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Abstract

A number of machine learning systems have been built which learn macro-operators or plan schemata,
i.e. general compositions of actions which achieve a goal. However, previous research has not addressed the
issue of generalizing the temporal order of operators and learning macro-operators with partially-ordered
actions. This paper presents an algorithm for learning partially-ordered macro-operators which has been incor-
porated into the EGGS domain-independent explanation-based learning system. Examples from the domains of
computer programming and narrative understanding are used to illustrate the performance of this system.
These examples demonstrate that generalizing the order of operators can result in more general as well as more
justified concepts. A theoretical analysis of the time complexity of the generalization algorithm is also
presented.

1. Introduction

A number of machine learning systems have been constructed which learn macro-
operators or plan schemata, i.e. general compositions of actions which achieve a goal. The
learning of macro-operators has been applied to a variety of domains including robot plan-
ning (Fikes, Hart, & Nilsson, 1972), puzzle solving (Korf, 1985; Laird, Rosenbloom, &
Newell, 1986), and natural language text understanding (Mooney & DeJong, 1985). Recent
explanation-based learning systems which operate in plan-based domains have addressed a
variety of issues involving the learning of macro-operators. These issues include determin-
ing which macro-operators to learn (Minton, 1985), determining the appropriate level of gen-
erality for macro-operators (Segre, 1987), and learning iterative macro-operators (Shavlik &
DelJong, 1987). However, an issue which has not been addressed in previous research is gen-
eralizing the temporal order of operators in a plan and thereby learning macro-operators
which have partially-ordered actions. Previous macro-operator learning systems maintained
the ordering of operators present in a specific training example and consequently could only
acquire plans represented as linear sequences of actions.

This paper describes a procedure which generalizes the order of operators in plans com-
posed of STRIPS operators (Fikes et al. 1972) and thereby learns macro-operators with
partially-ordered actions. This procedure has been implemented as a part of the EGGS
domain-independent explanation-based learning system (Mooney & Bennett, 1986). In addi-
tion to the normal process of explanation generalization, EGGS is now capable of computing
the most general partial ordering of the actions in the plan within the constraint that the
structure of the original explanation be maintained. In a plan-based domain, the structure of
an explanation refers to the manner in which the effects of actions fulfill preconditions of
subsequent actions. Generalizing the order of actions frequently results in a more general
macro-operator which can be used to solve a larger class of problems.
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2. An Example

A simple example which illustrates the advantage of learning macro-operators with par-
tially ordered actions involves assignment statements in a programming language. In the
domain of programming for parallel machines, knowing the most general partial ordering of
a set of operators which achieves a goal is very important. Operators which do not have an
ordering imposed upon them can be executed in parallel and knowing the most general par-
tial ordering allows one to obtain the maximum amount of parallelism.

Given the STRIPS operator for an assignment statement shown in Table 1, consider the
problem of achieving the goal: Value(A,2) A Value(C,4) given the initial state: Value(A,1),
Value(B,2), Value(C,3), and Value(D,4). Assume that the plan of sequentially executing the
operators Setq(A,B) and Setq(C,D) is either observed or generated to solve this specific prob-
lem. Figure 1 shows the explanation for how this plan achieves the specified goal. Perform-
ing standard explanation generalization which maintains unifications between effects and
preconditions (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986) results in
the generalized explanation shown in Figure 2.

Table 1: Variable Assignment Operator

Action Preconditions Effects
Setq(?a,7b) | Value(?a,?x) Value(7a,7y)
Value(7b,7y) —Value(?a,7x)

In most cases, the two assignment operators in the generalized plan (i.e. Setq(?al,?bl)
and Setq(7a2,7b2)) can be executed in parallel and should not have an ordering constraint
imposed upon them. For example, in the original problem, the two assignments Setq(A,B)
and Setq(C,D) could be executed simultaneously. However, consider achieving the goal:
Value(A,3) A Value(C,4) given the same initial state. The operator sequence: Setq(A,C),
Setq(C,D) will achieve this goal; however, in this case, the sequential ordering of the opera-
tors is crucial. The operator Setq(C,D) must be executed after Setq(A,C) or else the value of
C will be reset before it is referenced. In the planning literature, this problem is generally
referred to as a protection violation since the state: Value(C,3) must be protected untl it is
needed as a precondition for Setq(A,C). Whenever 7b1=?a2 or 7b2=7al in an instantiation of
the "double Setq" macro-operator, an ordering constraint must be imposed on the two assign-
ment statements in order to prevent a protection violation. As this example illustrates, deter-
mining the conditions under which protection violations will occur and imposing appropriate
ordering constraints to prevent them is the crucial step in learning a partially ordered macro-
operator.

