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Text mining; Objective: Automatically extracting information from biomedical text holds the
Machine learning; promise of easily consolidating large amounts of biological knowledge in compu-
Protein interactions; ter-accessible form. This strategy is particularly attractive for extracting data
Medline relevant to genes of the human genome from the 11 million abstracts in Medline.

However, extraction efforts have been frustrated by the lack of conventions for
describing human genes and proteins. We have developed and evaluated a variety of
learned information extraction systems for identifying human protein names in
Medline abstracts and subsequently extracting information on interactions between
the proteins.

Methods and Material: We used a variety of machine learning methods to automa-
tically develop information extraction systems for extracting information on gene/
protein name, function and interactions from Medline abstracts. We present cross-
validated results on identifying human proteins and their interactions by training and
testing on a set of approximately 1000 manually-annotated Medline abstracts that
discuss human genes/proteins.
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Results: We demonstrate that machine learning approaches using support vector
machines and maximum entropy are able to identify human proteins with higher
accuracy than several previous approaches. We also demonstrate that various rule
induction methods are able to identify protein interactions with higher precision than

manually-developed rules.

Conclusion: Our results show that it is promising to use machine learning to auto-
matically build systems for extracting information from biomedical text. The results
also give a broad picture of the relative strengths of a wide variety of methods when
tested on a reasonably large human-annotated corpus.

© 2004 Elsevier B.V. All rights reserved.

1. Introduction

An incredible wealth of biological information gen-
erated using biochemical and genetic approaches is
stored in published articles in scientific journals.
Summaries of more than 11 million such articles are
available in the Medline database. However, retriev-
ing and processing this information is very difficult
due to the lack of formal structure in the natural-
language narrative in these documents. Automati-
cally extracting information from biomedical text
holds the promise of easily consolidating large
amounts of biological knowledge in computer-
accessible form. Information extraction (IE) systems
could potentially gather information on global gene
relationships, gene functions, protein interactions,
gene-disease relationships, and other important
information on biological processes.

A number of recent projects [1—10] have focused
on the manual development of IE systems for
extracting information from biomedical literature.
Unfortunately, manual engineering of information
extraction (IE) systems for particular applications is
a tedious and time-consuming process [11]. Each
new type of information to be extracted requires a
significant new engineering effort to develop spe-
cific extraction patterns for identifying this infor-
mation. Human-developed rules are also rarely able
to accurately capture all of the variety of formats
and contexts in which the desired information can
appear in natural-language documents.

Consequently, significant recent research in
information extraction has focused on using
machine learning techniques to help automate
the development of IE systems [12,13]. A number
of machine learning methods, including grammar
induction, hidden Markov models, inductive logic
programming, naive Bayes text categorization, and
decision tree induction, have been used to help
automate the development of IE systems. First,
learning systems are trained on a corpus of docu-
ments in which human experts have tagged the
desired information. Next, the IE systems induced
from this supervised data are used to extract new

information from novel test documents. Some pro-
jects on extracting information from biomedical
literature have also employed such learning tech-
niques [14—21].

We are exploring the use of a variety of machine
learning methods to automatically develop IE sys-
tems for extracting information on gene/protein
name, function and interactions from Medline
abstracts. For our purposes, genes and proteins
are interchangeable since, typically, there is a
direct correspondence between proteins and the
genes that code for them. We focus specifically on
extracting information about human genes and pro-
teins. Approximately 40,000 human genes are
known from the sequences of the human genome
[22,23], yet fewer than 5000 are well characterized
and likely to be described in the literature. Unlike
other organisms, such as yeast or E. coli, human
gene names have no standardized naming conven-
tion, and thus represent one of the most difficult set
of gene/protein names to extract. For example,
human genes/proteins may be named with standard
English words, such as “light”, “map”, “comple-
ment”, and “Sonic hedgehog”. Names may be
alphanumeric, may include Greek or Roman letters,
may be case sensitive, and may be composed of
multiple words. Names are frequently substrings of
each other, such as “epidermal growth factor” and
“epidermal growth factor receptor”, which refer to
two distinct proteins. It is therefore necessary that
an information extraction algorithm be specifically
trained to extract gene and protein names accu-
rately.

In this paper, we present results on learning to
extract human protein names and their interac-
tions. We employ a variety of learning methods
including pattern-matching rule induction (RaPIER)
[24], boosted wrapper induction (BWI) [25], mem-
ory-based learning (MBL) [26], transformation-
based learning (TBL) [27], support vector machines
(SVMs) [28], and maximum entropy (MaxEnt) [29].
We present cross-validated results on identifying
human proteins and their interactions by training
and testing on a set of approximately 1000 manu-
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TI -- A ¢ - Cbl yeast two hybrid screen reveals interactions
with 14 - 3 - 3 isoforms and cytoskeletal components .

PG -- 46 - 50 AB - The protein product of ¢ - cbl,,, proto -
oncogene is known to interact with several proteins , including
Grb2,, Crk, and PI3 kinase, , and is thought to regulate
signalling by many cell surface receptors .

The precise function of ¢ - Cbl in these pathways is not clear ,
although a genetic analysis in Caenorhabditis elegans suggests
that ¢ - Cbl, is a negative regulator of the epidermal growth
factor receptor, . Here we describe a yeast two hybrid screen
performed with ¢ - Cbl in an attempt to further elucidate

its role in signal transduction . The screen identified
interactions involving ¢ - Cbl,, and two 14 - 3 - 3 isoforms

, cytokeratin 18 . , human unconventional myosin IC , and a
recently identified SH3 domain containing protein , _SH3 P17, .
We have used the yeast two hybrid assay to localise regions of
c - Cbl required for its interaction with each of the proteins
. Interaction with 14 - 3 - 3 is demonstrated in mammalian cell

extracts .

Cancer Institute .

AD -- Trescowthick Research Laboratories , Peter MacCallum

Figure 1  Abstract with all the proteins and interactions tagged. The protein names have been underlined and their
same subscript numbers indicate interaction between the proteins.

ally-annotated Medline abstracts that discuss
human genes/proteins. Previous projects on extrac-
tion from Medline typically present results for a
single method on somewhat smaller corpora with
limited or no comparison to other methods. By
contrast, we present uniform results of a wide
variety of methods on a single, reasonably large,
human-annotated corpus, thereby giving a broader
picture of the relative strengths of different
approaches.

