
Artificial Intelligence in Medicine (2005) 33, 139—155

http://www.intl.elsevierhealth.com/journals/aiim
Comparative experiments on learning information
extractors for proteins and their interactions
Razvan Bunescua,1,5, Ruifang Gea,1,5, Rohit J. Katea,5,
Edward M. Marcotteb,1,2,5, Raymond J. Mooneya,�,1,3,5,
Arun K. Ramanib,5, Yuk Wah Wonga,4,5
aDepartment of Computer Sciences, University of Texas, Austin, TX 78712, USA
bInstitute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics,
University of Texas, Austin, TX 78712, USA
Received 16 December 2002; received in revised form 14 July 2004; accepted 16 July 2004
KEYWORDS
Information extraction;
Text mining;
Machine learning;
Protein interactions;
Medline

S

O
p
t
r
H
d
l
M
t
M
t
p
v
t
d

� Corresponding author. Tel: +1 512
E-mail addresses: razvan@cs.utexa

marcotte@icmb.utexas.edu (E.M. Marc
ywwong@cs.utexas.edu (Y.W. Wong)

URL: http://www.cm.utexas.edu/f
1 Supported by grant IIS-0325116 fro
2 Supported by the Welch Foundatio

Program.
3 Supported by grant IIS-0117308 fro
4 Supported by an MCD Fellowship fr
5 Author names are in alphabetical o

0933-3657/$ — see front matter # 200
doi:10.1016/j.artmed.2004.07.016
ummary

bjective: Automatically extracting information from biomedical text holds the
romise of easily consolidating large amounts of biological knowledge in compu-
er-accessible form. This strategy is particularly attractive for extracting data
elevant to genes of the human genome from the 11 million abstracts in Medline.
owever, extraction efforts have been frustrated by the lack of conventions for
escribing human genes and proteins. We have developed and evaluated a variety of
earned information extraction systems for identifying human protein names in
edline abstracts and subsequently extracting information on interactions between
he proteins.
ethods and Material: We used a variety of machine learning methods to automa-
ically develop information extraction systems for extracting information on gene/
rotein name, function and interactions from Medline abstracts. We present cross-
alidated results on identifying human proteins and their interactions by training and
esting on a set of approximately 1000 manually-annotated Medline abstracts that
iscuss human genes/proteins.
471 9558; fax: +1 512 471 8885.
s.edu (R. Bunescu), grf@cs.utexas.edu (R. Ge), rjkate@cs.utexas.edu (R.J. Kate),
otte), mooney@cs.utexas.edu (R.J. Mooney), arun@icmb.utexas.edu (A.K. Ramani),

aculty/Marcotte.html, http://www.cs.utexas.edu/users/mooney.
m the National Science Foundation.
n (F-1515), the National Science Foundation (ITR-0219061), and the Texas Advanced Research

m the National Science Foundation.
om the University of Texas at Austin.
rder.

4 Elsevier B.V. All rights reserved.



140 R. Bunescu et al.
Results: We demonstrate that machine learning approaches using support vector
machines and maximum entropy are able to identify human proteins with higher
accuracy than several previous approaches. We also demonstrate that various rule
induction methods are able to identify protein interactions with higher precision than
manually-developed rules.
Conclusion: Our results show that it is promising to use machine learning to auto-
matically build systems for extracting information from biomedical text. The results
also give a broad picture of the relative strengths of a wide variety of methods when
tested on a reasonably large human-annotated corpus.
# 2004 Elsevier B.V. All rights reserved.
1. Introduction

An incredible wealth of biological information gen-
erated using biochemical and genetic approaches is
stored in published articles in scientific journals.
Summaries of more than 11 million such articles are
available in the Medline database. However, retriev-
ing and processing this information is very difficult
due to the lack of formal structure in the natural-
language narrative in these documents. Automati-
cally extracting information from biomedical text
holds the promise of easily consolidating large
amounts of biological knowledge in computer-
accessible form. Information extraction (IE) systems
could potentially gather information on global gene
relationships, gene functions, protein interactions,
gene-disease relationships, and other important
information on biological processes.

A number of recent projects [1—10] have focused
on the manual development of IE systems for
extracting information from biomedical literature.
Unfortunately, manual engineering of information
extraction (IE) systems for particular applications is
a tedious and time-consuming process [11]. Each
new type of information to be extracted requires a
significant new engineering effort to develop spe-
cific extraction patterns for identifying this infor-
mation. Human-developed rules are also rarely able
to accurately capture all of the variety of formats
and contexts in which the desired information can
appear in natural-language documents.

Consequently, significant recent research in
information extraction has focused on using
machine learning techniques to help automate
the development of IE systems [12,13]. A number
of machine learning methods, including grammar
induction, hidden Markov models, inductive logic
programming, naive Bayes text categorization, and
decision tree induction, have been used to help
automate the development of IE systems. First,
learning systems are trained on a corpus of docu-
ments in which human experts have tagged the
desired information. Next, the IE systems induced
from this supervised data are used to extract new
information from novel test documents. Some pro-
jects on extracting information from biomedical
literature have also employed such learning tech-
niques [14—21].

We are exploring the use of a variety of machine
learning methods to automatically develop IE sys-
tems for extracting information on gene/protein
name, function and interactions from Medline
abstracts. For our purposes, genes and proteins
are interchangeable since, typically, there is a
direct correspondence between proteins and the
genes that code for them. We focus specifically on
extracting information about human genes and pro-
teins. Approximately 40,000 human genes are
known from the sequences of the human genome
[22,23], yet fewer than 5000 are well characterized
and likely to be described in the literature. Unlike
other organisms, such as yeast or E. coli, human
gene names have no standardized naming conven-
tion, and thus represent one of the most difficult set
of gene/protein names to extract. For example,
human genes/proteins may be named with standard
English words, such as ‘‘light’’, ‘‘map’’, ‘‘comple-
ment’’, and ‘‘Sonic hedgehog’’. Names may be
alphanumeric, may include Greek or Roman letters,
may be case sensitive, and may be composed of
multiple words. Names are frequently substrings of
each other, such as ‘‘epidermal growth factor’’ and
‘‘epidermal growth factor receptor’’, which refer to
two distinct proteins. It is therefore necessary that
an information extraction algorithm be specifically
trained to extract gene and protein names accu-
rately.

In this paper, we present results on learning to
extract human protein names and their interac-
tions. We employ a variety of learning methods
including pattern-matching rule induction (RAPIER)
[24], boosted wrapper induction (BWI) [25], mem-
ory-based learning (MBL) [26], transformation-
based learning (TBL) [27], support vector machines
(SVMs) [28], and maximum entropy (MaxEnt) [29].
We present cross-validated results on identifying
human proteins and their interactions by training
and testing on a set of approximately 1000 manu-



Comparative experiments on learning information extractors for proteins and their interactions 141

Figure 1 Abstract with all the proteins and interactions tagged. The protein names have been underlined and their
same subscript numbers indicate interaction between the proteins.
ally-annotated Medline abstracts that discuss
human genes/proteins. Previous projects on extrac-
tion from Medline typically present results for a
single method on somewhat smaller corpora with
limited or no comparison to other methods. By
contrast, we present uniform results of a wide
variety of methods on a single, reasonably large,
human-annotated corpus, thereby giving a broader
picture of the relative strengths of different
approaches.
2. Biomedical corpora

