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Abstract

Many induction problems, such as on-line customer pro-
filing, include missing data that can be acquired at a cost,
such as incomplete customer information that can be filled
in by an intermediary. For building accurate predictive
models, acquiring complete information for all instances is
often prohibitively expensive or unnecessary. Randomly se-
lecting instances for feature acquisition allows a represen-
tative sampling, but does not incorporate other value es-
timations of acquisition. Active feature-value acquisition
aims at reducing the cost of achieving a desired model ac-
curacy by identifying instances for which complete informa-
tion is most informative to obtain. We present approaches in
which instances are selected for feature acquisition based
on the current model’s ability to predict accurately and
the model’s confidence in its prediction. Experimental re-
sults on several real-world data sets demonstrate that our
approach can induce accurate models using substantially
fewer feature-value acquisitions as compared to a baseline
policy and a previously-published approach.

1 Introduction

Many predictive modeling tasks include missing data
that can be acquired at a cost, such as incomplete customer
information which can be obtained though an intermediary.
For building accurate models, ignoring instances with miss-
ing values leads to inferior model performance [15, 10],
while acquiring complete information for all instances of-
ten is prohibitively expensive or unnecessary. To reduce
the cost of acquiring feature information, it is desirable to
identify a subset of the instances for which complete infor-
mation is most informative to acquire.

The setting we explore was first introduced at ICDM
2002 [22] and applies to a variety of business and other
domains. Consider an on-line retailer learning a predictive
model to estimate customers’ propensities to buy. The re-
tailer may use private information on its customers and their
buying behavior over time, as captured from the retailer’s

own web log-files. To improve the model, the retailer may
also acquire additional information capturing its customers’
buying preferences and lifestyle choices from a third-party
information intermediary [8]. Acquiring complete data for
all customers may be prohibitively expensive [13]. Hence,
the retailer could benefit from having a cost-efficient feature
acquisition strategy that can select the customers it should
acquire complete information for, so as to most benefit the
predictive model. A similar challenge is faced by marketing
research firms that, in order to model consumer behavior,
often obtain consumer responses to a short survey, and due
to the cost of acquiring information, acquire responses to
an extended survey from only a small, representative subset
of those consumers. An effective acquisition strategy that
acquires complete responses from consumers that are par-
ticularly informative for the model, can increase the accu-
racy of the model compared to that induced with the default
strategy.

In this paper we address this problem of active feature-
value acquisition (AFA) for classifier induction: given a
feature acquisition budget, identify the instances with miss-
ing values for which acquiring complete feature information
will result in the most accurate model. Formally, assume �
instances, each represented by � features ��� ���� ��. For all
instances, the values of a subset of the features ��� � � � � ��
are known, along with the class labels. The values of the
remaining features ����� � � � � �� are unknown and can be
acquired at a cost.

The problem of feature-value acquisition is different
from active learning [3] and optimum experimental design
[9, 5], where the class labels rather than feature values are
missing and costly to obtain. There has been relatively little
work on acquisition of missing features, and we survey the
work in Section 5.

The approaches we present here provide generic prin-
ciples for active acquisitions; they apply to most classifier
induction methods. They are also very effective and com-
putationally efficient. These proposed policies for active
feature acquisition are based on three observations:

1. In addition to categorical classifications, most classifi-
cation models provide estimates of the confidence of
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classification, such as estimated probabilities of class
membership. Therefore principles underlying existing
active-learning methods like uncertainty sampling [3]
can be applied.

2. For the data items subject to active feature-value ac-
quisition, the correct classifications are known dur-
ing training. Therefore, unlike with traditional active
learning, it is possible to employ direct measures of
the current model’s accuracy for estimating the value
of potential acquisitions.

3. Class labels are available for all complete and incom-
plete instances. Therefore, we can exploit all instances
(including incomplete instances) to induce models,
and to guide feature acquisition.