2. Biomedical corpora
2.1. Tagging of medline abstracts

In order to generate a corpus of training and test
data for extracting protein names and protein inter-
actions, we manually tagged approximately 1000
abstracts (including the titles) from among the 11
million abstracts available in Medline. Tagging was
performed using an existing IE-tagging tool' mod-
ified to enhance file handling and to retain negative
examples. This program accepts a directory of files
to be tagged and allows the user to tag them using a
graphical interface based on a file of possible labels
and writes the SGML tagged files into an output

T URL:http://www-2.cs.cmu.edu/~kseymore/general_tagger. pl.

directory. Three annotated data sets were gener-
ated:

(1) Seven hundred fifty abstracts containing the
word “human” were extracted from the Med-
line database and tagged for gene/protein
names. 61.3% of the abstracts discussed gene/
protein names, for a total of 5206 names. An
example of a tagged abstract is shown in Fig. 1.

(2) Two hundred abstracts previously known to con-
tain protein interactions were obtained from
the Database of Interacting Proteins (DIP [30])
and tagged for both 1101 protein interactions
and 4141 protein names. An example is shown in
Fig. 1.

(3) As negative examples for protein interactions
were rare in (2), a set of 30 abstracts were
manually selected such that they had sentences
with more than one gene but the abstracts did
not talk about any gene interactions.

We used data set (1) for testing protein names,
and data sets (2) and (3) for testing protein inter-
actions.

2.2. Rules used for tagging

Due to the ambiguities involved in human gene/
protein names and interactions, it was necessary
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to develop a set of conventions for their consistent
tagging. In the following discussion, we indicate
protein names by underlined text and their same
subscript numbers indicate interaction between the
proteins. Manual examination of many abstracts
revealed several ambiguities, such as whether the
organism names should be tagged (e.g. human delta
catenin or human delta catenin), whether punctua-
tion should be tagged (e.g. (LIGHT) or (LIGHT)), and
whether generic protein family names should be
tagged (e.g. armadillo protein p0071 or armadillo
protein p0071). Such cases led to the following set of
tagging conventions:

(1) As few extra characters as possible are tagged.
Punctuation marks and plural characters are not
tagged.

(2) Gene/protein names are tagged regardless of
context, even when gene names are substrings
of other gene names. (e.g. GITR ligand)

(3) Generic protein/gene families are not tagged,
only specific names which could ultimately be
traced back to specific genes in the human
genome. (e.g. ‘“Tumor necrosis factor” would
not be tagged, while “tumor necrosis factor
alpha” would be.)

(4) Tags for interacting proteins follow the same
conventions as for other proteins. All stated
instances of protein interactions are tagged,
even when tags are nested. (e.g. human
GITR4ligand (hGITRL))

3. Protein name identification

Named entity recognition (NER), identifying names
of people, organizations, and places in text, is a well
studied problem in information extraction from
news articles. In recent years, machine learning
approaches have become the standard in developing
robust, accurate NER systems [31,32]. Biomedical
applications have special types of named entities
that are different from those typically addressed by
existing NER systems. These include names of dis-
eases, genes, proteins, organisms, organs, orga-
nelles, and other biological entities. In this
section, we explore the problem of recognizing
references to human proteins using the tagged data
described in the previous section.

3.1. IE methods

3.1.1. Dictionary-based extraction

The success of a protein tagger depends on how well
it captures the regularities of protein naming as well
as name variations. In the dictionary-based
approach, we started with an extensive set of pro-

‘ Protein name (OD) | Generalized name (GD) | Canonical form (CD)

interleukin-1 beta interleukin (n) (g) interleukin
interferon alpha-D | interferon (g) (r) interferon
NF-IL6-beta NF IL (n) (g) NF IL
TR2 TR (n) TR
NF-kappa B NF (g) (r) NF

Figure 2 Dictionary generalizations.

tein names extracted from two fairly comprehen-
sive sources:

(1) The file human.seq, downloaded from the
Human Proteome Initiative (HPI) of EXPASY.2

(2) The file feb2002-tables.tar.gz, down-
loaded from the Gene Ontology Database.?

Altogether, these dictionaries contain 42,172 g-
ene/protein names (synonyms included). This col-
lection of protein names, henceforth referred to as
the original dictionary (OD), was further extended
using a generalization procedure to obtain a gen-
eralized dictionary (GD). The aim was to extend the
coverage of the original set, while at the same time
trying to minimize any decrease in accuracy.

Generalizing a dictionary entry involved identify-
ing those parts susceptible to change in new protein
names, and replacing them with generic place-
holders. Thus, we isolate and replace numbers with
(n), Roman letters with (r) and Greek letters with
(g). Fig. 2 shows some examples of name general-
izations.

In the GD-based extraction, we tag a textual n-
gram as a protein name only if it is an instance of one
of the generalizations from the generic dictionary.
To extend the coverage even more, we have created
a canonical dictionary (CD) consisting of canonical
forms of protein names. A canonical form is
obtained from a generic form by stripping it of all
generic tags, as can be seen in the examples from
Fig. 2. From the resulting set we filter out common
English words whose presence could lead to a
decrease in accuracy. Consequently, in the CD-based
extraction, a textual n-gram is deemed as being a
protein name if its canonical form is part of the
canonical dictionary. Both GD and CD introduce
spurious entries in the dictionary, leading to a
decrease in precision. For instance, because
“HT3” is an entry in OD, its generalization HT(n)
will cover “HT 29”’, which is a cell line. Also, CD will
match words that are classes of proteins, and not
particular proteins, as is the case with “oncogene”
which was derived as the canonical form of “onco-
gene 24P3”. Because the tagging based on both the

2 URL: http://us.expasy.org/sprot/hpi/hpi_ftp.html.
3 URL: http://www.godatabase.org/dev/database/archive.
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Table 1

Performance of protein taggers in various settings

IE methods and additional information used

Precision(%) Recall(%) F-measure(%)

Dictionary-based
Original dictionary
Plus generalized dictionary
Plus canonical dictionary

