A GENERAL EXPLANATION-BASED LEARNING MECHANISM
AND ITS APPLICATION TO NARRATIVE UNDERSTANDING

BY

RAYMOND JOSEPH MOONEY

B.S., University of Illinois at Urbana-Champaign, 1983
M.S,, University of Iliinois at Urbana-Champaign, 1985

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1988

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

JANUARY 1988

WE HEREBY RECOMMEND THAT THE THESIS BY

RAYMOND JOSEPH MOONEY

ENTITLED A GENERAL EXPLANATTON-BASED LEARNING MECHANISM

AND ITS APPLICATION TO NARRATIVE UNDERSTANDING

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

: CTOR OF PHILOSOPHY
THE DEGREE OF DOcTo P

//l;l/l 2 ‘,_5,’/‘/7 Director of Thesis Research

Head of Department

Chalirperson

T Required for doctor’s degree but not for master's.

0-517

®Copyright by
Raymond Joseph Mooney
1988

i

A GENERAL EXPLANATION-BASED LEARNING MECHANISM
AND ITS APPLICATION TO NARRATIVE UNDERSTANDING

Raymond Joseph Mooney, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1988
Gerald Francis DeJong, Advisor

Explanation-based learning (EBL) is a learning method which uses existing knowledge of the
domain to construct an explanation for why a specific example is a member of a concept or why a
specific combination of actions achieves a goal. This explanation is then generalized in an analytical
manner in order to produce a general concept description or plan schema. Although a number of
exploratory EBL systems which operate in particular domains have previously been conétructed,
recent research in this area has lead to the development of general mechanisms which can perform

explanation-based learning in a wide variety of domains.

This thesis describes a general EBL mechanism, EGGS, which can make use of declarative
knowledge stored in the form of horn clauses, rewrite rules, or STRIPS operators. Numerous
examples are presented illustrating its application to a wide variety of domains, including “‘blocks
world” planning, logic circuit design, artifact recognition, and various forms of mathematical

problem solving. The system is shown to improve its performance in each of these domains.

EGGS has been most thoroughly tested as a component of a narrative understanding system,
GENESIS, which improves its own performance through learning. GENESIS processes short English
narratives and constructs explanations for characters’ intentional behavior. When the system
detects that a character has achieved an important goal by combining actions in an unfamiliar way,
EGGS is used to genefalize the specific explanation for how the goal was achieved into a general
plan schema. The resulting schema is then retained by .the system and indexed into its existing
knowledge-base. This schema can then be used to process narratives which were previously beyond
the system’s capabilities. The thesis also discusses GENESIS' ability to learn meanings for words
related to its learned schemata and reviews several recent psychological experiments which
demonstrate that GENESIS can be productively interpreted as a cognitive model of certain types of

human learning.

DEDICATION

To the memory of my parents.
If only they had been fortunate enough to witness the completion

of an educational endeavor which they always supported.

iv

ACKNOWLEDGEMENTS

I would like to thank:

Gerald DeJong, my advisor, for initiating and directing this research, for innumerable helpful
comments, and for leading a stimulating and friendly research group in which it has been a
pleasure to work.

William Brewer, for serving on my final committee and for his interest and direction in an
enjoyable and enlightening interdisciplinary project in cognitive science.

Gregg Collins, Ken Forbus, and Alan Frisch for also serving on my final committee and providing
helpful comments.

Woo-Kyoung Ahn for being a greaf cognitive science collaborator as well as a good friend.

- The EBL group at CSL for many interesting meetings and lunchtime discussions and for being
friends as well as colleagues. Particularly to:

Jude Shavlik for many interesting and helpful discussions about EBL, machine learning, and
Al in general.

Steve Chien for useful and interesting discussions about nonlinear planning, order
generalization, and intractability. '

Scott Bennett for initial discussions and work on the general generalizer.
 Paul O'Rorke for early discussions about explanation generalization.
Alberto Segre for early discussions on understanding.
Shankar Rajamoney for interesting discussions about imperfect theories.
‘Brad Whitehall for being a great office-mate and for many interesting discussions.
‘Bob Stepp and his other students for bringing SDBL to CSL.

Smadar Kedar-Cabelli, Haym Hirsh, Prasad Tadepalli, Steve Minton, and Rich Keller for
interesting and helpful discussions on explanation-based generalization.

Dedre Gentner for helpful information on developmental work in word learning and for running
interesting cognitive science seminars.

This research was conducted at the Coordinated Science Laboratory of the University of
Ilinois and was supported by the Air Force Office of Scientific Research under grant F49620-82-K-
0009, by the National Science Foundation under grant NSF-IST-83-17889, by the Office of Naval
Research under grant N-00014-86-K-0309, and by a University of Illinois Cognitive Science/Al
feliowship.

vi

PREFACE

Artificial Intelligence is a young science whose methodology is still developing. Their
currently exist a number of relatively distinct methodological perspectives or paradigms [Kuhn70]
in Al research. Hall and Kibler [Hall85], have proposed the following taxonomy of methodological

perspectives in NG

#® Performance Al Oriented towards constructing systems with impressive levels of performance

in a particular domain.

e Constructive Al Oriented towards learning general principles of intelligence by designing,

constructing, and experimenting with systems operating in complex domains.

® Formal Al Oriented towards formal specification of general problems and mathematical
proofs of the correctness and computational complexity of algorithms for

solving these problems.

@ Speculative AI Oriented towards developing a theory of human cognition by introspection and
construction of Al systems. Interested in global, ecologically valid tasks which

do not allow for detailed empirical validation.

‘® Empirical Al Oriented towards developing a theory of human cognition by constructing Al
systems that closely model empirical data. Interested in well-defined problems

which allow for detailed empirical validation.

The research presented in this thesis does not strictly adhere to any one of these perspectives and

cuts across the boundaries of many of them.

Since it has involved constructing and experimenting with a large software system, the
research presented here can be seen as adhering to the constructive approach. In this vein, the thesis
attempts to provide a detailed description of the system and presenis numerous concrete examples

of its operation and empirical data on its performance.

However, this thesis also presents precise descriptions of the underlying algorithms used in
. the system and in several cases mathematically analyzes the computational time complexity of

these algorithms. Consequently, it can also be seen as exhibiting aspects of the formal approach.

YThis is not meant to imply that Hall and Kibler claim that all research in Al can be pigeonholed into one of these
categories. In fact, they explicitly acknowledge the "...tendency on the part of researchers and issues to shift quite freely
between perspectives...” (p. 173,

vii

Also characteristic of the formal approach is the use of predicate calculus as an underlying

. representation language.

This research alse maintains an interest in human cognition. The development of the system
- was motivated and guided by intuitions about human learning. Characteristic of the speculative
approach, the task of narrative understanding is used as the primary domain of application.
Narrative understanding is a more global [Lehnert84] or ecologically valid task than well-defined

tasks such as the eight-puzzle.

However, the psychological plausibility of the system is not supported only by intuition and
anecdotal evidence. Empirical evidence from psychological experiments is used to support the
claim that the system exhibits behavior similar to that found in human subjects. Therefore, this

research also has features of the empirical approach.

In summary, this thesis attempts to illustrate that a uniform and coherent piece of AI
research can productively employ aspects of many of the current methodolorgical perspectives in
artificial intelligence. It is the author’s sincere hope that more researchers in Al will learn to
appreciate the advantages of the different approaches instead of slavishly adhering to a particular

methedological mind-get.

viii

TABLE OF CONTENTS

CHAPTER
1 INTRODUCTION ...oooomrrrrrrrrrremsnssiss e s er s s e vesse e srnsransssanemns srrsemes sos sives ssmbesbasseveas 1
1.1. EGGS: A General Explanation-Based Learning Mechanismc.occvrevveevirievivrmcaceeee. 1
1.2. GENESIS: Acquiring Schemata for Narrative Understandingcoceecvvrvvrrervmrnmrreenans 2
1.3. Historical COMMENTS .oiciririrriiriiiisiiisesisersstisses s tensserssssssis stessserssnnssresonss sesrnesresrens 3
1.4. Organization of the TRhesiS ..ovcivivriiicr s e e i 4
1.5. Comments on Notation, Implementation, and Figuresccccovvmeievniivicinnennnsverren 5
2 SAMPLE GENESIS PERFORMANCEooonrri e 6
3 EGGS: A DOMAIN INDEPENDENT EXPLANATION GENERALIZER ... 14
'3.1: Explanations, Explanation Structures, and Generalized Explanationscccccccoeies 14
3.2. Explanation Generalizing AIZOTITIINS ..ovvveevreeerirersiserasserensrsnrsssiaseesenierenresensssimerarmsissoas 20
3.3. Comparison of Explanation Generalizing Algorithmscccoeivnenienemesi e smseniicnens 29
3.4. Computational Complexity of Explanation Generalizationoenieniieennne. 31
3.5. Correctness of Explanation Generalizing AIgorithmscecceverimenmniennennne e 31
" 3.6. Pruning Explanations for Operationality ... 33
3.7. Integrating Explanation Construction, Pruning, and Generalizationcccoovevuenn, 35
3.8. Explanation Generalization Versus Chunking and Production Composition 36
4 EGGS: LOGICAL PROOF EXPLANATIONS ..c.oooiiiiiiiremcienne e e sss s s s san s 39
4.1. Facilities in EGGS Supporting Logical Proof Explanationsccocoeiemmneeeiincnnncnnns 39
4.2. Logical Proof Examples in Several Domains ..o 43
5 EGGS: REWRITE EXPLANATIONS ..ot virr et e sensrasnnnssees 59
5.1. Rewritings as Explanations: The LEAP Example -t enessnansanes 59
5.2. Facilities in EGGS Supporting Rewrite Explanationsccociinnniiniiennciene, 61
5.3, Rewrite EXamples .ot s e b s e s e 63
6 EGGS: PLAN EXPLANATIONS ..ottt st ssasssss s sran e essans srmss res s s nsssnrnas 69
6.1. Plans as Explanations: The STRIPS Examplecccocceveevmernnereierreneenes et e e e s 69
6.2. Facilities in EGGS Supporting Plan Explanationscc.cccceveiimimnrinnicrersrmnssssnnens 70
6.3. Plan EXAMPIES .vviivvrreriiieeririreereiesiessssssnessrasrerrasaeses sessasnsrsasesssesserernaneeserrassssannnressreessrens 83
7 EGGS: EMPIRICAL RESULTS ON THE EFFECT OF LEARNINGccooociiiiiiiiiiecis 87
7.1. Performance IMProvementcccviiiiimrnrirnrcsnssnsns orarsvsreesssnrsrseesbes vesssvesnssessssses 87
7.2. Performance Degradation ... e v e 89
7.3. A Suggestion for Better Controlled EXPerimentscooocveviveeisineinnmreimnse e 90
.................... s 92

8 GENESIS: SYSTEM OVERVIEW e oo

CHAPTER

8.1. The Parser and Lexicon ...

8.2. The Understander, Schema Library, and Causal Modelcccccvvevverevrnienecrieiesssnnenens

8.3. The Question-Answerer ..
8.4. The Paraphraser

8.5. The Generator and VOCADULATYcccerrverecerorrreneieieesssstessetsse s s ereress s sss s sensssesessesaas

8.6. The Schema Learner
8.7. The Word Learner

..

8.8. The Indexer/Retriever and the Long Term SLOTe ...c.cccoeeveveevvveervrresieree e seesseeaeee e e
8.9. The Importance of the Complete SYSTEM ..ovvirverierertieccieceecerececr et et ee e enes

9 GENESIS: SCHEMA REPRESENTATION T TP

9.1. Objects voovvrerereeerineeienee,
9.2. Attributes and States
0.3, Actions .ovveeevviveiceeaeaenenn,

10 GENESIS: NARRATIVE UNDERSTANDINGo.coviiiieeieiciiecceeeeree e e seesiesesensenaeeneenes

10.1. Schema Selection

10.2. Causally Connecting Actions Without @ SChema ...c.ceceeuereeeerenieireic s e eseenenene
10.3. Limiting Search in Understandingcceccerermvmrirsensecnnrnneenerssieseeosseeessrsssessssesnne

11 GENESIS: SCHEMA ACQUISITION ..ccccormmiiteceeeecrreeeens e e st

11.1. Deciding When to Learn
11.2. Pruning the Explanation

11.3. Generalizing the EXPlanationcc.ccceicrirnoiouinnenrieressee e semesee s sss st seee
11.4. Packaging the EXPlanationc.ccceoeeceriieiireeveaseeee s eesemsssscssessesseeseseeeeeeneeeeenen
11.5. Using the Learned SCREMaccvuetrieeeicureriiriesestese e e enas e sessstst s et eeeessereeeneeons

12 GENESIS: LEARNING WORD

MEANINGS ... e erar e s sae

12.1. A Problem with Previous Models of Learning Word Meaningsccovevrveresvrrerenne

12.2. Learning Role Labels
12.3. Learning Schema Labels

12.4. Comments on the Integrated Learning of Words and COnceptsoovvuererereeeersnerenn.

13 GENESIS: LEARNED SCHEMATA AS RETRIEVAL INDICEScooieiiriiimrarrerncarsiaeesanans

14 THE PSYCHOLOGICAL STATUS OF EXPLANATION-BASED LEARNINGccooevvnnenee.
14.1. Overview of the EXPeriments ..cocccvvrreereeceeieceeceeeeececesie st eeeeseevesenseesesessaessraeeseens

14.2. Experimentl: Abstract Description Generationecoeccoeecvrcsveversiseeeemseeeesseerens
14.3. Experiment 2: New Instance Generationocovveeieeececrceeecevninres e seeses s seeeans
14.4. Experiment 3: Yes/NO QUESTIONS teeeerreriieieierieiiecrinimiereeese e e eereresee s seessasseseseeasaeanens
14.5. Discussion of the Experimental ReSUlLSccovieveemiivieieeieieececte s see s e aesaenens

15 CONCLUSIONS AND FUTURE WORK ..ccoiviuicecieeeeeec et ee et e ses s st s e s s neneae

15.1. Relation to Other Work

it

92
92
93
94
94
95
95
95
96

98
98
98
100

107
108
115
122

127
127
129
132
135
136

141
141
142
146
149

150

154
154
156
157
158
158

160
160

CHAPTER

15.2. Problems for Futtire RESEAICH it si s s snsssressesssnssnssssrsssessseseneens
15,3, CONCIUSIONE tveverrurrrrrraeesieisereresarsressnmasecesssrasessassessresessesntastatsassssssnsressssnmmeresssmnssssssssnnes

APPENDIX A LINEAR SUBSTITUTION APPLICATIONcocoviiiiniinnnc e e

- APPENDIX B ADDITIONAL GENESIS EXAMPLESccouvrnrmreerrerminessssssssnssesssessssseesonsses
B.1. The Kidnap EXample ...t scses e ce s ceseneesseseeseseresesnessesnesaces
B.2. The Arson EXample ..o see e cse e cts s esms e st sseere e sasnensnesnens
B.3. The Solicit EXAMPIE .o.coviviiiiinicciiiiiircc et e sn et easancsn e sea s eresre e saesreeraens

APPENDIX C INITIAL GENESIS KNOWLEDGEcccooiivmrreerirr s S,

APPENDIX D DETAILED GENESIS TRACE FOR THE MURDER EXAMPLEcoccvrmienenn.

REFERENCES ...ttt et et et se s ee e et e em e et e eama sresnaaembeer e

162
166

168

171
171
184
195

207

212

220

232

CHAPTER 1

INTRODUCTION

Over the past several years, research in machine learning has included an ever increasing
number of projects in the area of explanation-based learning (EBL) [DeJong86b, Mitchell86]. Previ-
ously, research in machine learning was predominantly concerned with what have been called
similarity-based [Lebowitz86] or empirical [Langley86] learning methods. Prototypically, a
similafity—based learning (SBL) method involves determining a concept definition by examining a
large number of examples and counter-examples of a concept and searching for a simple description
that includes all of the examples while excluding all of the counter-examples (see [Dietterich82,
Dietterich83, Mitchell82] for overviews of such methods). A critique of these methods as well as
numerous replies to this critique can be found in [Schank86b). In contrast to this approach, an
explanation-based method uses its existing knowledge of the domain to explain why a single exam-
ple is a member of a concept and then analYtically generalizes this explanation to determine a
description of the general concept. A discussion of the advantages and disadvantages of this
approach can be found in [Mitchell86] and a review of work in EBL is presented in [Ellman87].

Some interesting remarks on the relation between SBL and EBL are also presented in [Dietterich86].

This thesis presents a general domain-independent explanation-based learning mechanism that
has been tested on numerous examples from various domains. In addition, it discusses how this
learning system has been integrated with a narrative understanding mechanism to form a complete
system that learns new plan schemata from English narratives and uses these schemata to improve
its understanding ability. Some recent psychological experiments that indicate people can learn a
schema by explaining and generalizing a single instance presented in a narrative are also briefly
reviewed. Therefore., an overall claim of the entire thesis is that a general mechanism for
explanation-based learning can be used to improve the performance of a narrative understanding

system in a psychologically plausible manner.

1.1. EGGS: A General Explanation-Based Learning Mechanism

EGGS is a general EBL system that has been tested on a variety of examples from the litera-
ture on explanation-based learning. Many of these examples were originally used to demonstrate
earlier, more domain-dependent systems such as STRIPS [Fikes72]. LEX2 [Mitcheli83], CUPS
[Winston83], MA [O'Rorke84], and LEAP [Mitchell85]. The examples from these systems come

from a number of different domains including “blocks world” planning, integration problem solv-
ing. learning artifact descriptions, proving theorems in logic, and designing logic circuits. Neverthe-
less, the same learning system is used to generalize explanations for all of these examples. EGGS
also includes performance systems that produce explanations for the learning system and in turn

use the rules it generates to improve their ability to solve future problems.

EBG [Mitcheli86] is an alternative domain-independent technique for generalizing explana-
- tions that was independently developed at the same time EGGS was originally designed and imple-
mented. The eventual implementation of EBG [Kedar-Cabelli8 7a), has also been tested on several
of the domains mentioned above. All of the original systems listed above used similar generaliza-
tion techniques; however, until the development of EGGS and EBG, there was not a general learn-
ing technique that could be used to generalize examples in all of these domains. Explanation gen-
eralization is also a very computationally efficient process. As demonstrated in this thesis, explana-

tion generalization can theoretically be performed in time linear in the size of the explanation.

EBL requires knowledge of the underlying theory of a domain before it can learn more useful
knowledge for efficiently solving problems in that domain. Consequently, a general EBL mechan-
ism that can learn in a variety of domains requires what has been called an exchangeable knowledge
module [Michalski86]. In EGGS, this is accomplished by having both the generalizer and perfor-
mance systems make use of a library of declarative knowledge that is uniformly represented.
Currently, EGGS can rewrite rules, or STRIPS operators. This set of representational choices has

allowed the efficient implementation of a numerous examples from various domains.

Finally, previous EBL systems that learn plans or macro-operators have generally been used
to learn linear sequences of actions. EGGS is unique in that it contains a mechanism for learning
plans for partially-ordered sequences of actions. This process results in more general plans which

are applicable to a wider range of future situations.

1.2. GENESIS: Acquiring Schemata for Narrative Understanding

GENESIS is a narrative understanding system that improves its performance by using the

EGGS learning system to acquire an abstract schema from a specific instance of a novel plan
rd

presented in an English narrative. As such, it tests the capacity of the EGGS learning system to

improve the processing ability of a complete performance system operating in 2 complex domain.