These observations define a space of possible feature ac-
quisition policies (prioritizations of training examples for
feature acquisition). The main claim of this paper is that
these simple-to-implement and computationally efficient
policies perform remarkably well. Policies derived from
these notions result in statistically significant and substan-
tial improvements compared to random selection. A policy
that considers model accuracy is also shown to be superior
to a computationally intensive policy proposed earlier for
this problem [22].

2 Task Definition and Algorithm

2.1 Pool-based Active Feature Acquisition

Assume a classifier induction problem, where each in-
stance is represented with � feature values and a class label.
For a subset � of the training set � , the values of all � fea-
tures are known. We refer to these instances as complete
instances. For all other instances in � , only the values of a
subset of the features ��� � � � � �� are known. The values of
the remaining features ����� � � � � �� are missing and the set
can be acquired at a fixed cost. We refer to these instances
as incomplete instances, and the set of all incomplete in-
stances is denoted as � . The class labels of all instances in
� are known.

Unlike prior work [22], we assume that models are in-
duced from the entire training set (rather than just from
�). This is because both parametric and non-parametric
models induced from all available data have been shown to
be superior to models induced when instances with miss-
ing values are ignored [10]. Beyond improved accuracy,
the choice of model induction setting also bears important
implications for the active acquisition mechanism, because
the estimation of an acquisition’s marginal utility is derived
with respect to the model. We discuss this issue and its im-
plications in detail in Section 4. Note that some induction

algorithms (e.g., C4.5) include an internal mechanism for
incorporating instances with missing feature-values [15];
other induction algorithms require that missing values be
imputed first before induction is performed [10]. For the
latter learners, many imputation mechanisms are available
to fill in missing values (e.g., multiple imputation, nearest
neighbor) [11, 1]). Henceforth, we assume that the induc-
tion algorithm includes some treatment for instances with
missing values.

We study active feature-value acquisition policies within
a generic iterative framework, shown in Algorithm 1. Each
iteration estimates the utility of acquiring complete feature
information for each available incomplete example. The
missing feature values of a subset � � � of incomplete
instances with the highest utility values are acquired and
added to � (these examples move from � to �). A new
model is then induced from � , and the process is repeated.
Different AFA policies correspond to different measures of
utility employed to evaluate the informativeness of acquir-
ing features for an instance. Our baseline policy, random
selection, selects acquisitions at random, which implicitly
tends to prefer examples from dense areas of the example
space [17].

In this study we propose two active feature-value acqui-
sition policies corresponding to the two observations made
in Section 1.

2.2 Uncertainty Sampling

The first active feature-value acquisition policy we ex-
plore is based on the uncertainty principle that originated in
work on optimum experimental design [9, 5] and has been
extensively applied in the active learning literature for clas-
sification, regression and class probability estimation mod-
els [4, 3, 18]. The uncertainty notion had been proposed for
the acquisition of class labels and has not been applied pre-
viously for feature-value acquisition. For a model trained
on incomplete instances, acquiring missing feature-values
is effective if it enables a learner to capture additional dis-
criminative patterns that improve the model’s prediction.
Acquiring feature-values for an example is likely to have
an impact, if the model is uncertain of its class member-
ship. In contrast, acquiring feature-values of instances for
which the current model already embeds strong discrimi-
native patterns is not likely to impact model accuracy con-
siderably. Our first policy, Uncertainty Sampling, is based
on this observation. The Uncertainty utility measure cap-
tures the model’s ability to distinguish between cases of
different classes. For a probabilistic model, the absence
of discriminative patterns in the data results in the model
assigning similar likelihoods for class membership of dif-
ferent classes. Hence, the Uncertainty score is calculated
as the absolute difference between the estimated class prob-
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abilities of the two most likely classes. Formally, for an
instance 	, let 
��	� be the estimated probability that 	 be-
longs to class � as predicted by the model. Then the Uncer-
tainty score is given by 
���	��
�� �	�, where 
���	� and

���	� are the first-highest and second-highest predicted
probability estimates respectively. At each iteration of the
feature acquisition algorithm, complete feature information
is acquired for the � incomplete instances with the lowest
scores, i.e. the highest prediction uncertainties.

