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ABSTRACT

Symbolic and connectionist learning strategies are receiving much attention. Comparative studies should
qualify the advantages of systems from each paradigm. However, these systems make differing assumptions
along several dimensions, thus complicating the design of ‘fair’ experimental comparisons. This paper de-
scribes our comparative studies of ID3 and back-propagation and suggests experimental dimensions that
may be useful in cross-paradigm experimental design.

Introduction

Symbolic and connectionist (or neural-net) learning methods often address similar tasks, but they may
differ considerably in their processing assumptions. Thus, there is impetus for investigating the relative
advantages and limitations of systems of each paradigm. A task that has commonly been explored in
each paradigm is learning from ezamples (or tutored learning): from a set of classified observations, a
learning system abstracts a ‘rule’ or mapping that facilitates classification of new observations. This paper
reviews experimental comparisons of a symbolic learning system, ID3, and a connectionist learning system,
back-propagation in a feed-forward net. However, independent investigations (Fishér & McKusick, 1989;
Mooney, Shavlik, Towell, & Gove, 1989; Shavlik, Mooney, & Towell, 1989; Weiss & Kapouleas, 1989) differ
considerably in the strategiés used to train back-propagation. We will not tightly couple our results, but
suggest a framework for evaluating our respective strategies and for guiding future experimental comparisons.

Following Schlimmer and Fisher (1986), we characterize ID3 and back-propagation in terms of three
primary dimensions: the time éomplexity of processing a single observation or cost per observation, the
number of observations required to attain specified prediction accuracy levels, and inversely the accuracy
of learned knowledge with respect to novel (i.e., not used for training) fest observations. We may also
characterize each system by the total cost (i.e., number of observations x cost per observation) required to
achieve specified (e.g., asymptotic) accuracy levels Collectively, these measures enable strong statements
about relative system accuracy and efficiency. Our analysis is motivated by tentative ﬁndmgs that back-
propagation achieves slightly higher accuracy levels than ID3, but requires much more time to do so.

ID3 and Back-Propagation

ID3 and back-propagation were chosen for initial study because of their widespread use and well-known
successes. ID3 (Quinlan, 1986) is a simple, but effective symbolic method for learning from examples.
The system constructs a decision tree from a set of training objects. At each node the training objects
are partitioned by their value along a single, most-informative attribute. The training set is.recursively
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- collectively found in our ongoing work with back-propagation. Mooney, Shavlik, Towell, and Gove (1989)

Fisher, McKusick, Mooney, Shavlik and Towell

decomposed in this manner until no remaining attribute improves prediction in a statistically-significant
manner. We assume nominal attributes which have a finite set of values (e.g., Color € {red, blue, green}).

Back-propagation (Rumelhart, Hinton, & Williamis, 1986) assumes that input nodes of a network record
observed features from the environment and pass ‘activation’ forward through a single intermediate layer
of ‘hidden’ nodes to an output layer. The total activation of a hidden or output node is a weighted sum
of its inputs. We encode nominal attributes using a set of units, one dedicated to each value (Sejnowski &
Rosenberg, 1987). For a particular object description, one of these units (e.g., ‘red’) will be 1.0 and the rest
(e.g., ‘blue’, ‘green’) will be 0.0. Each output node corresponds to one class; the object is classified by the class
whose output node has the highest activation. Back-propagation adjusts network weights so as to improve
the match between actual and ideal output. In principle, with ‘sufficient’ hidden units, backpropagation
learning can converge on correct classification for any domain (assuming classes contain unique objects), but
it is always possible that local minima will lead learning astray.

Training conventions

ID3 is a nonincremental learning system: all training observations must be present from the outset of
system execution. This ‘batch’ approach to training ID3 was consistently maintained across our experimen-
tal studies. After training, a disjoint test set of observations was presented for classification. Classification
accuracy afforded by the learned decision tree was recorded. Our experlments (Fisher & McKusick, 1989;
Shavlik, Mooney & Towell, 1989) also varied training set size. However, whenéver a larger (more encom-
passing) training set was invéstigated decision trees of prior experiments were not exploited. Rather, a new
decision tree was generated from ‘scratch’. : o

While ID3 training was relatively standard across our individual studies; there are three conventions

used a bafch strategy for training back-propagation. In particular, a training set was repeatedly cycled
through the net until a threshold-level (i.e., 99.5%) of the set was correctly classified. After (near)convergence
on the training set, the net was used to classify a disjoint test set. Shavlik, Mooney, and Towell {1989) tested
this batch strategy for varying training set sizes. As with ID3, the net weights from prior training were not
used (i.e., the net was reinitialized) for each more inclusive training set.

