved by supplying the sender’s contributed data to the receiver
and a signal to the sender. In a numerical computation that proceeds in rounds,
every party may receive the average value of all the inputs in a round for use
in the next round. For certain consensus protocols where the inputs are binary
every party may receive the majority value. A synchronized broadcast may be
simulated by having every party receive the value supplied by the first party, the
broadcaster. In a secret sharing protocol, the inputs can be used to compute a
secret which is then handed-out to all parties [45]. A dynamic rank among the
parties can be established by sorting the input data and sending out the ranks
to each party.
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We define a class Rendezvous with parameters n and f , denoting the number
of parties and the rendezvous function. The class contains the definition of site
go; once the the class is instantiated, the ith participant in the rendezvous may
call go(i,x) where x is its input data. It receives a response, its output data,
only after all parties have contributed their data and the rendezvous function has
been computed. For example, the following call protocol supplies the average
value of all inputs in a round to all parties.

def avg([x,y,z]) =
val av = (x+y+z+0.0)/3

[av,av,av]

val rg3 = Rendezvous(3,avg).go

rg3(0,0)
| rg3(1,10)
| rg3(2,2)

In this example, rg3 is the site that each party calls with its identity and data;
parties 0, 1 and 2 contribute 0, 10 and 2 as their data. Each alternative in the
parallel combinator publishes the average of all contributed values, so, there are
3 publications of 4.0 ( that is, (0+10+2+0.0)/3 ).

Implementation The data structures in the implementation are two tables,
in and out , that are used to hold the input and output lists, respectively. Each
table entry is a bounded channel of length 1. Calling go(i,x) stores x in the
ith bounded channel in in , provided that entry is empty; then it waits to receive
the data from the ith entry of out . The computation revolves around manager

that reads the entries of in , applies the rendezvous function, and stores the
result in out , repeatedly. Auxiliary site collect forms the input list from in ;
distribute stores the data from the output list in out .

def class Rendezvous(n,f) =

val in = Table(n, lambda(_) = BoundedChannel(1))
val out = Table(n, lambda(_) = BoundedChannel(1))

def go(i,x) = in(i).put(x) >> out(i).get()

{- collect(i) publishes the list of the last i items from in
-}
def collect(0) = []
def collect(i) = in(n-i).get() : collect(i-1)

{- distribute(vl,i) puts the first i items of vl
in the last i positions of out.

-}
def distribute(_,0) = signal
def distribute(v:vl,i) =
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out(n-i).put(v) >> distribute(vl,i-1)

def manager() =
collect([],n) >vl> distribute(f(vl),n) >> manager()

manager()

9.1.2 Phase Synchronization

Consider execution of f >> g | f’ >> g’ . Executions of the two subexpres-
sions under the parallel combinator are unsynchronized; therefore, the execu-
tions of g and g’ may start at arbitrary times on completions of f and f’ ,
respectively. Let us take f and f’ to be the first phases of the corresponding
subexpressions, and g and g’ to be the second phase. We may require that the
two subexpressions run their phases in lock-step so that a phase in any subex-
pression may start only after both subexpressions have completed their previous
phases. This problem arises in code generation in parallelizing compilers where a
phase may correspond to an iteration of a loop in the source program and each
iteration of the loop may have several parallel subcomputations. The phases
must be synchronized so that the values computed during an iteration are made
available to all subcomputations in the following iteration.

We have considered this simple version of phase synchronization in Sec-
tion 2.5.1.8 (page 32). The general version of phase synchronization has a set
of n processes that each execute a sequence of phases. Each process calls the
synchronizer on completing a phase (using nextphase() below) and receives
a signal only when it is safe to start executing the next phase, i.e., when all
n processes have completed the current phase. The problem is easily solved
using multi-party rendezvous where the data to be shared is immaterial. We
show a simpler implementation below. The implementation uses two general
semaphores, insem and outsem , both initially 0. A call to nextphase releases
insem and then waits to acquire outsem . There is a manager that attempts
to acquire insem n times. Since exactly n processes call nextphase and each
releases insem once , the manager can acquire insem n times only after all
processes have called nextphase . At that point, all processes have completed
their current phase and the manager releases outsem n times so that all waiting
processes may enter the next phase.

def class phaseSync(n) =

val insem = Semaphore(0)
val outsem = Semaphore(0)

def nextphase() = insem.release() >> outsem.acquire()

{- Repeat the execution of f, a closure, i times -}
def repeat(_,0) = signal
def repeat(f,i) = f() >> repeat(i-1,f)
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def manager() =
repeat(insem.acquire,n) >>
repeat(outsem.release,n) >>
manager()

manager()

The following usage is typical for 3 processes to synchronize their phases.
Each process calls barrier() after completing a phase.

val barrier = phaseSync(3).nextphase

9.1.3 Readers-Writers

The classical readers-writers synchronization problem [10] has a set of processes
called readers and another set called writers. A process, from time to time,
needs access to a shared file; the readers “read” the file and the writers “write”
to the file. It is required to design an access manager that restricts access to the
file as follows: (1) (safety) any number of readers may read the file concurrently,
but a writer needs exclusive access; so a writer never operates concurrently with
another reader or writer, and (2) (progress) any process waiting to read or write
will eventually be granted permission to do so, provided every process that is
granted permission eventually completes its execution.

The interface for the processes are as follows. A reader that attempts to
read calls startread() and a writer calls startwrite() . When the caller
receives a response, a signal, it has the permission to access the file. On com-
pletion of its execution, a reader calls endread() and a writer endwrite() .
Calls to startread() and startwrite() are blocking, whereas endread()

and endwrite() are non-blocking.