2.3 Error Sampling

Prediction uncertainty implies that the likelihood of cor-
rectly classifying an example is similar to that of mis-
classifying it. Hence uncertainty provides an indication
of a model’s performance and potential for improvement
through feature acquisition. A more direct measure of the
model performance and of the value of acquiring missing
features for a particular instance is whether the instance has
been misclassified by the current model. Additional feature
values of misclassified examples may embed predictive pat-
terns and improve the model’s classification accuracy. Our
second policy, Error Sampling is motivated by this reason-
ing. Error Sampling prefers to acquire feature-values for
instances that the current model misclassifies. At each iter-
ation, it randomly selects � incomplete instances that have
been misclassified by the model. If there are fewer than �
misclassified instances, then Error Sampling selects the re-
maining instances based on the Uncertainty score (defined
earlier). Formally, the Error Sampling score for a potential
acquistion is set to -1 for misclassified instances; and for
correctly classified instances the Uncertainty score is used.
At each iteration of the feature acquisition algorithm, com-
plete feature information is acquired for the � incomplete
instances with the lowest scores.

3 Experimental Evaluation

3.1 Methodology

We compared the two proposed strategies, Uncertainty
and Error Sampling, to random feature acquisition and to
each other. The performance of each system was averaged
over five runs of 10-fold cross-validation. In each fold, we
generated learning curves in the following fashion. Initially,
the learner has access to all incomplete instances, and is
given complete feature-values for a randomly selected sub-
set, of size �, of these instances. The learner builds a clas-
sifier based on this data. For the active strategies, a sample
of instances is then selected from the pool of incomplete
instances based on the measure of utility using the current
classification model. The missing values for these instances

Algorithm 1 Active Feature-Value Acquisition Framework

Given:
� - set of complete instances
� - set of incomplete instances
� - set of training instances, � � �

� - learning algorithm
� - size of each sample

1. Repeat until stopping criterion is met

2. Generate a classifier, � � ��� �

3. �	� � � , compute �
������ 	� �
based on the current classifier

4. Select a subset � of � instances with the
highest utility based on the score

5. Acquire values for missing features
for each instance in �

6. Remove instances in � from � and add
to �

7. Update training set, � � � � �

8. Return ��� �

are acquired, making them complete instances. A new clas-
sifier is then generated based on this updated training set,
and the process is repeated until the pool of incomplete in-
stances is exhausted. In the case of random selection, the
incomplete instances are selected uniformly at random from
the pool. Each system is evaluated on the held-out test
set after each iteration of feature acquisition. As in [22],
the test data set contains only complete instances, since we
want to estimate the true generalization accuracy of the con-
structed model given complete data. The resulting learning
curves evaluate how well an active feature-value acquisi-
tion method orders its acquisitions as reflected by model
accuracy. Note that, at the end of the learning curve, all
algorithms see exactly the same set of complete training in-
stances. To maximize the gains of AFA, it is best to ac-
quire features for a single instance in each iteration; how-
ever, to make our experiments computationally feasible, we
selected instances in batches of 10 (i.e., sample size � =
10).

We can compare the performance of any two schemes,
� and �, by comparing the errors produced by both, given
that we are limited to acquiring a fixed number of complete
instances. To measure this, we compute the percentage re-
duction in error of � over � and report the average over
all points on the learning curve. The reduction in error
is considered to be significant if the average errors across
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the points on the learning curve of � is lower than that of
� according to a paired t-test (� � ����). To compare
two schemes across all domains we report the Significant
Win/Draw/Loss record, which presents three values — the
number of data sets for which algorithm � obtained better,
equal, or worse performance than algorithm � with respect
to error reduction. A win or loss is only counted if the error
reduction is determined to be significant.