2.1. Tagging of medline abstracts

In order to generate a corpus of training and test
data for extracting protein names and protein inter-
actions, we manually tagged approximately 1000
abstracts (including the titles) from among the 11
million abstracts available in Medline. Tagging was
performed using an existing IE-tagging tool1 mod-
ified to enhance file handling and to retain negative
examples. This program accepts a directory of files
to be tagged and allows the user to tag them using a
graphical interface based on a file of possible labels
and writes the SGML tagged files into an output
1 URL:http://www-2.cs.cmu.edu/�kseymore/general_tagger. pl.
directory. Three annotated data sets were gener-
ated:
(1) S
even hundred fifty abstracts containing the
word ‘‘human’’ were extracted from the Med-
line database and tagged for gene/protein
names. 61.3% of the abstracts discussed gene/
protein names, for a total of 5206 names. An
example of a tagged abstract is shown in Fig. 1.
(2) T
wo hundred abstracts previously known to con-
tain protein interactions were obtained from
the Database of Interacting Proteins (DIP [30])
and tagged for both 1101 protein interactions
and 4141 protein names. An example is shown in
Fig. 1.
(3) A
s negative examples for protein interactions
were rare in (2), a set of 30 abstracts were
manually selected such that they had sentences
with more than one gene but the abstracts did
not talk about any gene interactions.
We used data set (1) for testing protein names,
and data sets (2) and (3) for testing protein inter-
actions.

2.2. Rules used for tagging

Due to the ambiguities involved in human gene/
protein names and interactions, it was necessary

http://www.nist.gov/speech/tests/ace/
http://www.nist.gov/speech/tests/ace/


142 R. Bunescu et al.

Figure 2 Dictionary generalizations.
to develop a set of conventions for their consistent
tagging. In the following discussion, we indicate
protein names by underlined text and their same
subscript numbers indicate interaction between the
proteins. Manual examination of many abstracts
revealed several ambiguities, such as whether the
organism names should be tagged (e.g. human delta
catenin or human delta catenin), whether punctua-
tion should be tagged (e.g. (LIGHT) or (LIGHT)), and
whether generic protein family names should be
tagged (e.g. armadillo protein p0071 or armadillo
protein p0071). Such cases led to the following set of
tagging conventions:
(1) A
s few extra characters as possible are tagged.
Punctuation marks and plural characters are not
tagged.
(2) G
ene/protein names are tagged regardless of
context, even when gene names are substrings
of other gene names. (e.g. GITR ligand)
(3) G
eneric protein/gene families are not tagged,
only specific names which could ultimately be
traced back to specific genes in the human
genome. (e.g. ‘‘Tumor necrosis factor’’ would
not be tagged, while ‘‘tumor necrosis factor
alpha’’ would be.)
(4) T
ags for interacting proteins follow the same
conventions as for other proteins. All stated
instances of protein interactions are tagged,
even when tags are nested. (e.g. human
GITR1ligand (hGITRL1))
2 URL: http://us.expasy.org/sprot/hpi/hpi_ftp.html.
3 URL: http://www.godatabase.org/dev/database/archive.
3. Protein name identification

Named entity recognition (NER), identifying names
of people, organizations, and places in text, is a well
studied problem in information extraction from
news articles. In recent years, machine learning
approaches have become the standard in developing
robust, accurate NER systems [31,32]. Biomedical
applications have special types of named entities
that are different from those typically addressed by
existing NER systems. These include names of dis-
eases, genes, proteins, organisms, organs, orga-
nelles, and other biological entities. In this
section, we explore the problem of recognizing
references to human proteins using the tagged data
described in the previous section.

3.1. IE methods

3.1.1. Dictionary-based extraction
The success of a protein tagger depends on how well
it captures the regularities of protein naming as well
as name variations. In the dictionary-based
approach, we started with an extensive set of pro-
tein names extracted from two fairly comprehen-
sive sources:
(1) T
he file human.seq, downloaded from the
Human Proteome Initiative (HPI) of EXPASY.2
(2) T
he file feb2002-tables.tar.gz, down-
loaded from the Gene Ontology Database.3
Altogether, these dictionaries contain 42,172 g-
ene/protein names (synonyms included). This col-
lection of protein names, henceforth referred to as
the original dictionary (OD), was further extended
using a generalization procedure to obtain a gen-
eralized dictionary (GD). The aim was to extend the
coverage of the original set, while at the same time
trying to minimize any decrease in accuracy.

Generalizing a dictionary entry involved identify-
ing those parts susceptible to change in new protein
names, and replacing them with generic place-
holders. Thus, we isolate and replace numbers with
hni, Roman letters with hri and Greek letters with
hgi. Fig. 2 shows some examples of name general-
izations.

In the GD-based extraction, we tag a textual n-
gram as a protein name only if it is an instance of one
of the generalizations from the generic dictionary.
To extend the coverage even more, we have created
a canonical dictionary (CD) consisting of canonical
forms of protein names. A canonical form is
obtained from a generic form by stripping it of all
generic tags, as can be seen in the examples from
Fig. 2. From the resulting set we filter out common
English words whose presence could lead to a
decrease in accuracy. Consequently, in the CD-based
extraction, a textual n-gram is deemed as being a
protein name if its canonical form is part of the
canonical dictionary. Both GD and CD introduce
spurious entries in the dictionary, leading to a
decrease in precision. For instance, because
‘‘HT3’’ is an entry in OD, its generalization HThni
will cover ‘‘HT 29’’, which is a cell line. Also, CD will
match words that are classes of proteins, and not
particular proteins, as is the case with ‘‘oncogene’’
which was derived as the canonical form of ‘‘onco-
gene 24P3’’. Because the tagging based on both the

http://www.nist.gov/speech/tests/ace/
http://www.nist.gov/speech/tests/ace/


Comparative experiments on learning information extractors for proteins and their interactions 143

Table 1 Performance of protein taggers in various settings

IE methods and additional information used Precision(%) Recall(%) F-measure(%)

Dictionary-based
Original dictionary 56.70 27.24 36.80
Plus generalized dictionary 62.27 45.85 52.81
Plus canonical dictionary 41.88 54.42 47.33

RAPIER

Words only 76.11 9.97 17.63
Part-of-speech 70.84 11.05 19.12
Dictionary-based tagger 74.49 12.22 21.00

BWI (300 iterations, 2 lookaheads, max. recall)
Words only 70.67 11.52 19.81
Dictionary-based tagger 71.01 24.06 35.94

k-NN (k ¼ 1;N ¼ 2)
Part-of-speech 34.66 40.66 37.42
Dictionary-based tagger 47.30 47.82 47.56

TBL
Words only 47.08 36.65 41.22
Dictionary-based tagger 56.80 34.62 43.02

SVM (N ¼ 2, full training set, max. recall)
Preceding class labels 69.16 19.74 30.72
Preceding class labels and part-of-speech 70.18 19.72 30.79
Preceding class labels and dictionary-based tagger 65.00 45.43 53.48
with additional suffix features 70.38 44.49 54.42

MaxEnt (N ¼ 1, Viterbi w/o greedy extraction, max. recall)
W/o dictionary 71.10 42.31 53.05
With dictionary 73.37 47.76 57.86
With dictionary, two tags only (I,O) 66.41 44.74 53.46

KEX 14.68 31.83 20.09
ABGENE 32.39 45.87 37.97
original and generic dictionary gave better results
than other combinations (as shown in the first entry
of Table 1), we used this particular dictionary-based
tagger for supplying a pre-tagged input to some of
the learning methods that will be discussed in the
following sections.

3.1.2. RAPIER

RAPIER[24] is a rule learning algorithm that acquires
unbounded patterns for extracting information from
text. Each extraction rule consists of three parts: (1)
a pre-filler pattern that matches text immediately
preceding a filler (e.g. a protein name), (2) a filler
pattern that matches the extracted substring, and
(3) a post-filler pattern that matches the text imme-
diately following the filler. RAPIER begins with a most-
specific set of rules and compresses the rule base by
repeatedly replacing rules with more general ones.

