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Traditional discrete-event simulations employ an inherently sequential algorithm. In 
practice, simulations of large systems are limited by this sequentiality, because only a 
modest number of events can be simulated. Distributed discrete-event simulation (carried 
out on a network of processors with asynchronous message-communicating capabilities) is 
proposed as an alternative; it may provide better performance by partitioning the 
simulation among the component processors. The basic distributed simulation scheme, 
which uses time encoding, is described. Its major shortcoming is a possibility of deadlock. 
Several techniques for deadlock avoidance and deadlock detection are suggested. The 
focus of this work is on the theory of distributed discrete-event simulation. 
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INTRODUCTION 

This survey presents an entirely new 
approach to the problem of system simu- 
lation. A system simulation is typically car- 
ried out as a repetition of the following 
sequential steps: Fetch one event from a 
data structure, carry out one step of simu- 
lation, and (possibly) update the data struc- 
ture. Such simulations are practical only 
when the number of events being simulated 
is modest. 

Recent advances in computer and com- 
munication systems have resulted in de- 
mands for new tools for their analyses. 
Mathematical modeling techniques have so 
far proved inadequate in dealing with these 
systems, and simulation seems to be the 

only viable alternative. Unfortunately, sim- 
ulation is proving to be inadequate because 
of the sheer magnitude of the problem. For 
instance, a telephone switch generates 
about 100 internal messages in completing 
a local call. Large telephone switches can 
handle 100 or more calls per second. Thus, 
simulation of a telephone switch for 15 
minutes of real time requires the simulation 
of nearly 10 million messages, which 
will require several hours on a very fast 
uniprocessor. 

One alternative is to exploit the cost 
benefits of cheap micro/minicomputers and 
high-bandwidth lines by partitioning the 
simulation problem and executing the parts 
in parallel. Unfortunately, however, the 
typical simulation algorithm does not easily 
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partition for parallel execution. An entirely 
new approach to simulation for multipro- 
cessors is required. This survey presents 
such an approach. 

The text is organized in five sections. 
Section 1 describes the need for distributed 
simulation; it gives a quick survey of the 
system simulation problem, the sequential 
simulation algorithm and its shortcomings. 
The scope of the paper and a history of 
distributed simulation are also included in 
that section. In order to make the paper 
self-contained, basic notions of sequential 
simulation are introduced and explained in 
Section 2. A proof that the sequential sim- 
ulation algorithm works correctly is given 
in that section; surprisingly, the author 
could not find such a proof in any simula- 
tion book. It is then shown why this scheme 
cannot be readily parallelized. Section 3 
introduces the basic distributed simulation 

scheme, which is shown to be partially cor- 
rect. It is shown that this scheme may 
result in deadlock. Several different ap- 
proaches for deadlock resolution are dis- 
cussed in Section 4. Section 5 contains a 
summary and possible directions for future 
investigation. 

We believe that distributed simulation 
offers a promising approach to speeding up 
simulation. The basic theory has been 
developed; it remains to experiment with 
various alternative heuristics to ensure that 
substantial performance gains over sequen- 
tial simulation can be achieved. The prob- 
lem of deadlock and its resolution are at 
the core of the performance issue. There is 
some indication that reasonable perfor- 
mance gains may be expected at least for 
simulations of certain classes of queuing 
networks [Peacock et al. 1979a, 1979b; 
Quinlivan 19811. However, several large- 
scale studies, with a number of different 
heuristics for deadlock resolution, are 
needed before any claims about perfor- 
mance can be made. We hope that this 
paper will spur interest in such studies. 

This paper does not introduce a new 
simulation language, because distributed 
simulations can be written using sequential 
simulation languages for simulating the 
physical processes, and message communi- 
cation languages for describing interactions 
among component machines. We also avoid 
a number of traditional issues in simula- 
tion: pseudorandom number generation, 
statistical analysis of the outputs, etc. 
Methods developed in these areas for se- 
quential simulation still apply [Fishman 
19781. Our goal in this paper is to show 
how the body of actual simulation can be 
distributed among a set of interacting 
machines. 

1. AN OVERVIEW OF SYSTEM SIMULATION 

1.1 System Simulation Problem 

We consider the problem of simulating 
physical systems, also called networks, that 
consist of one or more physical processes. 
Each physical process operates autono- 
mously, except to interact with other 
physical processes in the system. The 
interaction is by messages. Contents of a 
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message sent by a (physical) process de- 
pend on the characteristics of the process 
(its initial state, its rules of operation) and 
the messages that the process has received 
so far. 

We describe the problem and the termi- 
nology more precisely in the next section. 
We note that many real systems can be 
modeled in terms of processes and messages 
as described above. For example, in a com- 
puter system, CPU, disks, memory, and job 
entry terminals may be thought of as pro- 
cesses; the CPU may interact with a disk 
by sending it messages requesting or releas- 
ing disk space; a job entry terminal may 
interact with the CPU by sending it mes- 
sages, which are in fact jobs or tasks to be 
executed. Detailed examples are given in 
the next section. 

Typical steps in constructing and using 
a simulation program consists of 

(1) starting with a real system and under- 
standing its characteristics, 

(2) building a model from the real system 
in which aspects relevant to simulation 
are retained and irrelevant aspects are 
discarded 

(3) constructing a simulation of the model 
that can be executed on a computer 
(simulations other than computer pro- 
grams are not considered here), and 

(4) analyzing simulation outputs to under- 
stand and predict the behavior of the 
real system. 

In addition, the model and the simulation 
must be verified and may be refined during 
steps (2) and (3), perhaps iteratively, if they 
do not meet the expectations. In this paper, 
we look at only one step-step (3)-of the 
entire simulation process. What is typically 
called a model in step (2) is actually our 
physical system; we show how to go from a 
physical system to a computer program for 
simulation that is distributed and hence 
may be concurrently executed on several 
machines. We do not consider the problem 
of constructing a physical system descrip- 
tion from the real system, nor do we con- 
sider how to analyze simulation outputs to 
predict the behavior of the real system. 
Stated another way, we show how to con- 
struct an asynchronous system (the simu- 

lator running on asynchronous machines) 
from a synchronous system (the physical 
system, running in real time). We further 
restrict ourselves to discrete-event simula- 
tions; we assume that events in the physical 
system-in our case, message transmis- 
sions-happen at discrete points in time. 

1.1.1 Traditional Approach to System 
Simulation 

Traditionally, discrete-event system simu- 
lations have been done in a sequential man- 
ner. A variable clock holds the time up to 
which the physical system has been simu- 
lated. A data structure, called the event list, 
maintains a set of messages, with their 
associated times of transmissions, that are 
scheduled for the future. Each of these mes- 
sages is guaranteed to be sent at the asso- 
ciated time in the physical system, provided 
the sender receives no message before this 
message transmission time. At each step, 
the message with the smallest associated 
future time is removed from the event list, 
and the transmission of the corresponding 
message in the physical system is simu- 
lated. Sending this message may, in turn, 
cause other messages to be sent in the 
future (which then are added to the event 
list) or cause previously scheduled mes- 
sages to be canceled (which are removed 
from the event list). The clock is advanced 
to the time of the message transmission 
that was just simulated. 

This form of simulation is called event 
driven, because events (i.e., message trans- 
missions) in the physical system are simu- 
lated chronologically and the simulation 
clock is advanced after simulation of an 
event to the time of the next event. There 
is another important simulation scheme, 
time-driven simulation, in which the clock 
advances by one tick in every step and all 
events scheduled at that time are simu- 
lated. We do not discuss time-driven 
simulation in this paper. 

1.1.2 Drawbacks of Sequential Simulation 

The nature of the event-list mechanism 
dictates a sequential simulation, since in 
each cycle of simulation only one item is 
removed from the event list, its effects 
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simulated, and the event list, possibly, up- 
dated. This is unfortunate; the algorithm 
cannot be readily adapted for concurrent 
execution on a number of processors, since 
the event list cannot be effectively parti- 
tioned for such executions. We contend 
that the sequentiality inherent in the 
event-list structure is a major impediment 
to the widespread use of simulation. Com- 
plex computer and communication systems 
of the future will be intractable mathemat- 
ically and therefore will have to resort to 
simulation for their performance evalua- 
tions. Current simulation techniques will 
prove inadequate for these systems be- 
cause, with current technology, only a mod- 
est number of events can be simulated. It 
is necessary to take a radically new ap- 
proach to simulation that will utilize the 
power and cost benefits of small computers 
and high-bandwidth communication lines. 

1.2 Distributed Simulation 

Distributed simulation offers a radically 
different approach to simulation. Shared 
data objects of sequential simulation-the 
clock and event list-are discarded. In fact, 
there are no shared variables in this algo- 
rithm. We suggest an algorithm in which 
one machine may simulate a single physical 
process; messages in the physical system 
are simulated by message transmissions 
among the machines. The synchronous na- 
ture of the physical system is captured by 
encoding time as part of each message 
transmitted between machines. We show 
that machines may operate concurrently as 
long as their physical counterparts operate 
autonomously; they must wait for message 
receptions to simulate interactions of the 
corresponding physical processes. 

Distributed simulation offers many other 
advantages in addition to the possible 
speedup of the entire simulation pro- 
cess. It requires little additional memory 
compared with sequential simulation. 
There is little global control exercised by 
any machine. Simulation of a system can 
be adapted to the structure of the available 
hardware; for instance, if only a few ma- 
chines are available for simulation, sev- 
ral physical processes may be simulated 
(sequentially) on one machine. 

Several distributed simulation algo- 
rithms have appeared in the literature. 
They all employ the same basic mechanism 
of encoding physical time as part of each 
message. The basic scheme they use may 
cause deadlock. Various distributed simu- 
lation algorithms differ in the way they 
resolve the deadlock issue. 