Narrative text understanding was chosen as a performance domain for the following reasons.

The ability to “understand” natural language text is a very difficult task requiring a large amount

of world knowledge. Systems for understanding natural language text (e.g. [Cullingford78,
DeJong82b, Dyer83]) generally encode relevant world knowledge in terms of scripts or schemata
[Schank77]. The amount of world knowledge represented in terms of schemata largely determines
the performance of such a system. Experience with the FRUMP system [DeJong82b] indicated that
robustness of a text understanding system is directly related to the number of schemata it
possesses. However, anticipating and encoding all of the schemata required for a robust natural
language system is impossible for both theoretical and practical reasons. Theoretically, texts can
display novel concepts unknown to the implementors of a natural language system. If the natural
language system is to respond properly, it must discover such new concepts automatically. Practi-
cally, the number of schemata required to cover most natural language domains is prohibitively
large and prevents manual programming of all of the necessary concepts. Once again, automatic

schema acquisition is essential.

Of course, narrative understanding is not unique in this regard. Most realistic performance
tasks require large amounts of domain knowledge represented in a form that can be efficiently used
to solve problems; and constructing such a knowledge-base is known 1o be a difficult task. In fact,
most work in machine learning is at least indirectly addressing the problem of the “knowledge
acquisition bottleneck” [Feigenbaum83] in the construction of knowledge-based systems. However,
narrative understanding has the advantage that issues can be illustrated with examples that are
accessible to everyone, not just to individuals who have advanced degrees in medicine, geology, or

computer engineering.

Another interesting aspect of this domain is that explanation-based learning has generally
been used to improve the performance of a problem-solving system rather than an understanding
system. GENESIS is unique in that it demonstrates that EBL can be used to improve a system'’s

ability to explain observed behavior as well as its ability to solve problems efficiently.

1.3. Historical Comments

An original implementation of GENESIS was reported in [Mooney85b] _(shorter versions
include [Mooney85a]l and [Mooney86a]). This version employed a relatively ad hoc explanation
generalizing system that was specific to the representations used by the narrative understanding
‘system (see [Mooney85b] for details on this generalizer). However, the original GENESIS general-
izer was similar to the lifting process used to learn generalized plan MACROPS in STRIPS [Fikes72]
and was also influenced by the TMS-based generalizer used by the MA system [O'Rorke87b].

An attempt to convert the original GENESIS generalizer into a domain-independent explana-
tion generalizer lead to the development of the EGGS system. The generalization algorithm under-
lying the EGGS system was first described in [DeJong86b] and a comparison of EGGS, EBG, and
STRIPS as well as examples of applying EGGS to numerous domains was first presented in
[Mooney86¢c]. After the development of EGGS was complete, an entirely new version of the

GENESIS system was built on top of this general explanation-based learning system. This version

of GENESIS is described in detail in this thesis.!

1.4. Organization of the Thesis

The thesis begins with a sample performance of the GENESIS system that illustrates the sort
of behavior exhibited by the complete system. The next four chapters discuss various components
of the EGGS system. Chapter 3 discusses the domain-independent explanation generalizer that is
used to generalize all of the examples presented in the thesis. It also includes a discussion on the
relation between the explanation generalization algorithm used in EGGS and the generalizing algo-
rithms used in STRIPS, EBG, and SOAR [Laird86b] as well as an analysis of the computational
complexity of explanation generalization. Chaptérs 4-6 discuss additional sub-systems in EGGS for
building explanations based on various representations and present numerous examples of using
EGGS 1o learn in various domains. Chapter 7 presents a summary of empirical results on the effect

of learning on future problem solving performance.

The next six chapters discuss additional components in the complete GENESIS system.
Chapter 8 presents the architecture of the complete system and briefly discusses the role of each of
its components. Chapter 9 discusses the knowledge representation used in GENESIS and Chapter
10 describes the processes used in understanding narratives. Chapter 11 discusses how GENESIS
uses EGGS to generalize explanations constructed by the understanding system and illustrates how
the schemata it learns improve its ability to understand subsequent narratives. The final two
chapters about GENESIS discuss its ability to learn meanings for schema-related words from a sin-
gle instance of their use (Chapter 12} and to use learned schemata to index and retrieve specific

episodes {Chapter 13).

“ IFor several reasons, this new implementation is not called GENESIS II. One reason is to avoid association with Gene
Roddenberry’s failed TV pilot of the same name [Gerrold73). A second reason is to avoid the temptation to make as many
versions of GENESIS as there were sequels to Friday the 13th. The latter behavior has been known to provoke satirical com-
ments from some stone-throwing members of the machine learning community (e.g. the reference to AQ63 in [Gang!y87])..

Chapter 14 reviews some psychological experiments that indicate explanation-based learning
is psychologically plausible. Specifically, these experiments demonstrate that people, like GENESIS,
can learn a schema from a single specific example presented in a narrative provided they have the

knowledge to explain the actions in the example.

Chapter 15 summarizes the unique features of this research compared to other work in EBL -

and machine learning in general and discusses some problems and directions for future research.

Finally, there are a number of appendices that provide additional details. Appendix A
presents a lemma needed for the complexity analysis of explanation generalization. Appendix B
presents additional examples of GENESIS' performance which even the casual reader may find
interesting to peruse. Appendix C lists all of GENESIS' initial knowledge and appendix I) gives a
detailed GENESIS trace.

LS. Comments on Notation, Implementation, and Figures

Throughout the thesis, the LISP convention of using a leading question mark (e.g. 7x23) is
used to denote prediéate calculus variables [Charniak85]. In general, Staﬁdard predicate calculus
notation (e.g. P(?x,?7y)) is preferred to LISP notation (e.g. (P ?x 7y)); however, for convenience, the
latter is sometimes used, particularly in the appendices. All implementations. are written in
INTERLISP [Teitelman83] and were developed and run on a XEROX 1108 (Dandelion) with 3.5 MB
of main memory. All explanation graphs presented in the thesis (including accompanying node
labelling tables when needed) were generated automatically by the system using Interlisp-D’s
GRAPHER package [Xerox86] and automatically converted to TROFF PIC [Kernighan79] and TBL
[Lesk79] descriptions. Only minor hand-editing was performed to reposition nodes for more com-
pact lay-out and to insert special characters (e.g. [, A, =). When tables are used to fully label
nodes in large explanation graphs, the order of the nodes follows a depth-first, left-to-right traver-

sal of the graph.

CHAPTER 2

SAMPLE GENESIS PERFORMANCE

The purpose of this chapter is to provide the reader with an intuitive feel for the overall
operation of the system. Throughout this thesis, it is assumed that the reader, like an EBL system,

can learn a great deal by analyzing and understanding a single concrete example.

The primary goal of the GENESIS system is to improve its ability to understand natural
language narratives by learning new plan schemata. Such schemata are acquired by explaining and
generalizing a specific instance of a plan executed by a character in a narrative. Characters’ actions
are explained in terms of later actions that they enable and in terms of ultimate goals that they
achieve. When the system detects that a character has achieved an important goal by combining
actions in 2 novel and unfamiliar way, it generalizes the specific explanation for how the goal was
achieved into a general plan schema. Generalization is performed by an analytic technique (EGGS)
which removes irrelevant information while maintaining the validity of the explanation. The
resulting schema is then retained by the system and indexed so that it can be subsequently

retrieved and used to aid in the understanding of future narratives.

A standard procedure is used to test GENESIS’ ability to learn a particular schema from a sin-
gle instance. This procedure illustrates both the schema learning process itself as well as the ability
of the learned schema to improve system performance. First, the system is given a test narrative
which presents a sparse description of an instance of the schema. This description is missing one or
more actions that are crucial to the overall plan. Consequently, the narrative is not detailed enough
for the system to construct a causally complete explanation for characters’ actions without a
schema to supply missing actions and inferences. The system is therefore unable to answer ques-
tions that require making default inferences about what must have taken place and it is unable to
produce an adequate paraphrase of the narrative. Next, the system is given a learning narrative
which describes in detail a complete instance of the schema and which contains the crucial actions
and other information that were lacking in the test narrative. Using its existing knowledge,
GENESIS is able to construct a causally complete explanation for this narrative and can therefore
answer questions about why actors performed certain actions as well as produce an adequate para-
phrase of the text. Since the narrative presents a novel plan that achieves an important goal, the
system generalizes its explanation of how the goal was achieved into a new plan schema. Finally,

GENESIS is given the test narrative again. This time, it can use the schema it has just learned to fill

in missing information, and as a result, it can now answer questions that it was previously unable

to answer as well as produce a better paraphrase of the text.

The remainder of this chapter is dedicated to presenting the trace produced by GENESIS as it
learns a “'kidnapping for ransom’ schema [DeJong81, Delong82a, DeJong86a, Delong86b,
Mooney85a, Mooney86al. This is currently the most complicated example upon which GENESIS
has been tested. A complete step-by-step description of the system’s performance oﬁ this example
is not included in this thesis since it would necessarily be very long and complicated and the
important processes are more easily illustrated using simpler examples. However, more detailed
information about this example is given in appendix B and definitions of all of GENESIS' initial
schemata are given in appendix C. Chapters 9-11 include a complete step-by-step description of
how GENESIS learns and uses a “murder for inheritance” schema and a detailed ;system trace of
this example is given in appendix D. Details on other GENESIS examples such as “arson for

insurance’ and “‘solicitation entrapment’’ are also given in appendix B.

Before processing the narratives used in the kidnapping example, the system has knowledge
about bargaining, capturing and confining. threatening, and many other concepts; however, it does
not have any knowledge about the concept of kidnapping for ransom nor any knowledge of the

e w4

words “kidnap,” “kidnapper,” or “ransom.” In order to illustrate the system’s current ignorance
of kidnapping and how this lack of knowledge affects its ability to understand certain kidnapping
narratives, the system is first given a test narrative. Below is the actual 1/0 trace produced by the

‘sysiem.

Input: Ted is Alice’s husband. He won 100000 dollars in the lottery. Bob imprisoned Alice in

his basement. Bob got 75000 dollars and releasad Alice.

Thematic goal achieved: Ted is happy that Ted has the $100000.

Ready for gquestions:

> Summarize

Ted won $100000 in a lottery. Bob captured Alice and locked her in a basement. Bob released

Alice.

>Why did Bob lock Alice in his basement?

Cannot find sufficient reason.

>How did Bob get the money?

Cannot find sufficient cause.

> Why did Bob release Alice

Cannot find sufficient reason.

>How did Ted get the money?
Ted won the $100000 in the lottery.

Notice that this narrative does not mention how Bob got the money or why Bob imprisoned Alice
and then released her. Since the sysiem does not havé a schema for kidnapping, it cannot infer the
missing information and causally connect the actions in the input. Consequently, its paraphrase of
the narrative is very poor and it is unable to answer many questions about it. Next, GENESIS is

given the following more detailed narrative:

Input: Fred is Mary’s father and is a millionaire. John approached Mary and pointed a gun at
her. She was wearing blue jeans. He told her if she did not get in his car then he would shoot
her. He drove her to his hotel and locked her in his room. John called Fred and told him John
was holding Mary captive. John told Fred if Fred gave him 250000 dollars at Trenos then
John would release Mary. Fred paid him the ransom and the kidnapper released Mary.

Valerie is Fred's wife and he told her that someone had kidnapped Mary.

Thematic goal achieved: John is happy that John has the $250000.
Explanation suitable for generalization. Pruning...Generalizing...Packaging...

Creating New Schema: (CaptureBargain 7x55 7a34 769 7c4 7r5 7y5 ?7111)

709 is a person. 7cd is a location. 7r5 is a room. 7c4 is in ?r5. 7x55 is a character. ?b9 is free.
7x55 captures ?b9 and locks him/her in 7r5. 7a34 is a character. ?x55 contacts ?a34 and tells it
that ?b9 is 7x55's captive. ?y5 is a valuable. ?7x55 wants to have ?y5 more than it wants 7b9
1o be 7x35’s captive. 7a34 has a positive relationship with 7b9. 7a34 has 7y5. ?x55 and 7a34

carry out a bargain in which ?x55 releases 7b9 and 7a34 gives ?x55 7y5 at ?111.

Unknown word ‘ransom’ refers to ?y5 in CaptureBargain

Unknown word "kidnapper’ refers to 7x55 in CaptureBargain

Having: 7x55 captured ?7b9. suggest CaptureBargain
Having: 7x55 contacted ?a34 and told it that ?b9 was ?x55’s captive. suggest CaptureBargain
Having: ?x55 and 7a34 carried out a bargain in which ?x55 released 7b9 and 7a34 gave 7x55 ?y5

at ?111. suggest CaptureBargain
Unknown word "7x55 kidnap 769" refers to CaptureBargain
Ready for questions:

>Summarize

Mary was free. John captured Mary and locked her in a room. John contacted Fred and told
him that Mary was John's captive. John wanted to have $250000 more than he wanted Mary
to be John's captive. Fred had a positive relationship with Mary. Fred had the $250000. John
and Fred carried out a bargain in which John released Mary and Fred gave John the $250000 at

Trenos.

>Why did John approach Mary?
So John could aim the gun at Mary.

>Why did John aim the gun at Mary?

So John could threaten to shoot Mary with the gun unless Mary went from John into the car.
>Why did Mary get into the car?
Because Mary wanted not to be shot and because Mary believed that if Mary did not go from

John into the car then John would shoot Mary with the gun.

>Why did John threaten to shoot Mary unless she got in the car?

So John could drive Mary to the hotel in the car.

> Why did John drive Mary to the hotel?

10
So John could move Mary from the hotel into the room.

> Why did John move Mary into the room?

So John could confine Mary in the room.

> Why did John confine Mary in the room? _
So John could call Fred and could tell him that Mary was John's captive and so John and Fred
could carry out a bargain in which John released Mary and Fred gave John the $250000 at

Trenos.

> Why did John tell Fred that John was holding Mary captive?
So Jobn and Fred could carry out a bargain in which John released Mary and Fred gave John

the $250000 at Trenos.

>Why did Fred give John the money?
Because Fred believed that if Fred gave John the $250000 at Trenos then John would release

Mary and because Fred wanted Mary to be free more than he wanted to have the $250000.

> Why did Fred have $2500007

Because Fred had millions of dollars.

| >Why did Fred believe that John was holding Mary captive?

Because John called Fred and told him that Mary was John's captive.

> Why did Fred want Mary free?

Because Fred was Mary's father.

>Why did John release Mary?
Because John wanted to have the $250000 more than he wanted Mary to be John's captive and
‘because John believed that if John released Mary then Fred would give John the $250000 at

Trenos.

11

Unlike the first narrative, this one is detailed enough to allow GENESIS to causally connect the
characters” actions. Specifically, the crucial bargain that took place between the kidnapper and the
ransom payer is alluded to more directly. As a result, the system is able to answer numerous ques-
tions about why certain characters performed certain actions. The understanding mechanism is dis-
cussed in detail in chapter 10, and the specifics of understanding this particular narrative are given
in appendix B. The resulting explanation for how John got the $250,000 is generalized into a new
schema for kidnapping for ransom (which GENESIS calls CaptureBargain based on the names of
two existing schemata that compose the new schema). Chapter 11 discusses the schema acquisition

process in detail.

A few important aspects of the learned schema should be pointed out. First, it does not con-
tain any facts or actions that are irrelevant to the workability of the plan. For example, the fact
that the victim is wearing blue jeans is not included. A similarity-based learning system that was
given a number of examples of kidnapping in which the victim was always wearing blue jeans is
liable to include this fact in its representation of the concept. Second, the exact manner in which
the component plan schemata (e.g. Capture) were decomposed into subgoals and executed in the
example is not included in the schema. For example, the fact that the kidnapper executed the Cap-
ture by threatening the victim with a gun and then driving her to a hotel or that he contacted the
ransom payer by telephone are not a part of the CaptureBargain schema. Third, the generalization
process eliminates facts that are causally relevant to the plan only because they are specializations
of more general facts. For example, the fact that the ransom payer was the victim’s father is
relevant to the plan since it motivated him to pay the ransom; however, the more important fact is
the more general one that he had a positive emotional relationship with the victim and conse-
quently valued her freedom more than personal possessions. This generalizdtion is important since
the schema should be able to handle alternative relationships between the ransom péyer and victim

such as the husband-wife relationship in the test narrative.

After learning CaptureBargain, the system indexes the new schema so that if it subsequently
encounters a narrative in which someone captures someone or exchanges someone’s freedom for a
valuable item, it will be reminded of CaptureBargain and attempt to use it to help understand the
narrative. Details of the indexing process and how learned schemata can aid the understanding of
future narratives are also given in chapter 11. The system also acquires preliminary definitions for
three unknown words which occurred in the story: kidnapper, ransom, and kidnap. GENESIS'

ability to also learn word meanings from a single example is discussed in chapter 12.

12

Finally, GENESIS is given the test narrative once again. This time, Alice’s imprisonment rem-
inds it of CaptureBargain and it uses this newly acquired schema to infer the missing actions and
explain how Bob got the money. Consequently, its ability to answer questions and paraphrase the

text is greatly improved.

Input: Ted is Alice’s husband. He won 100000 dollars in the lottery. Bob imprisoned Alice in
“ his basement. Bob got 75000 dollars and released Alice.

Thematic goal achieved: Ted is happy that Ted has the $100000.
‘Thematic goal achieved: Bob is happy that Bob has the $75000.

Ready for questions:

>Summarize

Alice was free. Bob captured Alice and locked her in a basement. Bob contacted Ted and told
- him that Alice was Bob’s captive. Bob wanted to have $75000 more than he wanted Alice to be

Bob's captive. Ted had a positive relationship with Alice. Ted had the $75000. Bob and Ted

carried out a bargain in which Bob released Alice and Ted gave Bob the $75000.

> Why did Bob lock Alice in his basement?
So Bob could contact Ted and could tell him that Alice was Bob’'s captive and so Bob and Ted

could carry out a bargain in which Bob released Alice and Ted gave Bob the $75000.

>Why did Bob release Alice?
Because Bob wanted to have the $75000 more than he wanted Alice to be Bob's captive and

because Bob believed that if Bob released Alice then Ted would give Bob the $75000.

>How did Bob get the money?
Bob kidnapped Alice.

>Who gave Bob the money?
Ted gave Bob the $75000.

13

>Why did Ted give him the money?
Because Ted believed that if Ted gave Bob the $75000 then Bob would release Alice and

because Ted wanted Alice to be free more than he wanted to have the $75000.

>Why did Ted want Alice free?

Because Ted was Alice's husband.

>Why did Ted believe that Bob was holding Alice captive?

Because Bob contacted Ted and told him that Alice was Bob's captive.

While answering questions about this narrative for the second time, it is interesting to note that the
system used the newly learned word “kidnap” to refer to the CaptureBargain schema in its answer
to the question: “How did Bob get the money?” This is because the state in question is an effect of

the new schema and since it knows how to refer to this schema in English, it considers it to be an

appropriate answer.

14

CHAPTER 3

EGGS: A DOMAIN INDEPENDENT EXPLANATION GENERALIZER

EGGS is a general domain independent explanation-based learning system. In addition to
being the underlying learning mechanism in the GENESIS system, it has been tested in numerous
other domains using various underlying representations such as Horn-clause logic, rewrite rules,
and STRIPS operators. An abstract outline of the learning process in EGGS is given in Figure 3.1

and an architectural diagram of the system is given in Figure 3.2.