3. Overview of EGGS

This section presents a brief overview of the EGGS domain-independent explanation-
based learning system which underlies the learning of partially ordered macro-operators.
Mooney (1988a) presents a complete description of the EGGS system.

EGGS is a domain-independent explanation-based learning system which is capable of
generalizing explanations of the following types: (1) proofs composed of Horn-clauses; (2)
rewrite traces composed of term rewriting rules; and (3) plans composed of STRIPS opera-
tors. For each of these representation languages, EGGS has a module for building explana-
tions by either solving problems itself or by explaining (verifying) problem solutions
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(Value(A,2) AValue(C4))
Value(C.4) - Value(C,3) Value(A,2) —Value(A,1)
Setq(C,D) Setq(A,B)
Value(D,4) Value(C,3) Value(B,2) Value(A,1)

Figure 1: Variable Assignment Example -- Specific Explanation

(Value(?al,2y1) A Value(?a2,7y2))

Value(?a2,?y2) —Value(?a2,7x2) Value(?al,?y1) —Value(?a1,7x1)
Setq(?a2,7b2) Setq(?al,7b1)
Value(?b2,?y2) Value(?a2,7x2) Value(?b1,7y1) Value(?a1,7x1)

Figure 2: Variable Assignment Example -- Generalized Explanation

presented to the system. Generalization is accomplished by maintaining unifications which
connect together general rules composing the explanation while eliminating unifications to
facts about the specific situation. For example, for plan-based explanations composed of
STRIPS operators, EGGS maintains only unifications connecting effects of one action to the
preconditions of other actions. For each representation language, the system also has
modules for packaging generalized explanations into macro-rules or macro-operators which
can then be used to efficiently solve similar problems in the future. EGGS has been tested on
examples from domains such as ‘‘blocks world”” planning, logic circuit design, artifact
classification, and various forms of mathematical problem solving and theorem proving.

4. Generating Partially-Ordered Macro-Operators

The general problem of learning a partially ordered macro-operator as currently solved
by the EGGS system can be specified as follows:

Given: Definitions for a set of STRIPS operators and a specific plan composed of
instances of these operators that achieves a specific goal.
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Determine: A macro-operator for the plan with the most general partial ordering of its opera-
tors such that all connections between preconditions and effects present in the
original instance are maintained and such that the macro-operator achieves a
generalization of the goal achieved by the original instance. Maintaining these
two conditions is referred to as maintaining the explanation structure of the ori-
ginal plan.

The algorithm implemented in EGGS for determining a partially-ordered macro-operator can

be broken down into the following four steps:

(1)  Use the EGGS explanation generalization algorithm to produce a generalized explana-
tion for the specific plan. '

(2) Determine the minimal set of ordering constraints on the operators in the generalized
explanation such that the explanation structure is maintained.

(3)  Detect subsets of these ordering constraints which are inconsistent and add precondi-
tions to the macro-operator to prevent such inconsistencies.

(4) Determine the overall preconditions and effects of the final macro-operator.

The first step in this algorithm is standard explanation-based generalization as described
by Mitchell ez al. (1986) and Mooney & Bennett (1986). The generalized explanation EGGS
produces for the Setq example is shown in Figure 2. The remaining steps are described in
detail in the following subsections.

4.1. Determining a Minimal Set of Ordering Constraints

Most ordering constraints in a plan are imposed by one action achieving a precondition
for another action. These ordering constraints are captured by the explanation structure of a
plan: an action must precede another action if it eventually supports it. Any topologically
sorted list of the actions in the generalized explanation graph will be an ordering that satisfies

these constraints.! In the Setq example, the generalized explanation shown in Figure 2 does
not impose an ordering on the operators and both permutations are topologically sorted.
However, as in this example, some topologically sorted orderings may, in certain situations,
result in protection violations in which an action deletes or clobbers the ultimate goal or a
precondition for a later action.

