
An Analysis of Using Semantic Parsing for Speech
Recognition

Rodolfo Corona

Abstract

This thesis explores the use of semantic parsing for improving speech recognition

performance. Specifically, it explores how a semantic parser may be used in order

to re-rank the n-best hypothesis list generated by an automatic speech recognition

system. We also explore how system performance is affected when retraining the

system’s acoustic model using a portion of the re-ranked data.

1 Introduction

As access to technological advances continues to grow in our society, the consumer

demand for these advances has increased. With this increase in users comes a

need for making these technologies more intuitive and user-friendly. One avenue

that has been pursued to facilitate this is that of speech recognition.

Prominent technology companies such as Apple, Google, and Microsoft make

it possible for a variety of their products to be interfaced by simply speaking to

them. Allowing users to interact with a product by using only their voice not

only has the potential to increase efficiency through single-utterance commands,

but also relieves the user from having to learn how to use a possibly complicated

interface. While automatic speech recognition (ASR) technology has experienced

considerable advances, its efficacy is only just beginning to reach a point which

would allow for a wide adoption of the technology. Thus, it is desirable to continue

exploring methods which could make way for greater recognition performance.

In this thesis, we investigate methods in which semantic parsing may be used

to re-rank the n-best hypothesis list of a speech recognizer in order to reduce error

1

rates in recognition. Semantic parsing, which is discussed in more detail in section

2.3, may be defined as the process through which the meaning of natural language

expressions is inferred and mapped to a computer interpretable formalism. The

motivating intuition behind our work is that given a list of ASR hypotheses, the

correct hypothesis should generally also be the most "meaningful" to the semantic

parser, something which is formalized through parse confidence scores. Further,

we investigate how this re-ranking method may be used to automatically induce

new training examples for the recognizer’s statistical models.

Through our experiments, we find that our re-ranking algorithm results in a

significant improvement in language understanding at the cost of ASR transcrip-

tion accuracy.

2 Background

In this section we describe relevant background in ASR, particularly describing the

CMU Sphinx-4 speech recognition system which was used in this work. Semantic

parsing as is relevant to this work is also briefly discussed.

2.1 Speech Recognition

The goal of ASR systems is to find the most likely sentence Ŵ that was uttered by

a user given their speech input, something which is expressed by the following

equation:

Ŵ = argmax
W∈L

P(W|O)

Where L is the given language, W ∈ L are possible sentences within it, and O

is the observed audio input (Jurafsky & Martin, 2009). Using Bayes’ rule, this

expression may be better modelled as:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L
P(O|W)P(W)

2

The denominator P(O) may be ignored since it is a common factor amongst all

candidate sentences.

The probability for a given sentence P(W) may be computed using a language

model, which is a statistical distribution of word sequences in a language. The set

of all possible words, or tokens, in a language model is known as the vocabulary.

In general, given a word sequence wN
1 , the model will assign the probability

P(wN
1) to the sequence proportionally to how often the sequence was seen during

training. As the length of sequences N increases, sequence appearances will

become increasingly sparse in the training corpus. In order to combat the sparsity

problem, this distribution may be approximated using n-grams(Rosenfeld, 2000),

which are word sequences of length n. During training, the model will instead

construct the distribution of unique n-grams. With this approach, P(wN
1) is

approximated as follows:

P(wN
1) ≈

N

∏
i=1

P
(

wi|wi−1
i−n+1

)
Intuitively, larger n-grams allow for more accurate models but require larger

amounts of training data in order to be effective. In order to take advantage of

higher order n-grams for which enough information is available while still having

the option of using lower order n-grams if necessary, n-gram backoff language

models may be used. N-gram backoff language models contain distributions

for all n-grams from 1 up to n. When computing the probability of a sequence

P(wN
1), the discounted probability of the highest order n-gram with a count above

a threshold k is used.

The conditional probability P(O|W) may be computed using an acoustic

model. Acoustic models are constructed using Hidden Markov Models (HMMs)(Rabiner,

1989), which consist of a series of states, modelled by a directed graph, with transi-

tion probabilities between them. Each state contains a set of possible observations

that may be made when in said state as well as their probabilities. In an HMM,

the states are not directly observed (i.e. are said to be hidden) and the most

3

likely sequence of states must be inferred using a sequence of given observations.

This inference may be performed using procedures such as the Viterbi algorithm

(Forney, 1973). Using this framework for ASR, per-word HMMs are constructed

where phones, which are basic units of speech, serve as the hidden states, while

feature vectors extracted from the audio input serve as the observations. Addi-

tionally, most ASR implementations further split each phone state into a three

state HMM modelling the beginning, middle, and end of the phone, something

which is beneficial since phones tend to have different features at different stages

of their utterance. An example of a word-level HMM may be seen in Figure 1.

Figure 1: An example of an acoustic model HMM for the word “doctor". The nodes in the graph represent

the phones which compose the word.

The main evaluation metric used for speech recognition accuracy is known

as word error rate (WER), which, if we let o and c be the recognition output and

correct phrase respectively, may be computed as follows:

WER(o) =
S + D + I

N

Where S is the the number of words that were substituted in c by o (e.g. confusing

gray with great), D is the number of deletions (i.e. the number of words in c not

present in o), I is the number of insertions (i.e. the number of words in o not

present in c), and N is the total number of words in c.

2.2 The CMU Sphinx-4 Speech Recognition System

Sphinx-4 is a speech recognition system jointly developed by Carnegie Mellon

University, Sun Microsystem Laboratories, and Mitsubishi Electronic Research

4

Laboratories (Lamere, Kwok, Gouvea, et al., 2003; Lamere, Kwok, Walker, et al.,

2003; Walker et al., 2004). The system is designed to be heavily modular, allowing

users to experiment with different language and acoustic models, decoders, and a

variety of other components.

The system is composed of three main modules, the FrontEnd, the Linguist,

and the Decoder (Walker et al., 2004). The FrontEnd takes raw audio data as input,

and generates a feature vector that may be used during the decoding process by

the Decoder.