To construct the initial rule base, most-specific
patterns are created for each training example,
specifying words for the filler, all words in the text
preceding the filler, and all words in the text follow-
ing the filler. To generate new rules, pairs of existing
rules are randomly selected and their least-general
generalizations created. RAPIER starts with rules con-
taining only generalizations of the filler patterns,
and uses beam search to efficiently specialize the
rules by adding pieces of the generalizations of the
pre- and post-filler patterns of the seed rules, until
the best rule in terms of information gain produces
no spurious fillers when matched against the train-
ing examples. The best generalized rule is then
added to the rule base, and the process repeats
until compression has failed more than a specified
number of times.

To help RAPIER capture generalities that are not
evident from the words alone, we supplied addi-
tional syntactic and semantic information to the
learner in some of our experiments. First, we added
part-of-speech (POS) tags to every word in the text.
POS tags are potentially useful because certain
types of words (e.g. cardinal numbers and proper
nouns) are likely candidates of being parts of a
protein name.

In another experiment, we included the output of
the dictionary-based tagger (Section 3.1.1) in place



144 R. Bunescu et al.

Figure 3 Incorporating information from the dictionary-based tagger. The first sentence contains the correct tagging.
The second sentence is the output of the dictionary-based tagger. The third sentence shows the input for RAPIER and BWI.
The output tags of dictionary-based tagger have been transformed into special tokens BBBB and EEEE standing for begin
and end of the tags respectively.

4 URL: http://www.cs.jhu.edu/~brill/RBT1_14.tar.Z.
of the POS tags in the form of special tokens (see Fig.
3). By adding these tokens, we incorporated domain
knowledge into the learning algorithm. At the same
time, the learning algorithm can find general pat-
terns that refine the output of the dictionary-based
tagger.

3.1.3. Boosted wrapper induction
Boosted wrapper induction (BWI) [25] learns extrac-
tion rules composed only of simple contextual
patterns called wrappers [33]. Although wrappers
are highly accurate predictors of the start or end of
a protein name, each of them has limited coverage
since Medline abstracts do not exhibit a rigid
structure. BWI circumvents this limitation by
using boosting [34], which repeatedly learns sim-
ple, weak patterns that focus on the training exam-
ples for which the previous patterns have done
poorly. The predictions of all learned patterns
are then combined using a weighted voting scheme.
The result is a boosted wrapper, which has been
shown to be successful in several natural text
domains.

To perform protein-name extraction using a
boostedwrapper, every word boundary i in a Medline
abstract is first given a fore score FðiÞ, which indi-
cates its likelihood of being the start of a protein
name, and an aft score AðiÞ, which indicates its
likelihood of being the end of a protein name. Then,
the wrapper recognizes a text fragment ði; jÞ as a
protein name if and only if FðiÞAðjÞHðj� iÞ> t,
where HðkÞ is a function that reflects the probability
that a protein name has length k, and t is a numeric
threshold that controls the level of recall. By varying
t, we are able to perform extraction at different
degrees of confidence.

In our experiments with BWI, we tested the
usefulness of including the output of the diction-
ary-based tagger (Section 3.1.1) as part of the input
of the learner, in the same way as it was done in
Section 3.1.2.
3.1.4. Support vector machines
Support Vector Machines (SVMs) are one of the most
recently developed classification methods [35].
They are well-founded in computational learning
theory, and have been shown to generalize well in
the presence of very many features. They are gen-
erally considered to be the currently best technique
for text classification [36].

Assume that all m training examples consist of a
vector of n features, and belong to either positive or
negative class as follows: ðx1; y1Þ; . . . ; ðxm; ymÞ,
where xi 2Rn is the i-th feature vector and
yi 2fþ1;�1g is its class label. Then an SVM
learns an optimal threshold function fðxÞ ¼ hw; xi
þb;w2Rn; b2R, which separates the training
examples into two classes. An example x is classified
as positive when fðxÞ> 0, or negative when fðxÞ< 0.
A threshold function is optimal when the margin of
separation between the two classes is maximal. It
can be proven that the margin is maximized when
the norm of w is minimized. This leads to a con-
strained quadratic optimization problem which can
be exactly solved efficiently.

Since our tagged Medline abstracts do not contain
any protein names that directly abut each other, we
can reduce the NER problem to classification of
individual words. First, an SVM classifier determines
if each word is part of a protein name or not, by
looking at the word itself and its surrounding con-
text. Next, protein names are extracted by identi-
fying the longest sequences of words that have been
classified as parts of a protein name. Similar
approaches have been applied successfully to the
task of text chunking, which is identifying simple
phrases such as non-recursive noun and verb phrases
[37,32].

For each token, we built a feature vector con-
sisting of the current word, the previous and the
following N words. We also included POS tags gen-
erated by the Brill’s tagger4 and the output of the

http://www.nist.gov/speech/tests/ace/


Comparative experiments on learning information extractors for proteins and their interactions 145
dictionary-based protein tagger (Section 3.1.1) for
all 2N þ 1 words. We ignored capitalization when
preparing the feature vectors to avoid sparsity. To
capture morphological similarities and alleviate the
problem of unseen words, we included as features
the last one, two, and three characters of each word
in the feature vector, which we henceforth refer to
as the suffix features. Inspired by the text chunking
algorithm presented in [38], we included the class
labels of the two preceding words as part of the
feature vector. Since the class labels were not given
in the test data, they were decided dynamically
during the tagging of previous words. Because
numerical values were needed, each word or tag
in each position was a separate binary feature. For
each extracted sequence of tokens, we used the
minimal distance from the hyperplane fðxÞ ¼ 0 as a
quantitative measure of confidence. For the inner
product hw; xi, we used wTx, which resulted in a
linear threshold function. It has been argued that
most text categorization problems are linearly
separable [36], so in our case a linear threshold
function should suffice. We used version 5.0 of
SVMlight,5 which is highly efficient in dealing with
sparse instances.

The training set for the token classification pro-
blem is highly imbalanced. Out of the 209,022
tokens in our corpus, only 10,175 of them (4.87%)
are protein names. As pointed out by [39], the
induced classifiers tend to be highly accurate on
negative examples but also produce many false
negatives which lead to low recall. By sampling
the training set and feeding the learner with only
negative examples surrounding the positive ones,
we can shift the resulting hyperplane and poten-
tially reduce the number of false negatives. Our
experiments supported this claim and showed that
we could attain very high recall at the expense of
precision.

3.1.5. Maximum entropy
Maximum Entropy [29] is a widely used method for
inducing probabilistic classifiers. The classification
problem is viewed in terms of a random process that
produces an output value y from a finite set Y, based
on a contextual information x, a member of a finite
set X. In a tagging scenario, this means associating a
tag y to each text token, whereas the context x can
be derived from the text centered at the current
token position. In maximum entropy modeling we
are looking for a probability distribution pðyjxÞ
5 URL: http://svmlight.joachims.org/.
expressed in terms of a set of user specified features
fiðx; yÞ 2 F:

pðyjxÞ ¼ 1

ZðxÞ exp
X
i

lifiðx; yÞ
 !

where ZðxÞ ¼
P

y exp
P

i lifiðx; yÞ
� �

is a normalizing
constant. Each feature fi is a binary function based
on the current context x and its proposed classifica-
tion y.