The tasks of constructing an explanation (step 1) and packaging the generalized explanation
for future use (step 4) both depend on the underlying representational formalism. Each representa-
tional formalism requires different modules for these tasks. For example, when using Horn clauses,
a theorem prover is appropriate for constructing explanations, while when using STRIPS operators,
a planner is appropriate. Each of the following three chapters is dedicated to a different representa-
tional formalism and discusses modules within EGGS for building and packaging explanations
using that representation. Examples of using each representation in various domain are also given

in these chapters.

Unlike explanation construction and packaging, explanation generalization (step 3), can be
characterized in a very general way and is discussed in detail in this chapter. The general task of
pruning the structure of the explanation to increase generality while maintaining operationality
(step 2) is also characterized in this chapter; however, specific rules for pruning are domain depen-

dent and are discussed in following chapters.

3.1. .Explanations, Explanation Structures, and Generalized Explanations

In different domains, various types of explanations a.r‘e appropriate. In [Mitchell86], an expla-
nation is defined as a logical proof that demonstrates how an example meets a set of sufficient con-
ditions defining a particular concept. This type of explanation is appropriate for learning classical
concept definitions, such as learning a structural specification of a cup, an example introduced in
[Winston83] and discussed in [Mitchell86]. However, when learning general plans in a problem
solving domain (as in STRIPS [Fikes72] or GENESIS [Mooney85al). it is more appropriate to con-
sider an explanation to be a set of causally connected actions that demonstrate how a goal state is

achieved.

15

1. Explain: Construct a complete plan or proof for a specific example by either doing indepen-
dent problem solving to achieve a specified goal or by explaining the actions or

operators executed by an external agent.

2. Prune: Remove branches of the explanation that are more specific than needed for the

operationality of the resulting plan or proof.

3. Generalizet Generalize the remaining explanation as far as possible without invalidating its

underlying structure.

4. Package: Create a macro-operator or macro-rule that summarizes the resulting generalized
explanation and index it so that it can be used to aid future problem solving and

understanding.

Figure 3.1: The Learning Process in EGGS

Explanation Dofnain
Builder <—' Packager

. Pruner | . :
Explanation (optional) Generalizer

Figure 3.2: EGGS Architecture

Consequently, this work takes a very broad definition of the term explanation and considers it
to be a connected set of units, where a unit is set of related well-formed-formulas {(wffs) in predi-
cate calculus. Horn-clause proofs, where each Horn clause is a unit, and plans composed of STRIPS
operators, where each operator is a unit, are special cases of this very general representation. For-

mally, a unit can be defined as follows.

16

A unit is a connected directed acyclical graph (V, E) in which the vertices in V are wifs.

For example, a unit for a Horn-clause rule has wifs for its antecedents and its consequent, while a
unit for a STRIPS operator has wifs for its effects, deletions, and preconditions. A wff « in a unit is
said to support another wif 4 in the unit if and only if there is a directed path from a to . For
example, in the unit for a Horn clause, each antecedent supports the consequent through a path con-
taining a single edge.

A domain theory, T, is formally defined as a set of units. As defined in [Nilsson80], a substitu-
tion is a set of ordered pairs each specifying a term to be substituted for a particular variable. The
expression pf, where p is a wif and @ is a substitution, denotes the wif resulting from applying 6 to -
p- The expression y8#, where both y and @ are substitutions, denotes the substitution resulting from
the composition of <y and 6, which is obtained by applying € to the terms of 'y and then adding any
pairs of 0 having variables not occurring among the variables of y. An instance of a unit, o, is a
unit obtained by applying a variable substitution to all of the wffs in a. Two wifs are said to be
identical if and only if all of their corresponding predicates. functions, variables, and constants are
exactly the same (i.e. their most general unifier is the nuil substitution). Before formally defining

an explanation in this representation, a few additional definitions are needed.
A unit;set is a pair (U, R) where U is a set of units: {(V,, E}), ... (V_, E))} and R is an
equivalence relation defined on the set of wifs: V., UV, .. U V_. For each pair of wifs (a ,b)
inR wherea € V. and & € Vj. it must be the case that that i # j (i.e. equivalent wifs must be
from separate units).
Given a unit-set S = (U, R) where U = {(V, E)), ... (V_,E)J}, let C,, C,, ... C_ be the equivalence
classes of wifs defined by R. Let G be the graph (V', E") where V' = {C|, C,, ... C_} and (C.. CJ.) €
E"if and only if there are wifs a € C, and b € C, such that (e.5) € E, UE, .. UE_. Gisreferred
to as the graph of S and represents the directed graph obtained by “collapsing” all equivalent wifs

into a single vertex. A formal definition of an explanation can now be stated as follows.

An explanation is a unit-set, S = (U, R), where the graph of S is connected and acyclic and
where for each pair of wifs (a.) € R, a and b are identical. Furthermore, let the set U C U
be the set of all units in U that are instances of units in the domain theory, T. and let R’ be the
equivalence relation such that (a,) € R if and only if both @ and b are wifs from units in U’
and (a, b) € R. In order for S to be an explanation, U’ must be nonempty and the graph of the

unit-set $' = (U’, R") must also be connected and acyclic.

17

In other words, an explanation is a combination of units that forms an even larger connected acy-
clic graph by means of an an equivalence relation defined on their vertices. Each pair of wifs that
the relation defines as equivalent must be identical. Furthermore, if all units that are not instances
of units in the domain theory are removed from an explanation, the remaining explanation also
defines a connected directed acyclic graph. The goal is a distinguished wif in the explanation that is
a sink of the graph of the explanation and represents the final conclusion in an inference chain or

the desired state in a plan.

A Horn-clause proof in this representation is an explanation whose units are Horn clauses and
whose equivalence relation matches antecedents of some clauses to consequents of others. In this
cage, an explanation is analogous to the data dependency structure maintained by a truth mainte-
nance system [Doyle79]. For example, consider the following domain theory for the problem of

learning a structural definition of a cup, an example originally presented in [Winston83].

Stable(?x) A Liftable(?x) A OpenVessel(?x) — Cup(?x)

Bottom(?y) A PartOf(?y,?x) A Flat(?y) — Stable(?x)

Graspable(?x) A Light(?x) — Liftable(?x)

Handle(?y) A PartOf(?y,?x) — Graspable(?x)

Concavity(?y) A PartOf(?y.?x) A UpwardPointing(?y) — OpenVessel(?x)

Additional units needed for the problem are the following individual facts.

Light(Obj1), Color(Objl,Red), PartOf(Handlel.Objl), Handle(Handlel), Bottom(B1),
PartOf(B1,0bj1), Flat(B1), Concavity(C1), PartOf(C1,0bj1). UpwardPointing(C1)

A proof tree for Cup(Obj1) is shown in Figure 3.3 as an explanation whose goal is Cup(Obj1). Tri-
- ple edges in the graphs indicate equivalences between wifs in two units that are instances of the
domain theory while double edges indicate equivalences to wifs in units that are not instances of
‘units in the domain theory. Specifically, for explanations using Horn clauses as units, triple edges
indicate connections between instantiations of rules from the domain theory while double edges
indicate connections to initial facts about the specific example. Examples of explanations where the

units include STRIPS operators are presented in chapter 6.

A wff @ is a uniquized version of a wif & if and only if a is obtained by substituting a uniquely
named variable for each variable in b. In correspondence with the terminology in [Mitchell86), an
explanation structure is defined as an explanation with each instantiated unit from the domain

theory replaced by a uniquized version of its general definition. Formally:

18

Cup(Obj1)
Stable(Obi1) Liftable(Obj1) OpenVessel(Objl)
Stablll(|0bj1) Lif tablll:t(Objl) OpenVe;Is!el(ObjI)
Bottom(B1) Flat(B1) | Concavity(C1) UpwardPointing(C1)
BottolrL(Bi) Flatl(lBl) Concavli|ty(C1) UpwardPointing(C1)
PartOf(B1,0bj1) PartOf(C1,0bj1)
PartOf(gl,Objl) PartOf(gl,Objl)
Graspable(Obj1) Light(Objl)
Graspal!nllle(Objl) Lighti(l(jbjl)
Handle(H1) PartOf(H1.0bj1)
Handllle(Hl) PartOf (Il-lll ,0bjl)

Figure 3.3: Explanation for Cup(Obj1)

An explanation structure of an explanation E = (U, R) is a unit-set, S = (U’, R") where for

each u, € U where v, is an instance of a unit t, € T, there is exactly one u,’ € U’ such that v;" is
a uniquized version of t, and where (u,, uj') € R’ if and only if (u, u].) €R.
The definition of an explanation insures that an explanation structure defines a connected directed

acyclic graph. For example, the explanation structure of the explanation for the cup example is

shown in Figure 3.4,

The task of explanation generalization is to take an explanation and generate a generalized

explanation, which is the most general instance of its explanation structure in which equivalent

wifs are identical. The generalized explanation maintains matches between wifs from rules or facts

in the domain theory but eliminates maiches to wis specifying facts of the particular specific
example. This means that the most general substitution that results in all equivalent wifs being

identical must be applied to the explanation structure. Formally:

19

(Cup 7x1)
(Stable 7x1) (Liftable 7x1) (OpenVessel 7x1)
I I H
(Stable 7x2) (Liftable 7x3) (OpenVessel 7x5)
(Bottom ?y1) (Flat ?y1) (Concavity 7y3) (UpwardPointing 7y3)
‘?
(Graspable ?x3) (Light ?x3)
/]
(Graspable 7x4)
(Handle 7y2) (PartOf 7y2 7x4)

Figure 3.4: Explanation Structure for the Cup Example

A generalized explanation of an explanation E with an explanation structure S = (U, R) is an
explanation G = (U’, R') such that there exists a substitution y where for each u, € U there is
exactly one v € U’ such that u = u,y and where (v, uj') € R if and only if (u, uj.) € R.
Furthermore, if (u’, uj') € R’, then u,’ and uj' must be identical. Finally, for any other substi-
tution, 0, satisfying these constraints, there must exist a substitution 8’ such that U8 = Uy’

(this insures that v is the most general substitution that satisfies the constraints).

The generalized explanation of the cup example is shown in Figure 3.6. This generalized explana-
tion can then be used to obtain the following macro-riude representing a general structural definition

of a cup.
Bottom(?y1) A PartOf(?y1,7x1) A Flat(?y1) A Handle(?y2) A PartOf(7y2.7x1)
A Light(?xi) A Concavity(?y3) A PartOf(?y3,7x1) A UpwardPointing(?y3) — Cup(?7x1)
For explanations that are logical proofs, a macro-rule like the one above is easily obtained by tak-

ing the leaves of the generalized explanation as the antecedents and the goal of the generalized

explanation as the consequent. In planning domains, the generalized explanation represents a

20

Cup(?x1)
Stable(?x1) Liftable(?x1) OpenVessel(?x1)
[l i I
Stable(?x1) Liftable(?x1) OpenVessel(7x1)

Bottom(?y1) Flat(?y1) Concavity(?y3) UpwardPointing(?y3)
PartOf(?y3,7x1)

PartOf(?7y1,7x1)

Graspable(?7x1) Light(?x1)
Il
Graspable(?x1)
Handle(?7y2) PartOf(?y2,7x1)

Figure 3.5: Generalized Explanation for the Cup Example

general plan schema or macro-operator [Fikes72] for achieving a particular class of goals. Creating
& new action definition for the composed plan from the generalized explanation requires a few addi-

tional steps which are discussed in section 6.2.2.

3.2. Explanation Generalizing Algorithms

Several algorithms have been developed for generalizing various types of explanations. The
STRIPS system [Fikes72] incorporated a method for generalizing blocks-world plans into macro-
operators. The EBG method [Mitchell86] uses a2 modified version of goal-regression [Waldinger77]
to generalize proofs of concept membership. The EGGS explanation generalization algorithm was
developed for generalizing the broad class of explanations defined in the previous section. This algo-
rithm was first published in [DeJong86b] along with a description of an error found in the
specification of the EBG algorithm. Kedar-Cabelli and McCarty subsequently developed a PROLOG

version of EBG [Kedar-Cabelli87a] which corrected this problem with the original algorithm.

The general technique used by STRIPS, EBG, EGGS, and PROLOG-EBG can be abstracted to

apply to the class of explanations defined in the previous section. The rest of this section is devoted

21

to presenting and comparing algorithmic descriptions of all of these methods as applied to this class
of explanations. All of the algorithms rely on unification pattern matching and the abbreviation
MGU is used to refer to the substitution that is the most general unifier of two wifs [Charniak80,
Nilsson80]. All of the generalization algorithms presented have been implemented and tested

within the context of the overall EGGS system.

3.2.1. STRIPS MACROP Learning

_ The first work on generalizing explanations was the learning of robot plans in STRIPS
[Fikes72]. STRIPS worked in a “blocks world’” domain. After its problem solving component gen-
erated a plan for achieving a particular state, it generalized the plan into a problem solving schema
(a MACROP or macro-operator) which could be used to efficiently solve similar problems in the
future. Work on the STRIPS system was the first to point out that a correct generalization of a
connected set of actions or inferences can not be obtained by simply replacing each constant by an
independent variable. This method happens to work on the CUP example given above. The proper
generalized explanation can be obtained by replacing Objl by ?x1, B1 by ?y1, H1 by ?y2, and C1 by
?y3. However, in general, such a simplistic approach can result in a structure that is either more

general or more specific than what is actually supported by the system’s domain knowledge.

The following examples are given in [Fikes72] to illustrate that simply replacing constants
with variables can result in improper generalizations. These examples assume the initial state

shown in Figure 3.6 and use the following operators:

GoThru(?d,7r1,7r2): Go through door 7d from room 7rl to room ?r2.

PushThru(7b,7d,?7r1,2r2): Push box ?b through door ?d from room ?r1 to room ?12.

Spec_ialPush(?b): Specific operator for pushing box 7b from Room2 to Room1.
Given the plan:

GoThru(Door1,Room1,Room?2)

SpecialPush(Box1)

simply replacing constants by variables results in the plan:

GoThru(?d,7r1,72)
SpeciaiPush(7b)

This plan is too general since SpecialPush is only applicable when starting in Room2, so having a

variable 7r2 as the destination of the GoThru is too general and ?r2 should be replaced by Room2.

22

Rooml Room2
C) Doorl D
Robot Box
Door2
Room3

Figure 3.6: Initial World State for STRIPS Examples

Given the plan:

GoThru(Doorl,Room1,Room2)
PushThru(Box1,Doorl,Room2.Room1)

simply replacing constants by variables results in the plan:

GoThru{?d,7r1,7:2)
PushThru(?b,2d,7r2,7r1)

This plan is too specific since the operators themselves do not demand that the room in which the

robot begins (?r1) be the same room into which the box is pushed. The correct generalization is:

GoThru(?d,7r1,7r2)
PushThru(?b,7d.7r2,7r3)

The exact process STRIPS uses to avoid these problems and correctly generalize an example is
dependent on its particular representations (triangle tables) and inference techniques (resolution);
however, the basic technique is easily captured using the representations discussed in section 3.1. A
description of the basic explanation generalizing algorithm used in STRIPS is shown in Figure 3.7.
It should be noted that the generalization process in STRIPS was constructed specifically for gen-
eralizing robot plans. There was no attempt to present a general learning method based on general-
izing explanations in any domain. However, the algorithm in Figure 3.7 is a straight-forward gen-

eralization of the basic process used in STRIPS. The basic technique is to unify each pair of

23

for each equality between wifs x and y in the explanation structure do
let O be the MGU of x and v
for each wif z in the explanation structure do
replace z with z0

Figure 3.7: STRIPS Explanation Generalizing Algorithm

equivalent wifs in the explanation structure and apply each resulting substitution to all of the wffs
in the explanation structure. After all of the unifications and substitutions have been made, the
result is the generalized explanation since each wif has been replaced by the most general wif that

allows all of the equality matches in the explanation to be satisfied.

3.2.2. EBG

In [Mitchell86], Mitchell, Keller, and Kedar-Cabelli describe a technique called EBG
(Explanation-Based Generalization) for generalizing a logical proof that a particular example
satisfies the definition of a concept. An example concept-membership proof showing how a particu-
lar object satisfies the functional definition of a cup was given in Figure 3.3. Unlike the STRIPS
MACROP learning method, EBG was meant to be a general method for learning by generalizing
explanations of why an example is a member of a concept. In [Mitchell86], detailed examples are
presented illustrating how EBG can be applied to learning an operational definition for when it is
safe to stack something on an endtable!, to Winston's CUP example [Winston83), and to an exam-
ple from LEX2's domain of learning heuristics for symbolic integration [Mitchell83]. A much more
abstract description of how it might be used to learn a kidnapping plan like that learned by the ori-

ginal GENESIS system [Mooney85a) is presented in an appendix.

The original EBG algorithm presented in [Mitchell86] is based on goal regression [Wald-
inger77] and involves back-propagating constraints from the goal through the explanation struc-
ture to the leaves. Figure 3.8 presents a formal specification of the original algorithm in terms of
the explanation representation introduced earlier. The global variable R maintaing the current set of
regresséd expressions and represents the most general set of antecedents necessary to prove the goal
given the portion of the explanation structure already traversed. The explanation structure is
traversed from the goal back to the leaves in a depth first manner. Each time a unit (rule) is

traversed, the set R is updated and the substitution resulting from the unit's unification to the

24

let g be the goal wif in the explanation structure
let R be the set of wifs supporting g
EBG(g)

procedure EBG(p)
for each wif x supporting p do
if x is equivalent to some wif e
then '

letR =R — {x}

for each wif y supporting e do
letR =R U |y}

let & be the MGU of e and x

for yinR do
replace y with y0

EBG(e)

Figure 3.8: Original EBG Explanation Generalizing Algorithm

structure already traversed is applied to all of the wifs in R. After the entire explanation structure

has been traversed, R is the most general set of antecedents for the given explanation structure.!

. However, as initially pointed out in [DeJong86b), this algorithm is only guaranteed to deter-
mine the leaves of the generalized explanation and in certain situations fails to obtain the correct
generélized goal. The “Suicide” example, originally introduced in [DeJong86b] is an example for
which the original EBG algorithm does not compute the correct generalized goal and as a result
learns an incorrect macro-rule. This example involves inferring that an individual will commit

suicide if he is depressed and buys a gun. The specific facts of the problem are:
Depressed(John), Buy(John,Obj1), Isa(Obj1,Gun)
The domain rules are:

Depressed(?x) — Hate(?x,7x)
Hate(?x,7y) N Possess(?x,72) A Isa(?z,Weapon) — Kill(?x,7y)

Buy(?x,7y) — Possess(?x,?y). Isa(?x,Gun) — Isa(?x, Weapon)

YThe algorithm presented in Figure 3.8 corrects problems with the BackPropagate function presented in {Mooney86b,
Moeoney86c]. As discussed in [Mooney86b), the BackPropagate function (which was based on the informal description of this
process given in [Mitchel}861) does not properly propagate constraints across conjunets and consequently in some situations
does not compute the correct regressed expressions. The version in Figure 3.8 docs not have this problem since each substitu-
tion is applied to all of the current regressed expressions in the set R.