The Linguist constructs a search graph for sentence hypotheses based on a

given language model, acoustic model, and dictionary (i.e. a phone pronunciation

lexicon for words in the domain vocabulary). The default Sphinx-4 language

model is an ARPA1 formatted trigram backoff language model. The search

graph is constructed as a directed acyclic graph (DAG) by connecting each word

HMM taken from the acoustic model and connecting them with edges whose

transition weights are derived from the language model. This graph is then used

to construct a trellis, which is a graph which models state transitions over time.

Trellis construction begins with the acoustic model HMM starting state, S0, being

mapped to time step t0. All states to which there is a transition from S0 are then

mapped to t1, a procedure which is then repeated for each state at each time step.

Due to memory constraints that may arise from large vocabularies, the trellis

is generally constructed dynamically as each of its components is needed. An

example of a trellis is given in Figure 2.

The Decoder takes feature vectors from the FrontEnd and traverses the search

graph generated by the Linguist in order to form a list of recognition hypotheses

(Lamere, Kwok, Walker, et al., 2003). The search operation is done using the

Bushderby algorithm (Singh, Warmuth, Raj, & Lamere, 2003), which subsumes the

Viterbi and forward algorithms depending on the chosen hyper-parameter values.

1http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html

5

Figure 2: An example of a trellis built over 5 time steps with a vocabulary of 5 words.

A token tree is generated during the search, using a token passing algorithm

(Young, Russell, & Thornton, 1989), which may be queried for a list of hypotheses.

Each node in the tree contains a token which in turn consists of the overall acoustic

and language scores as well as other scoring information for a given path in the

search. During the search, the tree is pruned in order to conserve computational

resources.

It must be noted that in recent years there have been great advances in speech

recognition which use deep recurrent neural networks (Graves & Jaitly, 2014;

Xiong et al., 2016), particularly Long Short Term Memory networks (LSTMs).

These methods have achieved state of the art performance and have even achieved

human parity on the NIST 2000 dataset2. Unfortunately, although there are a

variety of libraries with which neural network models may be constructed345,

source code for the specific architectures used in these works has not been made

2http://www.itl.nist.gov/iad/mig/tests/ctr/2000/h5_2000_v1.3.html
3https://www.tensorflow.org/
4http://caffe.berkeleyvision.org/
5https://keras.io/

6

readily available. Sphinx-4 was chosen as our ASR framework in part due to its

being open-source.

2.3 Semantic Parsing

2.3.1 Mapping Natural to Formal Language

Intuitively, semantic parsing may be described as the task of deriving the meaning

of a natural language phrase in a form which is interpretable by a computer. More

concretely, this generally entails finding a mapping from a given phrase to an

unambiguous formal language representation, such as first order logic (FOL). For

example, the phrase "Bring Dr. Smith the marker" could feasibly be mapped to the

FOL representation bring(smith, marker). In order to accomplish this, a semantic

parser’s knowledge is comprised of two main components, the ontology and the

lexicon (Jurafsky & Martin, 2009).

The ontology of the parser is what denotes the set of atoms which are used to

derive meaning from phrases. In other words, the ontology will contain the set of

entities of the domain, the possible properties or relations that they may possess,

as well as the actions which any entities might be able to take. An example of

what an ontology could look like using FOL is shown in Figure 3.

Entities Dr. Smith, John, Jane, marker

Properties isProfessor(x), isStudent(x)

Relations professorOf(x,y), studentOf(x,y)

Actions bring(x,y)

Figure 3: An ontology for a small domain.

Whereas the ontology denotes the building blocks of a domain with which a

system may form meaning, the lexicon ascribes pertinent linguistic information to

certain words or phrases in the vocabulary for use by the system. For example,

7

Word or Phrase Mapping in Ontology

Dr. Smith Dr. Smith

The professor Dr. Smith

John John

Johny John

Jane Jane

Figure 4: An example lexicon which might pertain to the domain of the ontology in Figure 3. This lexicon

maps words or phrases which may be found in natural language input to grounded FOL atoms

found in the ontology.

a lexicon may map natural language words or phrases which the system might

encounter to atoms in the ontology, as may be seen in Figure 4. Note the distinction

between the names of FOL atoms or predicates, such as John, and actual words

or phrases in the vocabulary, such as Johny, which may be found in the natural

language input itself. As will be described in section 2.3.2, lexicons may also

contain other types of information. For example, ASR systems, such as the CMU

Sphinx system, make use of lexicons which map words in their vocabulary to a

set of phones denoting their pronunciation.

2.3.2 Semantic Parsing with Combinatory Categorical Grammars

The semantic parser used in this work was developed within the UTCS depart-

ment and is modeled after (Liang & Potts, 2015). The parser is analogous in

function to the University of Washington Semantic Parsing Framework (Artzi

& Zettlemoyer, 2013a), which uses typed λ-calculus in conjunction with Combi-

natory Categorial Grammars (CCGs) (Steedman & Baldridge, 2011) to compute

meaning representations for given natural language inputs.

λ-calculus is a high-order logic formalism which subsumes FOL. Through the

use of the λ term, a λ-calculus expression may exhibit behavior akin to that of

8

a function. For example, the expression λx.bring(x, marker) may be applied to

the atom John, which would evaluate to the expression bring(John, marker). By

extending the formalism with types, expression arguments may be constrained

(Church, 1940). For example, the expression above could be extended to require

arguments of a type which represent people:

λx : person.bring(x, marker)

In our work, predicate and atom types are specified in the system’s ontology.

CCGs are a categorial formalism which assigns syntactic categories to logical

expressions:

ADJ : λx.happy(x)

These category and expression pairs may be used in order to map natural language

phrases to logical expressions. This is accomplished through the use of combinator

categories which act as functions, for example:

S/NP : λx.bring(x, marker)

These combinators are read from right to left, where the rightmost category is the

parameter, while everything left of the slash is what is returned. The direction of

the slash (forward or backward) determines whether the combinator consumes the

token on its left or on its right. If we let S denote the complete sentence category,

then the above example represents a combinator which consumes a noun phrase

(such as a person) on its right and returns a full sentence. For the purposes of

semantic parsing, words in the vocabulary may be mapped to such pairs within

the lexicon:

happy ` ADJ : λx.happy(x)

An example of what could be a feasible CCG parse tree for the phrase "John is

happy" may be seen in Figure 5.