In the case of maximum entropy tagging (hence-
forth referred to as MaxEnt), we distinguish among
five types of tags in Y (as opposed to using only two
tags, as was the case with SVMs):
� S
(-tart)- indicates the first token of a protein
name.
� E
(-nd)- indicates the last token of a protein name.

� C
(-ontinue)- indicates a token strictly inside a

protein name.

� U
(-nique)- indicates the unique token of a protein

name.

� O
(-ther)- all other tokens (outside protein

names).

We hypothesize that the task of tagging the first,
the last, or the unique token of a protein name is
slightly different from that of tagging other tokens
inside a protein name, hence the extended set of
tags.

The abstracts are tokenized, segmented in sen-
tences, and annotated with part-of-speech tags
using the same tools as in Section 3.1.4. Then the
model generates feature vectors by scanning each
pair ðxi; yiÞ in the training data using the feature
templates given in Fig. 4. We use a threshold of
three as the minimum number of times that a
feature should appear in the training data in order
to be considered. The word class features cf and cb
are based on the similar features introduced in [40].
Thus, for a character x we define typeðxÞ as ‘A’ if x is
a upper-case letter, ‘a’ if x is a lower-case letter, ‘0’
if x is a digit and x otherwise. The cf feature then is
Figure 4 Feature templates.

http://www.nist.gov/speech/tests/ace/


146 R. Bunescu et al.

Figure 5 Extraction confidence.

Figure 6 Greedy extraction.

6 URL: http://maxent.sourceforge.net/.
the current word with each character mapped to its
type, while the brief version bf results from cf by
removing repeating character types. For example, if
‘‘FGF1’’ is the current word, then cf=‘AAA0’, and bf
= ‘A0’. Another special feature is pt, based on the
tag assigned to the previous token. The dependence
of the current tagging decision on the previous tag,
unknown during testing, forces us to consider all
possible tags for the previous token when tagging
unseen data. For a particular token sequence (toke-
nized sentence), this will result in a potentially very
large set of possible taggings. The classical approach
is to use a Viterbi-like algorithm for finding the most
likely sequence of tags. To each of the resulting
extractions, we associate a confidence measure.
The exact calculation of the two confidence mea-
sures confavg and confmin is described in Fig. 5. The
Viterbi and forward procedures used therein are
similar with those used for hidden Markov models
[41]. Varying the confidence level will later allow us
to trade off between precision and recall (see Sec-
tion 3.2.2).

We chose to take either the minimum or the
average as we were targeting a length-independent
measure. Also, when using the average function, or
the minimum function, one has to ensure that the
quantities involved have a similar interpretation
and consequently can be safely combined. In our
case, we can view the value atðyÞ as another transi-
tion probability, namely the probability of reaching
state y at time step t from a special state encoding
the beginning of the sentence.

One drawback of using the Viterbi algorithm is
that by focusing on the most likely sequence of tags,
the program is missing many low confidence extrac-
tions that might help in extending the recall end-
point. When applied on test data, the Viterbi
algorithm, augmented with the confidence measure
confmin, results in a maximum recall of 47.76%. To
further extend it, we use the greedy algorithm from
Fig. 6 on all token sequences appearing between
two consecutive Viterbi extractions, thus obtaining
additional extractions compatible with the set of
proteins already extracted through the Viterbi pro-
cedure (two extractions are compatible if they do
not overlap). All the results that presuppose using a
confidence measure are based on confmin, which
does a better job at extending the recall endpoint.

We base our maximum entropy approach on the
opennlp.maxent package,6 version 2.1.0, which
uses the generalized iterative scaling algorithm
[42] for estimating the parameters of the log—linear
model.

3.1.6. Existing protein name identification
systems
We also tested two existing protein name identifica-
tion systems. The first one is KEX version 1.21, which
is based on the PROPER algorithm described in [1]. It
consists of a set of hand-built pattern matching rules
which makes use of part-of-speech information
given by the Brill’s tagger. Without depending on
any protein-name dictionaries, KEX has been
reported to achieve 94.70% precision and 98.84%
recall on a corpus of 80 abstracts on SH3 and signal
transduction domains.

The second system is ABGENE, introduced in [43].
ABGENE uses a transforation-based tagger to produce
an initial tagging. Then it employs a number of
dictionaries and contextual rules to weed out false
positive and recover false negative. It was tested on
a corpus consisting of the complete set of abstracts
introduced into Medline between 15 June and 24
September 2001, and was reported to give good
results.

3.2. Experimental results

We begin this section by explaining the methodology
followed in our experiments. We present next the
quantitative results of the IE methods used for

http://www.nist.gov/speech/tests/ace/


Comparative experiments on learning information extractors for proteins and their interactions 147

Figure 7 Precision-recall curves for protein taggers on
the 750 abstracts dataset.
extracting protein names. The section ends with a
comparative analysis of the results.

3.2.1. Experimental methodology
The 750 Medline abstracts annotated with protein
tags were tokenized using simple pattern rules
developed for the Penn Treebank project [44]. For
programs requiring sentence-segmented input, we
used the sentence segmenter from the KEX tagger
with additional rules for bulleted lists. For those
learning algorithms requiring POS tags, we used
Brill’s POS tagger, which we trained by using
10000 untagged Medline abstracts as the training
set. Those abstracts were obtained the sameway we
did for the 750 abstracts. No stemming or stopword
filtering was performed during the experiments.
Capitalization was retained unless otherwise speci-
fied.

We performed 10-fold cross validation on each
learning algorithm with a particular parameter set-
ting. This provides average performance over ten
random trials, each training on 90% of the data and
testing on the remaining 10%. Each extracted pro-
tein name in the test data was compared to the
human-tagged data, with the positions taken into
account. Since ABGENE provides no positional infor-
mation, we assume that all occurrences of its
extracted strings are recognized as protein names.
Two protein names are considered a match if they
consist of the same character sequence in the same
position in the text. This detects circumstances
where common English words are incorrectly recog-
nized as protein names (e.g. ‘‘light’’, ‘‘at’’), and
ensures that all references to each protein are
recognized. We measured precision (percentage
of extracted names that are correct), recall (per-
centage of correct names that are found), and F-
measure (harmonic mean of precision and recall)
[11].

3.2.2. Quantitative results
Table 1 summarizes results for the protein taggers
presented in Section 3.1, along with any additional
sources of information used. We also include results
obtained with two additional taggers: one using
transformation-based learning (TBL) [27], and
another based on the k-nearest neighbor (k-NN)
method in which classification is done by extrapola-
tion from the k most similar training examples. For
systems that output confidences that allow trading-
off precision and recall (i.e. BWI, k-NN, SVM and
MaxEnt), results are presented for the maximum
achievable recall or the best F-measure.

For ease of comparison, we show recall—preci-
sion curves in Fig. 7, using the version of each system
that gave the best F-measure (as shown in bold in
Table 1). For those IE methods that output extrac-
tion confidences, we show curves indicating the
precision for each achievable level of recall. Single
recall—precision points are shown for all other
methods.

Given that the MaxEnt approach achieves the
best results on the 750 abstracts dataset, we applied
it on the 230 abstracts from the interactions data-
set, our aim being to feed these automatically
tagged abstracts to the interaction extraction pro-
gram (see Section 4.2.2 for overall results of the
combined approach). The tagging performance on
the interaction dataset is shown in Fig. 8(a).

3.2.3. Discussion of results
Overall, the results show limited utility of POS tags.
The use of POS tags in RAPIER, k-NN, and SVM does not
improve F-measure significantly according to a
paired t-test (p> 0:05). While the dictionary-based
tagger barely improves F-measure for RAPIER and
TBL, it is useful for the rest of the learning methods
to different extents. It improves both precision and
recall for BWI, k-NN and MaxEnt, while for SVM it
hurts the precision slightly, but this is outweighed by
a larger gain in recall.