1.3 History 

Sequential simulation has a long history; 
Franta provides a discussion of a number 
of prominent simulation languages and 
their relative merits [Franta 19771. Among 
the many simulation packages introduced 
recently, we mention DEMOS, SAMOA, 
and MAY [Birtwistle 1979; Lonow and 
Unger 1982; Bagrodia et al. N.d.1. DEMOS 
is a discrete-event modeling package imple- 
mented in SIMULA [Dahl et al. 19701. It 
provides an extensive list of features for 
event scheduling, data collection, and re- 
port generation. SAMOA uses Ada as the 
base language [U.S. DOD 19821. MAY pro- 
vides a very small set of constructs for 
message communication; these features 
have been used to build an extensive library 
for simulations of computer and commu- 
nication networks. The minimality of MAY 
makes it possible for it to be implemented 
even on personal computers. 

The idea of distributed simulation was 
proposed by Chandy in 1977 in a series of 
lectures at the University of Waterloo, and 
independently by R. E. Bryant. Papers by 
Chandy and Misra [1979], Chandy et al. 
[ 19791, and Bryant [ 19771 contain the basic 
ideas of distributed simulation, the problem 
of deadlock, and schemes for deadlock res- 
olution. Peacock et al. [1979a, 1979bj and 
Holmes [ 19781 have proposed mechanisms 
for avoiding deadlock by periodic use of 
probe messages. Empirical work by Peacock 
et al. has shown that their method is indeed 
viable: The time needed for simulation of a 
class of queuing networks steadily de- 
creases when the number of processors 
available for simulation increases. Empiri- 
cal investigations by Seethalakshmi and 
Quinlivan showed that the method is also 
efficient for acyclic physical systems and 
that performance can be substantially 
improved if there is adequate space for 
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buffering messages [Seethalakshmi 1979; 
Quinlivan 19811. 

Chandy and Misra have subsequently 
suggested a scheme for deadlock detection 
and recovery [Chandy and Misra 19811. 
Reynolds suggested using common memory 
among neighbors to avoid deadlock [Rey- 
nolds 19821. A notable departure from these 
schemes is one proposed by Jefferson based 
on virtual time [Jefferson 19851. A perform- 
ance analysis of this scheme appears in 
Lavenberg et al. [ 19831. The virtual time 
approach is still being developed and it is a 
little premature to include it in this survey. 

Bezivin and Imbert propose an approach 
in which each process in the simulator 
maintains a local time, and an overall 
global time is maintained by a central pro- 
cess [Bezivin and Imbert 19831. Christo- 
pher et al. propose precomputing minimum 
wait time along all paths in a network so 
that delay information may be propagated 
rapidly among nonneighboring processes 
[Christopher et al. 19831. 

Kumar has combined some recent work 
in deadlock and termination detection with 
the basic simulation scheme [Kumar 1986; 
Misra 19831. Behaviors of these algorithms 
on a wide class of practical simulation 
problems are currently being investigated, 
both analytically and using empirical tech- 
niques. 

2. SEQUENTIAL SIMULATIONS OF 
SYSTEMS 

This section introduces the problem of sys- 
tem simulation. A precise definition of sim- 
ulation is given. The sequential simulation 
algorithm using the event-list structure is 
presented and proved. It is shown why the 
sequential simulation scheme cannot be 
readily adapted for parallel execution. 

2.1 Physical Systems 

We consider physical systems, also called 
networks, consisting of a finite number of 
physical processes (abbreviated as pp’s) . 
Each pp represents some component of the 
real system to be simulated. For instance, 
in a computer system, the CPU, each disk, 
each memory bank, and each job entry ter- 
minal may be thought of as a pp. In tradi- 

tional simulation terminology, each pp is 
described by a set of events and each event 
has an associated time of occurrence. Fur- 
thermore, there is a dependency relation 
among all events in the system; if the pair 
of events (e, e’) is part of the dependency 
relation, we say that e’ depends on e. De- 
pendency relation captures our intuitive 
understanding of the order in which events 
must occur in the system; no event can 
occur unless all the events on which it 
depends have already occurred. Clearly, we 
must then require that the dependency re- 
lation not be cyclic, that is, it should be an 
irreflexive partial order; furthermore, the 
time associated with an event e ’ must be 
no less than the associated time of any 
event e on which it depends. 

We next give an example that clarifies 
the notion of events and dependencies. 

Example 2.7 (Car Wash) 

The following example is a variation of one 
appearing in Birtwistle et al. [1973]. A car 
wash system consists of an attendant and 
two car washes, abbreviated CWl and 
CW2. Cars arrive at random times at the 
attendant. The attendant directs cars to 
CWl or CW2 according to the following 
rule: If both car washes are busy, that is, 
washing cars, any arriving car is queued at 
the attendant; if exactly one car wash is 
idle, the car at the head of the queue, if 
any, is sent to that idle car wash; if both 
car washes are idle, the car at the head of 
the queue, if any, is sent to CWl. CWl 
spends 8 minutes and CW2, 10 minutes in 
washing a car. Given some distribution of 
car arrivals, it is necessary to compute the 
average amount of time a car spends at the 
car wash (including the washing time) and 
the average length of the queue that builds 
up at the attendant. We do not compute 
the above statistics; we simply show the 
sequence of events and message transmis- 
sions in two different views of the car wash 
problem. 

The entire system can be described by 
listing all possible events-all possible car 
arrivals and their subsequent washings- 
and dependencies between them. We re- 
strict ourselves to describing part of this 
system. 
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cars enter cars leave 

Figure 1. Schematics of car flow. 

The schematic diagram of the flow of 
cars is given in Figure 1. 

Initially both CWl and CW2 are idle. 
Assume that 6 cars, Cl through C6, arrive 
at the attendant at times 3, 8, 9, 14, 16, 22. 
An event in this system is either a car 
arriving at some point, that is, at the at- 
tendant, CWl, or CW2, or a car leaving the 
car wash. We assume that the driving time 
from the attendant to CWl or CW2 is zero. 
Also, the washing of a car begins as soon 
as it arrives at CWl or CW2. The chrono- 
logical sequence of events is given in 
Table 1. 

Dependencies among events is shown in 
the directed graph of Figure 2; a directed 
line from event el to event e2 denotes that 
event e2 depends directly on event el . 

If an event e ’ depends on event e, then 
simulation of e must precede simulation 
of e’. Conversely, if e, e’ are independent, 
that is, there is no dependency relation 
between them, then they may be simulated 
concurrently or, equivalently, in arbitrary 
order. Thus, two independent events, such 
as event 8 (C4 arrives at the attendant) and 
event 12 (C3 leaves car wash) are inde- 
pendent and hence can be simulated con- 
currently. 

We find it convenient to dispense with 
the notion of event; we model a physical 
system as a set of pp’s that operate auton- 
omously to change their own states and 
that interact by sending and receiving mes- 
sages. Such a model is possible because if 
event e ’ at process q depends on event e at 
process p, then process p may send a mes- 
sage to process q after it completes execu- 
tion corresponding to event e, and q, upon 
receiving this message (and other messages 
corresponding to other dependencies of e’) 
may carry out the actions necessary for 

Computing Surveys, Vol. 18, No. 1, March 1986 

Table 1. A Sequence of Events in the Car Wash 

Event 
number Time Event 

1 3 Cl arrives at the attendant 
2 3 Cl arrives at CWl 
3 8 C2 arrives at the attendant 
4 8 C2 arrives at CW2 
5 9 C3 arrives at the attendant 
6 11 Cl leaves car wash 
7 11 C3 arrives at CWl 
8 14 C4 arrives at the attendant 
9 16 C5 arrives at the attendant 

10 18 C2 leaves car wash 
11 18 C4 arrives at CW2 
12 19 C3 leaves car wash 
13 19 C5 arrives at CWl 
14 22 C6 arrives at the attendant 
15 27 C5 leaves car wash 
16 27 C6 arrives at CWl 
17 28 C4 leaves car wash 
18 35 C6 leaves car wash 

implementation of e ‘. Message transmis- 
sion delays are zero, that is, any message 
sent at time t is received by the intended 
recipient at t. (Recall that we are describing 
a physical system, not the computer system 
on which the simulation is to run.) If it is 
necessary to model delays in the real-world 
system (viz., driving time from attendant 
to a car wash in the last example), then 
either the sender of a message idles for 
some time before sending the message or 
the recipient of a message idles for some 
time after receiving the message; another 
possibility is to model the communication 
medium as a process incorporating the 
delay. 

Example 2.7 (continued) 

We now present the car wash viewed as a 
message-passing system. The car wash sys- 
tem has 5 pp’s: the source, which generates 
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Figure 2. Schematics of events in a car wash. 

source 

Figure 3. Schematics of message flow in the car wash system. 

cars at the prescribed times, the attendant, 
CWl, CW2, and the sink (exit). The sche- 
matic diagram of message communications 
among these pp’s is given in Figure 3. 

Note that we have possible message flow 
paths from CWl and CW2 to the attend- 
ant. This is because the attendant must 
know when a car wash becomes idle. (In 
this particular problem, the attendant can 
keep track of the times at which the last 
cars were sent to CWl and CW2 and, since 
the washing times are fixed, can deduce the 
times at which CWl and CW2 will next 
become idle. This means that the attendant 
is simulating CWl and CW2. In general it 
will not be possible, or preferable, to do so 
in a simulation.) A complete list of mes- 
sages for this example is shown in Table 2, 
with corresponding event numbers from 
Table 1. Each message has a sender, a 
receiver, and message content. In our case 
the content is either a car number or the 
status (idle) of a car wash. 