25

The proof that John will commit suicide is shown in Figure 3.9, its explanation structure is shown
in Figure 3.10, and the correct general proof that anyone who is depressed and buys a gun will
commit suicide is shown in Figure 3.11. The general macro-rule learned from the generalized

explanation is;

Depressed(?7y1) A Buy(?y1,%1) A Isa(?¢1,Gun) — Kill(?y1,7y1)

Kill(John,John)

Isa(Objl,Weapon) Possess(John,Obj1) Hate(John,John)
I I I
Isa(Objl, Weapon) Possess(John,Obj1) Hate(John,John)
|
Isa(Obj1,Gun) Buy{John,0bj1) Depressed{John)
” H H
Isa(Obj1,Gun) | Buy(John,Obj1) Depressed(John)

Figure 3.9: Suicide Example -- Specific Explanation

Kill(?x1,2v1)

Isa(?c1,Weapon) Possess(7x1.%c1) Hate(?x1,7y1)
Isa(?x4,Weapon) Possess(7x3,7y2) Hate(?x2,7x2)
Isa(?x4,Gun) Buy(?x3,2y2) Depressed(?x2)

Figure 3.10: Suicide Example — Explanation Structure

26

Kill(?y1,7y1)

Isa(?c1,Weapon) Possess(?y1,%c1) Hate(?y1,7y1)
Isa(?c1,Weapon) Possess(?y1,7c1) Hate(?y1,7y1)
Isa(?c1,Gun) Buy(?y1.%c1) Depressed(?y1)

Figure 3.11: Suicide Example — Generalized Explanation

Goal regression, as given in [Mitchell86] and Figure 3.11, computes only the most general set
of antecedents that would support a proof with the same explanation structure as the training
example (ie. the weakest preconditions [Dijkstra76, Minton84].). If only goal regression is per-
formed, the proper description of the goal concept supported by the explanation is not always
determined since the explanation itself may impose constraints on the goal concept. In terms of the
Suicide example, the constraint that the killer be the same as the person killed is never imposed

and, as demonstrated in [DeJong86b]. EBG constructs the following erroneous rule:
Depressed(?y) A Buy(?y,%¢) A Isa(?c,Gun) — Kill(?x,?y)

This rule states that everyone kills someone who is depressed and buys a gun, which is clearly not
a conclusion warranted by the domain theory. Since the abstract STRIPS algorithm applies substi-
tutions generated by each unification to the entire explanation structure, it computes the appropri-

ately constrained goal concept and does not make this mistake.

As suggested in [DeJong86b), the proper generalized goal and generalized explanation can be
obtained by starting with the generalized antecedents obtained from regression and rederiving the
general proof. Rederiving the proof propagates constraints from the regressed expressions to the
goal, thereby appropriately constraining the goal concept. The resulting generalization algorithm is
then a two step process: goal regression (back-propagation) followed by proof reconstruction (for-
ward propagation). This approach was suggested based on a similar two-pass generalization process

presented in [Mahadevan85). A formal description of a version of EBG corrected in this manner is

27

given in [Mooney86b].2 In [Kedar-Cabelli8 7al, Kedar-Cabelli and McCarty presented a PROLOG
version of EBG which also corrects the problem and avoids making two separate passes through the

explanation. This version of EBG is considered in a subsequent section.

3.2.3. EGGS

The EGGS (Explanation Generalization using a Global Substitution) algorithm was developed

for generalizing explanations of the abstract form defined and used in this paper. The algorithm is

quite similar to the abstract STRIPS algorithm and is shown in Figure 3.12.3 The difference between
EGGS and the abstract STRIPS algorithm is that instead of applying the substitutions throughout
the explanation at each step, all the substitutions are composed into one substitution . After all
the unifications have been performed. one sweep through the explanation applying the accumulated
substitution 7y results. in the generalized explanation. Table 3.1 demonstrates this technique as
applied to the Cup example. It shows how vy changes as it is composed with the substitutions
resulting from each unification. Applying the final substitution y to the explanation structure
shown in Figure 3.4 results in the generalized explanation shown in Figure 3.5. Table 3.2 shows
how EGGS generalizes the Suicide example. Applying the final substitution to the explanation
structure shown in Figure 3.10 results in the generalized explanation shown in Figure 3.11. In the

tables, equalities are processed in the order produced by depth-first traversals of the explanation

let vy be the null substitution {}
for each equality between patterns x and y in the explanation structure do
let © be the MGU of xy and yy
let y be y0
for each wif x in the explanation structure do
. replace x with xy

Figure 3.12: EGGS Explanation Generalizing Algorithm

?Since, as mentioned in the previous footnole, the BackPropagate function presented in [Mooney86b] does not properly
propagate constraints across conjuncts, the corrected version of EBG presented in [Moonevy86b] required that ForwardPro-
pagate be performed before BackPropagate. If the correct version of back-propagation presented in Figure 3.8 is used, it is
not necessary to perform forward propagation first.

Due to a typographical errer, the EGGS algorithm presented in [Mooney86c] did not include applying ¥ to x and y pri-
or to computing their MGU. The original publication of the algorithm in [DeJong86b] did not suffer from this mistake and
the longer technical report version of [MooneyB6¢c] included a corrected version of the EGGS algorithm [Mooney&6bl.

28

‘Table 3.1: EGGS Applied To the Cup Example

Equality 0 Y
Stable(?x1) = Stable(?x2) {?7x1/7x2} | {7x1/7x2}
Liftable(?x1) = Liftable(?x3) {7x1/7x3} | {7x1/7x2, 7x1/7x3}
Graspable(?x3) = Graspable(?x4) {7x1/7x4} | {7x1/7x2, 7x1/7x3, 7x1/7x4) -
OpenVessel(?x1) = OpenVessel(?x5) | {7x1/7x5} | {?x1/7x2, 7x1/?x3, ?x1/7x4, 7x1/7x5}

Table 3.2: EGGS Applied To the Suicide Example

Equality 0 Y
Isa(7c1,Weapon) = Isa(?x4, Weapon) | {?c1/7x4} {7c1/7x4}
Possess(?x1,7c1) == Possess(7x3,7y2) | {7x1/7x3, 7c1/?7y2} | {%c1/7x4, 7x1/7x3, %c1/7y2}
Hate(7x1,?y1) = Hate(?x2,7x2) {7y1/7x2, 2y1/?x1} | {7%c1/7x4, 7x1/7%3, %c1/7y2,
7v1/7x2, y1/7x1)

structures; however, any order will result in equivalent generalized explanations up to a change of

variable names.

3.2.4. PROLOG-EBG

In [Kedar-Cabelli87a], Kedar-Cabelli and McCarty present a PROLOG version of EBG which,
unlike the original EBG, computes the proper goal concept. PROLOG-EBG integrates the generaliza-
tion process with the construction of explanations by PROLOG. A generalized proof is constructed
in parallel with the proof for the specific example. Any query results in both a specific and and a

generalized proof being returned.

The algorithmic description presented in Figure 3.13 is an attempt to specify the generaliza-
tion algorithm underlying PROLOG-EBG as an independent process (i.e. separated from the process
of theorem proving). Like EGGS, PROLOG-EBG constructs a global substitution, y, which is then
applied to the complete explanation structure. However, unlike EGGS, v is constructed by travers-
ing the explanation depth-first from the goal in a manner analogous to trying to prove the general
goal of the explanation structure using backward-chaining. The substitution ¥y is constructed by
finding a substitution that allows the goal to be proved from the set of operational wifs represented
by the leaves of the explanation structure. The generalization algorithm is analogous to the algo-
rithm for a backward-chaining deductive system (like PROLOG or the deductive retrieval system
in [Charniak80]). In the algorithm in Figure 3.13, the function PROLOG-EBG returns two values:

the current substitution (y) and the subset of the wifs in the explanation structure that have

29

already been traversed (E).* When the top-level call to PROLOG-EBG returns, E is the set of all

wifs in the explanation structure and ¥y is the final global substitution.

It shouid be noted that Hirsh [Hirsh87] simultaneously developed a version of EBG for logic
programming (using the MRS logic programming system [Russell85]) which uses a generalization
algorithm that is equivalent in operation to PROLOG-EBG's. In addition to integrating theorem
proving and generalization, MRS-EBG integrates both of these with operationality checking

[Mitchell86] or pruning [DeJong86b, Mooney86c, a process discussed in section 3.6.

3.3. Comparison of Explanation Generalizing Algorithms

It is reasonably clear that STRIPS, EGGS, and EBG-PROLOG all compute the same desired

generalized explanation. They all perform a set of unifications and substitutions that constrain the

let g be the goal wif in the explanation structure
let (y, E) = PROLOG-EBG(g, {1
for e in E do replace e with ey

procedure PROLOG-EBG(x, 6)
let S be the set of wifs supporting x
for s in S do replace s with sf
let (v, E) = PROLOG-EBG-Supporters(S, {}, &)
return (y8, E U {x})

procedure PROLOG-EBG-Supporters(S, vy, E)
if S=@ :
then return (y, E)
else -
let f be the first element of S
letR = S — {f}
if { is equivalent to some wif e
then
let ¢ be the MGU of f and e
let (8, P) = PROLOG-EBG(e, ¢)
for r in R do replace r with r§
PROLOG-EBG-Supporters(R, 8, E U P)
else PROLOG-EBG-Supporters(R, v, E U {f})

Figure 3.13: PROLOG-EBG Explanation Generalizing Algorithm

The notation "(a, b)= F(x)" and "return (a, b)" is used to denote the fact that the function F returns two values: a and
b. All variables referenced by a procedure are assumed to be local 1o that procedure call,

30

explanation structure into one in which eguivalent wifs are identical. The difference between them
lies in the manner and order in which the unifications and substitutions are done. As described in
[O'Rorke87b), explanation-based generalization can be viewed as a process of posting and propagat-
ing equality or co-reference constraints. Neither the STRIPS or EGGS algorithm impose an ordering
on the assimilation of the various equality constraints in the explanation structure. On the other
hand, the various EBG algorithms order the assimilation of constraints by traversing the explana-
tion structure depth-first. Although this ordering is not required by the generalization process, it is

a natural consequence of integrating generalization with a backward-chaining theorem prover.

Actually, the task of producing a global substitution (y) for an explanation structure can be
easily shown to reduce to the task of ﬁhding a most general unifier for two wifs. The two wifs for
the reduction are constructed by having equivalent wifs in the explanation structure cccupy
corresponding argument positions in the two constructed wifs. For example, below are two wifs

constructed for the explanation structure of the CUP example (Figure 3.4).

P(Stable(?7x2), Liftable(?x3), Graspable(?x4), OpenVessel(?x5))
P(Stable(?x1), Liftable(?x1), Graspable(?x3), OpenVessel(?x1))

A MGU for these two wifs is: {?x1/7x2, 7x1/7x3, ?x1/7x4, 7x1/7x5} which is the same as the global
substitution EGGS constructed for this example (Table 3.1). The two wifs constructed for the Sui-

cide example are:

P(1sa(?x4,Weapon), Possess(?x3,?y2), Hate(?x2,7x2))
P(Isa(?c1,Weapon), Possess(7x1,7c1), Hate(?x1,7y1))

A MGU for these two wifs is: {?7c1/7x4, 7x1/7x3, 7c1/?y2, 7y1/7x2, ?7y1/?x1} which is again the
same as the global substitution constructed by EGGS (Table 3.2)

Consequently, in some sense the various explanation generalizing algorithms are just different
ways of implementing unification. In fact, EGGS directly corresponds to the implementation of
UNIFY in [Charniak80] which takes a pair of wiffs and a current substitution and returns an
updated substitution which includes variable bindings that unify the two wifs in the context of the
current substitution. The STRIPS generalizing algorithm, on the other hand, is more similar to the
implementation of UNIFY presented in [Nilsson80] in which the substitution unifying fhe first ele-
ments of two wifs is applied to the rest of the wifs before continuing. A unification algorithm that
applied each substitution to the entire wif (thereby generating the resulting unified wif as well asa

unifying substitution) would be exactly equivalent to the STRIPS generalizing algorithm.

31

3.4. Computational Complexity of Explanation Generalization

The reduction to unification given above also demonstrates that the time complexity of pro-
ducing a global substitution is linear in the size of the explanation since linear time algorithms exist
for unification [Paterson78]. Since unification can be performed in linear time, obviously the size of
the resulting MGU must also be linear in the size of the explanation since only a linear amount of
output can be produced in linear time. Therefore, if [E| represents the size of the explanation, we
can let cllﬁl be the time required to construct the global substitution, and czlEl be the length of the
global substitution. Since the time complexity of applying a substitution to a wif is also linear in
the length of its inputs®, let ¢,(c,JH + [ED be the time required to apply the global substitution to the

explanation. Therefore, the time required for the complete process of constructing a generalized
explanation is:
¢;(e Bl + [B) + B = (¢, + e (e, + 1))H

which is clearly linear in size of the explanation.

Although this result does not reveal the time complexity of the individual algorithms in sec-
tion 3.2, it is a constructive proof of the existence of a linear-time explanation generalizing algo-
rithm. Since linear-time unification algorithms have apparently found limited use in practice due
to large overhead, it is unlikely that a generalizing algorithm based on one would be particularly
useful in practice. Nevertheless, it is an interesting theoretical result which supports the important

claim that a generalized explanation can be computed very efficiently.

In practice, the generalizing algorithms given in section 3.2 are quite efficient using a standard
non-linear unifier. In chapter 7, some empirical results on EGGS are presented which include data
on the time required to learn from various examples. However, the learning times presented there
include the time required for pruning the explanation and packaging it into a macro-rule as well as
the time required for generalization. Of the problems reviewed in chapter 7, the most complicated
one to generalize is the “difficult geometry” problem which has 25 equalities and takes only 3.6

seconds of CPU time to generalize.

3.5. Correctness of Explanation Generalizing Algorithms

Intuitively, in order for an explanation generalizing algorithm to be “‘correct,” its output

should be logically entailed by the system's existing knowledge or domain theory and it should be

SThe literature on linear unification does not discuss lirear time substitution application; however, a linear time algo-
rithm for this procedure is presented in appendix A.

32

as general as possible given this constraint and the constraint that it retain the “'structure” of the
original explanation. To date there are no complete formal proofs of the correctness of any of the
above generalization algorithms; and no such proofs will be attempted in this section. However,
proving correctness does not seem to be an impossible task and this section summarizes several

approaches that could be taken.

If it is assumed that explanations are logical proofs (as in [Mitchell86]), one would first want
1o prove soundness, i.e. that the learned macro-rule is logically entailed by the existing domain
theory. For PROLOG-EBG, it is particularly clear that the generalization algorithm is simply per-
forming deduction on Horn clauses and thereby constructing a proof of the generalized goal concept
from the operational leaves of the explanation. Consequently, proving soundness could make pro-
ductive use of existing proofs of the correctness of the deductive algorithms underlying PROLOG
[Lloyd84, Robinson65]. However, proving that the learned macro-rule is the most general one pos-

sible would probably be more difficult.

If generalization is done by performing a single unification as described in section 3.3 (and the
unification algorithm has been proven correct), proving soundness for logical proof explanations
becomes straight-forward. In this approach, all of the equivalent wifs in the generalized explana-
tion must be identical since unification can be proven to produce a substitution that will make its
arguments identical {Robinson65]. Since all of the Horn clauses in the generalized explanation are
instantiations of clauses in the domain theory (i.e. they are the result of applying the global substi-
tution to the explanation structure), the logically sound inference rule of universal instantiation
guarantees that they are entailed by the domain theory. Finally, one needs to show that computing
a macro-rule is simply performing logically sound deduction on the Horn clauses in the generalized
explanation. If

ky .k NNk, .k —c
and
LANLNL —d
are two clauses in the generalized explanation, and d is equivalent to %k, then d and k, must be

identical literals. Assume the second clause is removed from the generalized explanation and the
first clause is replaced by:

ky ok NN LNL NE Lk e
Since d and k; are identical literals, the added clause is entailed by the domain theory because it is

the resolvent of the two clauses and the resolution rule is sound [Robinson65]. Repeating this

33

process for every set of equivalent patterns reduces the generalized explanation to the desired
macro-rule. Since all of the clauses in the original generalized explanation are entailed by the
domain theory, and since the clause added by each step in the reduction process is entailed by the
existing clauses. by induction, the completely reduced generalized explanation (i.e. the learned

macro-rule) is entailed by the domain theory.

If it could be proven that a generalization algorithm such as EGGS or EBG computes the
correct global substitution and is therefore equivalent to the single unification algorithm, then it
would follow that this algorithm was also sound. For EGGS, this would involve proving that the

unification algorithm in [Charniak80] is correct.

Another approach to proving correctness of explanation generalization is discussed in
[O'Rorke87b] and involves demonstrating that a generalization algorithm maintains the equality or
co-reference constraints of the explanation structure in the most general way possible. As described
in [O'Rorke87b], explanation generalization can be performed by combining the individual co-
reference constraints in order to compute the most general description of each expression in the
explanation that satisfies all of these constraints. More details on this approach to verification and

how it specifically applies to generalizers based on unification are given in [O'Rorke87b].

The formal definition of a generalized explanation presented in section 3.1 captures O'Rorke’s
notion of correctness since it requires the global substitution ¥ to be the most general substitution
that makes all equivalent wifs in the explanation structure identical. Since unification produces the
most general substitution that makes two wifs identical (as proved in [Robinson65]), the single
unification algorithm is guaranteed to produce the correct ¥ and therefore the correct generalized
explanation. In this case, a complete correctness proof for any of the individual algorithms in sec-
tion 3.2 would require proving that the algorithm is eguivalent to the single unification algorithm.
As previously mentioned, for the EGGS algorithm, this proof would involve proving the correct-

ness of the unification algorithm in [Charniak80].

3.6. Pruning Explanations for Operationality

Often, the explanation structure for a particular example is too specific to support a reason-
ably useful generalization. In these cases, the operationality criterion [Mitchell86] is met by nodes
higher in the explanation tree than the leaves and it is advisable to prune units from the explana-
tion structure that are more specific than required for operationality. If this pruning is done prior

to generalization as shown in Figure 3.1, it will result in a more abstract generalized explanation

34

which is applicable to a broader range of examples. For example, if the rule for inferring Graspable
is removed from the explanation structure shown in Figure 3.3, the following more general (but

less operational) definition of Cup is acquired:

Bottom(?y1) A PartOf(?y1,7x1) A Flat(?y1) A Graspable(?x1) A Light(7x1)
N Concavity(?y3) A PartOf(?y3,7x1) A UpwardPointing(?y3) — Cup(?x1)

More appropriate examples of pruning in various domains will be given in the following two

chapters and in chapter 11.

Determining the appropriate operationality criterion has been the subject of much discussion
in the EBL literature [DeJong86b, Keller87b, Mitchell86, Segre87b, Shavlik87b]. There is clearly a
trade-off that must be resolved between operationality and generality. A more general explanation
is useful in a larger set of future situations; however, it is also harder to apply in those situations.
A more specific explanation, on the other hand, is easier 10 a apply to future situations; however, it'
is less applicable. In the long run, it is probably best to retain explanations at several levels of gen-
erality as suggested in [Mooney85b] and as done in the PHYSICS101 system [Shavlik87b). This
allows a more specific explanation to be used when it is applicable while still permitting a more

general explanation to be used when a more operational one is not available.