Out of all the learning methods tested here, SVM
and MaxEnt achieve a significant improvement over
the dictionary-based tagger in terms of F-measure.
Another advantage is that both are able to achieve
arbitrarily high precision by adjusting the confi-
dence level. This is possible because the extraction
confidence is highly correlated with the probability
of correctness. Since high precision is needed to
extract accurate knowledge from text, this is a
significant contribution.

We have also included results for MaxEnt with a
tagging scheme based on two tags only. The differ-
ence in performance validates our initial hypothesis



148 R. Bunescu et al.

Figure 8 Performance of MaxEnt protein tagger on two other datasets.
suggesting the use of more than one tag for tokens
inside a protein name.

All of our IE methods perform significantly better
than two existing protein taggers, KEX and ABGENE.
Given that these systems were developed for dif-
ferent distributions of proteins, this is not surpris-
ing; however it does illustrate the relative difficulty
of identifying human proteins. The hand-built rules
used in KEX were developed and tested on a rather
confined set of proteins different from the human
proteins in our data. ABGENE uses a version of TBL to
learn a protein tagger; however, the specific tagger
we obtained was not trained specifically for human
proteins. Our own TBL system is more indicative of
the performance of this approach when specifically
trained for human proteins; however, note that
many of the other learning approaches perform
better than TBL.

As shown in Fig. 8(a), the performance on the
interaction dataset is a lot better than on the
protein dataset, and this is also reflected in the
results of the dictionary-based tagger. There are
two main reasons for this significant difference:
(1) T
he protein dataset has been manually tagged
by 9 people, in just one pass. After analyzing the
results, we have discovered significant tagging
inconsistencies which clearly affected the
learning performance. On the other hand, the
interaction dataset has been tagged by one
person only, resulting in a more consistent tag-
ging.
(2) E
7 URL: http://www.sics.se/humle/projects/prothalt/.
ach of the 230 interaction abstracts contains at
least two proteins, due to the particular selec-
tion process described in Section 2.1. This
results in a significant bias which is captured
by the learning algorithm. Comparatively, 38.7%
of the 750 abstracts dataset contain no proteins,
while many of the same abstracts include var-
ious names for cell lines, or amino acids, names
which are very similar with protein names, mak-
ing the task of recognizing proteins more rea-
listic, but at the same time harder.
We have also tried our protein name extraction
systems on the Yapex7 dataset (200 Medline abstr-
acts) and the results (Fig. 8(b)) are comparable
with those obtained on our corpus of 750 abstracts
(Fig. 7).
4. Protein interaction extraction

Identifying relations between named entities stated
in text is a more difficult IE problem that only
recently has attracted significant attention in
research on extraction from new articles. The cur-
rent ACE (Automated Content Extraction) program
at the National Institute of Standards and Technol-
ogy (NIST) [45] is focused on identifying various
social, action-role, part-of, and locational relations
between named entities. Several projects have
focused on extracting relations from biomedical
text, such as identifying gene-disease relations,
subcellular localizations, or protein interactions
[15,17,18,2—6,46]. This section discusses our work
on identifying human-protein interactions assuming
that the proteins themselves have already been
tagged, and shows that machine-learning systems
out-perform human-written extraction rules with
respect to providing a wider range of precision
and recall.

4.1. IE methods

4.1.1. RAPIER and boosted wrapper induction
In order to adapt slot-filling IE systems that extract
individual entities (like RAPIER and BWI) to the pro-
blem of extracting relations, we developed two
approaches. The first approach we call the Inter-

http://www.nist.gov/speech/tests/ace/


Comparative experiments on learning information extractors for proteins and their interactions 149

Figure 9 Interactor, interactee and interfiller.
filler approach. Given two tagged entities partici-
pating in a relationship, the text fragment between
them is called the interfiller (see Fig. 9). If a slot-
filling IE system extracts an interfiller, the tagged
entities before and after it can be extracted as
participating in the targeted relation.

The second approach we call the Role-filler
approach. In this approach, we extract the two
related entities independently into different role-
specific slots. For protein interactions, we named
the roles interactor and interactee (see Fig. 9).
There might be many interactors and interactees
extracted in one sentence, we then decide which of
them participate in a relationship using the follow-
ing heuristics, assuming that all interacting proteins
appear in the same sentence. (1) The interactors
and interactees appearing in the same sentence
form a sequence of role fillers. This sequence is
separated into segments at the points where an
interactee is immediately followed by an interactor.
Interactors and interactees can only be paired
within the same segment. (2) Each interactor is
associated with the next occurring interactee in
the segment. (3) If there are fewer interactors
(interactees) than interactees (interactors) in the
segment, use the last interactor (interactee) in
constructing the remaining pairs. In our human-
tagged interaction corpus, assuming interactors
and interactees are properly tagged, this approach
identifies all the interacting pairs with 99.2% accu-
racy.

Both of these approaches have been used to train
BWI (Section 3.1.3) to extract interacting proteins,
and the Role-filler approach has been used to train
RAPIER (Section 3.1.2) to extract interactions. RAPIER

could not learn to extract interfillers successfully,
since, in the worst case, the time complexity of its
generalization algorithm can grow exponentially in
the length of a filler. Since extracted entities are
usually fairly short, this is typically not a problem in
standard slot-filling IE. However, the long interfillers
in many protein interactions prevented us from
running RAPIER with the Interfiller approach.
Figure 10 Sample protein-extraction rule learned
4.1.2. Extraction using longest common
subsequences (ELCS)
We have also developed a new method for directly
learning patterns for extracting relations between
previously tagged entities. Blaschke et al. [3,47]
manually developed rules for extracting interacting
proteins. Each of their rules (or frames) is a
sequence of words (or POS tags) and two protein-
name tokens. Between every two adjacent words is
a number indicating the maximum number of inter-
vening words allowed when matching the rule to a
sentence. Here we describe a new method ELCS
(Extraction using Longest Common Subsequences)
that automatically learns such rules.

ELCS’ rule representation is similar to that in
[3,47], except that it currently does not use POS
tags, but allows disjunctions of words. Fig. 10 shows
an example of a rule learned by ELCS. Words in
square brackets separated by ‘ j’ indicate disjunc-
tive lexical constraints, i.e. one of the given words
must match the sentence at that position. The
numbers in parentheses between adjacent con-
straints indicate the maximum number of uncon-
strained words allowed between the two (called a
word gap). A sentence matches the rule if and only if
it satisfies the word constraints in the given order
and respects the respective word gaps.

A sentence in the training data may contain
more than two proteins and more than one pair
of interacting proteins. In order to extract the
interacting pairs, the rules should be trained to
pick out exactly the interacting proteins from the
sentences. To do this we replicate the sentences
having n proteins (n> 2) into Cn2 sentences such
that each one has exactly two of the proteins
tagged, with the rest of the protein tags omitted.
If the tagged proteins interact, then the replicated
sentence is added to the set of positive sentences,
otherwise it is added to the set of negative sen-
tences. During testing, a sentence having n proteins
(n> 2) is again replicated into Cn2 sentences in a
similar way. If such a replicated sentence matches
one of the rules, then the system extracts the two
by ELCS. Token PROT stands for protein name.