Because of the prohibitive time investment necessary to generate annotated

CCG parse trees for phrases, generally only the final semantic form of each

9

John
NP
John

is
S\NP/ADJ
λ f .λx. f (x)

happy
ADJ

λx.happy(x)
S\NP

λx.happy(x)
S

happy(John)

Figure 5: A CCG parse of the phrase "John is happy". Note that the direction in which an argument is

consumed depends on the direction of the slash specified by a combinator.

phrase is specified in a training corpus (e.g. the training pair ["John is happy,

happy(John)]). Due to this problem, it is necessary for the training algorithm

used by the parser to generate and rank lists of candidate parses during training,

something which is generally done through the use of variants of the CKY and

perceptron algorithms (Artzi & Zettlemoyer, 2013b). Through this procedure, the

parser incrementally adds entries to its lexicon and attempts to infer new rules for

combining categories which will allow it to generate valid parses for the phrase

and semantic form pairs given during training.

3 Related Work

Various different methods have been used in order to re-rank the n-best hypothesis

list generated by ASR systems. Close to the phonetic level, Ananthakrishnan et

al. (Ananthakrishnan & Narayanan, 2007) trains a prosody model which is used

to score hypotheses based on their syllabic transcription. Similarly, Twiefel et al.

(Twiefel, Baumann, Heinrich, & Wermter, 2014) takes Google ASR results and

transforms them into sequences of phonemes. The generated list of phonemes is

then post-processed by attempting to match it either at the sentence level to in-

domain sentences, or at the word level to words in the given domain’s vocabulary.

Interestingly, their work also experimented with replacing the Sphinx-4 FrontEnd

10

with their generated phonemes list and allowing Sphinx to perform the decoding

using in-domain language and acoustic models.

Peng et al. (Peng, Roy, Shahshahani, & Beaufays, 2013) takes an intriguing

approach by feeding each entry in the n-best list to a search engine, extracting a

set of features from both the hypothesis and search results, and re-ranking the list

by passing the feature vectors for each hypothesis through a maximum entropy

(ME) model. Morbini et al. (Morbini et al., 2012) also uses a ME model in order to

re-rank the list. The model is trained on features that are extracted from natural

language understanding (NLU) categories that each hypothesis is given. Their

work also explored re-ranking using a discriminative language model trained

using the perceptron algorithm as well as by generating the hypothesis list from a

combination of three different ASR systems’ respective lists.

Syntactic and semantic parsing have also been used previously in different

capacities for this problem. Zechner et al. (Zechner & Waibel, 1998) tags each

hypothesis using a part of speech (POS) tagger. The generated tag sequence for

each hypothesis is then parsed using a chunk based parser, with parses being

scored based on their coverage of the sentence (i.e. number of words skipped

during parsing). Each hypothesis is then passed through a neural network

which takes as input the hypothesis recognition confidence score, chunk coverage

score, and chunk language model score (which is assigned by a language model

trained on chunk n-grams), and outputs a predicted WER rate which is used

to re-rank the hypothesis. Basili et al. (Basili, Bastianelli, Castellucci, Nardi, &

Perera, 2013) generates full syntactic parses and semantic representations for

each hypothesis and re-ranks the list by using a kernel function. The syntactic

parse for a hypothesis is generated using the Stanford Parser6, while a semantic

representation for it is derived through a linear combination of the distributional

representation vectors of each of its constituent words (which are built through a

6http://nlp.stanford.edu/software/lex-parser.shtml

11

co-occurrence matrix).

Erdogan et al. (Erdogan, Sarikaya, Chen, Gao, & Picheny, 2005), which is

closest to this work, uses semantics to re-score the hypothesis list. Similarly to

Morbini et al., they use a concept sequence model as the first component of their

re-scoring pipeline. Concept sequences are generated for a given input using a

shallow semantic parser, which assigns each word a concept label. The generated

concept label sequences are then themselves parsed which results in a hierarchical

semantic parse being assigned to the entire inputted phrase. A ME model, which

is trained jointly on sentences from the training data as well as features extracted

from their parses, is used to re-rank the hypothesis list. The semantic parser

used in our work, as described above, generates parses which grounds phrases

to meaningful logical form representations using a lexicon and knowledge-base,

something which may be differentiated from the more general labels given to

phrases in Erdogan et al. Furthermore, our work only utilizes the confidence

scores from the parser, which greatly simplifies the problem since additional

statistical models (such as the ME models described above) are not needed. To the

extent of our knowledge, no other works have studied the viability of inducing

training examples from novel speech input.

4 Methodology

In this section, we describe the data set which was used as well as the approach

which was taken to conduct our experiments.

4.1 Data Set

In order to be able to train the systems in our pipeline, a corpus was collected

from 32 participants. The set of participants consisted of both males and females

as well as people from a variety of nationalities and accents. Each participant

12

was asked to read out a series of phrases on a screen at their own pace for 25

minutes. Participants contributed between 94 and 244 phrases each, with the

average contribution being 150 phrases. Phrases consisted on average of 10 tokens.

Action Arguments

bring(x, y) Bring person y item x

searchroom(x, y) Search room y for person x

walk(x) Walk to location x

walkp(x) Walk to the office of person x

Figure 6: The set of possible actions in our ontology. Template phrases for each of these actions were used

in order to produce our corpus. walkp denotes the possessive walk action (i.e. possession of an

office).

Each phrase was randomly generated from a set of templates pertaining to a

set of actions which could be expected of a robot in an office environment. The

set of possible actions in our corpus may be seen in Figure 6, with examples for

each action in Figure 7.

The action arguments in each template were randomly pulled from our sys-

tem’s ontology during phrase generation. In total, our ontology contains 11 people,

12 location, and 30 item atoms. Additionally, there are 42 generic noun predicates

and 70 adjective predicates. Each noun predicate may be combined with up to

Action Template Example Number of Templates

bring(x,y) I would like you to please bring x to y. 74

searchroom(x,y) Find out if x is in y. 43

walk(x) Would you please go to x. 39

walkp(x) Hurry and walk to x’s office. 39

Figure 7: Example templates for each action in our domain as well as the total number of unique templates

per action. The arguments in each template were randomly sampled from the atoms in our

ontology.