Implementation of the Access Manager A queue (encoded as a channel),
called req , stores the callback information for all waiting readers and writers in
the order in which they request permission for access. The callback information
is a pair (b,s) where b is either "read" or "write" , and s is a semaphore that
identifies the requester. An execution of startread() creates s with initial
value 0, stores the tuple ("read",s) in req , and waits to acquire s ; execution
of startwrite() is analogous. The semaphore is released by the access manager
at the appropriate moment to grant permission to the caller.

Another data structure, called na, is a counter that keeps the number of ac-
tive readers or writers, i.e., the ones that have been granted permission but have
not yet completed their executions. This count is important because a writer
can be granted access only when all readers have completed their executions,
and analogously for permission for the readers. The count is incremented by
the access manager when it grants access and decremented by endread() and
endwrite() .
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We need the standard factory site Counter() to implement na. This site
instantiates a counter with initial value 0 and provides four methods:

inc() : increments the counter (by 1)
dec() : decrements the counter (by 1), only if the counter value is

positive; halts otherwise
value() : returns the current value of the counter
onZero() : returns a signal whenever the counter value next becomes 0

The interface portion of the access manager is as follows.

val req = Channel()
val na = Counter()

def startread() =
val s = Semaphore(0)
req.put(("read", s)) >> s.acquire()

def startwrite() =
val s = Semaphore(0)
req.put(("write", s)) >> s.acquire()

def endread() = na.dec()

def endwrite() = na.dec()

The access manager loops forever removing the next item from req and
granting permission to it.

def manager() = grant(req.get()) >> manager()

The loop invariant for the manager is that (1) no writer is active, and (2)
the value of na is the number of active readers. Clearly, this invariant holds
initially. When the manager removes a pair ("read",s) from req , given the
invariant it can immediately grant permission to this reader, by releasing s ,
without violating the safety constraints. To maintain the invariant, it has to
increment na.

def grant(("read", s)) = {- Reader -} na.inc() >> s.release()

When the manager removes a pair ("write",s) it can grant access to the
corresponding writer only when all active readers have completed their execu-
tions. It does so by calling na.onZero() that returns a signal when na becomes
zero. At this point it can grant permission to this writer, by releasing s . How-
ever, to preserve the loop invariant it has to wait until the writer completes its
execution. Again, it does so by incrementing na before granting permission to
the writer and waiting until na.onZero() responds.

def grant(("write", s)) = {- Writer -}
na.onZero() >> na.inc() >> s.release() >> na.onZero()

Note that onZero() returns a signal when the counter value is 0. But, in
general, the counter value may have changed by the time the caller of onZero()
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def class readerWriter1() =
val req = Channel()
val na = Counter()

def startread() =
val s = Semaphore(0)
req.put(("read", s)) >> s.acquire()

def startwrite() =
val s = Semaphore(0)
req.put(("write", s)) >> s.acquire()

def endread() = na.dec()

def endwrite() = na.dec()

def grant(("read", s)) = {- Reader -}
na.inc() >> s.release()

def grant(("write", s)) = {- Writer -}
na.onZero() >> na.inc() >> s.release() >> na.onZero()

def manager() = grant(req.get()) >> manager()

manager()

Figure 9.1: Reader-Writer1 Protocol

receives the signal. So, onZero() should be called only if the counter value can
be changed only by its caller, which is the case in our solution.

The complete protocol is coded as a class and is shown in Figure 9.1. An
instance of the class, such as,

val rw1 = readerWriter1()

creates an access manager. Then a reader may call rw1.startread() and
rw1.endread() , and a writer rw1.startwrite() and rw1.endwrite() .

Correctness of readerWriter1 The safety requirements, that the readers
may have concurrent access whereas the writers must have exclusive access, is
easily seen. We show the progress requirement, that every waiting process is
eventually granted permission. First, observe that once the manager removes
an entry from req , its corresponding iteration is completed in finite time: (1)
if the removed entry is ("read", s) , then grant(("read", s)) is completed
because its body includes no blocking site call, (2) similarly, if the removed
entry is ("write", s) , then grant(("write", s)) has two blocking calls to
na.onZero() ; however, each call is guaranteed to respond because each process
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def class readerWriter2() =
val req = Channel()
val na = Counter()
val (r,w) = (Semaphore(0), Semaphore(0))

def startread() = req.put("read") >> r.acquire()

def startwrite() = req.put("write") >> w.acquire()

def endread() = na.dec()

def endwrite() = na.dec()

def grant("read") = {- Reader -} na.inc() >> r.release()

def grant("write") = {- Writer -}
na.onZero() >> na.inc() >> w.release() >> na.onZero()

def manager() = grant(req.get()) >> manager()

manager()

Figure 9.2: Reader-Writer2 Protocol

that is granted permission eventually completes its execution. This observation
implies that every entry of req is eventually removed and the corresponding
process granted permission.

A Refinement The previous solution is generous in its creation of semaphores;
each process attempting access to the file creates one. Next, we show a solution
that uses only two semaphores, r and w. Each reader waits for r and writer for
w. The manager releases r when it grants access to a reader and w for writer.
No semaphore is put in req ; the entries in req are only booleans. The complete
protocol is shown in Figure 9.2.

The correctness of this algorithm is more subtle. As before, the safety re-
quirement is easy to see. But it is no longer as easy to see progress. For example,
a waiting reader whose entry was removed from req may not acquire semaphore
r when it is released; instead a waiting reader behind it in req may acquire it.
We show progress using the properties of (strong) semaphore implemented in
Orc: if semaphore s is released eventually as long as a caller on s.acquire()

is waiting, the caller will eventually acquire s .
It is simple to show that the number of waiting readers equals the number

of "read" entries in req as a loop invariant for the manager. Hence, if there is
a waiting reader, there is a "read" entry in req . According to the argument for
the previous protocol, each entry of req is removed eventually and processed.
Therefore, as long as there is a waiting reader, r is eventually released. This
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satisfies the precondition for a strong semaphore; therefore, a waiting reader
will eventually acquire r . Similar arguments apply for writers.