This example shows how to model event 
interactions by message transmissions. In 
particular, if an event at one pp causes 
events to happen at several other pp’s, we 
shall have to model such event dependen- 
cies by several message transmissions. Sec- 
ond, the chronological order of simulations 

of events in sequential simulation (de- 
scribed later) guarantees that every event 
simulation precedes the simulation of 
events that depend upon it. Our approach 
in distributed simulation dispenses with 
chronological simulations of events. 

There are two conditions that are met by 
every physical system imaginable: realiza- 
bility and predictability. We assume that 
both these conditions hold for all physical 
systems we consider. 

Realizability. A message sent by a pp at 
time t is a function of its initial state, t, and 
the messages it has received up to and 
including t. 

Realizability says merely that a pp can- 
not guess any message it will receive in the 
future. Note that we admit the possibility 
of a message that is received at t affecting 
a message that is sent at t. An example of 
a pp in which this instantaneous cause- 
effect is seen is given below. 

Example 2.2 (Instantaneous Message 
Transmission) 

Consider a pp that acts as a merge point 
for several pp’s. Schematically, such a pp, 
A, is shown in Figure 4. Messages arriving 
at A, either from the top or from the 
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Table 2. A Sequence of Message Transmissions in the Car Wash System 

Time 
Message Event message Message Message 
number number sent sender receiver Content 

1 
2 
3 
4 
5 
6 
7 
a 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

- 
1 
2 
3 
4 
5 
6 

- 
7 
8 
9 

10 

11 
12 
- 
13 
14 
15 

16 
17 
- 
18 

0 
0 
3 
3 
8 
8 
9 

11 
11 
11 
14 
16 
18 
18 
18 
19 
19 
19 
22 
27 
27 
27 
28 
28 
35 
35 

CWl Attendant 
cw2 Attendant 
Source Attendant 
Attendant CWl 
Source Attendant 
Attendant cw2 
Source Attendant 
CWl Sink 
CWl Attendant 
Attendant CWl 
Source Attendant 
Source Attendant 
cw2 Sink 
cw2 Attendant 
Attendant cw2 
CWl Sink 
CWl Attendant 
Attendant CWl 
Source Attendant 
CWl Sink 
CWl Attendant 
Attendant CWl 
cw2 Sink 
cw2 Attendant 
CWl Sink 
CWl Attendant 

Idle 
Idle 
Cl 
Cl 
c2 
c2 
c3 
Cl 
Idle 
c3 
c4 
c5 
c2 
Idle 
c4 
c3 
Idle 
C5 
C6 
c5 
Idle 
C6 
c4 
Idle 
C6 
Idle 

” ml A QUeUe 

I 
Figure 4. A merge point pp. 

bottom, are instantaneously sent to the 
queue on the right. Therefore, a message 
sent by A at t depends upon messages re- 
ceived at t. It may be argued that pp A 
cannot be physically constructed. However, 
this pp may represent a real-world entity, 
where the interval between reception and 
transmission of a message is small enough 
to be ignored altogether in the modeling 
process. Such merge points are often used 
in queuing network descriptions of systems. 

Predictability. Suppose the physical 
system has cycles, that is, a set of processes 
PPO, . - * 9 ppnpl, where ppi sends messages 
to ppi+l (and perhaps to other pp’s) and 
receives messages from ppi-1 (and perhaps 
other pp’s).’ Suppose that the message, if 
any, sent by ppi at some time t depends on 
what ppi receives at t, for all i; then we 
have a circular definition where the mes- 
sage received by every pp at t is a function 
of itself. In order to avoid such situations, 
we require that for every cycle and t there is 
a pp in the cycle and a real number t, E > 0, 
such that the messages sent by the pp along 
the cycle can be determined up to 
t + c, given the set of messages that the pp 
receives up to and including t. 

Predictability guarantees that the system 
is “well defined” in the sense that the out- 
put of every pp up to any time t can be 
computed given the initial state of the 
system. 

’ All arithmetic in pp subscripts is modulo n. 
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\ 

* A *B-C 41 I Figure 5. Schematic diagram of 
the example assembly line. 

source sink 

Table 3. Job Generation Times and Service Times 
in the Example of Figure 5 

Jobs 

Work station 1 2 3 4 

Job generation times 
Source 5 7 30 32 

Service times 
A 4 10 1 5 
E 12 15 2 7 
C 2 3 1 4 

We next consider some typical simula- 
tion examples and show that they satisfy 
the realizability and predictability condi- 
tions. 

Example 2.3 (Car Wash-Realizability and 
Predictability) 

We consider the car wash problem intro- 
duced in Example 2.1. Each pp’s output at 
time t depends only upon the messages it 
has received up to t. Of particular interest 
is the behavior of the attendant. If it re- 
ceives an “idle” message from either of the 
car washes at time t and the queue is not 
empty at t, then it sends a message at t. 
Therefore, the realizability condition is 
satisfied. The predictability condition 
is satisfied because each cycle contains one 
of CWl or CW2 and, given the input to 
CWl (CW2) up to t, we can predict the 
output from it up to t + 8 (t + 10). 

Example 2.4 (Assembly Line) 

An assembly line consists of a series of n 
work stations. Jobs enter the assembly line 
at work station 1; when a job has been 
serviced at work station i, it proceeds to 
work station (i + l), i = 1, 2, . . . , n - 1; a 
job leaves the system after being serviced 
at work station n. Service times at different 
work stations are random variables; jobs 
may be queued at a station awaiting service. 
A work station takes one job from its input 

queue when it is free, services that job, and 
then sends it to the queue of the following 
work station. All work stations service the 
jobs in a first come, first served (FCFS) 
basis. It is desired to find the expected 
number of jobs in the queue of each work 
station and the expected waiting time for 
jobs at each work station. 

Specifically, consider an assembly line 
consisting of three work stations, A, B, and 
C, which services four jobs identified as 1, 
2, 3, and 4. Schematically, the assembly 
line is shown in Figure 5. 

The times at which the source generates 
jobs and the service time of each work 
station for each job are given in Table 3. 

The source (call it work station 0), the 
sink (call it work station 4), and each work 
station are pp’s. pp; sends messages to 
ppi+l, i = 0, 1, 2, 3. The source sends 
messages (which represent jobs) to work 
station 1 at times 5, 7, 30, and 32. If a job 
j, j > 1, arrives at a work station at time t, 
then its service at this work station begins 
either immediately (at t) if the work station 
is then idle, or it begins immediately after 
the departure of the (j - 1)th job from the 
work station. Let Aj be the time of arrival 
of job j at some work station, let Dj be the 
time of departure of job j from this work 
station, and let Sj be the service time for 
job j at this work station. Then we have 

Do=O; 

Dj = max(Aj, Dj-1) + Sj, j=l,2 , . . . . 

Using the service times and generation 
times of jobs given in the previous table, 
we can construct the departure times from 
work stations, that is, times at which mes- 
sages are sent, as in Table 4. 

Each work station’s output at time t de- 
pends only on the jobs it has received up to 
t, and therefore the realizability condition 
is satisfied. The predictability condition is 
trivially satisfied since there is no cycle in 
the physical system. 
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Table 4. Times at Which pp’s Send Messages 
in the Example of Figure 5 

Message 

PP 1 2 3 4 

Source 5 7 30 32 
A 9 19 31 37 
B 21 36 38 45 
C 23 39 40 49 

Example 2.5 (A Computer System) 

Imagine a computer installation that con- 
sists of a central processing unit (CPU) and 
two peripheral processors, procl and proc2. 
Jobs enter the CPU, spend some time there, 
and then branch to one of the peripheral 
processors with some given probability. 
Upon completion of processing at the 
peripheral processor, a job may leave the 
system or return to the CPU with some 
probability. The schematic diagram of the 
system is shown Figure 6. 

This system has pp’s for the source, the 
sink, merge points Ml and M2, branch 
points B1 and &, the CPU, procl, and 
proc2. Each message represents the trans- 
fer of a job from one pp to another. The 
realizability property holds because no pp 
bases its behavior on anticipation of the 
future. Probabilistic decisions at Bi, Bz 
cause no difficulty because the inputs to 
B, , Bz up to time t determine their outputs 
up to time t (though the outputs may be 
different at different times owing to the 
probabilistic nature). We can realistically 
assume that each processor spends nonzero 
time in processing a job. Therefore the sys- 
tem also has the predictability property. 

This concludes our discussion of using 
physical systems to model real-world sys- 
tems. From now on we assume that we are 
dealing with physical systems with the 
properties of realizability and predictabil- 
ity. Now we define the meaning of simula- 
tion for such physical systems. 

2.2 What Is Simulation? 

We wish to build a simulator, or a logical 
system consisting of logical processes (ab- 
breviated lp), to simulate a physical system. 
We use “simulation” in a rather strict 
sense: We say that a logical system cor- 
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rectlv simulates a physical system if it is 
possible for the logicalsystemto predict the 
exact sequence of message transmissions in 
the physical system. That is, if tl, tz, . . . , 
ti, * * . are the times at which the messages 

. . , mi . . . are transmitted in the 
;&?a1 ‘system and tl 5 t2 . . . 5 ti 5 . ’ ’ y 
then the logical system should be able to 
output the sequence ( (tl , mi), (tz, m2), . . . , 
(tip mi), - . - >- 

The logical system may not actually print 
the sequence (. . . (ti, mi) . . . ). All that is 
desired is that it should be possible to do SO 
from the logical system. 

Clearly a physical system is a simulation 
of itself. We wish to construct logical sys- 
terns that may not operate at the same 
speed as the physical system. Our goal is to 
construct a logical system out of a machine 
or machines where the speeds of processors 
and communication links (if any) are 
arbitrary. In other words, we wish to 
duplicate the behavior of a synchronous 
physical system using asynchronous logical 
components. 