RAPIER
Words only
Part-of-speech
Dictionary-based tagger

BWI (300 iterations, 2 lookaheads, max. recall)
Words only
Dictionary-based tagger

k-NN (k=1,N =2)
Part-of-speech
Dictionary-based tagger

TBL
Words only
Dictionary-based tagger

SVM (N = 2, full training set, max. recall)
Preceding class labels
Preceding class labels and part-of-speech
Preceding class labels and dictionary-based tagger
with additional suffix features

MaxEnt (N = 1, Viterbi w/o greedy extraction, max. recall)

W/o dictionary
With dictionary
With dictionary, two tags only (I,0)

KEX
ABGENE

56.70 27.24 36.80
62.27 45.85 52.81
41.88 54.42 47.33
76.11 9.97 17.63
70.84 11.05 19.12
74.49 12.22 21.00
70.67 11.52 19.81
71.01 24.06 35.94
34.66 40.66 37.42
47.30 47.82 47.56
47.08 36.65 41.22
56.80 34.62 43.02
69.16 19.74 30.72
70.18 19.72 30.79
65.00 45.43 53.48
70.38 44.49 54.42
71.10 42.31 53.05
73.37 47.76 57.86
66.41 44.74 53.46
14.68 31.83 20.09
32.39 45.87 37.97

original and generic dictionary gave better results
than other combinations (as shown in the first entry
of Table 1), we used this particular dictionary-based
tagger for supplying a pre-tagged input to some of
the learning methods that will be discussed in the
following sections.

3.1.2. RaPIER
RapiER[24] is a rule learning algorithm that acquires
unbounded patterns for extracting information from
text. Each extraction rule consists of three parts: (1)
a pre-filler pattern that matches text immediately
preceding a filler (e.g. a protein name), (2) a filler
pattern that matches the extracted substring, and
(3) a post-filler pattern that matches the text imme-
diately following the filler. Rarier begins with a most-
specific set of rules and compresses the rule base by
repeatedly replacing rules with more general ones.
To construct the initial rule base, most-specific
patterns are created for each training example,
specifying words for the filler, all words in the text
preceding the filler, and all words in the text follow-
ing the filler. To generate new rules, pairs of existing

rules are randomly selected and their least-general
generalizations created. Rarier starts with rules con-
taining only generalizations of the filler patterns,
and uses beam search to efficiently specialize the
rules by adding pieces of the generalizations of the
pre- and post-filler patterns of the seed rules, until
the best rule in terms of information gain produces
no spurious fillers when matched against the train-
ing examples. The best generalized rule is then
added to the rule base, and the process repeats
until compression has failed more than a specified
number of times.

To help Rarier capture generalities that are not
evident from the words alone, we supplied addi-
tional syntactic and semantic information to the
learner in some of our experiments. First, we added
part-of-speech (POS) tags to every word in the text.
POS tags are potentially useful because certain
types of words (e.g. cardinal numbers and proper
nouns) are likely candidates of being parts of a
protein name.

In another experiment, we included the output of
the dictionary-based tagger (Section 3.1.1) in place



144

R. Bunescu et al.

PMID -- 11529898

extracts...

extracts...

Lol p 1 is one of the most important allergens in grass pollen
Lol p 1 is one of the most important allergens in grass pollen

BBBB Lol EEEE BBBB p 1 EEEE is one of the most important
allergens in grass pollen extracts...

Figure 3

Incorporating information from the dictionary-based tagger. The first sentence contains the correct tagging.

The second sentence is the output of the dictionary-based tagger. The third sentence shows the input for Rarier and BWI.
The output tags of dictionary-based tagger have been transformed into special tokens BBBB and EEEE standing for begin

and end of the tags respectively.

of the POS tags in the form of special tokens (see Fig.
3). By adding these tokens, we incorporated domain
knowledge into the learning algorithm. At the same
time, the learning algorithm can find general pat-
terns that refine the output of the dictionary-based
tagger.

3.1.3. Boosted wrapper induction

Boosted wrapper induction (BWI) [25] learns extrac-
tion rules composed only of simple contextual
patterns called wrappers [33]. Although wrappers
are highly accurate predictors of the start or end of
a protein name, each of them has limited coverage
since Medline abstracts do not exhibit a rigid
structure. BWI circumvents this limitation by
using boosting [34], which repeatedly learns sim-
ple, weak patterns that focus on the training exam-
ples for which the previous patterns have done
poorly. The predictions of all learned patterns
are then combined using a weighted voting scheme.
The result is a boosted wrapper, which has been
shown to be successful in several natural text
domains.

To perform protein-name extraction using a
boosted wrapper, every word boundary i in a Medline
abstract is first given a fore score F(i), which indi-
cates its likelihood of being the start of a protein
name, and an aft score A(i), which indicates its
likelihood of being the end of a protein name. Then,
the wrapper recognizes a text fragment (i,j) as a
protein name if and only if F()A(H( —i)>T,
where H(k) is a function that reflects the probability
that a protein name has length k, and z is a numeric
threshold that controls the level of recall. By varying
7, we are able to perform extraction at different
degrees of confidence.

In our experiments with BWI, we tested the
usefulness of including the output of the diction-
ary-based tagger (Section 3.1.1) as part of the input
of the learner, in the same way as it was done in
Section 3.1.2.

3.1.4. Support vector machines

Support Vector Machines (SVMs) are one of the most
recently developed classification methods [35].
They are well-founded in computational learning
theory, and have been shown to generalize well in
the presence of very many features. They are gen-
erally considered to be the currently best technique
for text classification [36].

Assume that all m training examples consist of a
vector of n features, and belong to either positive or
negative class as follows: (x1,v1),...,(Xm,Ym),
where x;cR” is the i-th feature vector and
yie{+1,—1} is its class label. Then an SVM
learns an optimal threshold function f(x) = (w,Xx)
+b,weR" beR, which separates the training
examples into two classes. An example x is classified
as positive when f(x) >0, or negative when f(x) < 0.
A threshold function is optimal when the margin of
separation between the two classes is maximal. It
can be proven that the margin is maximized when
the norm of w is minimized. This leads to a con-
strained quadratic optimization problem which can
be exactly solved efficiently.

Since our tagged Medline abstracts do not contain
any protein names that directly abut each other, we
can reduce the NER problem to classification of
individual words. First, an SVM classifier determines
if each word is part of a protein name or not, by
looking at the word itself and its surrounding con-
text. Next, protein names are extracted by identi-
fying the longest sequences of words that have been
classified as parts of a protein name. Similar
approaches have been applied successfully to the
task of text chunking, which is identifying simple
phrases such as non-recursive noun and verb phrases
[37,32].