Preventing protection violations involves determining which facts can be deleted in the
general case and detecting deletions of protected facts. Figure 3 shows the algorithm imple-
mented in EGGS which determines deletions for the generalized explanation and imposes
additional ordering constraints to prevent protection violations. In the algorithm,
Supports?(a, b) refers to a function that returns true iff a eventually supports b in the general-
ized explanation, i.e. if there is a directed path from a to b in the explanation graph. For
each action, the algorithm determines the set of states in the explanation that could be true
before the action is executed based only on the partial ordering of actions imposed by the
explanation structure. These are called the deletable states since they are ones that the action
could possibly delete. For each of these states, the condition (o) under which the action
could delete the state in general are determined. For example, if an effect of an action is:

tA toﬁalogical sort of a directed acyclic graph is an ordering of the nodes in the graph such that 2 node # must cccur
before a node v in the ordering if there is a directed path from u to v.
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for cach action a in the generalized explanation do
let deletable = &
for each state s in the generalized explanation do
if —Supports?(a, s) then let deletable = deletable U {s)
for each effect e of a do
for cach state d in deletable do
if —d unifies with e
then
let o be the conditions under which —d and ¢ unify
let ¢ be the action of which d is an effect (possibly NIL)
if null(c) V Supports?(c, a)
then
if d is the goal or supports a proof of the goal
then add —o to the preconditions for the macro-operator
else d is deleted by e when o is true
else
if d is the goal or supports a proof of the goal
then a must precede ¢ when . is true
else d is deleted by € when o is true and ¢ precedes a
PreventPreconditionClobbering(a, d, ¢, o)

procedure PreventPreconditionClobbering(a, d, ¢, o)
(* Add conditions to prevent action a from clobbering precondition d when o is true *)
for each action b such that d is a precondition of b or supports a proof of a precondition of b do
if Supports?(a, b)
then
if nuli(c) V Supporis?(c, a)
then add —o to the preconditions for the macro-operator
else a must precede ¢ when o is true
else
if null(c) V Supports?(c, a)
then b must precede a when ¢ is true
else a must precede ¢ or b must precede a when o is true

Figure 3: Algorithm for Determining Deletions and Preventing Protection Violations

—Value(7x, ?y), then the state: Value(?a, 7b) is deleted iff 7x=7a and ?y=7b. If the deletable
state 1s not supported by another action (i.e. it is a precondition of the macro-operator) or if it
is an effect of an action that must precede the deleting action because it supports it, then the
state must be true before the action is executed and it will be deleted when « is true. If the
deletable state is also the goal or supports a proof of the goal, then —a is added to the
preconditions to prevent the goal from being clobbered. In order to maintain the explanation
structure of the original example, the goal must not be deleted. Otherwise the deletable state
is marked as being deleted when « is true. If the deletable state is not necessarily true before
the action is executed, then it will be deleted when both « is true and the action supporting it
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precedes the deleting action. If the deletable state is the goal or supports a proof of the goal,
then in order to prevent the goal from being clobbered, the deleting action must precede the
action supporting the deleted state when « is true.

The procedure PreventPreconditionClobbering adds additional ordering constraints and
preconditions to the macro-operator in order to prevent a precondition from being clobbered
when action a deletes state d. Such a precondition deletion would violate the explanation
structure. If an effect of action a deletes a precondition p of action b, then in order to avoid a
protection violation either b must precede a or a must precede action ¢ where p is an effect
of ¢ (Sussman, 1975; Sacerdoti, 1977). However, the existing partial ordering of the actions
imposed by the explanation structure may rule out either or both of these possibilities. If
both possibilities are ruled out, then —a is added to the list of preconditions for the macro-
operator to prevent the plan from being used in such situations. Otherwise, the possible ord-
ering constraints that will prevent the protection violation are recorded.

For the double variable assignment example, the ordering constraints imposed by this
algorithm are shown below:

1) Setq(?al,?b1) should precede Setq(?a2,?b2) when (?a2=7b1 A?7x2=7y1) or else
—Value(?a2,7x2) will clobber Value(?b1,?y1)

2) Setq(?al,7b1) should precede Setq(?a2,?7b2) when (?a2=7al A?7x2=7x1) or else
—Value(?a2,7x2) will clobber Value(?al,7x1)

3) Setq(?a2,7b2) should precede Setq(?al,?bl) when (?a2=7al A?7x2=2y1) or else
—Value(7a2,7x2) will clobber goal: Value(?al,?y1)

4) Setq(7a2,?b2) should precede Setq(?al,?bl) when (?7a1=7b2 A?2x1=7y2) or else
—Value(?al,7x1) will clobber Value(?b2,?y2)