A Further Refinement The refined protocol uses req all of whose entries
are booleans. We show that it is sufficient to maintain a count of the "read" s
and "write" s to encode req , and use a coin toss to pick the next entry of req .
This refinement eliminates unbounded storage. Instead, we have a counter nwr

for the number of waiting readers and nww for the number of waiting writers.
We also use a semaphore nwsem whose value is the total number of waiting
processes; this semaphore is necessary to determine if the manager may start
an iteration of its loop.

The algorithm is as before except that startread() and startwrite()

increment nwr and nwwrespectively and both also increase nwsem. The manager
starts an iteration only if nwsem is non-zero. Then it picks a boolean value by
calling choose(nwr.value(), nww.value()) . Site choose publishes "read"

if its second argument is 0 (i.e., pick a reader if there are no waiting writers),
"write" if the first argument is 0, and randomly "read" or "write" if both
arguments are non-zero. The protocol is shown in Figure 9.3.

The correctness of the protocol depends on the fairness of random number
generation. As long as there is a waiting reader, the value of nwr is positive. So,
a call to choose publishes either ”read” (because nww may be 0) or a random
boolean. Assuming fairness in the latter, eventually choose publishes ”read”,
thus causing r to be released. Now, we use the argument from the previous
protocol to assert that a waiting reader will acquire r eventually given the
strong semaphore property.

9.1.4 Dining Philosophers

Dining Philosophers is a classic problem in resource sharing. We show a very
simple solution, due to Hoare [23], that solves the problem by limiting the
number of processes that can contend for a resource at a time. We also show
the encoding of a randomized algorithm due to Lehmann and Rabin [32].

Given is a set of philosophers where each philosopher is a process. The
philosophers are arranged in a ring so that each philosopher has a left and a
right neighboring philosopher. Placed between each pair of neighbors is a re-
source called a fork; the two forks next to a philosopher are incident on that
philosopher. A philosopher cycles through 3 states, thinking, hungry and eat-
ing, in the given order. A thinking philosopher may transit to hungry or remain
thinking forever, and an eating philosopher must transit to thinking; the stim-
ulus for transition is external and is immaterial for our purposes. An eating
philosopher must hold both its incident forks, so neighbors are never simulta-
neously eating.

It is required to design a protocol so that every hungry philosopher eventually
transits to eating. A philosopher is allowed to pick up an incident fork provided
its neighbor does not already hold it; it may pick only one fork at a time. A
simple algorithm for a hungry philosopher is to first pick its left and then its
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def class ReadersWriters() =
-- nwr = number of waiting readers
-- nww = number of waiting writers
-- na = number of active processes
-- nwsem = number of waiting processes

val (nwr,nww,na) = (Counter(),Counter(),Counter())
val (r,w) = (Semaphore(0), Semaphore(0))
val nwsem = Semaphore(0)

def startread() =
nwr.inc() >> nwsem.release() >> r.acquire()

def startwrite() =
nww.inc() >> nwsem.release() >> w.acquire()

def endread() = na.dec()

def endwrite() = na.dec()

def choose(_,0) = "read"
def choose(0,_) = "write"
def choose(_,_) = ( if Random(2) = 0 then "read" else "write

")

def grant("read") = {- Reader -}
nwr.dec() >> na.inc() >> r.release()

def grant("write") = {- Writer -}
na.onZero() >> nww.dec() >> na.inc() >> w.release() >>
na.onZero()

def manager() =
nwsem.acquire() >> choose(nwr.value(), nww.value()) >b>
grant(b) >> manager()

manager()

Figure 9.3: Reader-Writer3 Protocol
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right fork. However, if all philosophers are hungry, and they all pick up their left
forks in unison then none of them can pick up the right fork and start eating.
In fact, there is no deterministic algorithm that is symmetric for all processes.

9.1.4.1 Limiting the amount of contention

Given that there are n philosophers a simple solution is to limit the number of
philosophers that may contend for resources to n−1. In that case, the deadlock
scenario we have described above does not arise; some philosopher will be able
to pick up both forks, by an elementary application of the pigeon-hole principle.

Denote the number of available seats at the table by semaphore seat . The
maximum value of seat is n−1. The strategy for a hungry philosopher is to first
acquire a seat by calling seat.acquire() . After acquiring a seat, the philoso-
pher acquires both forks, each a semaphore, in either order. The acquisition of
the seat and the forks is encoded in site pick . After acquiring the forks, the
philosopher eats and on completion of eating, releases the forks and then the
seat.

9.1.4.2 Randomized algorithm

In this solution, each hungry philosopher tosses a coin to determine the order in
which to pick up the forks. After picking up the first fork if it is unable to pick
up the second fork immediately, it relinquishes the first fork and starts all over.
It can be shown that with extremely high probability every hungry philosopher
will be able to pick up both of its incident forks and thus transit to eating.

We use the program outline from the previous solution except that there is
no need for semaphore seat . As before, we represent a fork by a semaphore.
However, we need an additional operation on this semaphore, besides the usual
operations of acquire and release , to indicate that an acquire operation
has failed. Operation acquireD on a semaphore is never blocked; the caller of
acquireD either receives a signal immediately denoting that the semaphore has
been acquired, or the call halts and the caller receives a negative response if the
semaphore can not be currently acquired. This operation is already included
for a standard Orc semaphore. It can also be programmed as a class in Orc.