150 R. Bunescu et al.
proteins tagged in that sentence as interacting
proteins.

ELCS induces rules using a bottom-up approach.
Rule induction starts with maximally specific rules
for each positive sentence which contain all the
words in the sentence with zero-length word gaps.
These are then repeatedly generalized to formmore
general rules until the rules become overly general
and start matching negative sentences. We have
developed three methods for generalizing rules.
The first simple method to produce a generalization
of two rules is to find the longest common subse-
quence (LCS) of words between them. Efficient
algorithms for computing an LCS are presented in
[48,49]. After finding the LCS between two rules, we
determine the size of word gaps between every two
adjacent words in their LCS as the larger of the
number of words plus the sum of existing word gaps
between the two LCS words where they are found in
the original two rules.

Our second approach to generalization uses edit
distance (ED) [49] and creates more specific rules
that contain disjunctive constraints. The most com-
mon edit distance is Levenshtein distance [50],
defined as the minimum number of edit operations
(adding, deleting, or replacing an item) required to
convert one sequence into another. We use the
minimal edit-operation sequence obtained when
computing Levenshtein distance to generalize two
rules. We preserve the common word constraints
between the rules, make disjunctions of constraints
when one item is replaced by another in the edit
sequence, and drop constraints that are added or
deleted in the edit sequence. Finally, we introduce
Figure 11 Generalizations of two sentences using different
subscript numbers indicate interactions between them. Toke
word gaps using the method described for the LCS-
based generalization.

The third generalizationmethod finds all common
sequences between the two rules and considers their
conjunction (CJ) as the generalization. Unlike the
previous two methods, this method is associative,
i.e. we get the same generalization of a set of rules
irrespective of the order in which we generalize two
of them at a time. If there is any common pattern
among the base rules then this property guarantees
that the pattern will also appear in the general-
ization (note that it is possible to lose such a common
patternwhile taking LCS of two rules at a time).Word
gaps are then introduced as in the previous two
methods. Fig. 11 shows generalization of two sen-
tences obtained by each of these methods.

Using one of these generalization methods, a
greedy-covering, bottom-up rule-induction method
is used to learn a small set of rules that cover all the
positive sentences without covering many negative
ones. We use an algorithm similar to beam search
and consider only the r best rules for generalization
at any time. We start with r randomly selected
positive examples. These r rules are generalized
with one of the remaining positive examples to
obtain r more rules. Out of these 2r rules we select
r rules with the highest confidence level and allow
further generalization with the remaining positive
examples. After iterating over the remaining posi-
tive examples in this way, the r best rules are finally
included in the set of learned rules and the positive
examples covered by them are removed. The entire
process is repeated till we exhaust the set of posi-
tive examples.
methods. Protein names have been underlined and same
n ‘PROT’ stands for protein name.



Comparative experiments on learning information extractors for proteins and their interactions 151
We measure the confidence levels of our rules
using m-estimate [51] which is a measure of
expected accuracy of a rule. It is defined as:
confidence level ðruleÞ ¼ ðpþm:pþÞ=ðpþ nþmÞ,
where p and n are the number of positive and
negative examples covered by the rule, pþ is the
prior probability of positive examples and m a para-
meter which should be set according to the amount
of noise in the data. We set pþ as the fraction of
examples in the training data which are positive and
set m based on pilot studies.

The generalizations obtained using any of the
methods may result in rules that do not contain
two protein-name tokens. This is fine for extracting
protein interactions because we always apply the
rules to sentences containing exactly two protein
names (if they contain more than two protein names
then we replicate the sentence as described ear-
lier). However, constraining learned rules to contain
two protein names is a useful bias. Therefore, we
divide each of the training sentences in three parts:
the portion of the sentence before the first protein
name, the portion between the two protein names,
and the portion after the second protein name.
When we generalize two rules, we generalize these
three parts separately. This ensures the rule will
always contain two protein-name tokens. Fig. 12
shows some sample rules learned by ELCS.

4.2. Experimental results

4.2.1. Experimental methodology
Medline abstracts were pre-processed as described
in Section 3.2.1. All our systems for extracting
interactions require sentence segmentation since
only the proteins within a sentence are considered
when identifying interactions. This constraint is
Figure 12 Some example rules learned by ELCS; the first two
ED generalization and the last two using CJ generalization.
satisfied by all interactions in our corpus because
while manually tagging the corpus with interactions
we did not find a single instance where the two
interacting proteins were in different sentences. We
also compared our systems with Blaschke et al.’s
manually-written rules [47]. Since these rules
require POS tags, we used Brill’s POS tagger. We
also tested a version of the human-written rules in
which the POS tags are replaced by typical words
indicating interactions such as activation, phosphor-
ylation or interaction for nouns and activates, binds
or phosphorylates for verbs, similar to the approach
in [3]. Thesemanually-written rules were developed
to capture the common ways of expressing protein
interactions in natural language, like ‘‘protein A
binds/interacts . . .(with) protein B’’ (see the SUISEKI
system overview in [47]). Such natural language
constructions are general enough and not sensitive
to any particular dataset. Hence, we applied these
rules on our dataset to make a direct comparison
with our systems.

We did two experiments to evaluate the perfor-
mance of protein interaction extraction. In both
experiments the machine learning systems were
trained using the manually tagged abstracts (see
Section 2.1) with proteins and their interactions.
The two experiments differ in the way we tested the
systems. In the first experiment we provide manu-
ally tagged protein names to our systems and
extract interactions among these proteins. This
way we get ameasure of how the protein interaction
extraction systems alone perform independent of
the protein name extraction systems. In the second
experiment we first find protein names in the
abstracts using our best system for protein name
extraction, MaxEnt (see Section 3.2.2), and then
extract interactions among these proteins. This
were learned using LCS generalization, the next two using



152 R. Bunescu et al.

Figure 14 Precision-recall graphs for protein interac-
tion extraction using extracted protein names.
gives a truemeasure of how our systems can perform
at extracting protein interactions from completely
untagged abstracts. Blaschke et al.’s manually-writ-
ten rules also require protein names, in this experi-
ment we also test those rules by providing themwith
our extracted protein names. For this experiment,
we chose the point on the MaxEnt’s precision-recall
curve (Fig. 8(a)) which gives 70% precision and about
90% recall for protein name extraction.

As in Section 3.2.1, performance is evaluated
using 10-fold cross validation and measuring recall
and precision. We consider an extracted interaction
from an abstract correct only if both its proteins
have been human-tagged as interacting with each
other somewhere in that abstract. As the task of
interest is only to extract interacting protein-pairs,
in our evaluation we donot consider matching exact
positions and every occurrence of interacting pro-
tein-pairs within the abstract. For those IE methods
which output extraction confidences, if we extract
more than one occurrence of interaction between
two proteins then we combine their extraction
confidences using the standard Noisy—Or method
[52].

4.2.2. Quantitative results
Fig. 13 shows recall—precision results for protein-
interaction extraction when tested on abstracts that
have been manually tagged for protein names and
Fig. 14 shows the results when tested on abstracts in
which protein names were tagged using our best
protein name extractor. We plotted a precision-
recall curve for BWI by utilizing its extraction con-
fidence, and for ELCS using the confidence levels of
the rules which extract the interactions. Since RAPIER

and human-written rules do not produce confi-
dences, only a single recall—precision point is shown
for each of them.
Figure 13 Precision-recall graphs for protein interac-
tion extraction using correct protein names.
4.2.3. Discussion of results
From Fig. 13 it can be seen that BWI gives varying
degrees of high precision, but its recall is generally
quite low. RAPIER also gives relatively high precision
but low recall. ELCS tends to give higher recall with
only a modest decrease in precision compared to
BWI and RAPIER. When we use the protein names
extracted from our protein name extractor instead
of the correct protein names, not surprisingly the
performance of all the systems degrade but they
still offer reasonable ranges of precisions and recalls
(Fig. 14).