All the experiments were run on 5 web-usage datasets
(used in [14]) and 5 datasets from the UCI machine learn-
ing repository [2]. The web-usage data contain informa-
tion from popular on-line retailers about customer behav-
ior and purchases. This data exhibit a natural dichotomy
with a subset of features owned by a particular retailer and
a set of features that the retailer may acquire at a cost. In
particular, each retailer privately owns information about
its customers’ behavior as captured by web logfiles. The
retailer’s private data contain features such as user demo-
graphics, the time of the session or whether the session oc-
curred on a weekday. These are referred to as site-centric
features. In addition, the data contain information that is
not owned by any individual retailer, capturing each cus-
tomer’s aggregated behavior and purchasing patterns across
a variety of on-line retailers. These are referred to as user-
centric features. The learning task is to induce models to
predict whether a customer will purchase an item during a
visit to the store. The web usage data has a clear division of
features—the first 15 are site-centric and the rest are user-
centric. Hence the pool of incomplete instances was initial-
ized with only the first 15 features. We selected several UCI
datasets that had more than 25 features. For these datasets,
30% of the features were randomly selected to be used in the
incomplete instances. A different set of randomly selected
features was used for each train-test split of the data. All
the datasets used in this study are summarized in Table 1.

Table 1. Summary of Data Sets
Name Instances Classes Features
bmg 2417 2 40
expedia 3125 2 40
qvc 2152 2 40
etoys 270 2 40
priceline 447 2 40
anneal 898 6 38
soybean 683 19 35
kr-vs-kp 3196 2 36
hypo 3772 4 29
autos 205 6 25

The active framework and specific policies we have pro-
posed can be implemented using an arbitrary probabilis-
tic classifier as a learner. For the results in this paper, we
used J48, which is the Weka [21] implementation of C4.5

decision-tree induction [16].

3.2 Results

The results comparing Uncertainty and Error Sampling
to random selection are summarized in Table 2. In this (and
subsequent) tables, a significant error reduction is indicated
in bold. The significant win/draw/loss record is also sum-
marized at the bottom of the table. As mentioned above,
towards the end of the learning curve, all methods will have
seen almost all the same training examples. Hence, the main
impact of AFA is lower on the learning curve. To capture
this, we also report the percentage error reduction averaged
over only the 20% of points on the learning curve where the
largest improvements are produced. We refer to this as the
top-20% percentage error reduction, which is similar to a
measure reported in [18].

The results show that for all data sets using either Un-
certainty or Error Sampling significantly improves on the
model accuracy compared to random selection. The perfor-
mance of Uncertainty demonstrates that although prediction
uncertainty was originally proposed for acquiring missing
class labels, and employs a noisy signal for model accuracy,
it provides effective information for feature acquisitions as
well.

Figure 1 presents learning curves that demonstrate the
advantage of using either AFA scheme over random acqui-
sition. Apart from average reduction in error, a good indica-
tor of the effectiveness of an active feature-value acquisition
scheme is the number of acquisitions required to obtain a
desired accuracy. For example, on the anneal data set, Error
Sampling achieves an accuracy of 98% with only 200 acqui-
sitions of complete instances. In contrast, random selection
requires more than 400 complete instances to achieve the
same accuracy level. Similarly, on qvc once Error Sampling
acquires approximately 400 complete instances, it induces a
model with an accuracy of 87%; however, random selection
requires approximately 1200 complete instances to achieve
the same accuracy.