5) Setq(?a2,7b2) should precede Setq(?al,?bl) when (?al1=7a2 A?7x1=7x2) or else
—Value(?al,7x1) will clobber Value(?a2,7x2)

6) Setq(?al,?b1) should precede Setq(?a2,?b2) when (?al=7a2 A?x1=7y2) or else
- —Value(?al,?x1) will clobber goal: Value(?a2,?y2)

4.1.1. Time Complexity of Determining Ordering Constraints

The worst-case time complexity of the algorithm in Figure 3 is relatively easy to deter-
mine. In the following discussion, loops will be referred to by their iterative variables (e.g.
the a loop, the e loop, etc.).

Let the number of nodes in the generalized explanation graph be n. Since the function
Supports? determines whether or not there is a directed path from one node to another in this
graph, in the worst case it must traverse the entire graph. Since traversing a graph is
O(|V|+|E|) where | V| is the number of nodes and |E| is the number of edges and since
|E|<| V|2, the worst case complexity of a call to Supports? is O(n?).

Since the number of actions must be less than n, the outermost loop (the a loop) is exe-

cuted at most » times. Since the number of states is also less than 7, the body of the loop for
determining the set of deletable states (the s loop) is executed at most » times for each action

for a maximum total of n® times. Since the body of this loop includes a call to Supports?

which is O(#?), the total maximum time needed for all executions of the s loop is O(r%).
Since each deletable set is a subset of the set of states, its maximum cardinality is ».

275



276

Mooney

Since the total number of effects of actions must be less than the number of states, the
body of the e loop is executed at most a total of » times. Since n is the maximum size of a
deletable set, the body of the d loop is executed at most n times for each effect for a max-

imum total of #? times. In addition to the call to PreventPreconditionClobbering, the opera-
tions in the body of the d loop that depend on the size of n include a call to Supports? and
determining whether a state supports a proof of the goal. Since both of these operations

involve finding a path between two nodes in the explanation graph, they take at most O(n?)
time. Therefore, let the total maximum time needed for all executions of the e loop be:

nHO@n?) +P)
where P is the time complexity of a call to PreventPreconditionClobbering.
The body of the b loop in PreventPreconditionClobbering is executed less than n times
since the toral number of actions is less than n. Since executing the body of the loop requires

two calls to Supports? which takes O(nz) time, the maximum time required for a call to this

function is O(n3). Therefore, the total maximum time needed for all executions of the e loop
is:

nHO(H2) + O(n3) = O(®)

Since, the total maximum time needed for all executions of the s loop was calculated to be
only O(r*), the worst case time complexity of the complete process is also O(n>).

The fact that the O(n?) Supports? function is called within bodies of loops that are exe-

cuted O(n?) and O(n%) times is a dominant factor in the complexity of the complete algo-
rithm. If a call to this function could be reduced to constant time, a minor modification of
the preceding analysis demonstrates that the complexity of the complete process would then

be O(n*). The maximum time required for all executions of the s loop becomes O(n?). The
total maximum time for all executions of the e loop becomes:

n*(c + P)

where ¢ is a constant. The time complexity of a call to PreventPreconditionClobbering (P)
becomes O(n) and the overall worst case complexity becomes:

O(n?) + n’(c + O(n) = OR>)

Since Supports?(a,b) simply determines whether or not there is a directed path from a
to b, the value of this function for all pairs of the n nodes in the explanation graph can be
pre-computed by determining the graph’s transitive closure.? Since there exist O(| V|3 algo-
rithms for computing the transitive closure of a directed graph (Reingold, Nievergelt, & Deo,
1977; Sedgewick, 1983) all the values of Support? for a particular explanation can be pre-
computed in O(#%) time. Calls to this function will then take constant time and the complete

process of determining deletions and protection violations can be accomplished in O(x%)
time. '

*The transitive closure of a directed graph G=(V,E) is a directed graph G"=(V,E") such that there isanedge u —» v in
E’ if and only if there is a (non-empty) directed path from « to v in E.
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In conclusion, although the algorithm implemented in EGGS is O(x°), computation of
the the transitive closure of the generalized explanation graph using one of the known

O(| V|?) algorithms would result in an O(#>) algorithm for the problem of determining dele-
tions and preventing protection violations. In any case, computing the minimal set of order-
ing constraints is a relatively efficient process which can be done in time which is polyno-
mial in the size of the plan.