The program in Figure 9.5 follows the outline we have sketched1.

1This program is due to David Kitchin.
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-- n dining philosophers in a ring with n-1 seats.
def dining(n) =

-- allow at most n-1 philosophers at the table at a time
val seat = Semaphore(n-1)

-- set up the forks
val forks = Table(n, lambda(_) = Semaphore(1))

-- Acquire forks a and b
def pick((a,b)) =

seat.acquire() >> (a.acquire(), b.acquire()) >> signal

-- Release two forks
def drop(a,b) =

a.release() >> b.release() >> seat.release()

-- Start a philosopher process with forks a and b
def phil(a,b) =

def thinking() =
Think() -- publish signal on completion of thinking

def hungry() = pick((a,b))

def eating() =
Eat() -- publish signal on completion of eating

>> drop(a,b)

-- Goal expression of phil(a,b)
thinking() >> hungry() >> eating() >> phil(a,b)

-- Place n philosophers in a ring
def ring(0) = stop

def ring(i) =
phil(forks(i%n), forks(i-1))

| ring(i-1)

-- goal expression of dining(n)
ring(n)

dining(5) -- start 5 dining philosophers

Figure 9.4: Seat-Limited Dining Philosophers
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-- probabilistic solution with n dining philosophers
def dining(n) =

-- set up the forks
val forks = Table(n, lambda(_) = Semaphore(1))

-- Randomly swap two elements
def shuffle(a,b) = if (Random(2) = 0) then (a,b) else (b,a)

-- Acquire forks a and b in random order
def pick((a,b)) =

shuffle(a,b) >(u,v)>
(u.acquire() >> v.acquireD() ;

u.release() >> pick((a,b))
)

-- Release two forks
def drop(a,b) = a.release() >> b.release()

-- Start a philosopher process with forks a and b
def phil(a,b) =

def thinking() =
Think() -- publish signal on completion of thinking

def hungry() = pick((a,b))

def eating() =
Eat() -- publish signal on completion of eating

>> drop(a,b)

-- Goal expression of phil(a,b)
thinking() >> hungry() >> eating() >> phil(a,b)

-- Place n philosophers in a ring
def ring(0) = stop

def ring(i) =
phil(forks(i%n), forks(i-1))

| ring(i-1)

-- goal expression of dining(n)
ring(n)

dining(5) -- start 5 dining philosophers

Figure 9.5: Randomized Dining Philosophers
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Chapter 10

Real-time Programming

We have seen a number of small examples using Rwait for time-outs in the
previous chapters. We introduce a few more standard sites in connection with
real-time programming in this chapter. We use these sites to program a stop-
watch in Section 10.2 and an alarm clock in Section 10.3. We program a small
interactive real-time game at the end of this chapter.

It is difficult to reason about real-time programs that are also concurrent.
A starting point is to analyze such a program under the following simplify-
ing assumptions: (1) execution of Rwait(t) consumes t units of time, (2) no
other standard site consumes any time, and (3) external sites consume arbitrary
amounts, and (4) events occurring at the same time will happen in some arbi-
trary order. In some cases the specification of an external site may include its
temporal behavior and the delays in communicating with it. These specifica-
tions are not very robust as they also depend on the network communication
speeds. The simplifying assumptions are of course not met in practice, because
standard sites do consume time. But as long as those times are sufficiently small
compared with wait times in Rwait , a reasonably formal proof of correctness
can be constructed.

10.1 Standard Sites for Real-time Programming

Orc includes the standard site Rwait ; Rwait(t) publishes a signal after passage
of t units of real time, where the standard implementation uses a millisecond
as the unit of time. Rtime() publishes the elapsed time since the start of the
program. Both these sites refer to a standard clock.

It is often convenient to allow multiple real-time clocks to start at different
times during the program execution even though they all tick at the same rate.
Calling factory site Rclock() publishes a clock whose initial value is 0. A
clock, clk , has two methods analogous to Rwait and Rtime : (1) clk.wait(t)

publishes a signal after t units, and (2) clk.time() publishes the elapsed time
since the creation of clk . It is easy to program Rclock() , as shown below.

249
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def class Rclock() =
val s = Rtime() -- record the start time

def wait(t) = Rwait(t)
def time() = Rtime() - s

stop

Note that method wait is same as Rwait ; it has been included only in analogy
with the standard clock.

10.1.1 Device Controller: Unlocking a Car door

A car door can be unlocked by an owner using a remote key, and, typically, the
owner then opens the door within some suitable time, say 30 seconds. If the
door is not opened within that time, it can be assumed that the owner either
changed her mind or the remote signal was received in error. In that case,
the door should be relocked. We show the site that may control this piece of
computation.

Site door_controller is called wheneever the door is unlocked using the
remote key. The parmeters of the site call are: (1) site opened that returns a
signal as soon as the door is opened, and (2) varaible t that specifies the amount
of time that must elapse before the door is relocked. Site door_controller

publishes a boolean, true if the door was opened within the specified time
and false otherwise. The actual relocking is performed elsewhere. This site
implements the most basic form of time-out.

def door_controller(opened,t) =

val z = opened() >> true | Rwait(t) >> false
z

10.1.2 Average Response Time

A common computation in a network is to ping a site to compute the round-
trip delay through the network. This is easily done by using Rtime() . We show
a small program that calls a given site S, that has no parameters, a specified
number of times and computes the average response time. We use site repeat

where repeat(S(),n) calls S() consecutively n times, for positive n, with the
first call made immediately and each subsequent call made immediately after
receiving the response to the previous call. Site repeat appears in Section 2.4.1
(page 28) and in a simpler form in Section 9.1.2 (page 238).

def avg_response_time(S,n) =
Rtime() >v>
repeat(S(),n) >>
(Rtime() - v + 0.0)/n

The addition of 0.0 in the last line of the program ensures a floating point
result.
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10.1.3 Bounded-time Computation

The following example illustrates bounded-time computation. Let approx be a
site that publishes the next, better, approximation in a numerical computation
given an initial approximation. Computing the root of a real-valued function
using Newton-Raphson method is an example. The goal is to compute the best
approximation within a given time.