13

Phrase Semantic Form

See if Bob is in room thirty-four one eight. searchroom(bob, l3_418)

Deliver a green cup to Jane bring(a(λx : i.(and(green(x), cup(x)))), jane)

Run over to room three five one six. walk(l3_516)

Go to John’s office. walk(the(λx : l.(and(o f f ice(x), possesses(x, john)))))

Figure 8: Example phrases from our corpus with their semantic forms. Note how lambdas in the semantic

forms denote expressions which may eventually be grounded using a knowledge base.

two adjective predicates when sampling an item for a template, amounting to an

additional

42 ·
((

72
0

)
+

(
72
1

)
+

(
72
2

))
= 110, 418

theoretically possible item groundings. The templates were also used in order to

generate an appropriate semantic form for each phrase, examples of which may be

seen in Figure 8. Additionally, the generic US English dictionary accompanying

Sphinx was augmented to include correct pronunciations for words in our corpus

which it did not originally contain.

At completion, the corpus was split by participant into 8 folds for 8-fold

cross validation. The number was chosen due to the very even split it allowed

for between the 32 participants. Specifically, this split allowed for data from 28

participants to be used for training, 2 for validation, and 2 for testing in each fold.

4.2 ASR

In order to use the Sphinx ASR system, an in-domain language model was trained

using our corpus of phrases. Additionally, the default Sphinx acoustic model

was adapted with our collected recordings and their transcriptions using a tool

provided by the Sphinx framework. Initially, the trained ASR system was used in

order to generate a list of 1000 hypotheses for each phrase in the validation set. In

order to mitigate the computational cost of re-ranking, however, this number was

14

eventually reduced to 10 for our experiments. This decision was motivated by an

analysis of the hypothesis lists, from which it was found that out of all the lists

which contained the correct hypothesis for their phrase, 92% held it within the

first 10 entries on the list. The results of this analysis may be seen in Figure 9.

Figure 9: Statistics of correct hypothesis index within hypothesis lists which contain the correct phrase.

Left) The probability that the correct hypothesis lies within one of these lists as a function of

the number of top results (out of 1000) kept (i.e. the cumulative distribution function). The

green vertical line denotes an index of 10, which covers 92% of correct hypotheses. Right) The

Percentage increase in number of correct hypotheses captured in the lists as the index of the last

hypothesis maintained grows.

4.3 Semantic Parser Re-ranking and Retraining

The parser was boot-strapped with an initial lexicon containing entries for one

expression of each entity in our ontology. For example, there was one CCG entry

in our lexicon for each person or office atom. Each entity in our ontology had

multiple referents to them in our corpus (e.g. people atoms had both proper

names and nicknames mapping to them), however, which necessitated that the

parser learn the additional referents during training.

Having generated hypotheses lists for each phrase in the test set, the semantic

parser was then used in order to re-rank the lists based on parse confidence scores

15

produced by the top scoring parse of each hypothesis. It was found that using

phrases from our corpus which contained more than 7 tokens results in prohibitive

training and testing times for the parsing component of our system. Therefore,

the experiments and results presented in this work were generated using only the

phrases from our corpus which remained at or below this length. Pseudo code

for the re-ranking procedure may be seen in algorithm 1. Additionally, figure 10

contains some examples of using the algorithm on our corpus.

Following the re-ranking step, the acoustic models were retrained in a variety

of conditions in order to test the efficacy of training the acoustic models on new

data. Specifically, the acoustic models were retrained with data from the validation

set by taking the top hypothesis in each phrase’s list and designating it as ground

truth. This method was used for both the raw lists generated by the ASR system

as well as for the re-ranked lists generated with semantic parsing, the results of

which are discussed in section 5. Pseudo code for the re-training procedure may

be seen in algorithm 2.

4.4 ASR and Parser Confidence Score Interpolation

In addition to simply re-ranking ASR hypothesis lists purely with the parser, we

also experimented with interpolating the confidence scores produced by the ASR

system for each hypothesis with the confidence score from its parse.

More formally, each ASR hypothesis in the n-best list is assigned a log-scale

score sa by the ASR system based on how close the hypothesis transcription

matches the speech utterance given the acoustic model. Similarly, the parse

produced for each hypothesis by the parser is given with a log-scale confidence

score sp.

In order to be able to interpolate the two scores, they are each first converted

into probabilities by normalizing over the scores of all hypotheses in the n-best

16

Hypothesis Parse Semantic Form Parse Score ASR Score

please take the pizza dan walk(the(lambda 1:l.(and(possesses(1,jane),office(1))))) -62.30 -1242160

please take the tea to dan bring(tea,dan) -32.18 -1242202

please take the tea to dan bring(tea,dan) -32.18 -1242288

please take the tea to dan bring(tea,dan) -32.18 -1242311

please take the pizza dan walk(the(lambda 1:l.(and(possesses(1,jane),office(1))))) -62.32 -1242348

please take the tea to dan bring(tea,dan) -32.18 -1242424

please take the peter dan walk(the(lambda 1:l.(and(possesses(1,jane),office(1))))) -62.29 -1242431

please take the pizza dan a bring(coke,ben) -46.41 -1242495

please take the tea to dan bring(tea,dan) -32.18 -1242533

please take the tea to dan a None −∞ -1242544

please walk to professor smith a coffee walk(l3_516) -46.54 -476184

please walk to professor smith a coffee walk(l3_516) -45.40 -476254

please walk to professor smith a coffee walk(l3_516) -46.54 -476258

please walk to professor smith a coffee walk(l3_516) -45.40 -476272

please walk to professor smith a coffee walk(l3_516) -46.54 -476276

please walk to professor smith a coffee walk(l3_516) -46.54 -476346

please walk to professor smith a coffee walk(l3_516) -46.54 -476350

please walk to professor smith’s office walk(the(lambda 1:l.(and(possesses(1,tom),office(1))))) -38.55 -476359

please walk to professor smith the coffee walk(l3_516) -46.54 -476378

please walk to professor smith the coffee walk(l3_516) -45.40 -476382

roll over to sam’s office walk(the(lambda 1:l.(and(possesses(1,sam),office(1))))) -38.95 -28518