A recent suggestion for determining operationality is the one used in ARMS, an EBL system -
for robotics [Segre87b]. It involves pruning all of the explanation below shared substructure. In
terms of the representations used here, this approach would prune all nédes below the poiﬁt where
a subgraph of the explanation becomes a tree as opposed a general directed acyclical graph. In other
words, it keeps pruning leaves of the explanation until a node is found that supports more than one
other node. Although this pruning algorithm may work well for the ARMS domain, it is not a gen-
eral solution to the problem of determining operationality. Many explanations that support useful
generalizations do not have any shared substructure. In fact, most of the examples of explanations
presented in the following three chapters are trees and consequently do not have shared substruc-
ture. The ARMS approach to pruning would remove the entire explanation in such cases, and con-

sequently miss the opportunity to learn useful new rules and operators.

Therefore, at this point in time, determining which predicates or operators are operational is
generally a domain dependent decision. Consequently, the current EGGS system simply has a hook
that allows an arbitrary pruning function to be called before an explanation is generalized. Some
examples of pruning functions are given in the following two chapters and in chapter 11. In

Hirsh’s MRS-EBG system [Hirsh87], meta-level logical deduction is used to determine

35

operationality. This approach has the advantage of allowing operationality proofs themselves to be
generalized in an explanation-based manner in order to determine the most general operational

explanation.

3.7. Integrating Explanation Construction, Pruning, and Generalization

Instead of performing the first three steps in Figure 3.1 sequentially, these steps can often be
integrated and perflormed in an interleaved fashion. As discussed in [DeJong86b, Mooney86¢c], the
EGGS generalization algorithm is easily integrated with the explanation building process by updat-
ing the global substitution each time a new rule is added to the evolving explanation. As men-
tioned earlier, PROLOG-EBG elegantly integrates generalization with the theorem proving process,
and MRS-EBG elegantly integrates both of these processes with pruning the explanation for opera-

tionality.

Although integrating these processes is aesthetically appealing, there is a price associated with
it. For example, the integration of theorem proving and generalization in PROLOG-EBG and MRS-
EBG involves unnecessarily generalizing dead-end branches of the search tree which are eventually
abandoned and never become part of the final proof. If generalization were postponed until the
final proof is available, this useless computation could be avoided. However, as noted in [Hirsh87],
integrating generalization and theorem proving is useful when there are multiple possible explana-
tions for the specific example only some of which are operational. In this case, integrated generali-
zation, theorem proving, and operationality checking allows theorem proving to continue until an

operational proof is eventually found.

Another problem with integration is that in many cases operationality cannot be determined
until the complete ezplanation is available. When learning by observing the problem. solving
behavior of an external agent, the eventual goal to be achieved is generally unknown until all of
the agent’s actions have been observed. However, the pruning algorithm often requires knowledge
of the goal. For example, the pruning algorithm used in GENESIS (see chapter 11) needs to know
what actions and properties eventually support the achievement of the goal. Consequently, in these
situations, pruning must be postponed until the complete explanation has been constructed. If gen-
eralization is performed before pruning, the resulting generalization may be too specific since it may
incorporate constraints introduced by the pruned parts of the explanation. Therefore, when prun-
ing must be performed after the explanation is complete, generalization and explanation cannot be

easily integrated. As discussed in [DeJong86b], if generalization and explanation are integrated.

36

additional constraints introduced by pruned sections of the explanation can later be retracted; how-
ever, retracting constraints is very difficult and requires the capabilities of a truth maintenance sys-
tem (TMS) [Doyle79]. The MA system [Q'Rorke87b] is an example of an EBL system that uses a
TMS [McAllester82] to retract co-reference constraints; however, this system is very slow com-
pared to simpler systems based on unification. Because of all these problems, explanation con-
struction, pruning, and generalization are performed sequentially in the EGGS system as shown in

Figure 3.1.

3.8. Explanation Generalization Versus Chunking and Production Composition

Explanation-based learning of macro-rules and macro-operators is closely related to produc-
tion system learning mechanisms that compose production rules. The chunking process in SOAR
[Laird84, Laird86a, Laird86b] and the knowledge compilation process of composition in ACT*
[Anderson83b, Anderson86] are two similar production system learning models. Both processes
build macro-productions based on traces of productions produced by the problem solver when

solving a particular problem.

Besides the fact that these systems, unlike STRIPS, EBG, and EGGS, do not rely on a logic-
based representation, the primary difference lies in the less analytical generalization process.
SOAR’s geheralization algorithm is described in detail in [Rosenbloom86]} where it is compared and
contrasted to EBG. The generalization process is basically one of changing constants to independent
variables. However, due to the difference in fepresentation language, the problem of over-
generalization mentioned in section 3.2.1 is avoided. Constants in SOAR come in two types,
identifiers which are symbols for particular objects, and more meaningful constants such as “5”
and “blue.” For example, representing the logical assertion Color(B,blue) requires creating an extra
identifier for the constant “blue” and using the two assertions Color(8.{) and Name({. blue). The
generalization process in SOAR changes only identifiers to variables, and since production rules can-
not check for Particular identifiers, the over-generalization problem is avoided. The cost incurred l

for avoiding the problem in this manner is an extra distinction in the representation language.

However, the problem of under-generalization mentioned in section 3.2.1 remains. For exam-

ple, in the SOAR formulation of the Safe-To-Stack problem® presented in [Rosenbloom86], the rule

learned is:

$See section 4.2.1 for a complete specification of this example, which is originally from [Mitchei186].

37

Volume(x,v) A Density(x.d) A Name(y,endtable) A Product(v.d.d) A Less{(d,w) A Name(w,5)
— Safe-To-Stack(x,y)

As noted in [Rosenbloom86], this rule is an under-generalization since it requires the density and
the weight of the of object being stacked to be the same (i.e. d). Since the box in the example just
happened to have the same weight and density, the simple variablization process requires them to
be the same. For the same reason, the initial and final rooms would unnecessarily be required to be
same if this technique were applied to the STRIPS example. Retaining such spurious features of the
example in the generalization is a basic violation of the explanation-based approach. EBL stipulates
that only those constraints required to maintain the validity of the solution should be incorporated

in the generalization.

In response to the problem of under-generalization, Rosenbloom and Laird [Rosenbloom86]
state that: “If an example were run in which the density and the weight were different, then a rule
would be learned to deal with future situations in which they were different.(p. 564)" However, if
the more general rule was learned from the original example, this new example could be solved
quicker using the learned rule. Also, unless a check is made to remove subsumed rules (i.e. rules
that are specializations of existing rules), this solution leaves useless rules lying around which
decrease the performance by increasing the number of rules the system must check for application.
Rosenbloom and Laird also state that: “The Soar approach to goal regression is simpler, and focuses
on the information in working memory rather than the possibly complex patterns specified by the
rules....(p. 564)" If the problems with a simple constant to variable generalization algorithm were
offset by a marked increased in efficiency of generalization, then perhaps a case could be made for
the simpler generalization process. However, as shown in section 3.4, the computational complex-
ity of a unification-based generalization algorithm is linear in the size of the explanation. Since
simply tracing through the complete explanation replacing each constant with a variable is also a

linear process, the gain in efficiency is at most a constant factor.

Of course, SOAR could probably be modified to include a generalizer that prevents under-
generalization. This would require retaining copies of the general parameterized productions (with
unique variables) in the production traces produced during problem solving. Generalization would
then require constructing the most general set of variable bindings that allows all of the left-
hand-sides of general productions to match the right-hand-sides of the general productions that
they support in the production trace. A procedure analogous to unification for matching produc-

tion conditions could be used to produce the required global substitution.

38

Finally, regarding composition in ACT*, discussions of the underlying generalization process
in production composition [Anderson82, Anderson83a. Anderson83b, Anderson86] fail to give
explicit details of the generalization algorithm. However, the fact that no mention is made of the
subtleties of generalization, the limits of simply changing constants to variables, or the use of a
generalizer that analyzes variable bindings indicates that a more analytic generalizer is not used.
Als{), the examples given of composition involving telephone dialing [Anderson82], geometry prob-
lem solving [Anderson83a, Anderson83bl, and Lisp programming [Anderson83b, Anderson86,
Anderson87b] can all be accomplished by simply changing constants to variables. An example of
applying EGGS to a geometry example from [Anderson87b] is given in section 4.2.5. However,
unlike many of the other examples EGGS has been tested on, the proper generalization for this

example could be obtained by simply changing constants to variables.

39

CHAPTER 4

EGGS: LOGICAL PROOF EXPLANATIONS

In most domains, explanations can be represented as logical proofs that an example meets the
definition of a concept or that 2 combination of operators achieves a goal. Most attempts to formal-
ize explanation-based learning have represented explanations as logical proofs [Hirsh87, Kedar-
- Cabelli87a, Mitchell86, Prieditis87]. The Cup example presented in the previous chapter is an
example of how proofs are represented as explanations in EGGS. This section discusses the EGGS
system’s ability to construct, understand, generalize, and learn macro-rules from logical proofs. It

also presents numerous examples of applying EGGS to various domains.

4.1. Facilities in EGGS Supporting Logical Proof Explanations

The complete EGGS system is equipped with general purpose sub-systems for proving
theorems. understanding incomplete proofs, and generating macro-rules. Figure 4.1 illustrates how
these components combine with the generalizer to comprise a complete learning system. The
theorem prover and proof verifier allow EGGS to construct explanations by either proving asser-

tions itself or supplying reasons and filling in gaps in sketchy proofs provided by the user. These

Sketchy
Proof

{

Proof

Verifier
Macro-Rule
Extractor

Theorem
Prover [<—Theorem

Pruner ;
I ~—=1 Generalizer
Proof (optional)

Figure 4.1: EGGS Architecture for Logical Proof Explanations

40

explanations can then be generalized using the EGGS generalization algorithm, resulting in macro-

rules that can be used to construct and understand similar proofs more efficiently.

4.1.1. Theorem Proving

The EGGS’ theorem prover, like the theorem prover underlying PROLOG [Clocksin84), is a
backward-chaining, depth-first prover for Horn clauses. Specifically, it is a version of the deductive
retriever given in [Charniak80] modified to return proof trees (explanations) for each answer it
retrieves. Instead of automatically returning all possible answers to a query, it uses generators
[Charniak80, Teitelman83] to produce one answer at a time. Horn clause inference rules for the
domain are indexed under the predicate name of their consequent. As in PROLOG, rules for con-
cluding a particular predicate are ordered and are tried in order when searching for a proof. The
EGGS’ retriever can also be given a depth bound, d, to prevent it from chaining more than 4 rules

deep when attempting to retrieve a particular fact.

As an example of the performance of the EGGS theorem prover, consider the Cup example.
Given the facts and rules given in section 3.1 and the goal Cup(Obj1) (or just Cup(?x)) the EGGS

-retriever produces the proof shown in Figure 3.3.

When a goal is successfully deduced, it is added to the database of facts along with the facts
composing its proof. Data dependencies [Charniak80, Doyle79] are maintained between all the
facts in the database. These dependencies are used to provide explanations for facts in the database
and could also be used to update the a database following the retraction of an assertion. The latter
task is one of the primary functions of a truth maintenance system [de Kleer86, Doyle79, McAlles-

ter82] and is not provided in the current version of EGGS.

4.1.2. Proof Verification

The deductive retriever can also be used to supply reasons and fill in gaps in sketchy proofs
given to the system. Sketchy proofs are ordered sequences of subgoals or lemmas to be proven
before attempting to prove the ultimate goal. For example, instead of trying to prove Cup(Objl)

directly, the system can be given the following incomplete proof:

Graspable(Obj1)
Liftable{Obj1)
OpenVessel(Objl)
Q.E.D.: Cup(Obi1)

41

The system attempts to prove that each step in the proof follows deductively from the initial facts
together with the facts deduced in previous steps. When an intermediate step is proven, it is added
to the database together with the facts and dependencies in its proof. If it is known that the
sketchy proof will not be missing more than d inferences between steps, then the depth bound on
the prover can be set to d during verification. The end result of processing a sketchy proof is a
complete proof tree for the goal. For the Cup example, the proof constructed by the verifier is the
same as the one generated by the theorem prover (see Figure 3.3). More realistic examples of

understanding incomplete mathematical proofs are given in sections 4.2.3 and 4.2.5.

Since in the simple Cup example there is only one rule for concluding each predicate, expli-
citly supplying subgoals does not reduce the search space and is no more efficient than proving the
goal directly. Frequently, however, using a sketchy proof can greatly reduce search over

undirected theorem proving. For example, let <l 1, .. I > be a sketchy proof of / from the set
of initial facts F. Assume that [, can be proven from F with a proof of depth m and that each L,
(2=i<n) can be proven from F U {i,..1,_ ;} with a proof of depth m (specifically, the path from [
to.l; in the proof is of length m). Figure 4.2 shows an abstract specification of the complete proof.

Let d=nm be the depth of the complete proof. The verifier can be used to complete this Sketchy

proof by setting the depth bound to m. The number of nodes searched to prove each lemma will

then be: O(6™), where b is the average branching factor. Since there are n=d/m lemmas, the total

search needed to complete the proof is:
0(Lpm)
m

As m gets large, b™ becomes the dominant term. This is because by L'Hopital's rule:

lim db™. _ db™In(b)
S m—ce M 1

Consequently, the search time needed to verify the sketchy proof is O(db™In(b)). Therefore, for
sufficiently large problems, a decrease in the number of inferences between steps in such a sketchy
proof can cause an exponential decrease in the time needed to prove the theorem. Since unaided

theorem proving is simply a degenerate case of a sketchy proof in which m=d, using a sketchy

proof can be 7™ times faster than proving the theorem directly.

42

1,

AR,

woe ooe ."} m
Lo

TR, }

Pres é [T .'. m
1n-2

Figure 4.2: Completion of the Sketchy Proof

4.1.3. Learning Macro-Rules

Whether a proof is generated by direct theorem proving or by explaining a sketchy proof, it
can be generalized and used to learn a new macro-rule. A macro-rule is obtained from the general-
ized explanation by taking the goal (root) as the consequent and the leaves as the antecedents.
Leaves that are Horn clauses that do not have antecedents but are from the domain theory (e.g.
Equal(?x,7x)) represent general facts of the domain, and therefore are not included in the list of
antecedents for the macro-rule since they are always true in the given domain. The macro-rule
resulting from this process is deductively implied by the existing domain theory since the macro-
rule is obtained by chaining together existing domain rules in a particular manner. The macro-rule

learned from the Cup example was presented in section 3.1.

After a macro-rule is generated, it is added to the beginning of the current list of rules for
inferring instances of the same predicate. Since the backward chaining algorithm tries the rules in
order, this insures that the learned rule will be tried first in the future, resulting in performance

improvement if the problem can be solved using the learned rule. If the new rule cannot be used to

43

solve the problem, then it eventually resorts to using its previous knowledge to solve the problem.
In this case, performance may be degraded since time was wasted attempting to apply the learned
rule. Some empirical results as well as further discussion of the effect of rule learning on theorem

proving performance is given in chapter 7.

If the EGGS system is used solely as an 'independent theorem prover which learns macro-
rules, it closely resembles a learning PROLOG interpreter, like that described in [Prieditis87]. On
the other hand, if it used to analyze sample proofs anél learn macro-rules from them, it behaves
more like a learning apprentice system [Mitchell83, O'Rorke84]. The important thing to note, how-

ever, is that the same generalization algorithm underlies both approaches to learning.

4.2. Logical Proof Examples in Several Domains

Many- of the examples of explanation-based learning in the literature can be formalized as
learning macro-rules for logical deduction. A deductive formulation of Winston's Cup example '
and the Suicide example were given in chapter 3. This section presents additional examples from
six different domains. It should be noted that since equated wifs are always identical in specific

and generalized explanations, equivalent wifs are collapsed in future graphs of explanations.

4.2.1. Safe-To-Stack Example

The Safe-To-Stack example is a simple example introduced in [Mitchell86] to illustrate the
EBG explanation-based generalization method. It involves learning an operational rule for when it

is safe to stack something on an endtable. The example involves the following facts:

Isa(Obj1,Boz), 1sa{Obj2 Endtable) Color(Objl,Red),
Color(Obj2,Blue), Volume(Objl,1), Density(0bj1,0.1)

The following domain rules can be used to prove that Objl can be safely stacked on Obj2:

Lighter(?x.7y) — SafeToStack(?x,?y)

~Fragile(?y) — SafeToStack(?x.7y)

Volume(?x.?7v) A Density(?x.7d) = Weight(?x,7v*?d)
Weight(?x,7w) A Weight(?y,?u) A Less(?w,?7u) — Lighter(?x.?y)
Isa(7x,Endtable) = Weight(?x,5)

The specific proof that the EGGS’ deductive retriever generated for this problem is shown in Figure

4.3 and the generalized proof is shown in Figure 4.4. The general rule learned from this example is:

44

SafeToStack(0bj1,0bj2)

Lighter(Obj1,0bj2)
Weight{Ob jl,l*.l) Weight(Ob jZ,S) Less(1*%.1,5)
Volume(Ohj1,1) Density(0bjl,.1) Isa(Obj2,End Table)

Figure 4.3: Safe-To-Stack Example -- Specific Explanation

SafeToStack(?x1,?y1)
T
Lighter(?x1,?y1)
Weight(?%1,7v1*?2d1) Weight(?y1,5) Less(?v1¥7d1,5)
Volume(?7x1,7v1) Density(?x1,2d1) Isa(?y1,EndTable)

Figure 4.4: Safe-To-Stack Example — Generalized Explanation

Volume(?x1,7v1) A Density(?x1,7d1) A Isa(?y1,Endtable) A Less(v1*d1,5) —
SafeToStack(?x1,7y1)
This rule can then be used to solve similar problems, such as showing that a book can be safely
stacked on an endtable given the facts below:

Isa{Obj1,Book), Isa(Obj2, Endtable), Color(Objl,Green),
Color(0Obj2,Brown), Volume(Obj1..5), Density(Obj1,2)

45

4.2.2. LEAP example

The LEAP system [Mitchell85] is a learning apprentice in VLSI design which observes the
behavior of a circuit designer. It attempts to learn in an explanation-based fashion by observing
and analyzing specific examples of logic design. As an example of learning in this domain, consider
the following example taken from [Mitchell85]. Given the task of implementing a circuit that com-
putes the logical function: (a V l?) A (cV d), a circuit designer creates a circuit consisting of three
NOR gates like that shown in Figure 4.5. The system attempts to verify that the given circuit
actually computes the desired function. The explanation constructed by EGGS’ deductive retriever
proving that the circuit computes a function that is equivalent to the desired function is shown in

Figure 4.6. In thig exdmple, the domain knowledge available to the system includes:

Remove Double Negation.: Equiv(?x.7y) — Equiv(~(~(?x)),?y)

DeMorgan’s Law: Equiv((~?x/A=7y),7a) = Equiv(=~(?xV?y),7a)
Substitution of Equals: Equiv(?x.7a) A Equiv(?y,?0) = Equiv(?xA?y,7aA\7b)
Eguivalence Axiom.: Equiv(?x,7x)

The generalized form of this proof is shown in Figure 4.7. The general fact learned from this exam-
ple is:

Equiv(=(~?aV=?b), 2a/\?b)
Had generalization been performed by simply changing constants to variables, the result would

have been the overly specific rule shown below:

Equiv(=(~(2xV2y W-(72v7w)), (7227 IA(22V2w))

E—Dcfz)_ :

Figure 4.5: Circuit Design Learning Problem

46

Equiv(=(~(aVb)V-{cVd)).(aVb)A(cVd))

Equiv(~(~(aVb)IA=(~(cvd)).(aVo)A(cVd))

Equiv(=(=(aVb)).aVb) Equiv(~(=(cVd)).cvd)

Equiv(aVb,aVb) Equiv(eVd,cvd)

Figure 4.6: LEAP Example — Specific Explanation

Equiv(ﬂ(‘*(?al)V--(?bl)),?al/\?bl)

Equiv{~(~(?a1)A=~(~(761)).7a1A7b1)

Equiv(~(=(?a1)),7a1) Equiv{~{(={701)),7b1)
4 i
Equiv(?al,7a1) ' Equiv{?b1,?b1)

Figure 4.7: LEAP Example -- Generalized Explanation

As a result of the explanation-based approach, the resulting generalization is not sensitive to the

fact that the first stage of the circuit involved two NOR gates.