For each token, we built a feature vector con-
sisting of the current word, the previous and the
following N words. We also included POS tags gen-
erated by the Brill’s tagger* and the output of the

4 URL: http://www.cs.jhu.edu/~brill/RBT1_14.tar.Z.
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dictionary-based protein tagger (Section 3.1.1) for
all 2N + 1 words. We ignored capitalization when
preparing the feature vectors to avoid sparsity. To
capture morphological similarities and alleviate the
problem of unseen words, we included as features
the last one, two, and three characters of each word
in the feature vector, which we henceforth refer to
as the suffix features. Inspired by the text chunking
algorithm presented in [38], we included the class
labels of the two preceding words as part of the
feature vector. Since the class labels were not given
in the test data, they were decided dynamically
during the tagging of previous words. Because
numerical values were needed, each word or tag
in each position was a separate binary feature. For
each extracted sequence of tokens, we used the
minimal distance from the hyperplane f(x) =0 as a
quantitative measure of confidence. For the inner
product (w,x), we used w’x, which resulted in a
linear threshold function. It has been argued that
most text categorization problems are linearly
separable [36], so in our case a linear threshold
function should suffice. We used version 5.0 of
SVM'" 5 which is highly efficient in dealing with
sparse instances.

The training set for the token classification pro-
blem is highly imbalanced. Out of the 209,022
tokens in our corpus, only 10,175 of them (4.87%)
are protein names. As pointed out by [39], the
induced classifiers tend to be highly accurate on
negative examples but also produce many false
negatives which lead to low recall. By sampling
the training set and feeding the learner with only
negative examples surrounding the positive ones,
we can shift the resulting hyperplane and poten-
tially reduce the number of false negatives. Our
experiments supported this claim and showed that
we could attain very high recall at the expense of
precision.

3.1.5. Maximum entropy

Maximum Entropy [29] is a widely used method for
inducing probabilistic classifiers. The classification
problem is viewed in terms of a random process that
produces an output value y from a finite set Y, based
on a contextual information x, a member of a finite
set X. In a tagging scenario, this means associating a
tag v to each text token, whereas the context x can
be derived from the text centered at the current
token position. In maximum entropy modeling we
are looking for a probability distribution p(y|x)

3 URL: http://svmlight.joachims.org/.

expressed in terms of a set of user specified features
fi (X7 y) eF:

p(y|x) = ﬁexp <Z Aifi(x, y)>

where Z(x) = 3°, exp(3_; Aifi(x,y)) is a normalizing
constant. Each feature f; is a binary function based
on the current context x and its proposed classifica-
tion v.

In the case of maximum entropy tagging (hence-
forth referred to as MaxEnt), we distinguish among
five types of tags in Y (as opposed to using only two
tags, as was the case with SVMs):

e S(-tart)- indicates the first token of a protein
name.

e E(-nd)- indicates the last token of a protein name.

e C(-ontinue)- indicates a token strictly inside a
protein name.

e U(-nique)- indicates the unique token of a protein
name.

e O(-ther)- all
names).

other tokens (outside protein

We hypothesize that the task of tagging the first,
the last, or the unique token of a protein name is
slightly different from that of tagging other tokens
inside a protein name, hence the extended set of
tags.

The abstracts are tokenized, segmented in sen-
tences, and annotated with part-of-speech tags
using the same tools as in Section 3.1.4. Then the
model generates feature vectors by scanning each
pair (xj,y;j) in the training data using the feature
templates given in Fig. 4. We use a threshold of
three as the minimum number of times that a
feature should appear in the training data in order
to be considered. The word class features cf and cb
are based on the similar features introduced in [40].
Thus, for a character x we define type(x) as ‘A’ if x is
aupper-case letter, ‘a’ if x is a lower-case letter, ‘0’
if x is a digit and x otherwise. The cf feature then is

Name ‘ Feature description | Feature body ‘

w current word w(z;) = (w) &yi=(y
pw previous word pw(z;) = (w) &y =y
nw next word nw(x;) = (w) &y =y
pos POS, current word | pos(z;) = (pos) & yi = (y

ppos | POS, previous word | ppos(z;) = (pos)

npos | POS, next word npos(x;) = (pos) & y; =

cf word class (full) cf(x;) = {cf) &y =

cb word class (brief) cb(w;) = (cb) &yi=(y
dict dictionary tag dict(x;) = (dt) &y = (y
pt previous tag pt(x;) = (') &yi=(y

Figure 4 Feature templates.
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‘ conf(W,u,v)

greedy_extract(W, u, v)

Input: | W, a sequence of tokens wy,wa, ..., wp

[u,v], an extraction span with 1 <u <o <T

Input: | W, a sequence of tokens wy,ws, . .., wr

[, v], an extraction domain with 1 <u <v <T

Use the forward procedure on W with p(y|z) to compute:

a(y) =plyr =y|W) , where 1 <t <T and y € {S,C, E,U,0}
ifu=wv

€ON favg(W,u,v) = con fram(W,u,v) = ay(U)
else

Pu = u(S)

Pur1 = P(Yur1 = C|W,yu = S)

Pv = p(y1 = El“’~ Yp—1 = C)
N fawg(Wou,v) = 2550 py
con frmin(W, u, v) = ming<¢<o(pe)

Figure 5 Extraction confidence.

the current word with each character mapped to its
type, while the brief version bf results from cf by
removing repeating character types. For example, if
“FGF1” is the current word, then cf=‘AAAQ’, and bf
= ‘A0’. Another special feature is pt, based on the
tag assigned to the previous token. The dependence
of the current tagging decision on the previous tag,
unknown during testing, forces us to consider all
possible tags for the previous token when tagging
unseen data. For a particular token sequence (toke-
nized sentence), this will result in a potentially very
large set of possible taggings. The classical approach
is to use a Viterbi-like algorithm for finding the most
likely sequence of tags. To each of the resulting
extractions, we associate a confidence measure.
The exact calculation of the two confidence mea-
sures confayg and confp;y, is described in Fig. 5. The
Viterbi and forward procedures used therein are
similar with those used for hidden Markov models
[41]. Varying the confidence level will later allow us
to trade off between precision and recall (see Sec-
tion 3.2.2).