In contrast, an incremental strategy was explored by Fisher and McKusick (1989). Training observations
were drawn randomly (with replacement) and presented once to the network for each draw. Accuracy tests
were conducted at intermittent points in training. Network weights were not reinitialized between tests; new
training observations incrementally modified weights that were previously accumulated.

Behavioral Characterizations
Cost per Instance

This section develops a very rough measure of the computational cost of processing an individual observation
for ID3 and the two back-propagation training strategies. To divide a decision tree node ID3 requires that the
informativeness of each attribute be determined. The cost of the step is proportional to (a X 1)+ (a X [Vayel),
where a is the number of attributes not used to previously divide the tree, |V,,,} is the average number of
values per attribute, and ¢ is the number of instances to be partitioned at the node; each instance musl
be examined for its (single) value along each attribute, after which counts of each attribute value must b
examined to determine attribute informativeness. Typically, |Vave| is much smaller than I, so we consid
only a x |I]. The final decision tree can be at most |A| levels deep, where |A| is the total number of attribute
Moreover, at each tree level at most |I| instances (collectively taken across all nodes at.that level) can b
examined to determine attribute informativeness. Total tree building cost is proportional to
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The asymptotic cost of each instance is proportional to

Cost per observation (ID3): |A|2.

Because tree depth is also bounded by }I| and total tree depth rarely reaches | A}, our experience suggests
that average cost is linear in the number of attributes. In addition, there are a fixed number of multiplications
per stép that will contribute a constant factor.

An analysis of back-propagation is complicated by our various training strategies. In particular, an
observation may be presented many times. Thus, we must distinguish between cost per presentation and
cost per observation. Given our encoding, a net contains |A||Vyye| input lines. In addition, we have explored
various numbers of hidden units. We assume that a reasonable number of hidden units (with no a priori
knowledge of the domain) is some function of the cardinality of the inputs. Shavlik, Mooney, and Towell
(1989) empirically found that one-tenth the number of input units proved an adequate number of hidden
_units.? This is roughly consistent with other empirical studies (e.g., Sejnowski & Rosenberg, 1987). Given
_ a fully-interconnected network this convention yields a cost per presentation proportional to the number of
interconnections (weights): l—’—q—lzll—v(;”’—‘"i

pr—

- This is also the cost per observation using incremental training.

Cost per observation (incremental backprop): (| A||Vaye|)?.

Assuming a constant upperbound on the number of presentations per observation, this figure is also
proportional to the cost per observation for the batch method. However, this upperbound may be very high
(10% to 108 presentations), thus significantly increasing the cost per observation.

Cost per observation (batch backprop): 10(|A4||Vaye])? to 102(|A||Vave|)2.

In summary, the cost complexity per observation of ID3 and back-propagation’s cost per presentation
appears the same, but in practice the considerably smaller constant term of back-propagation makes it
relatively cheaper. However, the constant factor contributed by repeated presentation results in greater
costs per observation of batch versions of back-propagation than for ID3.

Asymptotic Accuracy

Our independent studies have compared ID3 and back-propagation in a wide variety of natural and artificial
domains. Fisher and McKusijck (1989) report slight differences between ID3 and back-propagation (using the
incremental training strategy) in asymptotic accuracy. However, back-propagation tends to equal or better
ID3 across all those domains tested. Similarly, Mooney, Shavlik, Towell, and Gove (1989) and Shavlik,
Mooney, & Towell (1989) report that back-propagation tends to equal or (slightly) better ID3 in terms of
asymptotic accuracy. Regardless of training strategy, our asymptotic accuracy results suggest that back-
propagation consistently equals or slightly betters ID3. Our data suggests that training strategy (incremental
and batch) does not significantly impact back-propagation’s asymptotic accuracy.