roll over to sam’s office walk(the(lambda 1:l.(and(possesses(1,sam),office(1))))) -38.95 -28653

roll over to sam office None −∞ -28920

roll over to sam office None −∞ -29086

roll over to sam office None −∞ -29221

a roll over to sam’s office searchroom(tom,the(lambda 1:l.(and(possesses(1,sam),office(1))))) -28.65 -29259

roll over to to sam’s office searchroom(tom,the(lambda 1:l.(and(possesses(1,sam),office(1))))) -27.25 -29311

roll over to to sam’s office None −∞ -29359

a roll over to sam’s office searchroom(tom,the(lambda 1:l.(and(possesses(1,sam),office(1))))) -28.65 -29425

roll over to sam’s office you bring(coke,john) -45.08 -29476

Figure 10: 3 example re-rankings using our algorithm. Each hypothesis list is ordered according to the

original ASR output. Correct hypotheses are in italics while top re-ranked hypotheses chosen

by our algorithm are bolded. All scores are in log-likelihood form. Semantic forms denoted by

“None" represent phrases which the parser was not able to find a valid parse for and were given a

score of −∞. Top) A hypothesis with incorrect ASR and semantic form being replaced with one

with both fields correct. Middle) A hypothesis with incorrect ASR and incorrect semantic form

being replaced by one with correct ASR and more partially correct semantic form. Bottom) A

hypothesis with correct ASR and semantic form being replaced by one with both fields incorrect.

17

Algorithm 1 The hypothesis re-ranking algorithm employed in this work.

Input: A set of ASR hypotheses H, a set of their ASR scores A, a set of their parse

scores P, and an interpolation value β.

Output: The top scoring hypothesis.
n← |H|

Sa ← ∑n
i=1 A[i]

Sp ← ∑n
i=1 P[i]

\\Sets to contain normalized ASR and parse scores

Pp ← ∅

Ps ← ∅

for i← 1 to n

Pp[i]← P[i]
Sp

Ps[i]← A[i]
Sa

end for

\\Compute interpolated score for each hypothesis.

for i← 1 to n

H[i].score← β · Pp[i] + (1− β) · Ps[i]

end for

\\Sort H in descending order by score and return top hypothesis.

sort(H)

return H[1]

18

Algorithm 2 The acoustic model re-training algorithm.

Input: An acoustic model A, a set of speech recordings R, and a set of re-ranked

hypothesis lists L, where each list pertains to a recording in R.

Output: The adapted acoustic model.
T ← ∅ \\Will contain the set of transcriptions for the recordings in R.

n← |R|

for i← 1 to n

\\Use top hypothesis in list as transcription for recording.

T[i]← L[i][1]

end for

\\Adapt acoustic model using Sphinx framework.

A′ ← SphinxAdaptACModel(A, R, T)

return A′

list:

Ps(hi) =
sai

∑n
j=1 saj

Pp(hi) =
spi

∑n
j=1 spj

After normalizing, we now interpolate the scores using a β ∈ [0, 1] value and

re-rank based on this new interpolated score Shi :

Shi = β · Pp(hi) + (1− β) · Ps(hi)

A value of β may be determined by evaluating different values of it on the

validation set. The implementation and results of this are discussed further in

section 5.4.

19

5 Results and Discussion

5.1 Evaluation Metrics

As described in section 2.1, the recognition performance of our system was

evaluated by measuring WER in each testing condition. Additionally, the Recall @

1 and Recall @ 5 accuracy scores were measured (i.e. the percentage of phrases

for which the correct result was found within the top 1 or 5 hypotheses).

Because we would eventually like to use our system for issuing commands

in a robotics domain, the end-to-end performance of the system was evaluated

through two metrics over the computed semantic forms (i.e. parses). The first

metric simply tested for complete predicate matches against the ground truth

(full semantic form evaluation), while the second metric computed recall and

precision values over predicates in the semantic forms (partial semantic form

evaluation). Recall may be computed as the number of correct predicates found

over the total number of correct predicates:

R =
#Correct predicates in hypothesis

#Correct predicates

While precision may be computed as the number of correct predicates found over

the total number of predicates retrieved:

P =
#Correct predicates in hypothesis

#Predicates in hypothesis

One may trivially maximize recall by including every possible predicate in the

hypothesis or maximize precision by only including a small number of them.

Therefore, these two scores are generally used in tandem to compute what is

known as an F1 score, which is computed as the harmonic mean of the recall and

precision:

F1 =
2

1
R + 1

P

For brevity, the results in our figures are denoted by two letter acronyms,

where the first letter stands for the system used in the experiment (B for the

20

ASR baseline and R for parser re-ranking) and the second letter stands for the

re-training condition (B for retraining with ASR results, R for retraining using

re-ranking results, and N for no re-training). Scores between different conditions

were compared for statistical significance using a Student’s paired t-test.

5.2 Main Experiment Results

The results on all metrics for the validation set may be seen in Figure 11. It may be

seen that the best scores achieved through re-ranking performed worse than the

baseline ASR in the WER, Recall @ 1, and Recall @ 5 metrics. The full semantic

form performance was roughly the same for both conditions. It may also be

observed that system performance for precision, recall, and F1 scores improved

when using re-ranking.

WER R@1 R@5 SF F1 P R

ASR 15.79 53.28 66.39 0.237 0.401 0.423 0.408

SemP 18.66 35.81 60.67 0.239 0.528 0.565 0.542

Figure 11: Evaluation results on the validation set. The best score for each metric is bolded. From left

to right, the metric labels denote word error rate, Recall @ 1, Recall @ 5, full semantic form,

F1, precision, and recall metric scores respectively. ASR denotes the baseline score while SemP

denotes semantic parser re-ranking performance.

The results from the test set may be seen in Figure 12. Similarly to the

validation set, it may be observed that the system performed worse in the WER,

Recall @ 1, Recall @ 5 metrics. All three of these results were statistically significant

with p-values < 0.05.