We chose to take either the minimum or the
average as we were targeting a length-independent
measure. Also, when using the average function, or
the minimum function, one has to ensure that the
quantities involved have a similar interpretation
and consequently can be safely combined. In our
case, we can view the value «a¢(y) as another transi-
tion probability, namely the probability of reaching
state y at time step t from a special state encoding
the beginning of the sentence.

One drawback of using the Viterbi algorithm is
that by focusing on the most likely sequence of tags,
the program is missing many low confidence extrac-
tions that might help in extending the recall end-
point. When applied on test data, the Viterbi
algorithm, augmented with the confidence measure
CoNfmin, results in a maximum recall of 47.76%. To
further extend it, we use the greedy algorithm from

ifu>ov
return ()

else
(l,r] = argmaz pcupjconf (W,l,r)
LE = greedy_extract(W,u,l — 1)
RE = greedy_extract(W,r + 1,v)
return LE U {[l,r]} URE

Figure 6 Greedy extraction.

Fig. 6 on all token sequences appearing between
two consecutive Viterbi extractions, thus obtaining
additional extractions compatible with the set of
proteins already extracted through the Viterbi pro-
cedure (two extractions are compatible if they do
not overlap). All the results that presuppose using a
confidence measure are based on conf;,, which
does a better job at extending the recall endpoint.

We base our maximum entropy approach on the
opennlp.maxent package,® version 2.1.0, which
uses the generalized iterative scaling algorithm
[42] for estimating the parameters of the log—linear
model.

3.1.6. Existing protein name identification
systems

We also tested two existing protein name identifica-
tion systems. The first one is KEX version 1.21, which
is based on the PROPER algorithm described in [1]. It
consists of a set of hand-built pattern matching rules
which makes use of part-of-speech information
given by the Brill’s tagger. Without depending on
any protein-name dictionaries, KEX has been
reported to achieve 94.70% precision and 98.84%
recall on a corpus of 80 abstracts on SH3 and signal
transduction domains.

The second system is ABGene, introduced in [43].
ABGENE uses a transforation-based tagger to produce
an initial tagging. Then it employs a number of
dictionaries and contextual rules to weed out false
positive and recover false negative. It was tested on
a corpus consisting of the complete set of abstracts
introduced into Medline between 15 June and 24
September 2001, and was reported to give good
results.

3.2. Experimental results
We begin this section by explaining the methodology

followed in our experiments. We present next the
quantitative results of the IE methods used for

6 URL: http://maxent.sourceforge.net/.
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extracting protein names. The section ends with a
comparative analysis of the results.

3.2.1. Experimental methodology

The 750 Medline abstracts annotated with protein
tags were tokenized using simple pattern rules
developed for the Penn Treebank project [44]. For
programs requiring sentence-segmented input, we
used the sentence segmenter from the KEX tagger
with additional rules for bulleted lists. For those
learning algorithms requiring POS tags, we used
Brill’s POS tagger, which we trained by using
10000 untagged Medline abstracts as the training
set. Those abstracts were obtained the same way we
did for the 750 abstracts. No stemming or stopword
filtering was performed during the experiments.
Capitalization was retained unless otherwise speci-
fied.

We performed 10-fold cross validation on each
learning algorithm with a particular parameter set-
ting. This provides average performance over ten
random trials, each training on 90% of the data and
testing on the remaining 10%. Each extracted pro-
tein name in the test data was compared to the
human-tagged data, with the positions taken into
account. Since Ascene provides no positional infor-
mation, we assume that all occurrences of its
extracted strings are recognized as protein names.
Two protein names are considered a match if they
consist of the same character sequence in the same
position in the text. This detects circumstances
where common English words are incorrectly recog-
nized as protein names (e.g. “light”, “at’), and
ensures that all references to each protein are
recognized. We measured precision (percentage
of extracted names that are correct), recall (per-
centage of correct names that are found), and F-
measure (harmonic mean of precision and recall)

[11].

3.2.2. Quantitative results
Table 1 summarizes results for the protein taggers
presented in Section 3.1, along with any additional
sources of information used. We also include results
obtained with two additional taggers: one using
transformation-based learning (TBL) [27], and
another based on the k-nearest neighbor (k-NN)
method in which classification is done by extrapola-
tion from the k most similar training examples. For
systems that output confidences that allow trading-
off precision and recall (i.e. BWI, k-NN, SVM and
MaxEnt), results are presented for the maximum
achievable recall or the best F-measure.

For ease of comparison, we show recall—preci-
sion curves in Fig. 7, using the version of each system
that gave the best F-measure (as shown in bold in
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Figure 7 Precision-recall curves for protein taggers on
the 750 abstracts dataset.

Table 1). For those IE methods that output extrac-
tion confidences, we show curves indicating the
precision for each achievable level of recall. Single
recall—precision points are shown for all other
methods.

Given that the MaxEnt approach achieves the
best results on the 750 abstracts dataset, we applied
it on the 230 abstracts from the interactions data-
set, our aim being to feed these automatically
tagged abstracts to the interaction extraction pro-
gram (see Section 4.2.2 for overall results of the
combined approach). The tagging performance on
the interaction dataset is shown in Fig. 8(a).

3.2.3. Discussion of results

Overall, the results show limited utility of POS tags.
The use of POS tags in Rarier, k-NN, and SVM does not
improve F-measure significantly according to a
paired t-test (p > 0.05). While the dictionary-based
tagger barely improves F-measure for Raprier and
TBL, it is useful for the rest of the learning methods
to different extents. It improves both precision and
recall for BWI, k-NN and MaxEnt, while for SVM it
hurts the precision slightly, but this is outweighed by
a larger gain in recall.

Out of all the learning methods tested here, SYM
and MaxEnt achieve a significant improvement over
the dictionary-based tagger in terms of F-measure.
Another advantage is that both are able to achieve
arbitrarily high precision by adjusting the confi-
dence level. This is possible because the extraction
confidence is highly correlated with the probability
of correctness. Since high precision is needed to
extract accurate knowledge from text, this is a
significant contribution.

We have also included results for MaxEnt with a
tagging scheme based on two tags only. The differ-
ence in performance validates our initial hypothesis
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Figure 8 Performance of MaxEnt protein tagger on two other datasets.

suggesting the use of more than one tag for tokens
inside a protein name.