4.2. Detecting and Preventing Inconsistent Ordering Constraints

The ordering constraints posted to prevent protection violations may contradict each
other in certain situations. For example, in the Setq example, when ?a2=7b1, Mx2="y1,
7al1=7b2, and ?x1=?y2, constraints 1 and 4 shown above contradict each other since they
each specify a different ordering of the two operators. With regards to assignment state-
ments, this situation corresponds to swapping the values of two variables (e.g. Setq(A,B),
Setq(B,A)) which cannot be done using only two variable assignments. In order to detect
such situations, a resolution theorem prover is used to determine sets of ordering constraints

that are inconsistent.® In addition to the posted ordering constraints, the theorem prover is
given the following two axioms:

Before(?a,?b) ABefore(?b,?¢c) — Before(?a,?c)
Before(7a,?b) — —Before(?b,?a)

When the resolution theorem prover finds a contradiction, it returns the set of axioms upon
which the proof depends. In order to prevent such a contradiction from arising during the
subsequent use of the macro-operator, an additional precondition must be added. Assuming
each of the n ordering constraints, ¢, in the contradictory set must be satisfied when condi-

tion ¢, is true, the following precondition must be added to the macro-operator: —(a; Aa, ...
Ao ). For the variable swapping example above, the added precondition would be:

—((?22=7b1 A7x2=7y1) A(7al=7b2 A 7x1=2y2))

The system simplifies this precondition to: —(?a2=?b1 A ?al1=7b2) using the following
domain axiom: Value(?x,7a) A Value(?y,?b) A 7x=7y — ?a=7b. This axiom simply states that
a variable has only one value at a time.* A similar contradiction detected between constraints
2 and 5 results in the addition of the precondition: —?al=?a2. This situation occurs when
both assignment statements are attempting to set the same variable.

Of course, using a resolution theorem prover to find all sets of contradictory axioms is a
computationally intractable process which is not even guaranteed to halt. In EGGS, the
theorem prover is given a time limit, after which it stops and returns proofs for all the con-
tradictions it has found so far. Consequently, the system does not actually guarantee the
prevention of ordering contradictions during later instantiation. Should such a contradiction
arise, one could perform explanation-based learning from failure to modify the plan at that
time in order to prevent similar problems in the future. Gupta (1987) and Chien (1987)
describe implemented systems that use EBL to learn from failures due to unforeseen

? Because of the possible presence of disjunctive ordering constraints like: Before(A,C) V Before(B,A), a simple
cycle-detecting algorithm cannot be used to find all sets of inconsistent constraints. In fact, disjunctive constraints seems {o
rule out 2 polynomial time solution to this problem.

“Mooney {1988a) gives details on the procedure used to simplify the preconditions of a Macro-operator.
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interactions.

4.3. Assembling the Partially-Ordered Macro-Operator

Assembling the final macro-operator is a relatively simple task. The preconditions of
the macro-operator include the leaves of the explanation as well as any additional constraints
added during the prevention of protection violations or inconsistent ordering constraints. If
an effect of an individual operator in the plan was never marked as deleted under any condi-
tion, then it is added to the list of effects of the macro-operator. If an effect was marked as
being deleted under some set of conditions, then the overall effect is given by the following
implication: if none of the deletion conditions are met, then the state is true (Fikes, Hart, &
Nilsson, 1972). Finally, the posted ordering constraints are added to macro-operator with the
exception that constraints whose condition contradicts a precondition of the macro-operator
are eliminated. In the example, ordering constraints 2, 3, 5, and 6 can be eliminated since
they require that 7a1=?a2, a condition which is now prevented by a precondition.

The final partially-ordered macro-operator that EGGS learns from the "double Setq"
example is shown in Table 2. In summary, the system notices that if the two variables being
set are the same, then the goal of having them set to two different values cannot be achieved.
Also, if either assignment references the variable set by the other, then the two cannot be
executed in parallel. In these cases, the assignments must be properly ordered to prevent the
referenced variable from being reset before it is used. Finally, if each assignment references
the variable set by the other, then two assignments cannot solve the problem. This is the
classic ‘‘variable swapping’’ problem which requires the use of a temporary variable.