It should be noted, however, that although the system performed worse on

average on the full semantic form evaluation, the difference in performance was

not statistically significant (with a p-value of 0.12). Further, the system achieved

higher precision, recall, and F1 performance when re-ranking without retraining

21

Re-Training Re-ranking WER R@1 R@5 SF F1 R P

None ASR 14.55 55.31 72.47 0.334 0.482 0.484 0.504

None SemP 18.46 38.42 65.33 0.299 0.557 0.564 0.598

ASR ASR 22.00 45.86 59.12 0.276 0.457 0.456 0.478

SemP ASR 22.22 45.92 59.58 0.283 0.440 0.443 0.455

ASR SemP 25.57 30.46 52.42 0.302 0.569 0.581 0.604

SemP SemP 25.79 29.54 52.55 0.311 0.566 0.573 0.600

Figure 12: Evaluation results on the test set. The best scoring system configuration score per metric is

bolded. Re-training denotes the procedure through which re-training examples were generated

(raw ASR hypothesis lists or SemP for semantic parser re-ranked lists) from the validation set,

while Re-ranking denotes the hypothesis list ranking condition (baseline ASR or SemP parser

re-ranking) used on the test set. From left to right, the metric labels denote word error rate,

Recall @ 1, Recall @ 5, full semantic form, F1, recall, and precision metric scores respectively.

all of which were statistically significant with p-values < 0.05.

The baseline ASR system without retraining achieved the highest scores over

all other system conditions which used retraining on the WER, Recall @ 1, and

Recall @ 5 metrics. This difference was statistically significant over all other system

conditions. Although the baseline was also the best performing system in the

full semantic form metric, the difference in scores was not statistically significant

when compared to any method which used re-ranking.

It may also be observed that all conditions which used re-ranking performed

better than all methods without it on the precision, recall, and F1 score metrics,

all of which were statistically significant. There was no statistical significance,

however, between the system which used re-ranking without retraining and those

that did retrain.

These results show that our current system of re-ranking with semantic parsing

has an adverse effect on metrics related to ASR transcription (WER, Recall @ 1,

and Recall @ 5), but significantly improves on metrics related to semantic form

22

(precision, recall, and F1). With this in mind, it is important to note that, in a

robotics domain, it is of greater importance to maximize semantic understanding

over speech transcription since the parsed semantic forms are what are ultimately

translated to actions in a robotic system. Particularly, the improvement in F1

scores entails that our system would generally correctly infer more predicates

than the baseline system without re-ranking. Any missing or incorrect predicates

could then be disambiguated through dialogue as in (Thomason, Zhang, Mooney,

& Stone, 2015). Under this framework, an increase in F1 score could result in a

reduced number of exchanges being required during command disambiguation

dialogue (since there would be less predicates to correct), improving the ease of

use of the system. Therefore, although a decrease in transcription performance is

not ideal, our system’s significant improvement of partial semantic understanding

is encouraging.

Our experiments have also shown that, currently, retraining has a significantly

adverse effect on system performance. This is not surprising given that we re-

train the acoustic model, whose performance is intimately dependent on the

transcriptions fed to it. Because the WER currently goes up through our methods,

it intuitively makes sense that re-training on this data decreases performance since

the system is being re-trained on noisy data. It may be the case that once WER

is improved through our system, then performance could be increased through

re-training.

5.3 Error Analysis

The parser re-ranking algorithm’s performance on the evaluated ASR transcription

metrics could be due to a variety of reasons. It is possible that the parser could be

overfitting the training data, leading it to generalize poorly to novel phrases. In

order to investigate this, the parser training set performance was evaluated and

compared to the performance on the ground truth ASR transcriptions from the

23

validation and test sets, the results of which may be seen in Figure 13.

Training Validation Test

0.619 0.353 0.427

Figure 13: Parsing performance using the full semantic form evaluation metric on the training set as well

as on the ground truth transcriptions of the validation and test sets. These values show what

parsing performance would be like given perfect speech recognition.

From the figure, it may be observe that training set performance is much

higher than that of the validation and test sets, which might indeed indicate some

overfitting of the training data, something which could perhaps be alleviated

through more training examples. This avenue could be very worthwhile to pursue

given that roughly 86% of our corpus was left unused due to the 7 token limit

imposed by computational cost, something which motivates the need for faster

parsing methods.

Another possibility for why semantic parsing is not improving transcription

performance might lie in the homogeneous quality of many of the n-best lists

generated by the ASR system. It was found that many of the hypotheses in the

computed lists (examples of which may be seen in Figure 10) generally only differ

in a small fraction of tokens, with many hypotheses being identical. Although this

characteristic can allow for corrections when the system makes minor mistakes,

large mistakes can result in irrecoverable errors since the correct hypothesis will

not be in the n-best list.

We also hypothesized that there could perhaps be greater room for improve-

ments through re-ranking if longer phrases could be incorporated into our frame-

work. In order to explore this, the ASR system was run on the entire corpus and

the mean average WER was computed over all 8 folds by phrase length (in tokens),

the results of which may be seen in Figure 14.

From looking at the figure, it may be inferred that WER does not in fact

necessarily increase as a function of the number of tokens in the phrase. Therefore,

24

Phrase Length (in tokens) Validation Set Test Set

4 0.0 12.5

5 14.09 31.81

6 19.53 26.66

7 23.75 24.01

8 16.12 21.41

9 18.94 19.99

10 16.98 19.28

11 14.51 17.36

12 14.24 18.98

13 13.57 17.78

14 16.44 16.85

15 12.31 16.24

16 10.41 40.0

17 5.88 N/A

Figure 14: The mean average WER across folds and over phrase lengths (in tokens). It may be observed

that there is no significant trend (i.e. a monotonic increase) in WER performance as length

increases. Note that there were no phrases with 17 tokens in the test set (denoted by N/A).

it is not necessarily true that there would be more room for improvement through

using the longer phrases in our corpus.

5.4 Confidence Score Interpolation

In order to test the efficacy of confidence score interpolation, system performance

was evaluated over all metrics in the validation set starting at β = 0 and incre-

menting by 0.005 up to β = 1. The results of these experiments may be seen in

Figures 15 and 17.

Through statistical analysis it was found that a β value of 0.505 decreased

25

Figure 15: WER, Recall @ 1, Recall @ 5, and full semantic form performance from interpolating ASR and

parse confidence scores on the validation set. Note that β = 0 implies exclusive use of ASR

confidence while β = 1 implies exclusive use of parser confidence.