The program below calls approx initially with an approximation v and then
successively with the last value it returns. The computation continues until
some specified time at which point the last available approximation is published.
More precisely, if v0, v1, · · · , vn is the sequence of values where v0 is the initial
approximation, vi+1 the publication of approx given vi as input for each i, and
vn the last publication before the time-out (vn = v0 if approx never publishes),
then the goal is to publish vn.

Site successive , defined below, has three formal parameters: site approx ,
the initial approximation v and the the time bound for computation t . It starts
three threads simultaneously to compute: (1) (b,v’) where b is a boolean and
v’ an approximation; if approx(v) publishes a value within time t , b is set true
and v’ set to the published value; if approx(v) does not publish within time t ,
b is set false and v’ is set to v , (2) t’ is the elapsed time for the computation
of b, i.e., either the time taken to receive the response from approx or t if there
is a time-out, and (3) the goal expression that calls successive with a reduced
time bound for the next approximation if there is any left-over time or publishes
v if there is none.

def successive(approx,v,t) =

val (b,v’) =
(true, approx(v)) | Rwait(t) >> (false,v)

val t’ = Rtime() >s> b >> t - s

if t’ :> 0 then successive(approx,v’,t’) else v

A more general scenario of bounded computation is for several threads to
compute simultaneously until there is a time-out. At that point, each thread
publishes its computed result.

10.1.4 Program Profiling

We showed a program for measuring the execution time of a computation in
Section 5.4.2 (page 139) that uses a stopwatch. Here, we show a simpler program
using the basic time-based sites. Site profile has two arguments, a site fun

and a value x for the argument of fun . Assume that fun publishes at most
one value. Site profile publishes a tuple (v,t) where v is the publication of
fun(x) and t is the elapsed time for this computation.

def profile(fun,x) = Rclock() >clk> fun(x) >y> (y,clk.time())
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Executing profile(Rwait,100) publishes ( signal, 100) , as we would ex-
pect; the overhead associated with calls and publications within profile are
negligible, so they do not affect the elapsed time. We can write the same pro-
gram more simply using Rtime() .

def profile(fun,x) = Rtime() >s> fun(x) >y> (y,Rtime()-s)

Typically, we are interested in observing the behavior of a site over multiple
runs. Site multiprofile is similar to profile except that it takes a list of ar-
guments and executes the given site for each argument in sequence. It publishes
a list of tuples, site values and elapsed times, for each argument in the input
list.

def multiprofile(fun,[]) = []
def multiprofile(fun,x:xs) =

profile(fun,x) >y> (y : multiprofile(fun,xs) )

Observe that multiprofile has the same structure as seqmap of Section 4.4.2.5;
it enforces sequential execution of fun for each argument in the input list. This
ensures that the running time of one test is published before the next test is
begun.

Calling multiprofile(Rwait,[100,200,300]) publishes

[( signal, 100), ( signal, 200), ( signal, 300)]

as expected. A more interesting exercise is to run two different implementations
of the same site and compare their performance. Given below are two versions
of the Fibonacci site.

def fib(0) = 0
def fib(1) = 1
def fib(n) = fib(n-1) + fib(n-2)

def fib’(n) =
def H(0) = (0, 1)
def H(n) = H(n - 1) >(x, y)> (y, x + y)

H(n) >(x, _)> x

A few calls and the corresponding publications appear below (run on a 2007
vintage desktop).

multiprofile(fib,[5,10,15,20,25])

[(5, 2), (55, 17), (610, 175), (6765, 2245), (75025, 29568)]

multiprofile(fib’,[5,10,15,20,25])

[(5, 0), (55, 2), (610, 2), (6765, 2), (75025, 5)]

multiprofile(fib’,[50,100,150,200])
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[(12586269025, 6), (354224848179261915075, 13),
(9969216677189303386214405760200, 18),
(280571172992510140037611932413038677189525, 23)]

It is known that the execution time of fib(n) is nearly proportional to fib(n) ;
the ratio of elapsed time to fib(n) for even these small values of n (ignoring
n = 5) range between 0.3 and 0.4. The computation time of fib’(n) is linear
in n, which is more clearly seen in the last test with fib’ using larger values of
n.

10.2 Stopwatch

We develop a class that implements a stopwatch. we show a very simple version
first followed by a more realistic version.

10.2.1 A Simple Stopwatch

A stopwatch is in one of two states, running or paused, and it displays a count
in milliseconds when it is paused. Initially, a stopwatch is paused with count
0. There are two available operations: (1) start() is allowed only when the
stopwatch is paused; it starts the stopwatch running from its current count and
immediately publishes a signal, (2) pause() is allowed only when the stopwatch
is running; it puts the stopwatch in paused state and publishes its current count.
Concurrent calls to the methods are not supported.