For example, the generalization would support using two NAND gates and a NOR gate to
AND four inputs together as shown in Figure 4.8. The rule learned from the previous example is
capable of aiding in both the design and verification of this circuit. Given the query: Equiv(?x,
(aAb) A (cAd))) the deductive retriever “designs™ the circuit shown in Figure 4.8, and given the
query Equiv(=(-=(aib) V ~(cAd)), (aAb) A (eAd))) it verifies it. The learned rule allows both of
these tasks to be done in one step. This example nicely illustrates how a learned rule can increase

the efficiency of both the construction and understanding of solutions to similar problem.

47

4
b— O

— O o
C— O—
d.—.-..........

Figure 4.8: Circuit Design Test Problem

4.2.3. MA Example

Another explanation-based learning system in the domain of logic is MA [O'Rorke84,
O'Rorke87b] which learns proof schemata from sample natural deduction proofs. When the system
cannot complete a proof for a particular theorem, a teacher steps in and completes the proof. MA
then generalizes the teacher’s proof in an explanation—based manner to generate a proof schema that
can be used to solve future problems. Consider a variant of the example discussed in [O'Rorke84)
of proving a particular case of the law of excluded middle: NIL=>(PAQ)V-(PAQ) (i.e.
(PAQIV-(PAQ) can be deduced from the empty set of assumptions). The natural deduction proof
fhe deductive retriever generates for this example is shown in Figure 4.9. The following rules of |

natural deduction [Manna74] are employed in this proof:

Assumption Axiom: (. 7y)=>%
Or Introduction: Tx=>y = Tx=>TyViz
Or Introduction: 7%=y = 7x=>72V?y

Elimination Of Assumption: (7x . 7y)=>72 A\ (~7x . 7y)=>7z — ty=>12

The expression ?x=>7?y means that the wif ?y is deducible {rom the list of assumptions (wifs) 7x.
LISP dot notation is used to represent lists of assumptions. The generalized proof EGGS generates
for this example is shown in Figure 4.10. From a specific instance of proving (PAQ)V=(PAQ) from
no assumptions, a general proof is learned for proving the disjunction of any wff and its negation
from any set of assumptions. Notice again that simply changing the constants P and () to variables
would have resulted in an under-generalization. The more general fact learned by EGGS allows it

to solve the test problem: NIL=>PV-P in one step.

48

NIL => (PAQIV-(PAQ)
(-(PAQ)) => (PAQIV-(PAQ) ((PAQ)) => (PAQIV-(PAQ)
(~(PAQ)) => ~(PAQ) ((PAQ)) => PAQ

Figure 4.9: MA Example — Specific Explanation

2917 => 7y16V-2y16

(2916 . 27y17) = 2y16V-7y16 (~2y16 . 7y17) => y16V-2716

(?y16 . 7y17) => ?y16 (-?y16. 7y17) => -?y16

Figure 4.10: MA Example -- Generalized Explanation

The same proof and generalization shown in Figures 4.9 and 4.10 result from understanding

the following sketchy proof:

((PAQ)) => (PAQ) V =(PAQ)
(-(PAQ)) => (PAQ) V ~(PAQ)
Q.E.D.: NIL = (PAQ) V -(PAQ)

If the depth bound on the deductive retriever is set to two, explaining this proof takes only 4.5
CPU seconds. compared to proving the theorem directly which takes 9 CPU seconds with a depth
bound of three, 18.5 CPU seconds with a depth bound of five, and 759 CPU seconds with a depth
bound of ten! This simply demonstrates that, as expected, understanding a proof can be much

more efficient than independently discovering one.

49

4.2.4. LEX2 Example

LEX2 [Mitchel183] is an explanation-based learning system in the domain of integration prob-
lem solving. Unlike the other systems addressed in this paper which learn new inference rules or
plans, LEX learns search control knowledge. Specifically, it learns heuristics for when to apply par-
ticular integration operators by determining, in an explanation-based manner, why the application
of a particular operator led to the solution of a specific problem. The formulations of LEX2's
approach given in [Mitchel186] and [Hirsh87] use a set of logical inference rules to prove that a par-
ticular operator was “useful” in solving a particular problem. However, macro-rules for solving a
particular class of integration problems can also be learned in an explanation-based manner, and
the conditions that allowed each operator to lead to the solution are easily extracted from the gen-
era.lized explanation. For example, consider solving the‘ following problem discussed in
[Mitchell86]: f3x%dx. The solution to this problem can be formulated as logical inference using the

following inference rules:

Constant(?r) A ?r#-1 — Solution{f?x"d?x, ?x™*}/(?r+1))
Constant(?c) A Solution(f?fd?x, ?z) — Solution(f7c*?fd?x, 7c*?z)

Numberp(?x) — Constant(?x)

The expression Solution(?z,7y) means ?y is the solution to the problem ?x. The proof EGGS gen-
erated as the solution to the given problem is shown in Figure 4.11, and the generalized proof is

shown in Figure 4.12. The general rule learned from this example is:
Numberp(?c1) A Numberp(?r1) A ?r1=-1 — Solution{ [7c1¥Mx17d?x1, 21 ?x171+1/(?r1+1)))

This rule can then be used to immediately solve similar problems like: [5xz3dx. The conditions

that allowed the first operator to lead to a solution are also implicitly represented in this rule. The

. problem must match the form in the conclusion: [?7c1¥?x171d?x1 and satisfy the antecedents of the
rule: Numberp(?c1), Numberp(?rl), and ?r1s=-1. In a problem with more steps, the “"useful” con-
ditions for other operators in the solution can be obtaining by pruning (i.e. removing from the
explanation structure) the steps for all the previous operators in the solution prior to generalizing
~ the explanation structure. This will create a macro-rule for the last n steps. and the “useful” con-

ditions for the first operator in this macro-rule can then be extracted as described above.

Unlike the process for learning integration problem solving described in [Mitchell86], this
method obtains both a general macro-rule and heuristic conditions from a single explanation using

a single generalizing mechanism. The method described in [Mitcheli86] learns only search

50

Solution(f3x%dx,3(x?*1/(2+1)))

Solution(/x%dx,x**1/(2+1)) Constant(3)
2Aant(2) Numpr(:;)
Numberp(2)

Figure 4.11: LEX2 Example — Specific Explanation

Solution(f?7c¢1¥7x1"1d?x1,2c1*(?x17 1/ (7r1+1)))

| Solution(f?x171d?x1,2x17141/(?r1+1)) Constant(?c1)
7wl ”nt(?rl) Numberp(?c1)
Numberp(?r1)

Figure 4.12: LEX2 Example — Generalized Explanation

heuristics and uses the EBG method as well as a separate regression step using rules of the domain
theory to regress operators through problem states. If the problem solving operators are explicitly
represented in the rules of the domain theory, this separate regression step is unnecessary. Like the
approach presented here, the formulation given in [Hirsh87)], explicitly represents operators in the
domain rules in order to eliminate the unnecessary regression step. However, like Mitchell et. al.’s
formulation, Hirsh’s approach learns only search heuristics for individual operators and not
macro-rules. The approach presented here learns both heuristics and macro-rules; however, it

requires a specialized technique for extracting the heuristics from the generalized explanation.

51

4.2.5. Geometry Example

Another mathematical domain to which EGGS has been applied is proving theorems in ele-
mentary Euclidian geometry. J. R. Anderson has used his production system learning models ACT*
[Anderson83a, Anderson83b] and PUPS [Anderson87b]. to model human learning in this domain.
EGGS is cépable of learning general geometry proof rules analogous to the productions produced by
Anderson’s composition process. These learned rules can then be used to solve similar problems

more efficiently in the future.

For example, consider the problem shown in Figure 4.13 which was taken from

[Anderson87b]. The domain rules needed to solve this problem are:

Reflexivity: X E X
Side Side Side: 7aTb = 7x7y AP = TyTz N 7cTa = 7z7x — ATalblc E A?x7y7z
Line Axiom: _Tx'ﬁ =?—y?§
- Equality Axiom: =IWARERZ oy =22
Equality Axiom: =M AZEMx - 12=0y

Given these rules, EGGS’ backward chaining inference engine constructs the proof shown in Figure
4.14. The generalized proof produced by EGGS is shown in Figure 4.15. The general composed rule ‘

learned from this problem solution is:

?a67z3 = ?237b5 A 7a67a5 = 725705 — A?a6?55?z3 = A?057a57z3

This rule is analogous to the composed production learned by ACT* since the simple method of

replacing each constant with an independent variable produces the correct result for this particular

D GIVEN: AB=BC
AD =DC
ABC

PROVE: AABD = ACBD

Figure 4.13: Geometry Learning Problem

52

AABD = ACBD

DAEDC BD=B AB=CB

D =DA AB =BC BC = CB

3
>
n
3

Figure 4.14: Geometry Example — Specific Explanation

A?a6?a5?z3 = A?b37a5723

723726 = 7237b5 - 7a57z3 =7a57z3 7a67a8 = 7b57as

726?23 = 723705 7a67z3 =7z3%a6 7a67a5 = 7a57b5 - 7a57bS =?b8?as

Figure 4.15: Geometry Example -- Generalized Explanation

example. However, as many of the other examples illustrate, this simple generalization method

frequently produces overly-specific generalizations.

The rule learned by EGGS is capable of directly solving similar problems such as the one
shown in Figure 4.16. Since the solution to the previous problem did not depend on the bottom
three points being colinear, the general proof used for the previous problem can also be used for

this problem.

An additional geometry problem, shown in Figure 4.17 (taken from [Anderson83a] and origi- .
nally from [Jurgenson75]), is difficult enough so that the inherent limits of the machine (a Xerox
1108) prevents the EGGS theorem prover from solving the problem. After 28 minutes of run time
with a depth bound of nine (the depth of the shortest known proof), the system’s storage is
exhausted and a proof has still not been found. However, understanding the following sketchy

proof with a depth bound of three takes only 78 seconds of CPU time.

53

B
GIVEN: AB =BD
AC=CD
A D
PROVE: AABC = ADBC
C

Figure 4.16: Geometry Test Problem

A C E GIVEN: AGB FGE

ECA BDF DGC

G is midpoint of AB

G\ G is midpoint of CD
PROVE: G is midpoint of EF

F D B

Figure 4.17: Difficult Geometry Example

ACGA = ADGB

LGAE = /GBF

AEGA = ATGB

Q.E.D.: Midpoint(G,EF)

This example clearly demonstrates the importance of being able to learn from hints and the
observed problem sol{!ing behavior of other agents. Explanation-based learning from observation
allows a system to learn how to solve problems that it was previously unable to solve due to

inherent computational resource limitations.

54

4.2.6. Deductive STRIPS Planning Example

As described in [Nilsson80] and [Kowalski79], traditional blocks world planning can be for-
mulated as logical deduction. The following discussion will follow what Nilsson refers to as
“Kowalski's formulation” of planning as deduction. In this formulation, states and actions are
treated as terms instead of predicates. Holds(?f.7s) means that the fact ?f holds in the state 7s. The
term do(?a,7s) represents the state achieved by performing the action ?a in state ?s. Poss(?s) means
that 7s is a possible state, i.e. one that can be reached from the current state. Pact(?a,?s) means
that it is possible to perform action ?a in state ?s, i.e. all of 7a’s preconditions hold in state 7s.
Diff(7x,%y) means that ?x and ?y are different, distinct terms. Finally, Achieve(?f,?s) means that
fact ?f is achieved in state 7s, i.e. ?f holds in 7s and ?s is a reachable state. A set of axioms for han-

dling examples from the STRIPS domain [Fikes72] is given below.

Holds{?f,?s) A Poss(7s) = Achieve(?.7%)

Pact(?a,?s) A Poss(?s) — Poss(do(7a,7s))

Effect Axioms:
Holds(inroom(?a,?1).do(gothru(?a,7d.7k.?1),7s))
Holds(inroom(?b,?1),do(pushthru(?a,?b,7d,7k,?1),7s))
Holds(inroom(?a,?1).do(pushthru(?a,?b,2d,?k,?1),7s))

Frame Axioms:

Holds(?v,?s) A DHf(?v.inroom(7a,7k)) A Diff(?v.inroom(?b,7k)) —
Holds(?v,do(pushthru(?a,7b,7d,7k,?1).7s))

Holds(?v,?s) A Diff(?v,inroom(?2.7k)) = Holds(?v.do{(gothru(?a.?d,7k,71),7s))

Precondition Axioms:

Agent(7a) A Holds(inroom(?a,?k),?s) A Holds(connects(?d,7k,71),7s) —
Pact{gothru(?a,2d,7k,?1),7s)

Agent(?a) A Holds(inroom(?2,7k),?s) A Holds(inroom(?b,?k),?s) A
Holds(connects(?d,?k,?1),7s) — Pact(pushthru(?a,?b,7d,?k,?1),?s)

Miscellaneous Axioms:

ATOM(?z) A NOT(EQ(?x,7a)) — Diff(?x,7a)

55

Diff(?x,7a) — Diff((?x . 7y).(7a . 7b))
Diff(?y,76) — Diff((?x . 2y).(%a . 7o)
Holds(connects(?7d,71,7k),?s) — Holds(connects(?d.7k,?1).7s)

Given the following facts describing the initial state of the world shown in Figure 3.6.

Poss(80), Agent(Robot), Holds(inroom(Robot,Room1),80),
Holds(inroom(Box,Room?2),80), Holds(connects(Door1,Room1,Room?2),S0)

and the goal: Achieve(inroom(Box,Room1),7s), the deductive retriever constructs the proof shown
in Figure 4.18. The generalized proof for this example is shown in Figﬁre 4.19. The explanation has
been pruned to remove the rule: Not(Eq(?7b1,7a14)) A Atom(7b1,7a14) — Diff(?b1,7a14). In order to
increase generality, the pruning algorithm removes instances of this general rule that add addi-
tional antecedents to the macro-rule. The antecedents of the rule: Not(Eq(Connects,inroom)) A
Atom{(Connects) — Diff(connects,inroom) are general facts of the domain and therefore are not
added 1o the antecedents of the macro-rule. Consequently, this rule does not detract from the gen-
erality of the final result and is not pruned. The macro-rule learned from the final generalized
éxplanation is:

Poss(?s8) A Holds(connects(?d5,7k5,7k3),7s8) A Holds(inroom(?a14,7k5).7s8) A Agent(7a14) A

Holds(connects(7d3.713,7k3),7s8) A Diff(?b1,7a14) A Holds(inroom(7b1,7k3),7s8) —

Achieve(inroom(?61,713).do(pushthru(?a14,?b1,7d3,7k3,213),do(gothru(?a14,7d5,7k 5,7k 3).7s8)))

Notice that this generalization allows the destination of the box (?13) to be different from the room
in which the robot started (7k5). As discussed earlier, a generalization produced by simply chang-
ing each constant to an independent variable would require them to be the same like they were in
the example. On the other hand, the macro-rule learned by EGGS can be used to solve the following

problem:

Goal: Achieve(inroom(Box,Room3),?s)

Given: Poss(S0). Agent(Robot), Holds(inroom(Box,Room2),50)
Holds(inroom(Robot.Room1),80), Holds(connects(Door1,Room1,Room2),50)
Holds(connects(Door2,Room3,Room?2),50)

In addition to being able to generate plans, this formulation can also easily be used to verify
that a particular plan works. For example, the STRIPS plan can be verified instead of generated by

simply proving the following assertion:

57

Achievel

Poss3
Poss5
Poss6
Pact3

. Holdsé
Holds5s
Agentd
Pact4
Holds10
Diff2
Diff4
Not3
Atom4
Holds12
Holds13
Holds14
Diff6
Diff8
Diff9
Holdsl5
Holdsl16
Holds17

Achievel
/H)SSB\I_MICIS 1 7
Poss5 Pact4 N
Possé Holds14 Holdsl6

/\?\

Holds6 Agentd pifr2 Holds12 Diff6 Holds15

Holds5 T 1 T

Diff4 Holds13 Diff8

N !

Not3 Atomd Diff9

Achieve(inroom{?b1,713),de(pushthru(7al4d,?vl,7d3,7k3,713),
do(gothru(?al14,7d5,7k5,7k3),7s8)))

Poss(do{pushthru(?a14,761,7d3,7k3,713),do(gothru(?a14,7d5,7k 5,7k 3),7s8)))

Poss(do{gothru(7a14,7d5,7k5,7k3),7s8))

Poss(7s8)

Pact(gothru(?a14,7d5,7k5,7k3),7s8)

Holds(connects(?7d5,7k5,7k3),7s8)

Holds(inroom{7a14,7k5),7s8)

Agent(7al4)

Pact(pushthru(?aM ,101,7d3,7k3 ,?13),d0(gothru(?al4,?d5 ,7k5,7k3),7s8))

Holds(connects(?d3,7k3,713),do(gothru(7214,7d5,7k 5,7k 3),7s8))

Diff(connects(?d3,7k3,713),intoom(?a14,7k5))

Diff (connects,inroom)

Not(Eq(connects,inroom)¥

Atom(connects)

Holds(connects(?d3,713,713),7s8)

Holds(connects(?d3,713,7k3),7s8)

Holds(inrcom(7b1,7k3),do(gothru(?a14,7d5,7%5,7k 3),7s8))

Diff(inroom(?b1,7k3),inroom(?al14,7k5))

Diff(7b1(7k3),72214(k5))

Diff(7b1,7a14)

Holds(inroom{7b1,7k3),7s8)

Holds(intoom(?a14,?k3),do(gothru(?al4,2d5,7k5,7k3),7s8))

Holds(intoom(?bl ,?13),do(pushthru(?a14,?b 1,743,7k3,713),
do{gothru(?a14,7d5,7k5,7k3),7s8)))

Figure 4.19: Logic STRIPS Example -- Generalized Explanation

58

Achieve(inroom(Box,Room1),do{pushthru(Robot.Box,Doorl Room?2,Room1),
do(gothru(Robot,Door1,Room1,Room2),50)))

Verifying plans is useful for constructing explanations for observed plans and thereby learning

general plans from observed behavior.

59

CHAPTER 5

EGGS: REWRITE EXPLANATIONS

‘Many mathematical problems can be more concisely represented and solved using rewrite
rules [Bundy83] instead of logical deduction. Domains that involve the manipulation of
mathematical formulae generally require rewriting subterms of an expression. Rewriting subterms
using logical deduction requires the representation and skillful application of equality axioms. On
the other hand, the type of equality reasoning generally required in most matbhematical domains is
a natural part of a mechanism that applies rewrite rules. Consequently, a rewrite system can be a
more efficient way of solving particular types of problems. The empirical data presented in chapter
7 shows that the EGGS rewrite system can be about one and a half to four times faster than the

EGGS theorem prover at solving the same problem.