In order to evaluate the value of information provided
by model misclassifications employed by Error Sampling,
Table 3 summarizes the average reduction in error obtained
by Error Sampling compared to Uncertainty. Acquisitions
made by Error Sampling lead to significantly superior mod-
els on average for 6 of the data sets; and the two policies
exhibit comparable performance for the remaining 4 data
sets. Uncertainty is not superior to Error Sampling on any
of the domains. For the data sets where Error Sampling
exhibits statistically significant improvement in accuracy,
the top-20% improvements range between 2.02% (soybean)
and 18.17% (kr-vs-kr). The difference in the number of ac-
quisitions required by each policy to achieve a particular ac-
curacy is sometimes quite substantial. For example, for the
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Figure 1. Comparing active strategies to random feature acquisition.

Table 2. Comparing active policies: Error re-
duction with respect to random selection.

%Error Reduction Top-20% %Err. Red.
Dataset Uncert. Err. Samp. Uncert. Err. Samp.
bmg 10.55 10.67 15.53 17.77
etoys 9.03 10.34 20.95 23.88
expedia 14.56 19.83 24.99 29.12
priceline 25.05 24.45 35.66 34.49
qvc 13.12 15.44 22.64 24.75
anneal 20.52 22.65 45.93 49.27
soybean 7.56 8.03 14.16 14.79
autos 4.10 4.24 9.65 10.50
kr-vs-kr 33.03 36.82 45.81 53.23
hypo 10.39 16.79 30.26 40.48
Mean 14.79 16.93 26.56 29.83
Sig. W/D/L 10/0/0 10/0/0

qvc data set Error Sampling achieves an accuracy of 87%
with approximately 400 acquisition of complete instances,
whereas Uncertainty requires approximately 600 complete
instances to achieve the same accuracy. The relative per-
formance of the policies demonstrates that Error Sampling
acquires more informative feature-values, and confirms that
feature-values of misclassified examples allow the induc-
tion scheme to capture better predictive patterns than are
captured from feature-values acquired using Uncertainty.

Error Sampling prefers acquisition of feature values for
examples that are misclassified by the current model, but
treats all misclassified examples equally. We also consid-

ered two variants of Error Sampling that rank different mis-
classified examples based on the model’s uncertainty of pre-
diction. One variant prefers misclassified examples that the
model is most uncertain about, and the other prefers mis-
classified examples that the model is most confident of. In
our experiments, both variants outperformed random acqui-
sitions, but neither produced significant improvement with
respect to Error Sampling.

Table 3. Comparing Error Sampling to Uncer-
tainty.

Dataset %Error Top-20%
Reduction %Err. Red.

bmg 0.14 4.55
etoys 1.28 11.01
expedia 5.96 12.88
priceline -0.90 9.93
qvc 2.64 6.88
anneal 3.58 12.78
soybean 0.53 2.02
autos 0.16 3.99
kr-vs-kr 6.73 18.17
hypo 7.37 16.38
Mean 2.75 9.86
Sig. W/D/L 6/4/0
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4 Comparison with GODA

The most closely related work to this paper is the study
by Zheng and Padmanabhan [22] of the active feature-value
acquisition scheme GODA. GODA measures the utility
of acquiring feature-values for a particular incomplete in-
stance in the following way. It adds the instance to the
training set, imputing the values that are missing. It then
induces a new model and measures its performance on the
training set. This process is repeated for each incomplete
instance, and the instance that leads to the model with the
best expected performance is selected for feature-value ac-
quisition.

GODA has an important difference from the methods we
have proposed: it induces its models from only the complete
instances—ignoring the incomplete instances. Whether one
chooses to use or to ignore incomplete instances when in-
ducing a model has a significant bearing on the acquisition
scheme. GODA estimates the value of potential acquisi-
tions by the model’s improved performance resulting from
adding the example to the training set. This confounds the
improvement due to acquiring the previously unknown fea-
ture values with the improvement due to including the al-
ready known feature values. In contrast, the policies we
propose estimate the marginal utility of missing feature ac-
quisition with respect to a model induced from all avail-
able data. GODA’s measure of utility cannot be employed
directly when the models are induced from all incomplete
instances including imputations of their missing features.
Nevertheless, since GODA is (to our knowledge) the only
other technique designed for the same acquisition setting, it
is informative to compare performance with our approach.