All of our IE methods perform significantly better
than two existing protein taggers, KEX and ABGENE.
Given that these systems were developed for dif-
ferent distributions of proteins, this is not surpris-
ing; however it does illustrate the relative difficulty
of identifying human proteins. The hand-built rules
used in KEX were developed and tested on a rather
confined set of proteins different from the human
proteins in our data. AsGenE uses a version of TBL to
learn a protein tagger; however, the specific tagger
we obtained was not trained specifically for human
proteins. Our own TBL system is more indicative of
the performance of this approach when specifically
trained for human proteins; however, note that
many of the other learning approaches perform
better than TBL.

As shown in Fig. 8(a), the performance on the
interaction dataset is a lot better than on the
protein dataset, and this is also reflected in the
results of the dictionary-based tagger. There are
two main reasons for this significant difference:

(1) The protein dataset has been manually tagged
by 9 people, in just one pass. After analyzing the
results, we have discovered significant tagging
inconsistencies which clearly affected the
learning performance. On the other hand, the
interaction dataset has been tagged by one
person only, resulting in a more consistent tag-
ging.

(2) Each of the 230 interaction abstracts contains at
least two proteins, due to the particular selec-
tion process described in Section 2.1. This
results in a significant bias which is captured
by the learning algorithm. Comparatively, 38.7%
of the 750 abstracts dataset contain no proteins,
while many of the same abstracts include var-
ious names for cell lines, or amino acids, names
which are very similar with protein names, mak-

ing the task of recognizing proteins more rea-
listic, but at the same time harder.

We have also tried our protein name extraction
systems on the Yapex’ dataset (200 Medline abstr-
acts) and the results (Fig. 8(b)) are comparable
with those obtained on our corpus of 750 abstracts
(Fig. 7).

4. Protein interaction extraction

Identifying relations between named entities stated
in text is a more difficult IE problem that only
recently has attracted significant attention in
research on extraction from new articles. The cur-
rent ACE (Automated Content Extraction) program
at the National Institute of Standards and Technol-
ogy (NIST) [45] is focused on identifying various
social, action-role, part-of, and locational relations
between named entities. Several projects have
focused on extracting relations from biomedical
text, such as identifying gene-disease relations,
subcellular localizations, or protein interactions
[15,17,18,2—6,46]. This section discusses our work
on identifying human-protein interactions assuming
that the proteins themselves have already been
tagged, and shows that machine-learning systems
out-perform human-written extraction rules with
respect to providing a wider range of precision
and recall.

4.1. IE methods

4.1.1. Rarier and boosted wrapper induction

In order to adapt slot-filling IE systems that extract
individual entities (like Rarier and BWI) to the pro-
blem of extracting relations, we developed two
approaches. The first approach we call the Inter-

7 URL: http://www.sics.se/humle/projects/prothalt/.
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Figure 9

filler approach. Given two tagged entities partici-
pating in a relationship, the text fragment between
them is called the interfiller (see Fig. 9). If a slot-
filling IE system extracts an interfiller, the tagged
entities before and after it can be extracted as
participating in the targeted relation.

The second approach we call the Role-filler
approach. In this approach, we extract the two
related entities independently into different role-
specific slots. For protein interactions, we named
the roles interactor and interactee (see Fig. 9).
There might be many interactors and interactees
extracted in one sentence, we then decide which of
them participate in a relationship using the follow-
ing heuristics, assuming that all interacting proteins
appear in the same sentence. (1) The interactors
and interactees appearing in the same sentence
form a sequence of role fillers. This sequence is
separated into segments at the points where an
interactee is immediately followed by an interactor.
Interactors and interactees can only be paired
within the same segment. (2) Each interactor is
associated with the next occurring interactee in
the segment. (3) If there are fewer interactors
(interactees) than interactees (interactors) in the
segment, use the last interactor (interactee) in
constructing the remaining pairs. In our human-
tagged interaction corpus, assuming interactors
and interactees are properly tagged, this approach
identifies all the interacting pairs with 99.2% accu-
racy.

Both of these approaches have been used to train
BWI (Section 3.1.3) to extract interacting proteins,
and the Role-filler approach has been used to train
Rapier (Section 3.1.2) to extract interactions. Rapier
could not learn to extract interfillers successfully,
since, in the worst case, the time complexity of its
generalization algorithm can grow exponentially in
the length of a filler. Since extracted entities are
usually fairly short, this is typically not a problem in
standard slot-filling IE. However, the long interfillers
in many protein interactions prevented us from
running Rarier with the Interfiller approach.

Interactor, interactee and interfiller.

4.1.2. Extraction using longest common
subsequences (ELCS)

We have also developed a hew method for directly
learning patterns for extracting relations between
previously tagged entities. Blaschke et al. [3,47]
manually developed rules for extracting interacting
proteins. Each of their rules (or frames) is a
sequence of words (or POS tags) and two protein-
name tokens. Between every two adjacent words is
a number indicating the maximum number of inter-
vening words allowed when matching the rule to a
sentence. Here we describe a new method ELCS
(Extraction using Longest Common Subsequences)
that automatically learns such rules.

ELCS’ rule representation is similar to that in
[3,47], except that it currently does not use POS
tags, but allows disjunctions of words. Fig. 10 shows
an example of a rule learned by ELCS. Words in
square brackets separated by ‘ |’ indicate disjunc-
tive lexical constraints, i.e. one of the given words
must match the sentence at that position. The
numbers in parentheses between adjacent con-
straints indicate the maximum number of uncon-
strained words allowed between the two (called a
word gap). A sentence matches the rule if and only if
it satisfies the word constraints in the given order
and respects the respective word gaps.

A sentence in the training data may contain
more than two proteins and more than one pair
of interacting proteins. In order to extract the
interacting pairs, the rules should be trained to
pick out exactly the interacting proteins from the
sentences. To do this we replicate the sentences
having n proteins (n>2) into (7 sentences such
that each one has exactly two of the proteins
tagged, with the rest of the protein tags omitted.
If the tagged proteins interact, then the replicated
sentence is added to the set of positive sentences,
otherwise it is added to the set of negative sen-
tences. During testing, a sentence having n proteins
(n>2) is again replicated into C) sentences in a
similar way. If such a replicated sentence matches
one of the rules, then the system extracts the two

[These | Here | have |]  (4)

(15) PROT (14)
(27)

[data | we | previously | the | wild] (1)
[suggest | show | reported | transcription |-]  (2)
[surface | of | - | with | bound| activate]

[that | factor | type | of]
(0) PROT

Figure 10 Sample protein-extraction rule learned by ELCS. Token PROT stands for protein name.
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proteins tagged in that sentence as interacting
proteins.