5. Relation to Nonlinear Planning

Work in nonlinear planning (Sacerdoti, 1977) has addressed the issue of building plans
with partially ordered actions by initially assuming there are no goal interactions and then
detecting protection violations and imposing ordering constraints to prevent them. Although
the task of building a specific partially-ordered plan for achieving a specific goal is quite dif-
ferent from the task of generalizing a specific totally-ordered plan into a general partially-
ordered macro-operator, some of the underlying processes are quite similar.

Nilsson (1980) uses the term DCOMP to refer to the procedure for detecting and
preventing protection violations in nonlinear planning. The procedure in Figure 3 is in some
ways more general and in some ways less general than DCOMP. It is more general because it
must determine the conditions (o) under which a deletion will take place in the generalized

Table 2: Macro-QOperator Learned from the Variable Assignment Example
SetgSetq(?al,?b1,7x2,7y2,7x1,7y1,7a2,7b2)

Preconditions Effects Orderings
Value(?a1,7x1) Value(7a1,7y1) 7a1=7b2 — Before(Setq(?a2,7b2),Setg(7al,7b1))
Value(?a2,7x2) Value(7a2,7y2) 7a2=7b1 — Before(Setq(?a1,7b1),Setq(7a2,7b2))
Value(?b1,7y1) —Value(7al,7x1)
Value(7b2,7v2) —Value(7a2,7x2)
7a2#7al
—{7al=702 AN1a2=7b1)
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plan. DCOMP works with a specific instance of a plan and therefore does not need to deter-
mine which instantiations of a plan result in a deletion. The procedure in Figure 3 is less
general than DCOMP because it does not consider alternative ways of achieving the precon-
ditions of an action. The explanation structure determines how preconditions were met in
the particular example, and these constraints are retained in the generalization. Using
Nilsson’s terminology, the procedure presented here does not determine all of the possible
adders of a precondition in the plan since each precondition is assumed to added by the
action that added it in the original specific instance. Of course, an even more general
macro-operator could be produced by generalizing the explanation structure and considering
alternative adders. However, this would even further complicate the procedure for generat-
ing a macro-operator.

The actual process of determining what Nilsson calls a noninteractive ordering for a
particular instantiation of a plan must be done when the final macro-operator is used to solve
a future problem. Assuming all inconsistent sets of ordering constraints were detected and
prevented by adding additional preconditions to the macro-operator, for any situation that
meets the preconditions, there is guaranteed to be a partial ordering of the actions that
satisfies all of the ordering constraints. However, due to the possible presence of disjunctive
ordering constraints, actually finding it may require an expensive search. However, this
should not be surprising since the increased generality of a partially-ordered macro-operator
can clearly result in a corresponding decrease in operationality (Segre, 1987).

6. Another Example

An additional example illustrating the importance of detecting protection violations
when generalizing the order of operators in a macro-operator involves learning a schema for
“‘arson for insurance.”” This is a concept learned by GENESIS, a text understanding system
which uses EGGS to learn plan schemata by generalizing specific plans it observes in natural
language narratives (Mooney, 1988). By understanding and generalizing the following story,
GENESIS acquires a general schema for someone burning their own building in order to col-
lect the insurance money.

Stan owned a warehouse. He insured it against fire for 100000 dollars. Stan burned
the warehouse. He called Prudential and told them it was burnt. Prudential paid him
100000 dollars.

The English paraphrase the system generates for the schema it learns from this story follows:

7a3 is a person. 702 is an inanimate object. 7¢3 is an insurance company. 7v3 is
money. 702 is not burnt. ?a3 has 702. ?a3 insures 702 with ?¢3 for 7v3 in case it is
burnt. ?02 is flammable. ?a3 burns ?02. ?a3 contacts ?¢3 and tells it that 702 is
burnt. ?7c3 indemnifies 7a3 ?v3 for the loss of 702.

The explanation for this plan is basically that both the burning and insuring actions achieve
preconditions for the indemnify action which achieves a character’s goal of possessing
money. However, the structure of this explanation does not impose an ordering on the burn-
ing and insuring actions since neither of these actions enables the other in any way. How-
ever, the burning action clobbers a precondition of the insuring action since an object cannot
be insured against fire if it is already burnt. The algorithm described above detects this
potential protection violation and imposes the following mandatory ordering constraint on
these two actions:
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7a3 insures 702 with 7¢3 for ?7v3 in case it is burnt. should proceed ?a3 burns ?02. when T
or else 702 is burnt. will clobber 702 is not burnt.