26

β F1

0.0 0.401

0.865 0.537

1.0 0.528

Figure 16: F1 performance on the validation set without re-ranking (β = 0.0), with the best performing

interpolation value (β = 0.865), and with re-ranking without interpolation (β = 1.0). It may be

observed that the best performance was achieved through interpolation, although the difference

between β = 0.865 and β = 1.0 was not statistically significant (p = 0.103).

WER performance by an insignificant amount (p-value of 0.16) while significantly

increasing F1 performance (p-value of 0.004), something which motivated analyz-

ing its performance on the test set. Additionally, it was found that F1 performance

peaked at a value of β = 0.865. A comparison between F1 scores on the validation

set at β values of 0.0, 0.865, and 1.0 may be seen in figure 16.

Through looking at the figures, it may be observed that the metrics associated

with correctness in the text transcription (WER, Recall @ 1, and Recall @ 5)

decrease with β while those associated with semantic form predicate correctness

(precision, recall, and F1) increase. It should be noted that the full semantic form

performance is not significantly affected by this increase.

The results from the same interpolation experiments on the test set may be

seen in Figures 18 and 19. Although β = 0.505 produced a good middle ground

between WER and F1 scores in the validation set, it was found that the decrease in

WER performance in the test set under this value was significant (p-value of 0.03).

This was also the case for β = 0.865 (p-value of .0.014). Further, it was found that

all metrics peak at β values below 1.0, which suggests that retaining some signal

from the ASR confidence is important for all metrics. Because these results are

identical in statistical significance to the re-ranking case without interpolation (i.e.

β = 1.0), the retraining experiments were not performed using interpolation and

will likely be pursued in future work.

27

Figure 17: Precision, recall, and F1 performance from interpolating ASR and parse confidence scores on

the validation set. It may be observed that performance on these metrics begins to increase at

β = 0.5, the point at which more weight is given to parse confidence scores over ASR scores.

28

Figure 18: WER, Recall @ 1, Recall @ 5, and full semantic form performance from interpolating ASR and

parse confidence scores on the test set. Note that all 4 metrics begin to experience a drop in

performance after a high enough β value.

29

Figure 19: Precision, recall, and F1 performance from interpolating ASR and parse confidence scores on

the test set. Similarly to the validation set, all three metrics begin to experience an increase in

performance after a value of β = 0.5.

30

6 Future Work

In this section we briefly describe a few possible avenues that may be pursued for

future work.

6.1 Deep Learning Approaches

Because we would eventually want to use an ASR system for issuing commands

in robotic tasks, it is not strictly necessary that the text transcription of a speech

utterance be generated. With this in mind, one possible avenue of future work

could be to train an end to end system which can take speech utterances as input

and output semantic forms pertaining to them.

There has been work done in end to end speech recognition in which an LSTM

neural network was trained to transcribe speech to text without needing to use

an intermediate phonetic representation (i.e. an explicit acoustic model) (Graves

& Jaitly, 2014; Xiong et al., 2016). Perhaps such a system could be extended and

trained to generate semantic forms rather than text transcriptions.

As mentioned in section 5.3, our current system is unable to use phrases in

our corpus which are longer than 7 tokens in length due to computational cost.

Therefore, it would be highly desirable to find methods of performing effective

semantic parsing that incur lower computational cost. Recent works such as (Misra

& Artzi, 2016) have shown promising findings using neural neural networks to

produce results comparable to CKY parsers with a lower number of operations.

In future work, we may pursue the use of similar neural network methods

for the components of our pipeline. Particularly, if we replaced both the ASR

and semantic parser with neural models, then the entire system could perhaps be

trained end-to-end (i.e. training on pairs of speech utterance input and semantic

form output). In order to properly work with the relatively small size of our data

set (compared to traditional deep learning data sets), we could use pre-trained

31

models which we would then fine-tune with our data.

6.2 Discriminative Re-ranking

Our current system re-ranks recognition hypotheses using parse confidence scores.

One possible approach that may be tried in order to improve the system could be

to train a discriminative re-ranker for the re-ranking task. Similarly to (Collins &

Koo, 2005), such a model could take some feature representation from candidate

hypotheses’ ASR transcriptions and parses along with the input speech utterances

and produce a new set of rankings.

6.3 Incremental Learning Through Human-Robot Interaction

One of the desired applications for our system is to be able to deploy it in a

robotics environment where the agent can incrementally learn to participate in

dialogue with users. Similarly to (Thomason et al., 2015), the system would be

boot-strapped with an initial lexicon for its parser and speech recognition system.

With this initial knowledge, the agent would iteratively learn more robust models

through dialogue interactions with users. As mentioned in section 5.2, this avenue

of future work could prove particularly fruitful given the significant increase in

partial semantic form performance that our system experiences through parser

re-ranking. Particularly, if there is an increase in the correct number of predicates

in the computed semantic form (i.e. F1 score), then the average dialogue length

could be reduced since the system would have less parameters to disambiguate in

given commands.

Additionally, our work did not explore the use of context or reasoning for

biasing semantic parsing re-ranking. There are certain cases where semantic forms

with the same predicates but different arguments (e.g. bring(marker, tom) and

bring(marker, dan)) can have very similar or identical parser confidence scores. If

a dialogue system were to be implemented, then the incorporation of common

32

sense reasoning, similar to what is used in (Zhang & Stone, 2015), could prove

useful for disambiguating between different arguments or predicates.

7 Conclusion

Although our methods have been shown to have an adverse effect on WER, which

is the main evaluation metric for speech recognition, we have shown that our

system can significantly improve precision, recall, and F1 scores in the predicate

lists of the final semantic forms of hypotheses. We believe that these findings are

promising since we are ultimately interested in the end to end performance of the

system (i.e. final semantic forms). Although the full semantic form performance

is not significantly affected, we believe that our findings can serve as a proof of

concept for the potential improvements which semantic parsing could provide

a pipeline which uses speech as input, particularly one in which dialogue could

disambiguate the parameters of issued commands.