The implementation below maintains two Ref variables: (1) laststart

has the count on the stopwatch value when start() was last called, and (2)
lastpause has the count when pause() was last called. Initially, both variable
values are 0. The states are not shown explicitly.

def class Stopwatch() =
val (laststart, lastpause) = (Ref(0), Ref(0))

def start() = laststart := Rtime()

def pause() =
lastpause := lastpause? + (Rtime() - laststart?) >>
lastpause?

stop

In the definition of pause , (Rtime()- laststart?) is the elapsed time since
the last start . Therefore, lastpause? + (Rtime()- laststart?) is the
count shown by the stopwatch when it was last paused plus the elapsed time
since it last started, i.e., the current count on the stopwatch.
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10.2.2 A Realistic Stopwatch

A useable implementation of a stopwatch requires a more general interface. It
should allow start operation in the state where the stopwatch is already run-
ning, and pause in a state where the stopwatch is already paused. Additionally,
methods to reset the stopwatch, and determine its status (running or paused)
should be provided. Further, concurrent calls to start and pause may interfere,
so the methods should be made atomic.

The implementation supports four methods: start , pause and reset ,
isrunning . Execution of reset or pause causes the final state to be paused

starting from any state. Execution of start ensures that the final state is
running . Execution of isrunning does not cause a state change. Observe that
start has no effect in running state and pause in paused state. Executing
reset in paused state does not cause a state change though the count is set to
0. We encode the state explicitly in the boolean mutable variable running that
is true if and only if the stopwatch is running.

A call to start or reset publishes a signal. A call to pause returns the
current count on the stopwatch. A call to isrunning returns a boolean, true

if and only if the state is running . As before, laststart and lastpause are
the counts when the last calls to start and pause were made, respectively. We
have lastpause = 0 initially and also after each call to reset . Each method
is made atomic by using a semaphore.

def class Stopwatch() =

val (laststart, lastpause) = (Ref(0), Ref(0) )
val running = Ref(false)
val sem = Semaphore(1)

def start() =
sem.acquire() >>
( if running? then signal

else (running := true >> laststart := Rtime() )
) >>
sem.release()

def pause() =
sem.acquire() >>
( if running? then

lastpause := lastpause? + Rtime() - laststart? >>
running := false

else signal
) >>
sem.release() >> lastpause?

def reset() =
sem.acquire() >>
running := false >> lastpause := 0 >>
sem.release()
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def isrunning() = running? -- single atomic step

stop

-- Usage: compute the response time for site S()

val sw = Stopwatch()

sw.start() >> S() >> sw.pause()

10.3 Alarm Clock

We develop a class to simulate an alarm clock with two methods, set and
cancel . An alarm, once set, expires normally after a specified amount of time
t , like Rwait(t) . Unlike Rwait , the alarm may be cancelled before its normal
expiry by calling cancel .

First, we show a single-use alarm clock that is set or cancelled at most once.
Next, we show a multi-alarm clock that may have multiple alarms set at different
times. The alarms may even overlap in their durations.

10.3.1 Single Alarm

An instance of a single alarm can be set to ring after time t by calling set(t) .
During this time period if cancel() is called, then the alarm is cancelled and
set immediately responds by publishing false . If the alarm is not cancelled,
then it expires after time t and set publishes true at that time. Each of these
methods may be called at most once.

The set method in the program below may be interrupted by a call to
cancel . The program structure closely follows the interruption technique shown
in Section 2.5.2.6. The main execution thread in set waits to complete the alarm
using Rwait and simultaneously waits for an interruption from cancel . The
interruption occurs if set can acquire a semaphore, off , which cancel releases.
cancel always completes immediately and publishes a signal.

def class single_alarm() =

val off = Semaphore(0)

def set(t) =
val b = Rwait(t) >> true | off.acquire() >> false

b

def cancel() = off.release()

stop
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-- Usage

val al = single_alarm()
al.set(8) | Rwait(5) >> al.cancel()

The single_alarm class is quite fragile. Multiple sets or cancels on the
same alarm may have arbitrary effects. We modify the class so that multiple sets
or cancels have no direct effect. The interface is modified such that only the first
call to set sets the alarm and publishes true or false as before; subsequent
calls to set simply halt. A call to cancel either publishes a signal if the call
has the effect of cancelling the alarm, otherwise the call halts.

First, consider a modification that implements the interface for cancel . We
use a cell, cellC , in place of semaphore off . Both set and cancel attempt to
write to cellC , set attempts to write true when the the alarm expires normally
and cancel attempts to write false when there is a call to it. Method set

publishes whatever is written to cellC and cancel publishes a signal only if it
succeeds in writing to cellC . Further, cellC ensures that at most one call to
cancel publishes and all others halt.

Next, once-only writing to a cell, cellS , ensures that exactly one call to set

executes and all others halt, provided set is called at all.

def class single_alarm() =
val cellS = Cell()
val cellC = Cell()

def set(t) =
cellS := signal >>
( val b = Rwait(t) >> cellC := true >> stop | cellC?

b)

def cancel() = cellC := false

stop

10.3.2 Multi-Alarm Clock

We develop a multi_alarm class that has the same two methods, set and
cancel . However, each method has an additional parameter, an identity of
the alarm. Thus, set(id,t) sets the alarm with identity id for time period t ,
cancel(id) cancels the specified alarm. This class allows setting of multiple
alarms simultaneously, and is robust with respect to repeated sets and cancels
for the same alarm.

The interfaces are as follows. Call to set(id,t) halts if there is already
an alarm with identity id that has been set; otherwise it sets such an alarm
and behaves as before by publishing true at normal expiry or false if there
is premature cancellation. cancel(id) halts if there is no alarm with identity
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id ; otherwise it cancels the specified alarm and publishes a signal. An identity
may be reused after its expiration for setting an entirely different alarm.