In this example, the final schema is no more general that which would be learned if
order generalization were not performed. However, since order generalization was
attempted, the system has an explanation for why the insuring action must proceed the burn-
ing action. The ordering of the actions in the generalized schema is justified by the existing
theory of the domain, which it would not be if order generalization where not attempted.
Therefore the current approach more completely achieves the goal of producing a justified
generalization, which is one of the primary goals of explanation-based methods (Mitchell ez
al., 1986).

7. An Example Requiring Structural Generalization

As discussed earlier, the order-generalization process currently incorporated in EGGS
requires that preconditions be achieved as they were in the original example. However, gen-
eralizing the order of operators in certain situations requires altering the explanation struc-
ture by breaking some of the connections between preconditions and effects. For example,
consider the following plan for building two independent stacks of blocks:

Pickup(A), Stack(A,B), Pickup(C), Stack(C,D)

Assuming the standard definitions for these blocks world actions (Nilsson, 1980), the specific
explanation for this plan is shown in Figure 4. Although the process of building two separate
stacks would seem to be two independent operations either of which could be performed
first, the structure of this explanation actually imposes a particular ordering on the two opera-
tions. This is because a precondition for building the second stack is that the hand be empty
and this precondition was met by releasing the top block after building the previous stack.
Generalizing the order of these two operations requires allowing the HandEmpty precondi-
tions to be achieved in a manner different from that observed in the original instance.

The current order-generalization routine in EGGS does not allow altering the structure
of the original explanation by breaking the connection between effects and preconditions.
Unlike the ‘‘double Setq’’ example discussed earlier, the explanation structure for this exam-
ple imposes a total ordering on the actions in the plan. Therefore the system cannot general-
ize the order of these two block-stacking operations. More complex order-generalization
techniques which consider the possibility of altering the explanation structure are needed to

perform generalizations of this sort.”

In the block stacking example, although having the hand empty is a precondition for
picking up block C, making the hand empty is not the ‘‘reason’’ for stacking A on B. On the
other hand, the reason for picking up block A is to enable stacking it on B. Therefore, not all
connections between effects and preconditions are created equal. Some seem to be more
crucial to the overall explanation than others. One possible rule is to only allow breaking the
connection between an effect and a precondition if another effect of the same action more
directly supports the goal. This is the situation in the block stacking example since the real
reason for stacking A on B is not to enable Pickup(C) but rather to achieve On(A,B).

*Mooney (1988b) presents more information on the relationship between order generalization and structural generali-
zation.
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~Clear(D) On(C,D) HandEmpty Clear(C) ~Holding(C)

Stack(C,D)
Clear(D) T
~OnTable(C) Holding(C) ~Clear(C) ~HandEmpty
Pickup(C)
~Clear(B) On(A,B) HandEmpty Clear(A) ~Holding(A)
| Stack({A,B)

Clear(B) T
~OnTable(A) Holding(A) ~Clear(A) ~HandEmpty

Pickup(A)

Clear(A) HandEmpty OnTable(A)

Figure 4: Block Stacking Example -- Specific Explanation

8. Conclusions and Problems for Future Research

Generalizing the temporal order of operators in a plan in order to produce partially-
ordered macro-operators can result in more general and as well as more justified concepts.
As in the EGGS system, performing this task can be incorporated as part of a general
explanation-based learning system. Empirical testing of this system on a number of exam-
ples from various domains such as programming, blocks-world planning, and narrative
understanding has given promising results.

A theoretical analysis of the computational complexity of the order-generalization prob-
lem demonstrated that detecting potential protection violations in macro-operators and deter-
mining ordering constraints which prevent them can be performed in polynomial time. How-
ever, detecting inconsistencies in these constraints and adding preconditions to prevent them
can be computationally expensive. Avoiding a complete search for inconsistencies could
result in the omission of necessary preconditions and the resulting acquisition of macro-
operators which are overly-general. A promising area for future research involves develop-
ing failure-driven EBL techniques for detecting overlooked inconsistencies encountered dur-
ing subsequent use of such macro-operators and refining the macro-operator to account for
the detected interaction.
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In addition, as discussed in the previous section, techniques are needed for allowing
order generalizations which require altering the structure of the original explanation by
breaking the connections between preconditions and effects. Finally, the current technique
requires actions to be represented as STRIPS operators with complete delete lists. This is
frequently an unrealistic requirement and techniques are needed for generalizing the order of
weaker types of operators.
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