Like the previous section on logical proofs, this section discusses the EGGS system’s ability to
construct, generalize, and learn macro-rules from specific rewritings. It also presents a few exam-

ples of applying EGGS to various domains that use rewritings as explanations.

5.1. Rewritings as Explanations: The LEAP Example

Like logical proofs, chains of rewrite rule applications can be represented as explanations.
Each rewritten expression is a pattern in the explanation and the chaining together of two rules is
represented by a unification between the right—hand~§ide (RHS) of the first rule and the left-hand-
side (LHS) of the second. For example. consider solving the LEAP example discussed in section
4.2.2 by rewriting the expression =(=(avbhV-(cVd)) to (aVb)A(cVd) using the following rewrite

rules:

- = Mx

-~(?x V ?7y) = =7x A =2y

The explanation, explanation structure, and generzlized explanation for this example are shown in
Figure 5.1, Figure 5.2, and Figure 5.3 respectively. Notice that if a rule rewrites only a subterm of
an expression, “dummy variables” are added to the pattern in the explanation structure to fill out
the expression so that it can be unified with the previous expression. LISP list notation is used in
the illustration of the explanation structure since the technigue used to add dummy variables relies
"on the underlying list representation. For example, after applying DeMorgan's Law in the LEAP

problem, the rule for eliminating a double negation is used to rewrite the first term in the resulting

60

=(=(aVb}V-{cVvd))
~(~(aVb))A=(~(cVd))

(aVo)A=(~(cVd))

(avbin{cvd)

Figure 5.1: LEAP Rewrite — Specific Explanation

(not (or 7x1 ?y1))

(and (not 7x1) (not ?y1))

(7f1 (not (not 7x2)) . 7f2)

(761 ?x2 . 712)

Il
(?£3 74 (not (not 7x3)) . 7£5)

(73 74 7x3 . 715)

Figure 5.2: LEAP Rewrite - Explanation Structure

61

(=077 4)v~(7x3))

({2 4)A(~(7x3))

?f4/\-|(-1(?x3))

HANTX3

Figure 5.3: LEAP Rewrite - Generalized Explanation

conjunction. In order to aliow the LHS of this rule to unify with the RHS of the instance of
DeMorgan’s Law in the explanation structure, this rule is padded with the dummy variables ?f1

and ?f2. During generalization, this unification results in the following substitution:
{and/?f1, not(?x2)/7x1, (not(?y1))/712}

Next, the rule for eliminating a double negation is used o rewrite the second term in the conjunc-
tion and this instance of the rule is padded with the dummy variables ?f3, 7f4, and 75 in order to
allow its LHS to unify with the previous instance. During generalization, this unification results in

the following substitution;
{and/?£3, 7£4/7x2, not(?x3)/?y1. NIL/?f5}

Applying the composition of these two substitutions to the explanation structure results in the gen—

eralized explanation shown in Figure 5.3.

5.2. Facilities in EGGS Supporting Rewrite Explanations

Figure 5.4 illustrates the components in EGGS that use and learn rewrite rules. The rewrite-
rule engine allows EGGS to construct rewrite-rule explanations by solving problems itself. These
explanations can then be generalized, resulting in macro-rules that can be used to solve similar
problems more efficiently. A system for understanding sketchy rewritings provided by the user
would also allow the system to operate as a learning apprentice. Although the current EGGS sys-
tem is not equipped with such a sub-system, it would not be difficult to construct one. An example

of such an understanding system is discussed in [Bennett86].

62

Expression
Rewrite Rewrite Macro-Rule
Engine Rules Extractor

Pruner | .

Rewritin
£ (optional)

Generalizer
Trace

Figure 5.4: EGGS Architecture for Rewrite Rule Explanations

5.2.1. Rewriting Expressions

There are a number of techniques for using rewrite rules to solve problems. If a set of
rewrite rules is canonical [Bundy83], any sequence of legal rewrite rule applications will eventu-
ally convert an expression to canonical form. If a rule set is not canonical, it is necessary to search

through the space of possible rewritings until an expression is found that meets a specified criterion.

EGGS is equipped with both a deterministic rewrite system for applying canonical rule sets
and a backtracking rewrite system for rule sets that are not canonical. The deterministic system
simply applies a rule 10 rewrite the current expression or one of its sub-expressions. This process is
continued until no more rules apply. The backtracking system searches possible rewritings in

either a depth-first or breadth-first manner until a supplied goal predicate is satisfied.

In both cases. there are various ways of choosing which rule to apply at each step. For the
deterministic system, this choice determines the length of the eventual path to the canonical form.
For the backtracking system, this choice also effects the amount of search required. In his book,
Bundy presents two methods for choosing which expression to rewrite. The first is to rewrite the
leftmost/innermost subexpression that can be rewritten. This method is called innermost or call by
valug. The second is to rewrite the leftmost/outermost subexpression that can be rewritten. This
method is called outermost or call by name. In order to allow learned macro-rules to have priority
over solving problems from scratch, a third technique called rule ordered is used in EGGS. In this
technique, the rewrite rules are ordered and the sub-expression that matches the LHS of the the

highest numbered rule is rewritten.

63

The three examples presented in this section all use the deterministic rewrite system. Com-
plete rule sets capable of solving any problem in the domains discussed would not be canonical and
would require using the backtracking system. For the LEAP example discussed above, the deter-

ministic rewrite engine produces the rewriting shown in Figure 5.1.

5.2.2. Learning Rewrite Macro-Rules

After the solution to a specific rewriting problem is determined by the rewrite rule engine, the
EGGS generalization algorithm is used to produce a generalized explanation like that shown in Fig-
ure 5.3. A rewrite macro-rule is easily extracted from the generalized explanation by taking the
first expression in the chain as the LHS and the last expression as the RHS. The new rewrite

macro-rule that is learned from the LEAP example is:

(=2 4V=7x3) = H4A7x3

A learned macro-rule is added to the beginning of the list of rewrite rules so that, due to the
rule ordered method, it is tried first when solving subsequent problems. As a result, performance is
improved on subsequent problems that can be solved using the macro-rule. However, as with logi-
cal inference macro-rules, unsuccessfully trying to apply the new rule will slightly degrade perfor-
mance on other. problems. Some empirical data on the effect of learning on rewriting performance is

given in chapter 7.

5.3. Rewrite Examples

This section presents two more examples of rewrite-rule explanations in addition to the LEAP
example discussed above. They include a rewrite formulation of the LEX example presented earlier

and an example from the domain of solving algebraic equations.

5.3.1. Rewrite Version of the LEX2 Example

Examples from LEX2’s domain of solving integrals can also be more concisely formulated as
rewritings. Consider the example discussed earlier of solving the integral: [7x?. The following
two rewrite rules are needed to solve this problem:

JQc*¥M)d?x = 2e* [7f2d?x if ~OccursIn(?x,%c)
JrFax = 257/ (7r+1) if -1 A =OccursIn(?x,7r)

The if conditions attached to the rewrite rules are additional conditions that must be met for the

rewrite Tule to apply. The specific and generalized explanations generated for this problem by the

64

EGGS rewriting system and generalizer are shown in Figure 5.5 and Figure 5.6 respectively. The

rewrite macro-rule learned from this example is:

ORI L)) — 30227/ (7r141))
if =OceursIn(?x2,7f3) A 7r1#-1 A =OccursIn(?x2,7r1)

This rule can then be used to solve additional pro‘blems such as [5%% more efficiently.

5.3.2. Equation Solving Example

EGGS has also been tested in the domain of solving algebraic equations. The LP system
[Silver83, Silver86] learns by analyzing individual solutions to equations; however, it learns very

abstract “strategies” which are not guaranteed to solve problems to which they can be applied.

J(7*(x2))dx =OccursIn(x.7)

M 271 ~Occursin(x,2)

7(x21)/(2+1))

Figure 5.5: LEX2 Rewrite Example — Speciﬁc Explanation

JOE3(2x271))d7x2 -QccursIn(?x2,7f3)

39T a7x2 Trizt-1 -Occursin(?x2,7r1)

M3 (22" D) /(r1+1))

Figure 5.6: LEX2 Rewrite Example — Generalized Explanation

65

These strategies are then executed in a flexible manner when attempting to solve future problems.
EGGS, on the other hand, learns more specific rewrite rules which are guaranteed to solve a particu-

lar class of problems.

The background knowledge used in this domain is also most conveniently given in terms of

rewrite rules. The following set of rules can be used to solve the equation: log (x+1) + log (x-1} = ¢

(from [Bundy83)).

log, 2u=?v — 7u="b"" if OccursIn(x,?u) A NotOccurIn(z,?v)
Mu-?v=2z ~ Tu=Tz+?v if OccursIin(x,?u) A NotOccurln(x,?v)
20%=7v = Tu=sqrt(?v) if OccursIn(x,?u) A NotOccurIn(x,7v))
(Pu+2v ¥ (u-7v) = (Mu?)-(7v?) if Occursin(x,?u)

log, 7utlog, v = log, (Pu*?v) if OccursIn(x,?u) A Occursin(x,?v) A NotOccurln(x,?w)

The if conditions attached to the rules constitute control information which assure that the applica-
tion of a rule is a step towards the solution. This control information forms a part of the explana-
tion and is learned along with the body of the new compiled rewrite rule. These conditions are pro-

ven deductively using the EGGS theorem prover and the following inference rules:

1) OccursIn(?x,7x)

2) OccursIn(?x,?7y) = OccursIn(?x,(?y . 72))

3) OccursIn(?x,72) = OccursIn(?x,(?y . 72))

4) Atom(?y) A =Eq(?x,?7y) - NotOccurln(?x.?y)

5) NotOccurIn(?x,?y) A NotOccurIn(?x,7z) = NotOceurIn(?7x.(?y . 72))

The specific explanation for the solution to sample equation is given in Figure 5.7. If this explana-
tion is generalized without pruning, the following rule is extracted from the generalized explana-

tion:

log,,, (x+7v3)+log,, (x-7v3)=22 — x=sqrt((76172)+(?v3?))

if Atom(?b1) A =Eq{x.701) A Atom(?v2) A =Eq(x.7v2) A Atom(?v3) A =Eq(x.7v3)

Maintaining the complete structure of the original explanation has required ?bl, 7v2, and ?v3 to be
atoms as they were in the example. That is. in the example, it was proved that ?bl (the base of the
logarithm) did not contain x because it was an Atom that was not Eq to x. To increase the general-
ity of learned macro-rules, a special pruning procedure for this domain automatically prunes

instances of inference rules 1 and 4 from the explanation structure. The generalized explanation

66

produced from the pruned explanation is shown in Figure 5.8. The new rewrite-rule learned from

this generalized explanation is:
log,,,(?y8+2v3)+log,, ,(?7y8-v3)=2y2 — ?y8=sqri({76172)+(?v3%))
if NotOccurIn(x,?b1) A NotOccurlIn(x.?y2) A NotOccurln(x,?v3) A OccursIn(x,7y8)

This rule is at the appropriate level of generality to cover a relatively large class of problems. For

example, this rule can now be used to solve the following test example in one step.
108, (x+2%a) + log,, (x-2*a)=c+d

x=sqrt{(3*e)+d+(2%a)?)

67

Occursin?

OccursIns

Not3 Atom4 Qccursin3

Occursl
NotQccurln2

NotOccurln2
Not3

Atom4d
Occursing
OccursInlO
OccursInl2
OccursIn3
OccursInS
Occursln7
NotOccurlnd
Nots

Atomé6
OccursInl4
Occurslnlé
NotOccurlné
NotOccurIn9
NotOccurlnl2

Notl0 Atomll

NotOccurknl5

=8

x=sqrt((e°)+(1%))
x?=(e)+(1?)
xH-(1H)=¢
(x+1)*(x-1)=¢°
In({(x+1)*(x-1))=c
In(x+1)+1n(x-1)=c
NotOceurln(x,e)
-Eq{x,e)

Atom(e)
OccursIn(x,x-1)
OccursIn(x,(x 1))
OccursIn(x,x)
Occursin(x,x+1)
Occursin(x,(x 1))
OccursIn(x,x)
NotOccurln(x,c)
~Eq(x,c)

Atom(c)
OccursIn(x,(x+1)¥(x-1))
OccursIn(x, ((x+1)(x-1)))
NotOccurln(x,12)
NotOccurln(x,(1 2))
NotOccurIn(x,(2))

Not% Atoml0
\/

NotOccurInlé

curlng

NotOccurlnl8

Not8 Atom9

NotOccurlnis

Ny e

NotOccurin32
Notls

NotOccurin2é 0t0Occurin29 Atomls -

NotOccurin23 NotOccurin 38

NotOccurin20

=10

NotOccurlnls NotQccurIn(x,NIL)
Notl0 -Eq(x,NIL)
Atoml1 Atom(NIL)
NotOccurlnlé NotOccurln(x,2)
Not9 -Eq(x,2)
AtomlQ Atom(2)
NotOccurlnl? NotOecurIn(x,1)
Not§ -Eq(x,1)
Atom9 Atom(1)
NotOccurinli8 NotOccurln(x,T)
Not7 -Eq(x,1)
Atom§ Atom(T)
OccursIn20 OccursIn(x,x?)
OccursIn22 OccursIn(x,(x 2))
NotOccurin20 NotOccurIn(x,(e)+(12))
NotOccurIn23 NotQccurln(x,(ef (12)))
NotCccurIn26 NotOccurlnlx,((12)))
NotOccurIn29 NotOccurln{x.e®)
NotOccurIn32 NetOccurIn(x,(e ¢))
NotOccurIn35 NotOccurln(x,(c))
NotOccurin38 NotQccurln(x,+)
Notls -Eqlx,+)
Atoml6é Atom(+)

Figure 5.7: Equation Solving Example -- Specific Explanation

68

OccursIn25 ~ NotOccurIndl NotOccurini3
Oconl \\.\ N ot()ccur .
w otOccurine
Ocgursind :
ot \/ NotQccurIn3s
OccursInj otOccuring NotOccurind2
=2 rs NotOcbarlng NotOceurin32
1
Qccursin?2 NotQccurin26 NotOccurln2¢
6 n20 NotOccurIn23 NotOccurln21
NotOccurIn20
=10
=10 T1y8=sqrt((76172)+(7v32)) NotOccurln9 NotOccurln(x,(7v3 2))
=8 7y82=(701"2)+(7v32) NotOccurInl2 NotOccurln(x,(2))
=6 (7y89)-(v3?)=1p1"? NotOccurIndl NotOccurln(x,NIL)
=4 (7y8+1v31{7y8-7v3)=7b1"¥? NotOccurlnl3 NotOccurln(x,2)
=1 log,, ((7y8+7v3)*(7y8-7v3))=7y2 NotOccurInl0 NotOecurln(x,?v3)
=2 log,, (7y8+7v3)+log, (7y8-7v3)=7y2 NotOccurin42 NotOccurln(x,])
NotOccurIn39 NotOccurIn(x,7b1) OccursIn20 Occursin(x,?y8%)
OccursIng OceursIn(x,7y8-7v3) OccursIn22 OccursIn(x,(7y8 2))
OccursIniQ OccursIn(x,(7y8 ?7v3)) NotOccurIn20 NotOccurIn(x,(761799)+(7v3%))
OccursIn2s OccursIn(x,?y8) NotOccurln23 NotOccurIn(x,{(7b17¥2)(?7v3%)))
OccursIn3 OccursIn(x,?y8+7v3) NotOccurIn26 NotOccurin(x,(7v32)
OccursIns OccursIn(x,(Ty8 7v3)) NotOccurIn29 NotOccurln(x,70]17?)
NotOccurInd40 NotOccurln(x,?y2) _ NotOccurIln32 NotQccurln(x,(?b1 7y2))
Occursinl4 Occursin(x,(7y8+7v3)*(?y8-7v3)) NotOccurIn35 NotOccurln(x,(?y2))
OccursInlé OccursIn(x,((7y8+7v3)(7y8-7v3))) NotOccurln2l NotOccurln(x,+)
NotOccurIné NotOccurIn(x,7v3?) :

Figure 5.8: Equation Solving Example — Generalized Explanation

69

CHAPTER 6

EGGS: PLAN EXPLANATIONS

Although constructing and verifying plans can be accomplished using logical deduction as
described in section 4.2.6, other representations and algorithms are generally :more concise and
efficient [Chapman87, Fikes72, Sacerdoti74, Sacerdoti77, Waldinger77]. For example, verifying the
following simple STRIPS plan took ten times as much CPU time using the EGGS deductive retri-
ever compared to a more specialized algorithm (discussed later in this section) for verifying plans

using STRIPS operators (44s versus 4.4s).

Given: InRoom{(Robot.Room1), InRoom(Box,Room3), Connects(Doorl,Room1,Room?2)
Connects(Door2,Room2,Room3)

Goal: InRoom(Box,Room2)

Plan: GoThru(Robot.Doorl,Room1,Room2), GoThru(Robot,Door2,Room?2,Room3),
PushThru(Robot.Box,Door2,Room2,Room3)

In plan-based domains, it is generally more efficient to use representations especially developed for -
representing actions. This section discusses the EGGS system's ability to understand, generalize,
and learn macro-operators from plan-based explanations and presents a couple of detailed examples

of these processes.

6.1. Plans as Explanations: The STRIPS Example

The representation of actions used in EGGS for plan-based explanations is a slight variation of
STRIPS operators [Fikes72]. Actions have preconditions, facts that must be true in order to perform
the action, and effects, facts that are true after the action is performed. Both add and delete items
are included in the effects; delete items simply have an explicit negation. Existing facts that are not
explicitly negated by the effects of an action continue to be true. Definitions of the actions used in
the STRIPS example are shown in Table 6.1. The departure from standard STRIPS operators which
use separate add and delete lists allows a distinction to be made between facts that are known to be
false and facts that are simply not known 1o be true. This is because facts that are known to false
(i.e. deleted facts) are explicitly asserted as negations in the database. This in turn aliows for nega-
tive preconditions that can check if a fact is known to be false, and allows positive effects to

directly delete negative facts in the database.

Table 6.1: STRIPS Actions

Action Preconditions Effects
GoThru(?a,7d,7r1,7r2) InRoom(?a,7r1) InRoom(7a,?r2)
: Connects(?d,?r1,7r2) | -InRoom(?a,?r1)
PushThru(?2,70,7d,7r1,7r2) | InRoom(?a,7r1) InRoom(7a,7r2)
InRoom(70,7r1) InRoom(70,7r2)
Connects(?d,7r1,702) | =InRoom(?a,?r1)

—-InRoom(?b,7r1)

70

Individual actions and Horn-clause rules form the units of an explanation and explanations

are connected sets of actions and rules in which preconditions and antecedents are equated to effects

and consequents. The specific explanation, explanation structure, and generalized explanation for

the STRIPS example discussed earlier are shown in Figure 6.1, Figure 6.2, and Figure 6.3 respec-

tively. In addition to action definitions given in Table 6.1, this example makes use of the following

inference rule: Connects(?d.?+1,7r2) = Connects(7d,7r2,701).