It should be observed that we can carry 
out the typical functions of simulation- 
analyze data, predict performance or future 
behavior, generate reports, etc.-using the 
logical system. We do not address these 
issues in this paper; we merely observe that 
since it is possible to create the sequence 
of physical message transmissions in the 
logical system, all interactions can be re- 
constructed and analyzed. 

Example 2.6 (Message Transmission in the 
Assembly Line Example) 

A simulation of the assembly line of 
Example 2.4 should be able to predict the 
following message sequence. This sequence 
is derived from Table 4. In the following, 
a message consists of (sender id, receiver 
id, message content). We write a 4-tuple 
(t, s, r, m) to denote that at time t, pp s 
sends a message to pp r with content m. 

((5, source, A, l), (7, source, A, 2), 
(9, A, B, 1) (19, A, B, 21, (21 B, C, l), 
(23, C, sink, l), (30, source, A, 3), 
(31, A, B, 3), (32, source, A, 4), 
(3% 4 C, 2), (37, A 8 41, (38, B, C, 3), 
(39, C, sink, 2), (40, C, sink, 3), 
(45, B, C, 4), (49, C, sink, 4)) 
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2.3 The 

Figure 6. Schematic diagram of job flow in a computer system that has a CPU and two 
peripheral processors: a, mean time between arrival of jobs from the outside source, a 
random variable; t,, mean time spent by a job at the CPU, a random variable; tl, mean 
time spent by a job at the peripheral processor 1 (procl), a random variable; tl, mean time 
spent by a job at the peripheral processor 2 (proc2), a random variable; ol, probability of a 
job going to procl; p, probability of a job exiting the system; M,, A42, merge points; B,, &, 
branch points. 

Sequential Simulation Algorithm 

Two major data objects used by the sequen- 
tial simulation algorithm are the clock and 
event list, which are described as follows: 

Clock. A real-valued variable. It gives the 
time up to which the corresponding physi- 
cal system has been simulated, that is, all 
messages (t, m) sent in the physical system 
with t < clock, can be deduced from the 
logical system at any point in its execution. 

Event list. A set of tuples of the form 
(tip mi), where ti 2 clock and mi is a message. 
(We assume that the identities of the 
sender and the receiver are parts of the 
message.) A tuple (ti, mi) is in the event list 
means that, in the physical system, if the 
sender of mi receives no message at any t, 
clock 5 t < ti, then it sends mi at ti and 
sends no other message at any time t, 
clock 5 t 5 ti. 

It is required that for every ppi there be 
at least one event-list entry (ti, mi) in which 
ppi is the sender. If a pp sends no message 
in the future, unless it receives further mes- 
sages, the corresponding event-list entry 
will be (w, m), where the message content 
in m is arbitrary. A similar entry, (co, m), 
will always be in the event list for a pp that 
has terminated. 

Example 2.7 (A Snapshot in Sequential 
Simulation of the Assembly Line) 

In simulating the assembly line of Example 
2.4, a possible value of clock and corre- 

sponding entries in the event list are shown 
as follows: 

clock: 9 
event list {{(19, A, B, 2), (21, B, C, l), 

(a, C, sink, -), 
(30, source, A, 3)] 

This snapshot of the simulation corre- 
sponds to the point in the physical system 
where the source has produced jobs 1 and 
2, and job 1 has been processed at A and 
sent to B. The source has one more job 
scheduled for production; A has scheduled 
to send job 2 to B at time 19, provided A 
receives no more jobs between 9 and 19; B 
has scheduled to send job 1 to C at time 21, 
provided it receives no more jobs before 
then; C has scheduled no message because 
it has received no jobs. 

It should be noted that each entry (t, m) 
in the event list is conditional. An entry 
(t, m) may not actually occur in the physi- 
cal system, because this message transmis- 
sion may be canceled if the sender of m 
receives a message prior to t. In fact, it is 
impossible to construct general-purpose 
sequential simulations without canceling 
events from the event list. For example, 
cancellation is required in the simulation 
of a system with preemption: Scheduled 
departure of a job from a server for some 
future time may have to be canceled (and 
recomputed) owing to the arrival at the 
server of a job that preempts the previous 
job. 
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Let (t, m) be an entry in the event list 
where t is smaller than t’ for every other 
G’, m’) in the event list. We can then 
guarantee that the first message to be sent 
at or after the current value of clock is mes- 
sage m and that it is sent at time t. This is 
the content of the following theorem, upon 
which sequential simulation is based. 

Theorem 1 

Let (t, m) be an entry in the event list such 
that t < t’ for every other entry (t’, m’) in 
the event list. Then the message m is trans- 
mitted at time t in the physical system and 
no other message is transmitted at t”, where 
clock 5 t” < t. 

Proof. If message m is not transmitted 
at t, it must be because some other message 
is transmitted at or before t (and at or after 
clock), which causes the sender of m to 
cancel transmission of m. Consider the first 
message m ’ to be so transmitted; it must 
be transmitted at t ’ where clock 5 t’ 5 t. 
The sender of m ’ could not have received 
any message between clock and t’, because 
such a message would be the first message 
transmitted after clock. Then (t ‘, m ‘) must 
be an entry in the event list, because the 
sender of m’ sends its message without 
receiving any other message after the cur- 
rent clock value and before t’. Since t’ C- t, 
it contradicts our choice of (t, m). Hence 
the result. 0 

2.3.1 Simulations of Simultaneous Events 

We assumed in Theorem 1 that there is a 
unique tuple (t, m) in the event list, where 
t is smaller than t’, for all other (t ‘, m ‘). 
In a sequential simulation, two message 
transmissions that happen simultaneously 
in the physical system, that is, at the same 
time t, must be simulated in some order. 
Simulating them in arbitrary order can lead 
to problems, as in the following: pp A plans 
to send a message m to pp B at time t; pp 
B is an alarm clock that is scheduled to go 
off, that is, to send a message m’ to pp A 
at time t, unless it receives a message from 
pp A before or at t. In the physical system, 
pp B will not send m’ to pp A. However, if 
these message transmissions are simulated 

sequentially in arbitrary order, a possible 
simulation may result in pp B sending m’ 
to pp A. This example illustrates that 
events should be simulated in the order of 
their dependencies (m’ is dependent on m 
in this example). Simulation in the order 
of dependencies also guarantees chronolog- 
ical order. Certain sequential simulation 
languages, such as GPSS [Franta 19771, 
provide the user with facilities for defining 
orderings among simultaneous events. In 
this case, information defining orderings 
must be kept with tuples in the event list. 
Distributed simulation is based on the 
dependency order and hence avoids this 
problem. 

A tuple (t, m) in the event list is a small- 
est tuple if t % t’ for every (t ‘, m’) in the 
event list, and, if t = t’, then message m’ 
does not precede m {this has to be deduced 
from additional facts stored with m’ and 
m). Note that there may be several smallest 
tuples and they may be simulated in arbi- 
trary order. 

The simulation algorithm, given below, 
works as follows. In each step a smallest 
tuple is removed from the event list, its 
effects are simulated (causing possible ad- 
ditions to and deletions from the event list), 
and the clock is advanced to the time as- 
sociated with this message transmission. 
This algorithm is given in a pseudopro- 
gramming notation below. 

2.3.2 The Sequential Simulation Algorithm 
(See Figure 7) 

The correctness of this algorithm should 
be obvious from our previous discussions. 
Note that the sequential simulation algo- 
rithm is capable of producing the sequence 
of message transmissions in the physical 
system; it simply prints (t, m), whenever it 
removes (t, m) from the event list. 

Example 2.8 (A Sequence of Snapshots 
in the Simulation 
of the Assembly Line) 

We consider the assembly line example and 
show in Table 5 a partial sequence of event 
lists and clock values. 
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Initialize:: 
clock := 0; 
event list := [(tx, mi) 1 message mi will be sent at t, 

unless the sender of rni re- 
ceives a message before t;; 
one such entry exists for each 
pp as the sender). 

Iterate:: 
while termination criterion is not met do 

remove a smallest tuple (t, m) from the event list; 
simulate the effect of transmitting m at time t; 
[This may cause changes in the event list. 
Note however that any addition or deletion, 
(t’, m ‘) to the event list will have t’ P t.1 
clock := t 

endwhile 

Figure 7. The sequential simulation algorithm. 

Table 5. Partial Sequence of Event Lists and 
Clock Values 

Clock Event list Smallest tuple 

0 ((5, source, A, l), (5, source, A, 1) 
(m, A, --,--A 
(9 B, -, -A 
(Q), c, -, -)) 

5 ((7, source, A, 21, (7, source, A, 2) 
(9, A B, l), 
(9 B, -, -L 
(m, C, -, -)) 

7 (~C&w;rCle). A, 3), (9, A, 4 1) 

(d, Ii, 2, L,, 

(9 c, -, -1) 
9 (I;$ yr;)A 3) (1% A, B, 2) 

(21: B: c: 1,: 

(m, c, -, -)) 

Notes on Parallel Execution. It should 
be obvious that to process more than one 
tuple at once, say, both (t, m) and (t ‘, m ‘), 
we must be sure that these two events are 
independent, that is, that execution of one 
will not in any way affect the execution of 
the other. This requires us to know more 
about the cause-effect relationship among 
messages. We consider these issues in the 
next section and develop a basic scheme for 
distributed simulation. 

3. DISTRIBUTED SIMULATION: THE BASIC 
SCHEME 

In this section we introduce a model of 
distributed computation and show how a 

simulation may be carried out by a set of 
communicating processes. We limit our dis- 
cussion here to a basic scheme, one which 
can result in deadlock. More sophisticated 
schemes that resolve deadlock are discussed 
in the next section. 