To compare to our approach, we implemented GODA as
described in [22], using J48 tree induction as the learner
and using accuracy as the goodness measure of the model.
As in [22], we use multiple imputation with Expectation-
Maximization to impute missing values for incomplete in-
stances. Experiments comparing Error Sampling to GODA

were run as in Section 3.1. However, due to GODA’s
tremendous computational requirements, we only ran one
run of 10-fold cross-validation on three of the datasets. The
datasets were also reduced in size to make running GODA

feasible.
A summary of the results, along with the reduced dataset

sizes, is presented in Table 4. The results show that in
spite of the high computational complexity of GODA, it re-
sults in inferior performance compared to Error Sampling
for all three domains. All improvements obtained by Error
Sampling with respect to GODA are statistically significant.
Figure 2 presents learning curves for the priceline dataset
that clearly demonstrate the superior performance of Error
Sampling. These results suggest that the ability of Error
Sampling to capitalize on information from incomplete in-

stances, and to utilize this knowledge in feature acquisition,
allows it to capture better predictive patterns compared to
those captured by GODA.

Recall that when an instance is selected for acquisition,
Error Sampling adds to the training data only the acquired
feature values. GODA, however, adds to the training data
the entire instance, i.e., the feature values that are known ex
ante (but that are not used for induction by GODA 1) as well
as the acquired feature values and the instance’s class mem-
bership. Hence, even when the same instance is selected by
GODA and by Error Sampling, the relative increase in ac-
curacy for GODA is likely to be greater than the increase
obtained for a model induced with Error Sampling. This
difference contributes to the steep learning curve exhibited
by the model generated in GODA. Similarly, because the
marginal contributions of missing feature values are small,
improvement in learning is more substantial over many ac-
quisitions as observed for the large data sets in Figure 1,
than for a small number of acquisitions depicted in Figure
3.

In addition to superior accuracy for a given number of
acquisitions, the methods we have introduced also have
the advantages of being simple-to-implement and having
a relatively low computational complexity. GODA, on the
other hand, requires inducing a different model for estimat-
ing each potential acquisition (i.e., �� � models are induced).
Hence for even moderately large data sets this approach is
prohibitively expensive, except (perhaps) with an incremen-
tal learner such as Naive Bayes. The policies we propose
are significantly more efficient because only a single model
is induced for estimating the utilities of an arbitrarily large
number of potential feature acquisitions.

For the sake of completeness, we are currently running
experiments comparing GODA and Error Sampling for the
remaining datasets.

Table 4. Comparing Error Sampling with GODA:
Percent error reduction.

Dataset Size % Error
Reduction

bmg 200 19.48
qvc 100 20.03
priceline 100 17.75

5 Related Work

Recent work on budgeted learning [12] also addresses
the issue of active feature-value acquisition. However, the

1This explains why GODA starts with lower accuracy.
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on priceline

policies developed in [12] assume feature-values are dis-
crete, and consider the acquisition of individual feature-
values for instances of a given class (i.e., queries are of
the form “acquire value of feature � for some instance in
class 
.”). Therefore, unlike our approach, the policies do
not consider requesting additional features for a specific in-
complete instance. In addition, the policies cannot be di-
rectly applied to estimate the value of acquiring sets of fea-
tures (as is required in our problem setting). Another im-
portant aspect of the policies proposed in [12] is that for
each feature and class membership they require estimating
the performance of all models induced from each possible
value assignment. The induction of most learners is not in-
cremental, hence for each feature class pair, a new model
is required to be induced for each value assignment. Al-
though the framework proposed in [12] was not designed
to solve the problem discussed here, one may consider an
extension to this framework for estimating the utility of ac-
quiring values for a set of features for incomplete instances.
However, the number of possible value assignments, and
consequently the number of model inductions required will
increase considerably. It is unclear whether an algorithm
with such a high complexity would be feasible in practice.