Class multi_alarm creates a new instance of single_alarm for every alarm
that is set. We make use of an identity-set (abbreviated to idset ), a data
structure that maintains the identities of the alarms that are active. Each
element of idset stores an identity and the (closure of) the associated alarm as
a pair. It supports three methods: (1) insert((p,v)) halts if there is already
an alarm whose identity is p; otherwise add the pair (p,v) to idset and publish
a signal, (2) remove(id) halts if there is no entry in idset with identity id ;
otherwise remove the entry from idset and publish a signal, (3) search(id)

halts if there is no entry in idset with identity id ; otherwise publish the alarm
associated with id . idset supports concurrent executions of its methods with
the given semantics. We do not develop idset as a class here. It is similar
in structure to conc_bst of Section 7.5.3. That class should be extended by
storing a primary and secondary key at each tree node corresponding to an
identity and the associated alarm, and including a method to delete nodes from
the tree to support remove .

The multi_alarm class makes use of idset and single_alarm class devel-
oped in Section 10.3.1. Observe that on its termination, the set method has to
remove the entry with the given identity from idset .

def class multi_alarm() =
val db = idset()

def set(id,t) =
val al = single_alarm()
db.insert((id,al)) >> al.set(t) >b> db.remove(id) >> b

def cancel(id) =
db.search(id) >al> al.cancel()

stop

-- Usage

val mal = multi_alarm()

mal.set("a",100) | mal.set("b",200)
| mal.set("c",20) >> mal.cancel("a")

10.4 Response Game

We use the Stopwatch class in designing a small game. The ostensible goal of
the game is to measure the response time of a player. To do so, the program
first displays a decimal digit, called a seed, on the terminal. After a few seconds,
the program publishes a continuous stream of random decimal digits at an even
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rate. The goal for the player is to press a key on the keyboard as soon as she
sees the seed in the stream. The elapsed time since the first display of the seed
in the stream until the player presses a key is the player’s response time. If
the player presses the key too early, before the seed appears in the stream, a
suitable message is displayed.

The design of the game shows the interactions of concurrent threads in real
time. Two different threads are used to publish the stream and await the re-
sponse from the player. The former thread is terminated as soon as the player
responds. Further, a stopwatch is started as soon as the seed is published for
the first time in the stream and paused when the player responds.

In the program below, we use two standard sites, Println and Prompt . Site
Println has a single argument, a string, that it prints on the terminal and then
publishes a signal. Therefore, Println can be sequentially followed by some
computation that is started following the printing. Site Prompt , like Println ,
has a single argument that is a string that it prints on the terminal, but it awaits
a response from the keyboard that it reads and publishes. In this game, since
the player merely presses the ENTERkey, Prompt merely publishes a signal after
receiving the response from the player.

The variables and sites defined in the program are as follows. The main site
game starts by choosing a random decimal digit for seed v . It then prompts the
player to press ENTERwhen she sees v in the stream. An initial delay, given by
variable id , pauses execution for a few seconds to allow the player to observe the
seed carefully; below, id is set to 3 seconds. The random stream of digits is then
printed with the delay between printing of successive digits given by variable
dd; below, dd is set to 0.1 seconds. The stream is produced by site rand_seq

which resembles a metronome , defined in Section 2.4 (page 27). Instead of
publishing signals as in metronome , rand_seq publishes random digits. The
printing thread in game compares every digit with the seed as it is printed and
starts a stopwatch in case of a match.

The printing is terminated as soon as there is a response from the user. At
that point, the state of the stopwatch is noted in variable b, true if it is running
and false otherwise, and the count on the stopwatch in w. The program then
publishes w provided b is true , that is if the seed had appeared in the stream,
or a suitable message if b is false .

{- Response Game -}

val sw = Stopwatch()

-- id is the initial delay in starting a game.
-- dd is the delay in printing digits.

val (id,dd) = (3000,100)

def rand_seq() =
{- Publish a random sequence of digits at interval of dd -}

Random(10) | Rwait(dd) >> rand_seq()
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def game() =
{- game() conducts one game and returns a pair (b,w).

b is true only if the user responds after v is printed;
then the response time is w.

-}
val v = Random(10) -- v is the seed for one game

val (b,w) =

Rwait(id) >> sw.reset() >> rand_seq() >x> Println(x) >>
Ift(x = v) >> sw.start() >> stop

| Prompt("Press ENTER for SEED "+v) >>
sw.isrunning() >b> sw.pause() >w> (b,w)

{- Goal expression of game() -}
if b then

("Your response time = " + w + " milliseconds.")
else ("You jumped the gun.")

game()

Note that a new thread is started for every digit in the stream following
Println(x) . If the digit matches the seed sw.start() on stopwatch sw is
started. A seed may be printed multiple times and the stopwatch started mul-
tiple times, but subsequent starts have no effect on a running stopwatch. In all
cases the the thread for a digit is terminated without publishing. It is possible
that two nearby occurrences of the seed in the stream will start two threads that
execute concurrently and access the stopwatch. This is permissible because the
stopwatch has been designed to accept concurrent calls on its methods.

The program can be modified easily to repeat the call to game() after ter-
mination of one game. And, it is equally easy to collect statistics over several
games and compute the mean and variance of response times.

10.5 Calendar

An Orc program can make use of an external site to determine the absolute time
and date. Below, we define a class for this purpose by importing a standard
package from the Java library:

import class Calendar = "java.util.GregorianCalendar"

This creates an Orc class, Calendar , that includes all the methods available in
the Java class for Gregorian calendar.

For ease of use, we create an Orc class, called Orc_calendar and shown in
Figure 10.1, that includes a subset of the methods provided by the Java class.
We discuss the methods in the Orc class here and in the following sections.