These results demonstrate that machine learning
systems can provide higher precisions than the
human-written rules. In order to avoid over-loading
human curators with too many false positives when
extracting knowledge from large volumes of text, a
general emphasis towards higher precision seems
appropriate. The machine learning systems also
offer a wide range of precision-recall trade-off
which can be suitably utilized by a user depending
on the needs of the application. The machine learn-
ing systems can also provide recalls higher than the
best recall the human-written rules could provide.
Hence, the machine learning systems out-perform
the manually-written rules in several ways.
5. Conclusions and future research

After comparing a number of methods for extracting
human protein names and interactions, we obtained
the best performance for protein tagging with a
maximum entropy learning method that exploits a
generalized protein-name dictionary. For extracting
protein interactions, we found that several methods
for learning extraction rules out-perform the hand-
written rules in providing higher precisions and in



Comparative experiments on learning information extractors for proteins and their interactions 153
offering a wider range along precision-recall trade-
off. Token classification methods like k-NN, TBL,
SVM, and MaxEnt are not directly applicable to
extracting interactions; however, we plan to test
HMMs on extracting interactions in the near future.

Clearly, the ability to extract human proteins and
their interactions still needs significant improve-
ment. We foresee improvement in three general
areas: better training data, better learning meth-
ods, and better use of external knowledge.

Larger training sets are always beneficial to
learning systems; however, manually tagging data
is very time consuming. One alternative approach is
to use existing knowledge to automatically produce
weakly labeled training data [15]. Another approach
is to use active learning to select only the best
training examples for human labeling [53]. A third
approach is to utilize a mixture of both labeled and
unlabeled data during training [54].

Improved learning algorithms for information
extraction continue to be developed. Recently, a
number of methods for improving HMMs have been
proposed, including linear interpolating HMMs [16],
maximum-entropy Markov models [55], and condi-
tional random fields [56].

Existing biological knowledge can also be used to
improve extraction performance. Currently we have
only exploited dictionaries of known protein names.
Using learning to revise initial human-written
extraction rules has also been shown to improve
performance [18]. One can imagine many other
sources of external knowledge: global statistical
properties of abstracts, existing interaction or path-
way data, prior expectations for finding protein
names, and dictionaries of near-miss negative exam-
ples of protein names. Filtering proposed interacting
proteins by comparing their gene-expression data or
examining their co-occurrences in other abstracts or
web pages could also prove useful.

In the future, it will also be interesting to develop
IE systems for extracting other associations with
genes. A few examples include extracting informa-
tion about post-translational modifications of pro-
teins, identifying genes that are specifically involved
with diseases, identifying genes that are co-regu-
lated, extracting protein-drug interactions, protein-
metabolite interactions and information about the
dynamics and dependencies of these processes.
Acknowledgements

We would like to thank members of the Marcotte lab
for helping to tag Medline abstracts. We would also
like to thank Kristie Seymore for making the IE-
tagging tool available. We would like to thank Lor-
raine Tanabe for kindly allowing us to use the ABGENE

system. Many thanks to Kenichiro Fukuda for the KEX
system, Mary Elaine Califf for the RAPIER system,
Dayne Freitag and Nicholas Kushmerick for the
BWI program, Thorsten Joachims for the SVMlight

software, Eric Brill for his POS tagger, and to Ellen
Riloff for the Sundance shallow parser.We also thank
Christian Blaschke for the information about the
hand-written rules. This work was supported in part
by the National Science Foundation (IIS-0117308,
ITR-0219061 and IIS-0325116), the Welch Founda-
tion (F-1515), and the Texas Advanced Research
Program.
References

[1] Fukuda K, Tsunoda T, Tamura A, Takagi T. Information extrac-
tion: identifying protein names from biological papers. In:
Proceedings of the 3rd Pacific Symposium on Biocomputing.
Kapalua, HI; 1998. p. 707–18.

[2] Humphreys K, Demetriou G, Geizauskas R. Two applications
of information extraction to biological science journal arti-
cles: enzyme interactions and protein structure. In: Pro-
ceedings of the 5th Pacific Symposium on Biocomputing.
Waikiki Beach, HI; 2000. p. 502—13.

[3] Blaschke C, Valencia A. Can bibliographic pointers for known
biological data be found automatically? protein interactions
as a case study. Compar Funct Genom 2001;2:196—206.

[4] Proux D, Rechenmann F, Julliard L. A pragmatic information
extraction strategy for gathering data on genetic inter-
actions. In: Proceedings of the 9th International Conference
on Intelligent Systems for Molecular Biology (ISMB-2001).
Copenhagen, Denmark; 2000. p. 279—85.

[5] Rindflesch TC, Tanabe L, Weinstein JN, Hunter L. EDGAR:
extraction of drugs, genes, and relations from the biome-
dical literature. In: Proceedings of the 5th Pacific Symposium
on Biocomputing; 2000. p. 515—24.

[6] Thomas J, Milward D, Ouzounis C, Pulman S, Carol M.
Automatic extraction of protein interactions from scientific
abstracts. In: Proceedings of the 5th Pacific Symposium on
Biocomputing; 2000. p. 541—53.

[7] Hahn U, Romacker M, Schulz S. Creating knowledge reposi-
tories from biomedical reports: the MEDSYNDIKATE text
mining system. In: Proceedings of the 7th Pacific Symposium
on Biocomputing; 2002. p. 338—49.

[8] Pustejovsky J, Castano J, Zhang J, Kotecki M, Cochran B.
Robust relational parsing over biomedical literature:
extracting inhibit relations. In: Proceedings of the 7th Pacific
Symposium on Biocomputing; 2002. p. 362—73.

[9] Park J, Kim HS, Kim JJ. Bidirectional incremental parsing for
automatic pathway identification with combinatory cate-
gorial grammar. In: Proceedings of the 6th Pacific Symposium
on Biocomputing; 2001. p. 396—407.

[10] Friedman C, Kra P, Yu H, Krauthammer M, Rzhetsky A.
GENIES: a natural-language processing system for the
extraction of molecular pathways from journal articles.
Bioinformatics 2001;17(Suppl 1):S74—82.

[11] Cowie J, Lehnert W. Information extraction. Commun Assoc
Comput Machinery 1996;39(1):80—91.

[12] Cardie C. Empirical methods in information extraction. AI
Mag 1997;18(4):65—79.



154 R. Bunescu et al.
[13] Califf ME, editor. Papers from the AAAI-1999 Workshop on
Machine Learning for Information Extraction. Orlando, FL:
AAAI Press; 1999.

[14] Proux D, Rechenmann F, Julliard L, Pillet V, Jacq B. Detecting
gene symbols and names in biological texts: a first step
toward pertinent information extraction. Genome Inform
1998;9:72—80 (GIW’98).

[15] Craven M, Kumlien J. Constructing biological knowledge
bases by extracting information from text sources. In:
Proceedings of the 7th International Conference on
Intelligent Systems for Molecular Biology (ISMB-1999);
1999. p. 77—86.

[16] Collier N, No C, Tsujii J. Extracting the names of genes and
gene products with a hidden Markov model. In: Proceedings
of the 18th International Conference on Computat Linguis-
tics, Saarbrücken; 2000. p. 201—7.

[17] Ray S, Craven M. Representing sentence structure in hidden
Markov models for information extraction. In: Proceedings
of the 17th International Joint Conference on Artificial
Intelligence (IJCAI-2001); 2001. p. 1273—9.

[18] Eliassi-Rad T, Shavlik J. A theory-refinement approach to
information extraction. In: Proceedings of the 18th Inter-
national Conference on Machine Learning (ICML-2001);
2001.