Training Amount

ID3 is trained in a strict batch manner; of interest is the number of training objects (i.e., |I|) that must be
batched in order to reasonably assure asymptotic or close-to-asymptotic accuracy. In contrast, the number
of training observations required by back-propagation depends on training strategy. Fisher and McKusick
(1989) report that incremental back-propagation requires one to three orders of magnitude more training

2 Actually, the number of hidden units was 1 /10 the number of input and ocutput units. However, the number of output lines

is typically less than the number of inputs; consideration of outputs will not add asymptotically to cost, but it will increase the
constant term.
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Figure 1: Accuracy as a function of training amount.

objects than ID3 (i.e., 103|I]) to achieve a level of performance that equals ID3, although it may eventually
surpass ID3 with more training (but not by another order of magnitude of training). In contrast, Shavlik,
Mooney, & Towell (1989) show that batch-trained back-propagation and ID3 require approximately the same
number of observations to achieve similar performance.

Training observations (ID3): |I|..
Training observations (incremental backprop): 10%|] to 103{1].
| Training observatiéns (batch backprop): |I|.

Finally, Hinton (in press) suggests that the total number of presentations to achieve asymptotic perfor-
mance is O(N?), where N is the total number of weights or roughly |A|*|Va.|*. Based on our experience
this is a reasonable upperbound that depends on domain characteristics (i.e., |A]).

Summary of Primary Dimensions

Graphs (a) and (b) of Figure 1 illustrate the variance between ID3, incremental back-propagation, and batch
back-propagation. Back-propagation tends to achieve slightly higher accuracy levels, but at a cost of more
observations (incremental) or more presentations per observation (batch).

Total Work

We are now in a position to make initial guesses as to total effort required to converge on asymptotic (or
any intermediate level) of performance. In each case this is simply the product of the cost per observation
and total number of observations. The following use ID3 as a baseline (assuming |I| observations) and
approximate the total work required by back-propagation to achieve similar accuracy levels.

Total work (ID3): |I]|A]%.
Total work (incremental backprop): 10|I|(|A[|Vave|)? to 10%|I|(|Al[Vavel)?.
Training work (batch backprop): 10]T}(|A||Vave|)? to 102|I|(|A]|Vave|)?.

Back-propagation takes considerably longer to achieve similar results. The required number of presen-
tations more than offsets the relatively cheap cost per presentation. Second, while we have not conducted
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head-to-head comparisons of cpu-time expended by the two versions of back-propagation, our analysis sug-
gests an equal amount of total effort is required in the two cases. The relative advantage of one approach
over another lies in the constraints of a particular task environment. For example, in an environment requir-
ing rapid response (e.g., real-time control) and assuming an organism of limited memory, the incremental
alternative may be the best or only alternative. In other environments, the number of instances may be a
critical constraint, but processing per observation is not a limiting factor. In these environments as much
information as possible should be extracted from each observation; a batch approach is most suitable.

Concluding Remarks

We have framed our comparisons of ID3 and back-propagation along three primary dimensions (i.e.,
cost per observation, training amount, and accuracy) and one composite dimension (i.e., total work). Our
analysis reveals that incremental and batch back-propagation reach slightly higher accuracy levels than ID3,
but require considerably more work than ID3 to do so. In terms of total work there appears to be no
advantage to one version of back-propagation over the other; preference must depend on other factors.

We plan to use our dimensions to frame ongoing and future experiments. Qur ongoing work focuses on a
hybridization of the incremental and batch back-propagation training strategies. This hybrid assumes that
‘subbatches’ are processed until near convergence (on the subbatch). However, processing is incremental
between subbatches: a subbatch is processed with respect to the evolving network (vice a reinitialized
network). Our initial results suggest that there is an ‘optimal’ subbatch size with respect to total work. For
example, in the congressional domain a subbatch size of 3 yields 97% accuracy after 453 total presentations.
Total presentations increase with larger subbatch sizes (e.g., 1700 presentations for a subbatch size of 100),
but with no improvement in accuracy. Smaller subbatch sizes (e.g., 1) yield slightly lower accuracy and
slightly fewer presentations. In other domains this effect is even more pronounced; there is an intermediate
size that appears to optimize a tradeoff of total work and asymptotic accuracy. While our analysis reveals
that our individual training conventions are equivalent along a total work dimension, a hybrid methodology
offers some promise that substantive reductions in work can be realized without detrimentally impacting
accuracy. In addition, this methodology does not require a full memory of past observations; apparently,
very few instances need be remembered at any one time. We are continuing our investigations into the effects
of subbatch size.
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