Acknowledgements

I would like to thank Dr. Raymond Mooney for taking me on as his student and

for advising me through this first research experience. I am incredibly grateful

for his guidance and patience as I have gone through this process. Dr. Peter

Stone for introducing me to the field of AI and for serving as my second reader. I

would also like to thank Dr. Vijaya Ramachandran for serving on my committee.

Additionally, I would like to thank Jesse Thomason for his mentorship, his help

and input have been invaluable to this work. Finally, I’d like to thank Aishwarya

Padmakumar for her continued input and assistance throughout.

33

References

Ananthakrishnan, S., & Narayanan, S. (2007). Improved Speech Recognition

Using Acoustic and Lexical Correlates of Pitch Accent in a N-best Rescoring

Framework. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.

IEEE International Conference on (Vol. 4, pp. IV–873).

Artzi, Y., & Zettlemoyer, L. (2013a). UW SPF: The University of Washington

Semantic Parsing Framework. arXiv preprint arXiv:1311.3011.

Artzi, Y., & Zettlemoyer, L. (2013b). Weakly Supervised Learning of Semantic

Parsers for Mapping Instructions to Actions. Transactions of the Association

for Computational Linguistics, 1, 49–62.

Basili, R., Bastianelli, E., Castellucci, G., Nardi, D., & Perera, V. (2013). Kernel-

Based Discriminative Re-ranking for Spoken Command Understanding in

HRI. In AI* IA 2013: Advances in Artificial Intelligence (pp. 169–180). Springer.

Church, A. (1940). A Formulation of the Simple Theory of Types. The Journal of

Symbolic Logic, 5(02), 56–68.

Collins, M., & Koo, T. (2005). Discriminative Reranking for Natural Language

Parsing. Computational Linguistics, 31(1), 25–70.

Erdogan, H., Sarikaya, R., Chen, S. F., Gao, Y., & Picheny, M. (2005). Using

Semantic Analysis to Improve Speech Recognition Performance. Computer

Speech & Language, 19(3), 321–343.

Forney, G. D. (1973). The Viterbi Algorithm. Proceedings of the IEEE, 61(3), 268–278.

Graves, A., & Jaitly, N. (2014). Towards End-To-End Speech Recognition with

Recurrent Neural Networks. In ICML (Vol. 14, pp. 1764–1772).

Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (2Nd Edition).

Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., . . . Wolf, P. (2003).

The CMU SPHINX-4 Speech Recognition System. In IEEE Intl. Conf. on

Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong (Vol. 1, pp.

34

2–5).

Lamere, P., Kwok, P., Walker, W., Gouvêa, E. B., Singh, R., Raj, B., & Wolf, P. (2003).

Design of the CMU Sphinx-4 Decoder. In INTERSPEECH.

Liang, P., & Potts, C. (2015). Bringing Machine Learning and Compositional

Semantics Together. Annu. Rev. Linguist., 1(1), 355–376.

Misra, D. K., & Artzi, Y. (2016). Neural Shift-Reduce CCG Semantic Parsing.

In Proceedings of the Conference on Empirical Methods in Natural Language

Processing.

Morbini, F., Audhkhasi, K., Artstein, R., Van Segbroeck, M., Sagae, K., Georgiou,

P., . . . Narayanan, S. (2012). A Reranking Approach for Recognition and

Classification of Speech Input in Conversational Dialogue Systems. In Spoken

Language Technology Workshop (SLT), 2012 IEEE (pp. 49–54).

Peng, F., Roy, S., Shahshahani, B., & Beaufays, F. (2013). Search Results Based

N-best Hypothesis Rescoring with Maximum Entropy Classification. In

ASRU (pp. 422–427).

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition. Proceedings of the IEEE, 77(2), 257–286.

Rosenfeld, R. (2000). Two Decades of Statistical Language Modeling: Where Do

We Go from Here?

Singh, R., Warmuth, M. K., Raj, B., & Lamere, P. (2003). Classification with Free

Energy at Raised Temperatures. In INTERSPEECH.

Steedman, M., & Baldridge, J. (2011). Combinatory Categorial Grammar.

Non-Transformational Syntax: Formal and Explicit Models of Grammar. Wiley-

Blackwell.

Thomason, J., Zhang, S., Mooney, R., & Stone, P. (2015). Learning to Interpret

Natural Language Commands Through Human-Robot Dialog. In Proceed-

ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence

(IJCAI).

35

Twiefel, J., Baumann, T., Heinrich, S., & Wermter, S. (2014). Improving Domain-

independent Cloud-Based Speech Recognition with Domain-Dependent

Phonetic Post-Processing. In AAAI (pp. 1529–1536).

Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., . . . Woelfel, J. (2004).

Sphinx-4: A Flexible Open Source Framework for Speech Recognition.

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., . . . Zweig,

G. (2016). Achieving Human Parity in Conversational Speech Recognition.

arXiv preprint arXiv:1610.05256.

Young, S. J., Russell, N., & Thornton, J. (1989). Token Passing: A Simple Concep-

tual Model for Connected Speech Recognition Systems. Cambridge University

Engineering Department Cambridge, UK.

Zechner, K., & Waibel, A. (1998). Using Chunk Based Partial Parsing of Spon-

taneous Speech in Unrestricted Domains for Reducing Word Error Rate

in Speech Recognition. In Proceedings of the 17th International Conference on

Computational Linguistics-Volume 2 (pp. 1453–1459).

Zhang, S., & Stone, P. (2015, January). CORPP: Commonsense Reasoning and Prob-

abilistic Planning, as Applied to Dialog with a Mobile Robot. In Proceedings

of the 29th Conference on Artificial Intelligence (AAAI).

36

	Introduction
	Background
	Speech Recognition
	The CMU Sphinx-4 Speech Recognition System
	Semantic Parsing
	Mapping Natural to Formal Language
	Semantic Parsing with Combinatory Categorical Grammars

	Related Work
	Methodology
	Data Set
	ASR
	Semantic Parser Re-ranking and Retraining
	ASR and Parser Confidence Score Interpolation

	Results and Discussion
	Evaluation Metrics
	Main Experiment Results
	Error Analysis
	Confidence Score Interpolation

	Future Work
	Deep Learning Approaches
	Discriminative Re-ranking
	Incremental Learning Through Human-Robot Interaction

	Conclusion