ELCS induces rules using a bottom-up approach.
Rule induction starts with maximally specific rules
for each positive sentence which contain all the
words in the sentence with zero-length word gaps.
These are then repeatedly generalized to form more
general rules until the rules become overly general
and start matching negative sentences. We have
developed three methods for generalizing rules.
The first simple method to produce a generalization
of two rules is to find the longest common subse-
quence (LCS) of words between them. Efficient
algorithms for computing an LCS are presented in
[48,49]. After finding the LCS between two rules, we
determine the size of word gaps between every two
adjacent words in their LCS as the larger of the
number of words plus the sum of existing word gaps
between the two LCS words where they are found in
the original two rules.

Our second approach to generalization uses edit
distance (ED) [49] and creates more specific rules
that contain disjunctive constraints. The most com-
mon edit distance is Levenshtein distance [50],
defined as the minimum number of edit operations
(adding, deleting, or replacing an item) required to
convert one sequence into another. We use the
minimal edit-operation sequence obtained when
computing Levenshtein distance to generalize two
rules. We preserve the common word constraints
between the rules, make disjunctions of constraints
when one item is replaced by another in the edit
sequence, and drop constraints that are added or
deleted in the edit sequence. Finally, we introduce

word gaps using the method described for the LCS-
based generalization.

The third generalization method finds all common
sequences between the two rules and considers their
conjunction (CJ) as the generalization. Unlike the
previous two methods, this method is associative,
i.e. we get the same generalization of a set of rules
irrespective of the order in which we generalize two
of them at a time. If there is any common pattern
among the base rules then this property guarantees
that the pattern will also appear in the general-
ization (note that it is possible to lose such acommon
pattern while taking LCS of tworules at a time). Word
gaps are then introduced as in the previous two
methods. Fig. 11 shows generalization of two sen-
tences obtained by each of these methods.

Using one of these generalization methods, a
greedy-covering, bottom-up rule-induction method
is used to learn a small set of rules that cover all the
positive sentences without covering many negative
ones. We use an algorithm similar to beam search
and consider only the r best rules for generalization
at any time. We start with r randomly selected
positive examples. These r rules are generalized
with one of the remaining positive examples to
obtain r more rules. Out of these 2r rules we select
r rules with the highest confidence level and allow
further generalization with the remaining positive
examples. After iterating over the remaining posi-
tive examples in this way, the r best rules are finally
included in the set of learned rules and the positive
examples covered by them are removed. The entire
process is repeated till we exhaust the set of posi-
tive examples.

Figure 11

Sentence 1: The self - association site appears to be formed by interactions
between helices 1 and 2 of beta spectrin, repeat 17 of one dimer with helix 3
of alpha spectrin, repeat 1 of the other dimer to form two combined alpha -
beta triple - helical segments .

Sentence 2: Title - Physical and functional interactions between the tran-
scriptional inhibitors 1d3, and ITF - 2b, .

Generalization using longest common sequence (LCS):
- (7) interactions (0) between (5) PROT (9) PROT (17) .

Generalization using edit-distance (ED):
[self| Title] (0) - (4) [be|Physical] (0) [formed|and] (0) [by|functional] (0)
interactions (0) between (2) [and|the] (0) [2|transcriptional] (0) [of|inhibitors]
(0) PROT (8) [of|and] (0) PROT (17) .

Generalization using conjunctions (CJ):
{ - (7) interactions (0) between (5) PROT (9) PROT (17) . } A {- (11) and
(6) PROT (9) PROT (17) . }

Generalizations of two sentences using different methods. Protein names have been underlined and same

subscript numbers indicate interactions between them. Token ‘PROT’ stands for protein name.
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We measure the confidence levels of our rules
using m-estimate [51] which is a measure of
expected accuracy of a rule. It is defined as:
confidence level (rule) = (p+m.p*)/(p+n+m),
where p and n are the number of positive and
negative examples covered by the rule, p* is the
prior probability of positive examples and m a para-
meter which should be set according to the amount
of noise in the data. We set p* as the fraction of
examples in the training data which are positive and
set m based on pilot studies.

The generalizations obtained using any of the
methods may result in rules that do not contain
two protein-name tokens. This is fine for extracting
protein interactions because we always apply the
rules to sentences containing exactly two protein
names (if they contain more than two protein names
then we replicate the sentence as described ear-
lier). However, constraining learned rules to contain
two protein names is a useful bias. Therefore, we
divide each of the training sentences in three parts:
the portion of the sentence before the first protein
name, the portion between the two protein names,
and the portion after the second protein name.
When we generalize two rules, we generalize these
three parts separately. This ensures the rule will
always contain two protein-name tokens. Fig. 12
shows some sample rules learned by ELCS.

4.2. Experimental results

4.2.1. Experimental methodology

Medline abstracts were pre-processed as described
in Section 3.2.1. All our systems for extracting
interactions require sentence segmentation since
only the proteins within a sentence are considered
when identifying interactions. This constraint is

satisfied by all interactions in our corpus because
while manually tagging the corpus with interactions
we did not find a single instance where the two
interacting proteins were in different sentences. We
also compared our systems with Blaschke et al.’s
manually-written rules [47]. Since these rules
require POS tags, we used Brill’s POS tagger. We
also tested a version of the human-written rules in
which the POS tags are replaced by typical words
indicating interactions such as activation, phosphor-
ylation or interaction for nouns and activates, binds
or phosphorylates for verbs, similar to the approach
in [3]. These manually-written rules were developed
to capture the common ways of expressing protein
interactions in natural language, like “protein A
binds/interacts . . .(with) protein B” (see the SUISEKI
system overview in [47]). Such natural language
constructions are general enough and not sensitive
to any particular dataset. Hence, we applied these
rules on our dataset to make a direct comparison
with our systems.