[19] Leonard JE, Colombe JB, Levy JL. Finding relevant refer-
ences to genes and proteins in medline using a Bayesian
approach. Bioinformatics 2002;18(11):1515—22.

[20] Raychaudhuri S, Chang JT, Sutphin PD, Altman RB. Associat-
ing genes with gene ontology codes using a maximum
entropy analysis of biomedical literature. Genome Res
2002;12:203—14.

[21] Perez-Iratxeta C, Bork P, AndradeMA. Association of genes to
genetically inherited diseases using data mining. Nat Genet
2002;31(3):316—9.

[22] Venter, JC, et al. The sequence of the human genome.
Science 16 February 2001;291(5507):1304—51.

[23] Lander, ES, et al. Initial sequencing and analysis of the
human genome. Nature 15 February 2001;409(6822):860—
921.

[24] Califf ME, Mooney RJ. Relational learning of pattern-match
rules for information extraction. In: Proceedings of the 16th
National Conference on Artificial Intelligence (AAAI-99);
1999. p. 328—34.

[25] Freitag D, Kushmerick N. Boosted wrapper induction. In:
Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI-2000). Austin, TX: AAAI Press/The MIT
Press; 2000. p. 577—83.

[26] Duda RO, Hart PE. Pattern classification and scene analysis.
New York: Wiley; 1973.

[27] Brill E. Transformation-based error-driven learning and nat-
ural language processing: a case study in part-of-speech
tagging. Computat Linguist 1995;21(4):543—65.

[28] Vapnik VN. The nature of statistical learning theory. Berlin:
Springer-Verlag; 1995.

[29] Berger AL, Della Pietra SA, Della Pietra VJ. A maximum
entropy approach to natural language processing. Computat
Linguist 1996;22(1):39—71.

[30] Xenarios I, Fernandez E, Salwinski L, Duan XJ, Thompson MJ,
Marcotte EM, Eisenberg D. DIP: The database of interacting
proteins: 2001 update. Nucleic Acids Res 2001;29(1):239—
41.

[31] Bikel DM, Schwartz R, Weischedel RM. An algorithm that
learns what’s in a name. Machine Learning 1999;34:211—32.

[32] Roth D, van den Bosch A, editors. Proceedings of the 6th
Conference on Natural Language Learning (CoNLL-2002).
Association for Computational Linguistics. Taipei, Taiwan;
2002.
[33] Kushmerick N, Weld DS, Doorenbos RB. Wrapper induction
for information extraction. In: Proceedings of the 15th
International Joint Conference on Artificial Intelligence
(IJCAI-97); 1997. p. 729—35.

[34] Freund Y, Schapire RE. Experiments with a new boosting
algorithm. In: Saitta L, editor. Proceedings of the 13th
International Conference on Machine Learning (ICML-96),
1996.

[35] Vapnik VN. Statistical learning theory. New York: John Wiley
& Sons; 1998.

[36] Joachims T. Text categorization with support vector
machines: learning with many relevant features. In: Pro-
ceedings of the 10th European Conference on Machine
Learning. Berlin: Springer-Verlag; 1998. p. 137—42.

[37] Ramshaw LA, Marcus MP. Text chunking using transforma-
tion-based learning. In: Proceedings of the 3rd Workshop on
Very Large Corpora; 1995.

[38] Kudoh T, Matsumoto Y. Use of support vector learning for
chunk identification. In: Proceedings of CoNLL-2000 and LLL-
2000; 2000. p. 142—4.

[39] Kubat M, Holte RC, Matwin S. Machine learning for the
detection of oil spills in satellite radar images. Machine
Learning 1998;30(2—3):195—215.

[40] Collins M. Ranking algorithms for named-entity extraction:
boosting and the voted perceptron. In: Proceedings of
the Annual Meeting of the Association for Computational
Linguistics (ACL-02); 2002.

[41] Rabiner LR. A tutorial on hidden Markovmodels and selected
applications in speech recognition. Proc IEEE 1989;77(2):
257—86.

[42] Darroch J, Ratchliff D. Generalized iterative scaling for log—
linear models. Ann Math Stat 1972;43(5):1470—80.

[43] Tanabe L, Wilbur WJ. Tagging gene and protein names in
biomedical text. Bioinformatics 2002;18(8):1124—32.

[44] Marcus M, Santorini B, Marcinkiewicz MA. Building a large
annotated corpus of English: the Penn treebank. Computat
Linguist 1993;19(2):313—30.

[45] National Institute of Standards and Technology, ACE–—auto-
matic content extraction (http://www.nist.gov/speech/
tests/ace/)

[46] Marcotte E, Xenarios I, Eisenberg D. Mining literature for
protein—protein interactions. Bioinformatics April
2001;17(4):359—63.

[47] Blaschke C, Valencia A. The frame-based module of the
Suiseki information extraction system. IEEE Intell Sys
2002;17:14—20.

[48] Charras C, Lecroq T. Sequence comparison, Laboratoire
d’Informatique de Rouen et Atelier Biologie Informa-
tique Statistique Socio-Linguistique, Universit’e de
Rouen, France; 1998 (http://www-igm.univ-mlv.fr/lecroq/
seqcomp)

[49] Gusfield D. Algorithms on strings, trees and sequences. New
York: Cambridge University Press; 1997.

[50] Levenshtein VI. Binary codes capable of correcting insertions
and reversals. Sov Phys Doklady 1966;10(8):707—10.

[51] Cestnik B. Estimating probabilities: a crucial task in machine
learning. In: Proceedings of the 9th European Conference on
Artificial Intelligence; 1990. p. 147—9.

[52] Pearl J. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. San Mateo,CA: Morgan Kauf-
mann; 1988.

[53] Thompson CA, Califf ME, Mooney RJ. Active learning for
natural language parsing and information extraction. In:
Proceedings of the 16th International Conference on
Machine Learning (ICML-99); 1999. p. 406—14.

[54] M. Collins, Y. Singer, Unsupervised models for named entity
classification. In: Proceedings of the Conference on Empiri-

http://www.nist.gov/speech/tests/ace/
http://www.nist.gov/speech/tests/ace/
http://www-igm.univ-mlv.fr/lecroq/seqcomp
http://www-igm.univ-mlv.fr/lecroq/seqcomp


Comparative experiments on learning information extractors for proteins and their interactions 155
cal Methods in Natural Language Processing and Very Large
Corpora (EMNLP/VLC-99). University of Maryland, College
Park, MD; 1999.

[55] McCallum A, Freitag D, Pereira F. Maximum entropy Markov
models for information extraction and segmentation. In:
Proceedings of the 17th International Conference on
Machine Learning (ICML-2000); 2000.

[56] J. Lafferty, A. McCallum, F. Pereira, Conditional random
fields: Probabilistic models for segmenting and labeling
sequence data. In: ICML-2001. Williamstown, MA; 2001.


	Comparative experiments on learning information �extractors for proteins and their interactions
	Introduction
	Biomedical corpora
	Tagging of medline abstracts
	Rules used for tagging

	Protein name identification
	IE methods
	Dictionary-based extraction
	Rapier
	Boosted wrapper induction
	Support vector machines
	Maximum entropy
	Existing protein name identification systems

	Experimental results
	Experimental methodology
	Quantitative results
	Discussion of results


	Protein interaction extraction
	IE methods
	Rapier and boosted wrapper induction
	Extraction using longest common subsequences (ELCS)

	Experimental results
	Experimental methodology
	Quantitative results
	Discussion of results


	Conclusions and future research
	Acknowledgements
	References