3.1 A Model of Asynchronous Distributed 
Computation 

A distributed system consists of a finite 
number of processes and directed channels 
connecting some pairs of processes. To dis- 
tinguish these processes from physical 
processes, we call them logical processes or 
1~‘s. Each lp may execute sequential code 
and two special commands: receive and 
send. In a send, an lp names an outgoing 
channel and a message that is to be sent 
along that channel. Execution of the send 
results in the message being deposited on 
the named outgoing channel; the sender 
then proceeds with the execution of its 
code. Each message takes an arbitrary but 
finite time to reach its destination. Mes- 
sages sent along a channel are delivered in 
the sequence in which they are sent. In a 
receive command, an lp names one or more 
incoming channels from any one of which 
it wishes to receive a message. An lp wish- 
ing to receive may have to wait until a 
message arrives along one of the incoming 
channels. Note that our communication 
protocol is extremely simple and can be 
implemented on many existing machine 
architectures. 

A set of lp’s D is deadlocked at some 
point in the computation if all of the follow- 
ing conditions hold: (1) every lp in D is 
either waiting to receive or is terminated; 
(2) at least one lp in D is waiting to receive; 
(3) for any lpi in D that is waiting to receive 
from some lpi, lpj is also in D, and there is 
no message in transit from lpj to lpi. 

It follows then that none of the lp’s in D 
will carry out any further computation 
since they will remain waiting for each 
other. 

3.2 Basic Scheme for Distributed Simulation 

To simulate any given physical system, we 
construct a distributed logical system as 
follows. We will associate one Ip with each 
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pp; lpi will simulate the actions of ppi. If 
ppi can send messages to ppj, there is a 
channel from lpi t0 lpj. 

An lp can simulate the actions of a pp up 
to time t if the lp knows the initial state 
and all messages that the corresponding pp 
receives up to time t. This is because, from 
the realizability property, no future message 
(message received by the pp after time t) 
can affect the pp’s behavior at t. We note 
further that an lp may be able to simulate 
a pp beyond time t, even though it knows 
its input messages only up to time t, as 
shown in the following example. 

Example 3.1 (An lp May Predict the Future) 

Consider a typical nonpreemptive first 
come, first served (FCFS) server, which 
spends exactly 10 units of time servicing 
each job. Assume that a job arrives at time 
t when this server is idle. From this infor- 
mation about input messages up to time t, 
we can predict the behavior of the server 
up to time t + 10: It will produce no output 
between times t and t + 10, but it will 
output a message at t + 10, sending the 
job that has been serviced to its next 
destination. 

From these observations, we can con- 
struct an algorithm for distributed simula- 
tion. We note that the times at which pp’s 
send messages must be encoded into the 
message that the Ip’s send: If messsage m is 
sent by ppi to ppj at time t, message (t, m) 
will be sent by lpi to lpj at some point during 
simulation. 

We make a chronology requirement: 
If an lp sends a sequence of messages 
(... (ti, mi), (ti+l, %+I ) . . . ) to another lp, 
then ti < ti+l + * *. The implication of this 
requirement is that if lpi receives (t, m) 
from lpi, then it knows all messages that ppi 
receives from ppj up to and including time 
t, because any future message will have a 
higher t component. 

Define the channel clock value of a chan- 
nel to be the t component of the last 
message received along that channel; the 
channel clock value is 0 if no message has 
been received along that channel. Clearly, 
every lpi knows all messages received 
by the corresponding ppi up to time Ti = 

mini (tj 1, where tj ‘S are the channel clock 
values of all incoming channels to that lp, 
and the minimum is taken over all these 
incoming channels. We call Ti the clock 
value of lpi. Hence, lpi can safely simulate 
ppi up to Ti; that is, it can deduce every 
message that ppi sends up to time Tie Also, 
lpi may be able to deduce ppi’s message 
transmissions beyond Tie In any case, lpi 
will send messages corresponding to all the 
messages it can deduce for ppi. The basic 
simulation algorithm followed by lpi is 
sketched next; we assume that all messages 
are sent at t > 0 in the physical system. 

3.2.1 Basic Distributed Simulation Algorithm for 
/pi (See Figure 8) 

Note. The lp’s that have no incoming 
channels are called source 1~‘s. Each source 
lp also follows this algorithm: It simply 
sends messages until the simulation com- 
pletion criterion is met. A sink lp simply 
receives messages and otherwise does not 
affect the simulation. 

Example 3.2 (Distributed Simulation of the 
Assembly Line) 

Let us review the assembly line example 
(Example 2.4). In the following, we have 
one lp each for the source, the sink, 
work station A, work station B, and work 
station C. 

See Table 3 for the job generation and 
processing times. 

Figure 9 shows the messages sent by each 
lp; an arrow from (t, m) to (t ‘, m ‘) means 
that sending of (t, m) precedes sending of 
(t ‘, m’). 

Note in this example that the source can 
send its messages to A without waiting for 
any input; A can send the ith message to B 
only after receiving the ith message from 
the source, etc. Two messages on different 
lp’s between which there is no sequence of 
arrows are independent and hence may 
be transmitted simultaneously in the 
simulator. For instance, (32, Source, A, 4), 
(31, A, B, 3), (36, B, C, 2), (23, C, Sink, 1) 
can possibly be transmitted simultane- 
ously. The five lp’s form a pipeline through 
which each job passes. If the speeds of the 
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Initialize:: Ti := 0 {All messages received by pp, up to Ti, are now known to lp,) 
while simulation completion criterion is not met do 

{simulate ppi up to Ti by doing the following}:: 
for each outgoing channel, compute the sequence of messages 
((h, ml), (t2, m) . . (t,, m,)), where tl < t2 . . . < t, and, ppi sends m, at time t, along this channel; 
send each message in sequence along the appropriate channel; 

{Note: All messages sent by ppx up to 7’, can be deduced by lp, and sent; also some messages to be sent 
beyond Ti may be predicted by lpi and sent. Only new messages that have not been sent before are 
sent. Also note that some or all of these message sequences may be empty.) 

(receive messages and update T, until T, changes value}:: 
T,f := T,; 
while Tf = T; do 

wait to receive messages along all incoming channels; 
upon receipt of a message, update lp,‘s internal state and recompute T,, the minimum over all incoming 
channel clock values 

endwhile 
endwhile 

Figure 8. Basic distribution algorithm for 1~;. 

Source: (5, Source, A, 1) - (7, Source, A, 2) + (30, Source, A, 3) + (32, Source, A, 4) 

A: (9, A%, 1) + (19, A: B, 2) - (31, A! B, 3) + (37, A: B, 4) 

1 1 1 
B: (21, B, C, 1) - (36, B, C, 2) + (38, B: C, 3) --+ (45, B, C, 4) 

1 1 1 1 
c: (23, C, Sink, 1) + (39, C, Sink, 2) + (40, C, Sink, 3) + (49, C, Sink, 4) 

Figure 9. Messages sent by each lp. 

lp’s are approximately equal, and the trans- 
mission delays between lp’s are approxi- 
mately equal, then the pipeline should work 
at full efficiency; one job is input and one 
job is output per cycle after an initial delay 
of three cycles. 

This is about the simplest simulation 
example one can think of. We study a 
harder example next. 

Example 3.3 (A Primitive Computer system) 
(See Figure 10) 

We have one lp each for the source, the 
CPU, Procl, Proc 2, M, B and the sink. For 
this example, assume that jobs arrive at the 
CPU from the source every 5 time units 
starting at time 3, that jobs spend 1 unit at 
the CPU, that jobs alternately go to Procl 
and Proc2 from B, and that a job spends 5 
units at Procl, 18 units at Proc2, and no 
time at B or M. We show the sequence of 
messages and their dependencies in Fig- 
ure 11. (To simplify the diagram, we have 

not shown the arrows between messages 
at a PP.) 

Note the behavior of the lp correspond- 
ing to M. Assume that it first receives 
(27, Proc2, M, 2) from the lp corresponding 
to Proc2. This is possible if, for instance, 
the lp corresponding to Proc2 were consid- 
erably faster than the one corresponding to 
Procl. Then the lp for M can only infer 
that it will not receive any other message 
from the lp corresponding to Proc2 with 
time component smaller than 27. However, 
it cannot assert anything about messages 
from Procl; it can thus simulate pp M only 
up to time 0. Suppose that it next receives 
(45, Proc2, M, 4); it must still wait. The 
next input is, say (9, Proc, M, 1). Then the 
lp corresponding to M can assert that it 
knows all inputs that M receives up to time 
9 and hence predict all of M’s outputs 
at least up to 9; therefore, it can output 
(9, M, Sink, l), since jobs spend no time at 
M. The rest of the outputs of M are easy to 
see. Finally, note that M cannot output 
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Figure 10. A primitive computer system. 

Source: (3, Source, CPU, 1) (8, Source, CPU, 2) (13, Source, CPU, 3) (18, Source, CPU, 4) (23, Source, CPU, 5) 

J 5- & 4 
CPU: (4, CPU, B, 1) (9, CPU, B, 2) (14,CPU,B,3) (19,CkJ,B,4) (24, CPU, B, 5) 

B: 

Procl: 

Proc2: 

1 1 
(4, B, Procl, 1) (9, B, Proc2,2) (14, B, Procl, 3) (19, B, ProcP, 4) (24, B, Procl, 5) 

Figure 11. Sequence of messages and their dependencies. 

(45, M, Sink, 4) at the very end, because it part of the correctness condition stated 
does not know whether it will receive a above: Whatever is transmitted in the sim- 
message with a t component lower than 45 ulator actually happens in the physical sys- 
from the lp corresponding to Procl. An tem. We are postponing discussion of the 
extra message with a t component exceed- converse statement-if message m is trans- 
ing 45 must be sent from Procl to M to mitted at time t in the physical system, 
“flush out” this message. We discuss this then (t, m) is transmitted in the simula- 
issue later. tor-to the next section. 