Method date publishes a 4-tuple of integers for the current date: year,
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month, date of the month and day of the week, in this order. Year is a four
digit integer; month is an integer between 1 and 12 inclusive, unlike Java’s
convention of numbering months from 0 through 11; date of the month is a
two digit integer; day of the week is an integer in the range 1 through 7 where
Sunday is 1. For example,

val cal = Orc_calendar()
cal.date()

may publish (2012, 7, 9, 2) .
Method time publishes a triple of two-digit integers for the current time:

hour, minute and second in this order, in 24-hour format. Typically, the second
value is a gross approximation.

val cal = Orc_calendar()
cal.time()

may publish (11, 42, 31) , denoting around 17 and half minutes before noon.
Both date and time make use of the auxiliary method pub that takes a

calendar instance (actually, the get method of the calendar instance) and a
string, "date" or "time" . It publishes the current date or time in the format
described earlier.

Observe that a calendar instance is created with each call to date and time

rather than at the time of instantiation of the Orc class. This is essential
because having a fixed instance for all method calls will publish the same values
no matter when the methods are called during execution of an Orc program.

10.5.1 Keeping Appointments

An appointment is usually specified by an absolute time rather than a delay
from the present moment, e.g., ring a bell at noon. Method sub_time is used
to compute the remaining time to a moment in the next 24 hours. It is called
with (fh,fm,fs) denoting a future moment in hour, minute and second format.
It computes the remaining time from the present moment, (ch,cm,cs) , to the
future moment in the same format. The computation is carried out in mixed
radix arithmetic as follows. First, (fh-ch,fm-cm,fs-cs) is computed. Since
any of the entries in this tuple may be negative, we recompute the tuple by
adding 60 to the component for second if it is negative and subtracting 1 from
the minute component, then adding 60 to a negative minute component and
subtracting 1 from the hour component, and adding 24 to the hour component
if it is negative, as shown in Figure 10.1.

Below, site waituntil publishes a signal at the specified time within the next
24 hours given by (fh,fm,fs) for the hour, minute and second. It computes
the remaining time from the present moment till the specified time,(x,y,z) in
hour, minute and second, using sub_time . It then executes Rwait(t) where
t is computed in milliseconds from (x,y,z) ; for computing t from (x,y,z)

we employ the site time_conv described in Section 4.4.2.3 as an example and
repeated here for completeness. The wait time t could be 0.
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def radix_Conv([],[x]) = x
def radix_Conv(_,[]) = 0
def radix_Conv(r:radixes, d:digits) =

d + r * radix_Conv(radixes,digits)

def time_conv(ds) = radix_Conv([1000,60,60,24,7],ds)

def waituntil(fh,fm,fs) =
val cal = Orc_calendar()

cal.sub_time(fh,fm,fs) >(x,y,z)>
Rwait(time_conv([0,z,y,x]) )

There is no counterpart of sub_time for date, because there is no simple
way to subtract a date from another in Java.

10.5.2 Computing Absolute Dates and Times

It is sometimes required to compute the date that is 25 days from today, a
typical computation in sending out a credit card bill. The computation, though
straightforward given the current date, is tedious because it has to account for
varying lengths of months and leap years. The Java class provides method add

to add any integer, positive, negative or zero, to any component of a calendar.
We include a method add_date in Orc_calendar that has three arguments, (i,

j,k) ; it adds i , j and k to the to the current year, month and date, respectively,
and publishes a 4-tuple giving the resulting year, month, date and day of week.
Similarly, add_time(i,j,k) adds i , j and k to the hour, minute and second,
respectively, and publishes the resulting hour, minute and second as a triple, as
shown in Figure 10.1.

Here is a typical computation of a future date (where the date is written in
the format mm/dd/yyyy):

val cal = Orc_calendar()
cal.add_date(0,0,25) >(y,m,d,_)>
"Please pay your bill by " + m + "/" + d + "/" + y + "."

Or, computation of a future time:

val cal = Orc_calendar()
cal.add_time(2,0,0) >(h,m,_)>
"Meet me for lunch in two hours, at " + h + ":" + m + "."

Observe that add_date(0,0,0) publishes the current year, month, date and
day and add_time(0,0,0) publishes the current hour, minute and second; so
the methods date() and time() are unnecessary.
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def class Orc_calendar() =

import class Calendar = "java.util.Calendar"

def pub(meth,"date") =
(meth(Calendar.YEAR?),

meth(Calendar.MONTH?)+1,
meth(Calendar.DAY_OF_MONTH?),
meth(Calendar.DAY_OF_WEEK?)

)

def pub(meth,"time") =
(meth(Calendar.HOUR_OF_DAY?),

meth(Calendar.MINUTE?),
meth(Calendar.SECOND?)

)

def date() =
val now = Calendar.getInstance()
pub(now.get,"date")

def time() =
val now = Calendar.getInstance()
pub(now.get,"time")

def sub_time(fh,fm,fs) =
time() >(ch,cm,cs)> (fh-ch,fm-cm,fs-cs) >(h,m,s)>

( if s <: 0 then (m-1,s+60)
else (m,s)) >(m’,s’)>

( if m’ <: 0 then (h-1,m’+60)
else (h,m’)) >(h’,m’’)>

( if h’ <: 0 then (h’+24,m’’,s’)
else (h’,m’’,s’))

def add_date(i,j,k) =
val now = Calendar.getInstance()

now.add(Calendar.YEAR?, i) >>
now.add(Calendar.MONTH?, j) >>
now.add(Calendar.DAY_OF_MONTH?, k) >>
pub(now.get,"date")

def add_time(i,j,k) =
val now = Calendar.getInstance()

now.add(Calendar.HOUR_OF_DAY?, i) >>
now.add(Calendar.MINUTE?, j) >>
now.add(Calendar.SECOND?, k) >>
pub(now.get,"time")

stop

Figure 10.1: class Orc_calendar
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