Some work on cost sensitive learning [20] has addressed
the issue of inducing economical classifiers when there are
costs associated with obtaining feature values. However,
most of this work assumes that the training data are com-
plete and focuses on learning classifiers that minimize the
cost of classifying incomplete test instances. An exception,
CS-ID3 [19], also attempts to minimize the cost of acquir-
ing features during training; however, it processes exam-
ples incrementally and can only request additional informa-
tion for the current training instance. CS-ID3 uses a sim-

ple greedy strategy that requests the value of the cheapest
unknown feature when the existing hypothesis is unable to
correctly classify the current instance. It does not actively
select the most useful information to acquire from a pool
of incomplete training examples. The LAC* algorithm [7]
also addresses the issue of economical feature acquisition
during both training and testing; however, it also adopts a
very simple strategy that does not actively select the most
informative data to collect during training. Rather, LAC*
simply requests complete information on a random sample
of instances in repeated exploration phases that are inter-
mixed with exploitation phases that use the current learned
classifier to economically classify instances.

Traditional active learning [3, 6] assumes access to unla-
beled instances with complete feature data and attempts to
select the most useful examples for which to acquire class
labels. Active feature acquisition is a complementary prob-
lem that assumes labeled data with incomplete feature data
and attempts to select the most useful additional feature val-
ues to acquire. As described above, our notion of uncer-
tainty is taken directly from prior work on traditional active
learning.

6 Conclusions and Future Work

We have presented a general framework for active fea-
ture acquisition that can be applied to different learners and
can use alternate measures of utility for ranking acquisi-
tions. Within this framework, we show how a fundamental
idea from traditional active learning, uncertainty sampling,
can be applied directly. We also describe an alternative pol-
icy that in contrast to traditional active learning, in which
class labels are unknown, utilizes the correctness of the cur-
rent model for each example. We show empirically that
both these policies, Uncertainty and Error Sampling, sig-
nificantly improves the accuracy of models learned for fixed
feature acquisition budgets, when compared with a policy
that requests features randomly. The experiments also es-
tablish that using the additional information available in
this setting—viz., whether or not the predictions of a model
learned on the incomplete data are correct— yield statis-
tically significant (and sometimes substantial) increases in
accuracy over just using the confidence of the predictions as
in Uncertainty.

A direct comparison of Error Sampling with GODA, an
alternate active feature-value acquisition approach, demon-
strates that in spite of its simplicity, Error Sampling exhibits
superior performance. Error Sampling’s utilization of all
known feature-values and of a simple measure of the poten-
tial for improvement from an acquisition, results in compu-
tational and model accuracy advantages. A more extensive
comparative evaluation of the policies with additional data
sets is currently underway.
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We have only begun to explore the space of utility func-
tions in our framework. There are other factors that could
be incorporated into our utility measures. For example,
Saar-Tsechansky and Provost [17] show in traditional active
learning that estimating the variance of class probability es-
timates can improve the active learner. The measures of un-
certainty we consider here only consider the estimate of the
probability itself—in essence, the current methods attempt
to reduce a bias in the class probability estimations.2 How-
ever, generally both the bias and the variance contribute to
the error of modeling techniques. It may be profitable to
consider the bias, the variance, and an estimate of their ef-
fect on classification.

Similarly to previous studies on active feature acquisi-
tion [22] the test instances in this study are complete, in or-
der to estimate the models performance without confound-
ing effects of incomplete values in test instances. However,
it also is important to explore the implications for feature
acquisition policies for different missing value patterns in
the test instances.

The effectiveness, simplicity, and computational effi-
ciency of Error Sampling argues that this policy should be
considered by any practitioner or researcher faced with the
problem of feature set acquisition. From a research perspec-
tive, we suggest that the Error Sampling policy be a baseline
(in addition to random selection) for future studies of active
feature selection.
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