3.3 Partial Correctness of the Basic 
Distributed Simulation Scheme 

Correctness of a distributed simulation 
algorithm consists of two parts: (1) If a 
message m is transmitted in the physi- 
cal system at time t, then (t, m) is trans- 
mitted in the simulator; (2) if (t, m) is 
transmitted in the simulator, then message 
m was transmitted at time t in the physical 
system. These statements are not quite true 
for the basic distributed simulation scheme 
just presented. As we observed in the last 
example, job 4 is sent at time 45 from M to 
the sink in the physical system, but the 
corresponding message is never sent in the 
simulator. Therefore, we can prove only one 

Define a simulation to be correct at some 
point if it meets the following two condi- 
tions: (1) If message m is sent at time t 
along channel e in the physical system, and 
t is less than or equal to the channel clock 
value of channel e at this point in simula- 
tion, then (t, m) has been sent along chan- 
nel e in the simulation; (2) if (t, m) has 
been sent in the simulation, then message 
m is sent at time t in the physical system. 

We note that, in a simulation that is 
correct at some point, every lp must have 
received a correct input sequence along 
every incoming channel, that is, every 
message on this channel that has been 
transmitted in the physical system up to 
this channel clock value has been received 
along this channel in the simulation, and 
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vice versa. We assume that every lp cor- 
rectly simulates the corresponding pp; that 
is, any message sent by an lp is correct 
provided that all messages it has received 
prior to sending this message are correct. 
Clearly a simulation is correct if and only 
if every lp has sent correct output sequences 
along every outgoing channel. Theorem 2 
follows by applying induction on the 
number of messages transmitted in the 
simulation. 

Theorem 2 

Simulation is correct at every point. 

Proof. Simulation is obviously correct, 
by definition, when no message has been 
transmitted in the simulation. Assume that 
a simulation is correct up to some point. 
The next messsage in the simulation is sent 
by some lpi. Since simulation is correct 
prior to this message transmission, lpi has 
received correct input sequences so far. 
From our assumption that lpi correctly sim- 
ulates ppi, the output sequences of lpi, in- 
cluding the last message sent, are correct. 
Every other lp has sent correct sequences 
so far, from the inductive hypothesis. 
Hence the simulation is correct following 
the last message transmission. 0 

In a similar manner, we can derive the 
following result. 

Theorem 3 

All messages sent by one lp to another are 
chronological in their time components. 

3.4 Features of the Basic Distributed 
Simulation Scheme 

3.4.1 The Problem of Deadlock 

Theorem 2 tells us only that whatever is 
transmitted in the simulator corresponds 
to a message in the physical system. As we 
have noted earlier, not all messages in the 
physical system are transmitted in the sim- 
ulator using the basic simulation scheme. 
In fact, the next example shows a system 
in which no message is transmitted to a 
subsystem in the simulator. 

Example 3.4 (A Deadlocked Subsystem in a 
Distributed Simulation) 

Consider a physical system in which the 
source sends messages to a branch point B, 
and B routes the messages to Procl or 
Proc2. After some finite time, each message 
is sent from Procl or Proc2 to a merge 
point M, after which it enters a network N 
(see Figure 12). Consider the case in which 
B sends every message to Procl. Then in 
the simulation, the lp corresponding to M 
will never receive a message from Proc2. 
Hence the channel clock value for the chan- 
nel (Proc2, M) will remain at 0 and the lp 
for M will never send a message. The sub- 
system N will thus never receive a 
message. 

We show another example in which dead- 
lock arises owing to a circular pattern of 
waiting among the 1~‘s. 

Example 3.5 (Cyclic Waiting in a Distributed 
Simulation) (See Figure 13) 

Consider a network of three processes and 
a source, shown schematically in Figure 13. 
The number on each channel is the channel 
clock value; that is, the last message sent 
from x to y and received by y had a t 
component of 20, and so on. Suppose that 
none of x, y, z will now send a message 
unless they receive a message, that is, they 
can predict no future messages. 

We can see that 2 will not send a message 
unless x first sends a message to y. Hence 
x need not wait for 2; it can process the 
next message from the source. However, 
none of the lp’s corresponding to x, y, 2 

have this global knowledge; they only have 
local knowledge of the behavior of each 
individual pp. Therefore, x cannot proceed 
unless it receives from a, 2 cannot proceed 
unless it receives from y, and y cannot 
proceed unless it receives from X, leading 
to a deadlock. 

3.4.2 Simulation Snapshot 

In a sequential simulation, it is possible to 
assert that the simulator has completed 
simulation up to the time given by the 
clock: every pp must have been simulated 
up to this point in time. We cannot make 
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Figure 12. A distributed simulation that does not progress. 

Figure 13. A distributed simulation that deadlocks. 

a similar statement for distributed simula- 
tion, because each lp may have simulated 
the corresponding pp to a different point in 
time. For instance, in the example of the 
primitive computer system (Example 3.3), 
we can assert at the end that the lp’s 
have simulated the corresponding pp’s as 
follows: (Source: 23)(CPU: 24), (B: 24), 
(Procl: 29), (Proc2: 45), (M: 29). 

Let T, the clock value of the simulator, be 
the minimum of all lp clock values. We can 
assert that at any point in the simulation, 
the physical system has been simulated up 
to the simulator’s clock value, even though 
some individual lp’s may have simulated 
the corresponding pp’s far beyond T. 

3.4.3 Encapsulation of Physical Processes 
by Logical Processes 

In distributed simulation, the radical de- 
parture from sequential simulation is the 
lack of any global control. (We show dead- 
lock resolution without global control in 
the next section.) Since a pp is simulated 
entirely by one lp, various different simu- 
lations of a pp can be attempted by substi- 
tuting different lp’s for it. Furthermore, the 
correctness of simulation can be checked 
one lp at a time-the proof of correctness 
is naturally partitioned among lp’s, that is, 
we show that each lp correctly simulates 
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the behavior of the corresponding pp. We 
have shown that, if each lp behaves cor- 
rectly, the simulation as a whole behaves 
correctly. This observation may lead to ma- 
jor simplifications in designing complex 
simulations. In fact, distributed simula- 
tions can be implemented using existing 
sequential simulations; instead of reporting 
to a central event-list manager, an lp sends 
messages. In all other respects, the core of 
the simulation remains unchanged. 

4. Distributed Simulation: Deadlock 
Resolution 

We have seen in the last section that the 
basic distributed simulation scheme may 
lead to deadlock even in acyclic networks. 
In this section we present several different 
approaches to resolution of deadlock. We 
comment on some of the most viable ap- 
proaches to deadlock resolution. 

4.1 Overview of Deadlock Resolution 

In all the examples we have seen so far, the 
simulator clock value (i.e., the minimum of 
all lp clock values) remains at some final 
value T forever. If T is smaller than the 
point up to which we need to run the sim- 
ulation, we have to apply some other 



Distributed Discrete-Event Simulation l 57 

sink 

Figure 14. A physical system with loop. 

scheme to advance the simulation. For 
instance, in the example of the primitive 
computer system (Example 3.3), the lp cor- 
responding to M cannot proceed any fur- 
ther unless it is told that Procl will never 
send it a message. In Example 3.5, lp x 
must be told that it will never receive any 
input along zx until x first sends a message. 
The first scheme we describe, using null 
messages, is effectively an implementation 
of this idea [Bryant 1977; Chandy and 
Misra 19791. We also discuss some other 
schemes that avoid deadlock using different 
kinds of overhead messages. 

4.2 Deadlock Resolution Using /Vu// 
Messages 

We postulate a new kind of message to be 
used by the simulator: (t, null ) sent by lpi 
to lpi means that ppi sends no message to 
ppj between the current channel clock value 
of the channel from lpi to lpi and t; there- 
fore, any future message from lpi to lpj will 
have a t-component exceeding t. Clearly 
null messages have no counterpart in the 
physical system. A null message is used to 
announce absence of messages. Absence of 
messages in a physical system at time t is 
recognized by no message being transmit- 
ted at that time. Unfortunately, the basic 
scheme of the last section cannot guarantee 
absence of messages to an lp without send- 
ing it an actual (nonnull) message having 
a higher t-component value. 

We now propose modifications to the 
basic algorithm of Section 3 to incorporate 
null messages. Let us first review the basic 
distributed simulation scheme of the last 
section. Ti denotes the clock value of lpi. 
Whenever lpi receives a message, it 
properly updates Ti, and, if Ti changes in 

value, then lpi advances the simulation of 
ppi UP t0 Ti. At this point lpi predicts for 
each outgoing channel, a sequence of mes- 
sages that the ppi would have sent. Thus 
lpi typically generates ((tjl, mjl), (tj2, mjz), 

. . . ) for transmission to lpj, for every j to 

which it has outgoing channels. Some of 
these sequences may be empty, in which 
case no message is sent to the correspond- 
ing lp. Suppose that lpi can further predict 
that after transmission of this message se- 
quence ppi will not send any more messages 
to ppj until time tje Then, in the new 
scheme, Ipi sends (tj, null) to lpi after send- 
ing the genuine message sequence. Since lpi 
knows the state of the corresponding pp up 
to time Tip it can predict all messages (that 
are to be sent) and absence of messages, at 
least up to Tie Therefore, every outgoing 
channel will have a last message on it with 
time component equal to or greater than 
Ti. Note that, in any iteration, only the last 
message sent along a channel may be a null 
message. 

Reception of a null message is treated in 
the same manner as the reception of any 
other message: It causes the lp to update 
its internal state, including the clock value, 
and (possibly), to send messages. 

Suppose it is required to simulate the 
physical system up to some time T. Then 
every source must send messages until the 
t component of the last message equals T; 
if no nonnull message exists with this prop- 
erty, then finally, (T, null) should be sent. 