We did two experiments to evaluate the perfor-
mance of protein interaction extraction. In both
experiments the machine learning systems were
trained using the manually tagged abstracts (see
Section 2.1) with proteins and their interactions.
The two experiments differ in the way we tested the
systems. In the first experiment we provide manu-
ally tagged protein names to our systems and
extract interactions among these proteins. This
way we get a measure of how the protein interaction
extraction systems alone perform independent of
the protein name extraction systems. In the second
experiment we first find protein names in the
abstracts using our best system for protein name
extraction, MaxEnt (see Section 3.2.2), and then
extract interactions among these proteins. This

lof [ -]

[linker | TT | armadillo | b558 | of]
| /| with | to | containing]

4
(18) PROT (66) .}

(9) 3

interactions (0) between (4) PROT (0) and (4) PROT (16) .

PROT (0) / (0) PROT (10) heterodimers (36) .

[binding | substitution | AB | addition | Interestingly | TI | interactions] (0)
(3) PROT (19) [to | for |: | same | with]
[nM | binding | 1 | CDK6 | CCRS8 | death] (9) .

(0) PROT (2) .

(11) PROT (25) and (8) to (9) PROT (66) .} A {, (11) PROT (16) bind

{, (10) PROT (5) for (7) PROT (9) .} A {. (10) PROT (4) binding (6) PROT

(10) PROT  (30)

].]al (5) PROT (13) [and

Figure 12 Some example rules learned by ELCS; the first two were learned using LCS generalization, the next two using

ED generalization and the last two using CJ generalization.
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gives a true measure of how our systems can perform
at extracting protein interactions from completely
untagged abstracts. Blaschke et al.’s manually-writ-
ten rules also require protein names, in this experi-
ment we also test those rules by providing them with
our extracted protein names. For this experiment,
we chose the point on the MaxEnt’s precision-recall
curve (Fig. 8(a)) which gives 70% precision and about
90% recall for protein name extraction.

As in Section 3.2.1, performance is evaluated
using 10-fold cross validation and measuring recall
and precision. We consider an extracted interaction
from an abstract correct only if both its proteins
have been human-tagged as interacting with each
other somewhere in that abstract. As the task of
interest is only to extract interacting protein-pairs,
in our evaluation we donot consider matching exact
positions and every occurrence of interacting pro-
tein-pairs within the abstract. For those IE methods
which output extraction confidences, if we extract
more than one occurrence of interaction between
two proteins then we combine their extraction
confidences using the standard Noisy—Or method
[52].

4.2.2. Quantitative results

Fig. 13 shows recall—precision results for protein-
interaction extraction when tested on abstracts that
have been manually tagged for protein names and
Fig. 14 shows the results when tested on abstracts in
which protein names were tagged using our best
protein name extractor. We plotted a precision-
recall curve for BWI by utilizing its extraction con-
fidence, and for ELCS using the confidence levels of
the rules which extract the interactions. Since Rapier
and human-written rules do not produce confi-
dences, only a single recall—precision point is shown
for each of them.
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Figure 13 Precision-recall graphs for protein interac-
tion extraction using correct protein names.
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Figure 14 Precision-recall graphs for protein interac-
tion extraction using extracted protein names.

4.2.3. Discussion of results

From Fig. 13 it can be seen that BWI gives varying
degrees of high precision, but its recall is generally
quite low. Rarier also gives relatively high precision
but low recall. ELCS tends to give higher recall with
only a modest decrease in precision compared to
BWI and Rarier. When we use the protein names
extracted from our protein name extractor instead
of the correct protein names, not surprisingly the
performance of all the systems degrade but they
still offer reasonable ranges of precisions and recalls
(Fig. 14).

These results demonstrate that machine learning
systems can provide higher precisions than the
human-written rules. In order to avoid over-loading
human curators with too many false positives when
extracting knowledge from large volumes of text, a
general emphasis towards higher precision seems
appropriate. The machine learning systems also
offer a wide range of precision-recall trade-off
which can be suitably utilized by a user depending
on the needs of the application. The machine learn-
ing systems can also provide recalls higher than the
best recall the human-written rules could provide.
Hence, the machine learning systems out-perform
the manually-written rules in several ways.

5. Conclusions and future research

After comparing a number of methods for extracting
human protein names and interactions, we obtained
the best performance for protein tagging with a
maximum entropy learning method that exploits a
generalized protein-name dictionary. For extracting
protein interactions, we found that several methods
for learning extraction rules out-perform the hand-
written rules in providing higher precisions and in
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offering a wider range along precision-recall trade-
off. Token classification methods like k-NN, TBL,
SVM, and MaxEnt are not directly applicable to
extracting interactions; however, we plan to test
HMMs on extracting interactions in the near future.

Clearly, the ability to extract human proteins and
their interactions still needs significant improve-
ment. We foresee improvement in three general
areas: better training data, better learning meth-
ods, and better use of external knowledge.

Larger training sets are always beneficial to
learning systems; however, manually tagging data
is very time consuming. One alternative approach is
to use existing knowledge to automatically produce
weakly labeled training data [15]. Another approach
is to use active learning to select only the best
training examples for human labeling [53]. A third
approach is to utilize a mixture of both labeled and
unlabeled data during training [54].

Improved learning algorithms for information
extraction continue to be developed. Recently, a
number of methods for improving HMMs have been
proposed, including linear interpolating HMMs [16],
maximume-entropy Markov models [55], and condi-
tional random fields [56].

Existing biological knowledge can also be used to
improve extraction performance. Currently we have
only exploited dictionaries of known protein names.
Using learning to revise initial human-written
extraction rules has also been shown to improve
performance [18]. One can imagine many other
sources of external knowledge: global statistical
properties of abstracts, existing interaction or path-
way data, prior expectations for finding protein
names, and dictionaries of near-miss negative exam-
ples of protein names. Filtering proposed interacting
proteins by comparing their gene-expression data or
examining their co-occurrences in other abstracts or
web pages could also prove useful.

In the future, it will also be interesting to develop
IE systems for extracting other associations with
genes. A few examples include extracting informa-
tion about post-translational modifications of pro-
teins, identifying genes that are specifically involved
with diseases, identifying genes that are co-regu-
lated, extracting protein-drug interactions, protein-
metabolite interactions and information about the
dynamics and dependencies of these processes.
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