Example 4. I 

Consider the physical system shown sche- 
matically in Figure 14. 

We study the progress of one possible 
simulation run of this physical system. The 
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source sends out jobs that are processed at 
X for 2 time units. Jobs are routed alter- 
nately to Y and 2 from Bi. Y processes a 
job for 1 unit and 2 for 4 units. Every job 
loops through the system twice; that is, the 
first time a job arrives at &, it is sent back 
to MI, and on the second arrival at BB it is 
sent to the sink. 

Table 6 shows a succession of message 
transfers, where each horizontal row is a 
time slice and each entry corresponds to a 
single activity of one of the processes. It is 
evident that several activities may happen 
concurrently. 

4.3 Correctness of the Simulation Algorithm 

The partial correctness results of the last 
section still apply. The only difference now 
is the presence of null messages. We define 
the simulation to be correct at some point, 
if it is correct according to the definition of 
Section 3 after ignoring null messages. 

Theorem 4 

Simulation is correct at every point. 

Proof. The proof is almost identical to 
the previous proof and hence omitted 
here. 0 

The next theorem shows the power of 
adding null messages: We show that we 
have a deadlock-free system that can sim- 
ulate a physical system up to any desired 
time. 

Theorem 5 

Assume that every sourceprocess sends mes- 
sages until the t-component of a message 
equals T. Then every lp will simulate the 
correspondingpp, at least up to T. 

Proof Consider the point at which the 
simulation terminates, that is, at which all 
messages that have been sent have been 
received and no lp has any outstanding 
message to send. The following observation 
is critical: For every Ip (except a source lp) 
there exists an incoming channel to that lp 
whose channel clock value is less than or 
equal to the channel clock value of every 
outgoing channel from that lp. This obser- 
vation follows because (1) an lp that has 
received messages at least up to t along 

every input channel must have sent mes- 
sages (t ‘, m’), t ’ L t, along every outgoing 
channel; (2) every message that has been 
sent has been received when simulation 
terminates. Note that (1) could not be as- 
serted in the basic scheme because an lp 
need not send out messages with high- 
er t-component values than the input 
messages. 

We now claim that the channel clock 
value for every channel is at least T. If not, 
consider a channel el for some lp, whose 
channel clock value is tl, with tl < T. Ac- 
cording to the above observation, there ex- 
ists a channel e2, which is an incoming 
channel to this lp, such that ez’s channel 
clock value is t2, where t2 5 tl. Continuing 
in this manner, we can construct a sequence 
of channels, el, e2, . . . , ei, . . . such that for 
all i, ei+l is a predecessor channel of ei and 
ti+l zz tiy and we have tl < T. Since the 
physical network is finite, eventually we 
either (i) get to a source Ip, or (ii) have a 
cycle of channels. In the first case, since 
every source lp sends messages until the t 
component of the last message sent is T, 
we cannot have channel clock value of any 
outgoing channel of a source lp smaller 
than T. In the second case, all channel clock 
values in the cycle are equal to tl and 
tl < T. From the predictability property 
(Section 2), for this cycle and this tl, there 
exists a pp, say ppj, whose outputs can be 
determined beyond tl, given its inputs up 
to tl . Hence, lpi has some messages to send, 
which contradicts our assumption that the 
simulation has terminated. Therefore, the 
channel clock value of every channel is at 
least T, and hence the simulation clock 
value is at least T. 

We have implicitly used the fact that, for 
any finite T, only a finite number of mes- 
sages may be transmitted in the logical 
system. This is derived from the predicta- 
bility property, in which the parameter E, 
t > 0, is a fixed quantity. A more rigorous 
proof of this boundedness property may be 
found in Chandy and Misra [1979]. Cl 

4.4 Discussion 

It is interesting to note that the sim- 
ulator never deadlocks; If the physical 
system deadlocks, the simulator continues 
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computation by transmitting null messages 
with increasing t values. This correctly sim- 
ulates the corresponding physical situation, 
in that, while time progresses, no messages 
are transmitted in the physical system and 
the simulator terminates with every clock 
value at least at T. The simplicity of this 
scheme is one of its most attractive points. 
It requires small coding changes to send out 
null messages. Furthermore, the require- 
ment of unbounded buffers between two 
lp’s is not really necessary. The same re- 
sults hold if there are only a finite number 
of buffer spaces between every lpi and lpj, 
and lpi has to wait to send if all buffer 
spaces are currently full. The proof that 
there is no deadlock in this situation is 
essentially contained in Chandy and Misra 
[ 19791. 

The metric of interest in performance 
calculations is the turnaround time, that is, 
the amount of time it takes to complete the 
simulation, rather than processor utiliza- 
tion, that is, the fraction of time the pro- 
cessors are utilized. In fact, one would ex- 
pect the processors to be lightly utilized. 
The other parameter of interest, line band- 
width, has not received adequate attention. 

Empirical studies show that this scheme 
is quite efficient for acyclic networks 
[Seethalakshmi 19791. Several factors seem 
to affect the efficiency in general networks: 

(1) Degree of Branching in the Network. 
Consider a network with one source and 
one sink. The number of distinct paths 
between the source and the sink is a (rough) 
measure of the amount of branching in the 
network. Null messages tend to get created 
at branches and they may proliferate at all 
successive branches (if not subsumed). So, 
one would expect that the fewer the number 
of branches, the better the performance. 
Empirical studies seem to confirm this 
[ Seethalakshmi 19791. Theoretically, opti- 
mum efficiency is achieved for a tandem 
network (the assembly line example of Sec- 
tion 2, Example 2.4), and excellent results 
are obtained for low-branching-type net- 
works. In general, acyclic networks exhibit 
reasonably good performance levels. 

Experiments were carried out by Peacock 
et al. [1979a, 1979b] on networks of various 

topologies. Their conclusions are: “For 
some topologies of queueing networks 
models, this approach results in a speedup 
in the total time to complete a given simu- 
lation. However, for other topologies, es- 
pecially those with loops, the speedup may 
not be significant.” They also investigated 
several different ways of partitioning the 
physical network so that more than one pp 
may be implemented on one lp. 

(2) Time-Out Mechanisms to Prevent 
Null Message Transmission. A slight 
modification to the scheme of this section 
may save a considerable number of message 
transmissions. A null message (t, m) has no 
effect if it is followed by another message 
(t ‘, m’), t ’ > t. Therefore, it may be effi- 
cient to delay transmissions of null mes- 
sages in the hope that future messages 
received by an lp would make it unneces- 
sary to transmit them at all. Clearly, the 
amount of time 7 that an lp waits before 
transmitting a null message is of impor- 
tance. If 7 = 0, we have the algorithm as 
stated in this section. If T = ~0, null mes- 
sages are never transmitted, and then we 
have the basic algorithm of Section 3, 
which may lead to deadlock. Other values 
of 7 are of potential interest, but no empir- 
ical studies have been performed for other 
values. 

(3) Amount of Buffering on Channels. 
The number of buffer spaces on channels 
seem to have substantial effects on per- 
formance [Quinlivan 1981; Seethalakshmi 
19791. When the number of buffer spaces 
was reduced to 0, senders had to wait until 
the receivers were ready to receive, and a 
considerable amount of time seemed to be 
spent in waiting. The number of buffer 
spaces was then increased and the following 
rule was used to annihilate null messages: 
Any message put in the buffer after a null 
message (and therefore with a higher t com- 
ponent) annihilates any null message ahead 
of it still in the buffer. The annihilation 
rule is somewhat similar to the time-out 
mechanism. It was found that, in the sim- 
ulation of a certain class of queuing net- 
works, the performance improved rapidly 
until the number of buffer spaces on 
a channel approached 10, increased less 
rapidly until about 20, and remained 
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essentially unchanged thereafter. However, 
these numbers cannot be applied directly 
to other problems; we expect these numbers 
to depend on the type of problem and the 
speeds of processors and lines. 

Next, we describe two different schemes 
that limit the number of null message 
transmissions. In the query-reply scheme 
(4.5), no null message is transmitted along 
a channel(y, z) until z demands to have 
(y, 2)‘s clock value increased; y may then 
be forced to send a null message incre- 
menting the channel clock value of (y, z). 
In the circulating marker scheme (4.6), a 
single marker is used to carry null mes- 
sages. It is not clear that either of these 
schemes is superior to the basic scheme, 
where null messages are transmitted after 
a proper time-out. Only empirical investi- 
gations can settle these issues. 

4.5 Demand-Driven Null Message 
Transmisision 

Suppose that, on the basis of time-out, lp z 
asks lp y to advance the clock value of 
(y, z). Such an advance is always possible 
if (y, 2)‘s current clock value is less than 
y’s clock value (which is the minimum of 
channel clock values of (x, y), for all x). In 
this case y sends a message, possibly null, 
advancing (y, 2)‘s clock value. However, if 
(y, 2)‘s clock value equals y’s clock value, 
then no advance may be possible. In this 
case y has to advance its own clock first, 
making the same kind of request of all lp x 
for which (x, y)‘s clock value equals y’s 
clock value. Hence, effectively the request 
has been propagated by y. Only when y’s 
clock value increases beyond (y, 2)‘s clock 
value can y send a message to z increment- 
ing (y, 2)‘s clock value. The propagations 
of requests may form a cycle, in which case 
a deadlock is detected. 

We sketch the algorithm below for an lp 
y- A query is a message that is sent by one 
lp to another to request that a channel 
clock value be advanced; queries will be 
propagated, in general. Hence, we assume 
that a query contains the path it has tra- 
versed and the channel clock values of all 
channels along the path; query (po p1 . . . 
p,) denotes a query initiated by p. and sent 

from Pi to Pi+19 for all i, 0 5 i < n. In 
addition, the query contains tip clock 
value of the channel (pi+1 9 pi), for all i, 
0 5 i < n. It is obvious that tj 2 tj+l and 
Olj<n-1. 

A reply for a query contains the query 
and a new clock value for the last channel 
in the query; that is, for a query (p . . . 
y x), there is a new (larger) clock value for 
channel (x, y). Additionally, a reply may 
contain one or more messages. In the fol- 
lowing we use “y has query (p a . . y) m as a 
Boolean proposition that is set true or false 
in the algorithm. Actions of lp y are de- 
scribed by the following rules. 

(1) Initiating a query :: 
if time-out then y has a query(y). 

(2) l-$p” receiving a reply to query (p . . . 
:: 

advance channel clock value of (x y) and 
receive messages, if any, in the reply; y 
has query (p +. . y). 

(3) lp y has or receives query (p . a . z y) 
(where the sequence may have only one 
element y) :: 

if y appears more than once in the query 
then detect deadlock (recovery from dead- 

lock is treated below) 
else if lp y can advance the channel clock 

value of ( y 2) 
then send reply to z (including the query, 

the new channel clock value and mes- 
sages, if any) 

else send query (p . . . z y X) to every x 
for which clock value of channel 
(x: y) = clock value of lp y (unless 
such a query has been sent and no 
reply is yet received). 

A query eventually leads to either detection 
of a deadlock or increase of some channel 
clock value; we refer the reader to Chandy 
and Misra [1982] and Chandy et al. [1983] 
for the essential ideas in the proof of this 
claim. 

Consider the situation in Example 3.5. 
A query initiated by y is received by x, 
propagated to z, and then propagated to y, 
which detects deadlock. If the query were 
initiated by x, it is sent to z and is propa- 
gated by z to y; then y replies, advancing 
the channel clock value of (y, z) to 20, z 

Computing Surveys, Vol. 18, No. 1, March 1986 



62 l Jayadev Misra 

sends the query to y again, and y sends the mation for deadlock detection, as described 
query to z, which detects deadlock. below. 

Resolution of deadlock is surprisingly 
difficult. In the above example x can detect 
deadlock, but it cannot, in general, advance 
its own clock to 25, the channel clock value 
of the channel outside the deadlocked set. 
This is because the physical process x may 
send out a message, say at time 22, if it 
receives no message between 20 and 22 
along either input channel. This is certainly 
conceivable, for example, if x is an alarm 
clock that is set at time 20 to go off at time 
22 unless it is canceled before that time. 
Therefore, lp X’S clock value cannot be ad- 
vanced to 25. Resolution of deadlock may 
be accomplished by determining the mini- 
mum of the “next event times”: For every 
lp in the deadlocked set, the time at which 
a message will be sent (provided no further 
message is received up to then) is deter- 
mined, and the clock value of the lp with 
the minimum clock value is advanced to 
this time. This calculation may be carried 
out in a centralized or decentralized fash- 
ion; in fact, the query may carry the next 
event time for each lp it has seen, in which 
case the detection of deadlock can also de- 
termine which lp may restart and at what 
clock value. 

Each lp has a l-bit flag to show whether 
the lp has received or sent a message since 
the last departure of the marker from the 
lp. We say that an lp is white if it has 
neither received nor sent a message since 
the last departure of the marker from the 
lp; the lp is black otherwise. Initially all lp’s 
are black. The marker declares deadlock 
when it finds that the last N lp’s that is 
has visited were all white when it arrived 
at the lp, where N is the number of chan- 
nels in the network. The algorithm is cor- 
rect if messages between two lp’s, including 
the marker, are received in the order sent; 
see Misra [1983] for a precise description 
and proof of this result. 

We can use this scheme to detect and 
recover from deadlock. The marker, in ad- 
dition to keeping the number of white lp’s 
it has seen since it last saw a black lp, 
carries the minimum of “next-event-times” 
for the white lp’s it visits: Each white lp 
can report the time of the next event, as- 
suming it receives no further messages, to 
the marker, and the marker merely keeps 
track of the smallest of these, and the cor- 
responding lp. When the marker detects 
deadlock, it knows the next event time and 
the lp at which this next event occurs. 
Therefore, it can restart that lp. Alter- 
nately, a central process may broadcast 
(send messages to all 1~‘s) to advance their 
clocks to the next event time in the system. 

4.6 Circulating Marker for Deadlock 
Detection and Recovery 

A suggestion has been made in Chandy and 
Misra [1981] to let the basic simulation 
scheme deadlock, detect deadlock, and 
recover from it. We now discuss two meth- 
ods for deadlock detection and recovery. 

Consider a marker that continuously cir- 
culates in a network. It follows a cycle of 
channels such that it traverses every chan- 
nel of the network sometime during a cycle. 
Such a cycle exists if the network is 
strongly connected; new channels may be 
added to the network to make it strongly 
connected. The marker is merely a special 
type of message. It initially starts at some 
lp. If an lp receives the marker, its obliga- 
tion is to send the marker (along its desig- 
nated route) within a finite time of being 
idle (i.e., not having anything more to 
send). We let the marker carry some infor- 

The overhead messages in this case are 
for marker transmissions. If deadlocks are 
infrequent, the marker may move slowly. 
In this case the deadlock may be detected 
some time after it occurs, but the propor- 
tion of overhead messages to genuine mes- 
sages will be low. 

An elegant variation of this deadlock de- 
tection scheme has been discovered by 
Chandy [unpublished notes] and refined by 
Kumar [ 19861. As before, there is a marker 
that visits the 1~‘s. However, it visits them 
in an arbitrary fashion, with the only re- 
quirement being that it visit each lp even- 
tually. It collects the following information 
from an lp when it visits it: (1) status 
of the lp (an lp is idle if it will send no 
more messages unless it first receives a 
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message; it is nonidle, otherwise), and (2) 
number of messages received along every 
input channel and number sent along every 
output channel of the lp. This information 
overwrites any previous information col- 
lected from that lp. Note that the infor- 
mation collected by a marker may become 
obsolete if an lp receives messages, becomes 
nonidle, and/or sends messages after the 
marker collects the information from the 
lp. Yet, the marker can declare deadlock if 
the information it has collected shows that 
every lp is idle and, for every channel, the 
number of messages sent equals the number 
of messages received. 

These schemes have to be modified for 
detecting deadlocks within a subnetwork in 
the logical system; we can determine, 
through preprocessing, the subnetworks 
that may deadlock, and then we can assign 
markers to these subnetworks. 

5. SUMMARY AND CONCLUSION 

In this section, we summarize the discus- 
sions about distributed simulation, its 
status, problems, and future research 
directions. We hope to have demonstrated 
that distributed simulation may be applied 
in every situation in which sequential dis- 
crete-event simulation may be applied. Our 
examples have been predominantly from 
the area of computer systems, since a 
queuing network description of a computer 
is a physical system. However, our physical 
systems encompass a large variety of real- 
world applications. Implementation of 
distributed simulation is possible in any 
language that allows creation of message 
communicating processes. 

The assignment of logical processes to 
physical processors should follow the guide- 
line that the message traffic among pro- 
cessors be as low as possible. Message 
communication may be accomplished 
either through a common memory (mes- 
sages are deposited in a common memory 
by the sender and removed by the receiver) 
or by other interaction mechanisms among 
processors. The important criterion is how 
loosely coupled the processors are. If two 
processors are tightly coupled, that is, if the 
logical processes on these processors ex- 

change a large number of messages, then 
the processors must also exchange at least 
that many messages, and the message 
traffic will be heavy. If processors are 
loosely coupled, they can operate autono- 
mously, that is, without communicating 
with other processors, for longer periods of 
time. It is also easier to avoid deadlock 
among a set of logical processes if they are 
simulated on one processor, because a cen- 
tralized scheduler, employed for message 
communication, can also detect deadlock. 

Static partitioning of the physical net- 
work among a fixed number of processors 
requires preprocessing prior to simulation. 
Preprocessing is useful for many other rea- 
sons, too. In the circulating marker algo- 
rithm, preprocessing is needed to determine 
a (static) cyclic path for the marker. Pre- 
processing could also be used to partition 
the lp’s such that the amount of branching 
is reduced and cycles are mostly contained 
within one processor. Preprocessing can de- 
termine other simulation parameters for 
time-out, sizes of buffers on channels, etc. 
This is an area that has been extensively 
studied for sequential simulations. It needs 
to be studied again for distributed simula- 
tion, since the problems are somewhat 
different in nature. 

We have sketched several variations of 
the basic scheme for deadlock resolution. 
There is little evidence yet of the superior- 
ity of any one scheme. The large number 
of heuristics suggests that some combina- 
tion may be appropriate for particular prob- 
lem domains. For instance, if we use a set 
of uniform processors, among which mes- 
sage communication is expected to be reg- 
ular, we can expect that deadlock will rarely 
arise, and therefore a (slowly) circulating 
marker scheme would be preferable. Also, 
the marker can be used to collect statistical 
information about the simulation itself, 
and hence the simulation parameters, such 
as time-outs, can be dynamically changed. 

We have not discussed specific hardware 
architectures that can support simu- 
lation. There has not been enough experi- 
mentation with distributed simulation to 
know where it spends most of its time, 
and whether any architectural improve- 
ment would be useful for all distributed 
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simulation problems. At present, any 
architecture that supports processes and 
communication among them would be 
appropriate. 

Currently, the most important problem 
in distributed simulation is the empirical 
investigation of various heuristics on a wide 
variety of problems to establish (1) which 
heuristics work well for which problems 
and on which machine architectures, 
(2) how to partition the physical system 
among a fixed set of processors, and (3) 
how to set simulation parameters such as 
time-outs and buffer sizes. 
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