6.2. Facilities in EGGS Supporting Plan Explanations

Figure 6.4 illustrates the the components in EGGS that use and learn plans. The complete

EGGS system is equipped with a general purpose sub-system for verifying or “understanding”

plans and a technique for obtaining general macro-operator definitions from generalized explana-

tions. The current system does not have a planner for independently generating its own plans;

=~InRoom(Robot,Room2) ImRoom(Box,Room1}

=InRoom(Box,Room2} InRoom(Rebot,Room1)
PushThru(Robot,Box,Doorl,Room2,Room1) ~InRoom(Robot,Room1)
InRoom(Robot,Room?2

Connects(Doorl,Room?2,Room1) InRoom{(Box,Room?2)

GoThru{Robot,Door1,Room1,Room2)

Connects(Door1,Room1,Room?2)

InRoom(Robot,Room1)

Figure 6.1: STRIPS Example — Specific Explanation

72

Observed

Gca\1\ Af}ions

Plan Strips Macro-
t
Verifier &]g)th?*ra?:t%I;
Plan
Explanatio

Figure 6.4: EGGS Architecture for Plan Explanations

Pruner |

: Generalizer
(optional)

however, there are many well-known planning algorithms which could be used for this task

{ChapmanS?, Fikes72, Sacerdoti74, Sacerdoti77, Waldinger77].

6.2.1. Plan Verification

Verifying a plan is the task of constructing a complete explanation for a sequence of actions.
This process may also be referred to as “explaining” or “understanding” the plan. An example of

this task is generating the explanation shown in Figure 6.1 given only the following actions:
GoThru(Robot.Door1 Room1,Room2), PushThru(Robot,Box,Doorl,Room?2,Room1)

In addition to a set of actions performed; facts describing the initial state of the world and a fact
describing the desired state of the world (the goal) may also be provided. The verification process
attempts to causally connect these individual actions and states into a explanation that supports the
goal (if provided). For the STRIPS blocks world, the process resembles understanding a simple

“story’” about a robot’s actions.

The basic algorithm used in EGGS to explain simple robot plans is outlined in Figure 6.5. The
function Retrieve(x) uses the EGGS deductive retriever (described in section 4.1.1) to try to infer
the wif x. If successful, Retrieve asserts the retrieved fact in the database along with its dependen-
cies and returns the retrieved fact. The function Assert adds a fact in the database and the func-

tion Delete removes a fact f1_'om the database.

The explanation procedure is given a chronologically ordered list of facts representing states

and actions. If an input is a state, such as InRoom{Box,Room1), and it cannot be inferred from

73

for x in the list of input wifs do
if x is a state and ~Retrieve(x)
then Assert(x)
if x is an action
then
Assert(x)
for each precondition p of x do
let s = Retrieve(p)
if 5
then equatep to s
else Assert(p)
for each effect e of x do
Assert(e)
let d = Retrieve(-e)
if d then Delete(d)
if goal is known and Retrieve(goal)
then generalize explanation supporting goal

Figure 6.5: Basic Plan Verification Algorithm

what is already known, then it is simply asserted in the database. If an input is an action, then the
procedure first tries to infer that its preconditions are met. If a precondition cannot be inferred,
then, since the action is known to have taken place, it is assumed to be true and asserted in the
database. Next, the effects of the input action are asserted and any existing facts that directly con-
tradict them are deleted from the database. After every input, if a goal has been specified. then the
system tries to infer that the goal has been met. When the goal has been achieved, the resulting

explanation is generalized.

As an example of this process, consider the standard STRIPS example mentioned above. In
addition to the two actions, assume the system is given that the goal is InRoom(Box, Room1).
Given the input GoThru(Robot, Doorl, Room1, Room2), the preconditions InRoom(Robot, Room1)
and Connects(Doorl, Room1, Room2) cannot be inferred but can be consistently assumed, so they
are asserted to be true. The effects of the GoThru: InRoom(Robot, Room2) and -InRoom(Robot.
Room1), are then asserted. The second effect causes InRoom(Robot, Room1) to be deleted. The sys-
tem then tries to infer that the goal, InRoom(Box, Room1), is satisfied and fails. Next. the input
PushThru(Robot, Box, Room2. Room1) is considered. The precondition InRoom(Robot, Room?2)

was already asserted as an effect of the Gothru and the precondition Connects(Doorl, Room2,

. 74

Room1) can be inferred from Connects(Doorl, Room1, Room2). The precondition InRoom(Box,
Room?2) is assumed as a necessary precondition for the action. The effects, InRoom(Robot, Room1),
InRoom(Box, Room2), -InRoom(Robot, Room2), and =InRoom(Box, Room?2) are asserted and the
existing InRoom facts are deleted. The goal is then checked again and this time is successfully
retrieved. The resulting explanation, shown in Figﬁre 6.1, is then generalized to produce the gen-

eralization shown in Figure 6.3.

The basic understanding process presented here will only work on relatively simple plans in
which every action is explicitly mentioned. Later, in chapter 10, this procedure is elaborated in
order to allow it to construct explanations for natural language narratives. Nevertheless, the sim-

ple procedure presented here forms an important part of the understanding system in GENESIS,

6.2.2. Learning Macro-Operators

In order to be useful for later planning, the generalized explanation must be converted into a
definition for a new action (a macro-operator) which summarizes the preconditions and effects of
the combination of actions. The macro-operator learned from the STRIPS example is shown in
Table 6.2. STRIPS used triangle tables to efficiently store macro-operators for all sub-sequences of
the original plan. Currently, EGGS only builds macro-operators for complete sets of actions. How-
ever, unlike STRIPS. EGGS addresses the case in which the actions in the plan are only partially
ordered instead of completely ordered. The additional goal is to find the minimally constrained
partial ordering of the actions that allows:them to be connected as they were in the example (i.e.

maintaining the unifications between preconditions and effects).

Compared to a macro-rule learned by applying EGGS to a deductive formulation of planning
(as in section 4.2.6), a macro-operator can be more informative and more general. A macro-rule
like that presented -in section 4.2.6 specifies only one effect of a combination of actions while a
macro-operator specifies all of the effects. In addition, a macro-rule for a proof in situation cal-
culus cannot represent partially ordered actions. Re-ordering actions in such a formulation
requires completely altering the structure of the existing explanation. Consequently, generalizing

the order of actions in such a formulation would be much more difficult.

Building a macro-operator requires determining the overall preconditions and effects of the
general plan. The leaves of the generalized explanation form a set of preconditions for the macro-
operator since they represent preconditions of actions in the plan that are not achieved by previous

actions. For the STRIPS example, the first four preconditions from Table 6.2 are the leaves of the

75

Table 6.2: Macro-Operator Learned from the STRIPS Example
GoThruPushThru(7a2,7d1,7x9,701,7d2,7x12,7y12)

Preconditions Effects
InRoom(?a2,7x9) InRoom(?b1,7y12)
InRoom(?b1,7x12) InRoom(?a2,?y12)

Connects(7d1,7x9,7x12) | -InRoom(7a2,7x12)
Connects(7d2,7y12,7x12) | =InRoom(?b1,7x12)
~(?a2="01 A 7x9=7x12) ?y12#?%x9 — =InRoom(?a2,7x9)

generalized explanation shown in Figure 6.3. The final precondition in the table is added later and

is discussed in the following section.

The effects of the overall plan are more difficult to determine since, as noted in [Fikes72 (sec-
tion 4.3)]. the deletions of facts that occur in general may not be the same as the deletions that
occurred in the specific instance. To illustrate this point, they use the following simple plan for
pushing two boxes to two separate locations: Push(Box1, Loc1), Push(Box2, Loc2). The initial gen-
eralization for this plan is: Push(?b1, ?11), Push(?b2, ?712) which has the effects: At(?bl, ?11),
At(?02, ?12). However, if ?b1 and ?b2 are instantiated to the same box and ?11 and ?12 are instan-
tiated to distinct locations, this plan miraculously achieves the goal of having the same box be in
two places at once. The problem is that in certain situations the actions in a macro-operator may
delete facts that were not deleted in the specific example. Consequently, in order to determine
which facts are still true at the end of the execution of the macro-operator, one must determine all

deletions that might occur in the general case.

6.2.2.1. Determining Deletions and Preventing Protection Violations

Determining possible deletions is discussed in [Fikes72 (section 4.3)]; however, the problem is
more complicated when one considers partially ordered actions. Most ordering constraints in a plan
are imposed by one action achieving a precondition for another action. These orderings are captured
by the explanation structure: an action must precede another action if it eventually supports it.
Any topologically sorted [Reingold77, Sedgewick83] list of the actions in the generalized explana-
tion graph will be an ordering that satisfies these constraints. However, some of these orderings
may result in protection violations [Charniak85, Sussman73] in which an action deletes or clobbers a
goal or a precondition for a later action. When examining deletions in a macro-operator, it is
important to notice possible protection violations and impose additional ordering constraints to

avoid them.

76

Figure 6.6 describes the algorithm EGGS uses to determine deletions for the generalized expla-
nation and impose additional ordering constraints to prevent protection violations. In the algo-
rithm, Supports?(a, b) refers to a function that returns true iff a eventually supports & in the gen-
eralized explanation, i.e. if there is a directed path from a to b in the explanation graph. For each
action, the algorithm determines the set of states in the explanation that could be true before the

action is executed based only on the partjal ordering of actions imposed by the explanation

for each action a in the generalized explanation do
let deletable = @&
for each state s in the generalized explanation do
if ~Supports?(a, s) then let deletable = deletable U {s}
for each effect e of a do
for each state d in deletable do
if =d unifies with e
then
let o be the conditions under which ~d and € unify
let ¢ be the action of which d is an effect (possibly NIL)
if nutl(c) V Supports?(c, a)
then
if d is the goal or supports a proof of the goal
then add -« to the preconditions
else d is deleted by e when o is true
else
if d is the goal or supports a proof of the goal
then a must precede ¢ when o is true
else d is deleted by e when e is true and ¢ precedes a
PreventPreconditionClobbering(a, d, ¢, a)

procedure PreventPreconditionClobbering(a. d, ¢, «)
(* Add conditions to prevent a from clobbering precondition d when « is true *)
for each action b such that d isa precondition of b or supports a proof of a precondition of b do
if Supports¥a, b) .
then
if nuli(c) V Supports?(c, a)
then add -« to the preconditions
else a must precede ¢ when « is true
else

if null(c) V Supports?(c, a)
then b must precede a when o is true
else a must precede ¢ or b must precede a when « is true

Figure 6.6: Algorithm for Determining Deletions and Preventing Protection Violations

77

structure. These are called the deletable states since they are ones that the action could possibly
delete. For each of these states, the condition () under which the action could delete the state in
general are determined. For example, if an effect of an action is =InRoom(?x, ?y), then the state
InRoom(?a, ?b) is deleted iff 7x=7a and ?y=7b. If the deletable state is not supported by another
action (i.e. it isa précondition of the macro-operator) or if it is an effect of an action that must pre-
cede the deleting action because it supports it, then the state must be true before the action is exe-
cuted and it will be deleted when o is true. If the deletable state is also the goal or supports a
proof of the goal, then -« is added to the preconditions to prevent the goal from being clobber.ed.
Otherwise it is marked as being deleted when o is true. If the deletable state is not necessarily true
before the action is executed, then it will be deleted when both « is true and the action supporting
it precedes the deleting action. If the deletable state is the goal or supports a proof of the goal, then
in order to prevent the goal from being clobbered, the deleting action must precede the action sup-

porting the deleted state when o is true.

The procedure PreventPreconditionClobbering adds additional ordering constraints and
preconditions 1o the macro-operator in order to prevent a precondition from being clobbered when
action a deletes state 4. If an effect of action a deletes a precondition p of action 4, then in order to
avoid a protection violation either b must precede a or a must precede action ¢ where p is an effect
of ¢ [Sacerdoti77, Sussman73]. However, the existing partial ordering of the actions imposed by the
explanation structure may rule out either or both of these possibilities. If both possibilities are
ruled out, then =« is added to the list of preconditions for the macro-operator to prevent the plan
from being used in such situations. Otherwise, the possible ordering constraints that will prevent

the protection violation are recorded.

As one example of the process of determining deletions and preventing protéction violations,
consider the standard STRIPS example. Below is the trace produced by the system when examining

the deletions for the generalized explanation shown in Figure 6.3.

Plan not valid when 7a2=7bl A 7x9=7x12 because =InRoom(?a2,7x9) clobbers InRoom(?b1,7x12)
In general -InRoom(?a2,7x9) deletes InRoom(?a2.?x9) when T
~In general InRoom(7a2,7y12) deletes ~InRoom{(?a2,7x9) Whén 7y12=7x9
In general InRoom(?b1,?y12) deletes -InRoom(?a2,?7x9) when ?b1=7a2 A 7y12=7x9
In general ~InRoom(7b1,7x12} deletes InRoom(7b1,7x12) when T
In general ~InRoom(7b1,7x12) deletes InRoom(7a2,?x9) when 7b1=7a2 A 7x12=7x9

In general =InRoom(7b1,7x12) deletes InRoom(?a2,7x12) when 7b1=7a2

78

In general ~InRoom(?a2,7x12) deletes InRoom(?b1,7x12) when ?a2=?b1
In general =InRoom(?a2,7x12) deletes InRoom(?a2,7x9) when ?x12=7x9

In general ~InRoom(7a2,7x12) deletes InRoom(?a2,7x12) when T

One important thing to notice is that -(?a2=7b1 A ?x9=?x12} is added to the list of preconditions
for the plan in order to prevent the GoThru action from clobbering a precondition of the PushThru.
Reordering the steps is ruled out since the explanation structure requires that the GoThru precede
the PushThru and since the clobbered.precondition is a precondition of the entire macro-operator
and consequently is not achieved by an action that can be performed after the GoThru. Actually,
for 7a2 to be equal to 7ol would require that an agent be able to push himself through a door, and
for 7x9 to be equal to ?x12 would require that an agent be able to go through a door from a roofn
back to the same room. In a better formulation of the domain, both of these conditions could be

disallowed by adding additional preconditions to GoThru and PushThru.

6.2.2.2. Complexity of Determining Deletions and Preventing Protection Violations

The worst-case time complexity of the algorithm in Figure 6.6 is relatively easy to determine.
In the following discussion, loops will be referred to by their iterative variables (e.g. the a loop, the

e loop. etc.).

Let the number of nodes in the generalized explanation graph be n. Since the function Sup-
ports? determines whether or not there is a directed path from one node to another in this graph, in

the worst case it must traverse the entire graph. Since traversing a graph is O(Vi+E) where [V] is
the number of nodes and |H is the number of edges and since [F<[VP, the worst case complexity of a
call to Supports? is O(n?).

Since the number of actions must be less than n, the outermost loop (the a loop) is executed at

most n times. Since the number of states is also less than n, the body of the loop for determining

the set of deletable states (the s loop) is executed at most n times for each action for a maximum
total of n? times. Since the body of this loop includes a call to Supports? which is O(n?), the total
maximum time needed for all executions of the 5 loop is O(n*). Since each deletable set is a subset
of the set of states, its maximum cardinality is n.

Since the total number of effects of actions must be less than the number of states, the body
of the e loop is executed at most a total of » times. Since » is the maximum size of a deletable set,

the body of the d loop is executed at most n times for each effect for a maximum total of n? times.

79

In addition to the call to PreventPreconditionClobbering, the operations in the body of the d loop
that depend on the size of n include a call to Supports? and determining whether a state supports a
proof of the goal. Since both of these operations involve finding a path between two nodes in the

explanation graph, they take at most O(n?) time. Therefore, let the total maximum time needed

for all executions of the e loop e: .
. n*(0(n®) + P)
where F is the time complexity of a call to PreventPreconditionClobbering.
'The body of the b loop in PreventPreconditionClobbering is executed less than n times since
the total number of actions is less than n. Since executing the body of the loop requires two calls to

Supports? which takes O(n?) time, the maximum time required for a call to this function is O(n3).
Therefore, the total maximum time needed for all executions of the e loop is: |

rH(0(n?) + 0(n*)) = O(n®)
Since, the total maximum time needed for all executions of the s loop was calculated to be only

O(n*), the worst case time complexity of the complete process is also O(n%).

The fact that the O(n?) Supports? function is called within bodies of loops that are executed

0(n?) and O(n®) times is a dominant factor in the complexity of the complete algorithm. If a call

to this function could Be reduced to constant time, a minor modification of the preceding analysis
demonstrates that the complexity of the complete process would then be O(n®). The maximum time
required for all executions of the s lbop becomes O(n?). The total maximum time for all executions
of the e loop becomes:

n’(c + P)
where ¢ is a constant. The time complexity of a call to PreventPreconditionClobbering {P) becomes

O(n) and the overall worst case complexity becomes:
0(n?) + n%(c + 0(n)) = O(n*)
Since Supports?(a,b) simply determines whether or not there is a directed path from a to b, the
value of this function for all pairs of the n nodes in the explanation graph can be determined by

computing the graph's transitive closure.’ Since there exist O(VP) algorithms for computing the

transitive closure of a directed graph [Reingold77], all the values of Support? for a particular expla-

nation can be pre-computed in O(n?) time. Calls to this function will then take constant time and

'The transitive closure of a directed graph G=(V,E) is a directed graph G'=(V,E’) such that there is an edge u — v in E'

80

the complete process of determining deletions and protection violations can be accomplished in

0(n3) time.

In conclusion, although the algorithm implemented in EGGS is O(n®), computation of the the
transitive closure of the generalized explanation graph using one of the known O(VP) algorithms

would result in an O(n?) algorithm for the problem of determining deletions and preventing pro-

tection violations.

6.2.2.3. Determining the Effects of a Macro—Operatof

Once all possible deletions have been marked, determining the effects of the over-all macro-
operator is quite simple. The effects of each individual action are considered in turn. If an effect
was never marked as being deleted under any condition, then it is added to the list of effects for the
macro-operator. In the STRIPS example, this accounts for the first four effects shown in Table 6.2.
If a state was marked as being deleted under some set of conditions, then the overall effect is given
by the following implication: if none of the deletion conditions are met, then the state is true. In
the STRIPS example, the state ~InRoom(?a2, 7x9) was marked as deleted if and only if ?y12=7x9.
Consequently, the final effect of the macro-operator is: ~(?y12=?x9) — ~InRoom(?a2., 7x9). This
simply states that unless the agent pushes the object back to the room he originally started in {as in

the observed instance), then he is no longer in the starting room.

6.2.2.4. Detecting Inconsistent Ordering Constraints

One of the final steps in building a macro-operator is the detection and prevention of incon-
sistent ordering constraints. The ordering constraints posted to prevent protection violations may
contradict each other in certain situations. For example, one constraint may state that action A
must proceed action B when o is true while another states that B must proceed A when 8 is true. In
order to detect such situations, a resolution theorem prover is used to determine sets of ordering
constraints that are inconsistent.? In addition to the posted ordering constraints, the theorem prover

is given the following two axioms:

" Before(7a,7o) /A Before(?b,7%¢) — Before(7a,?c)
Before(?a,?b) — -Before(?b,7a)

if and only if there is a (non-empty) directed path from u to v in E [Even79).

2 Because of disjunctive ordering constrainis, a simple cycle-detecting algorithm cannot be used o find all sets of incon-
sistent constraints. ‘ :

81

When the resolution theorem prover finds a contradiction, it returns the set of axioms upon which
the proof depends. In order to prevent such a contradiction from arising during the subsequent use
Qf the macro-operator, an additional precondition must be added. Assuming each of the n ordering
constraints ¢; in the contradictory set must be satisfied when condition ¢ is true, the following
precondition must be added to the macro-operator: ~(a; A e, Na ,) In the example above, the wif:

-(o A B) would be the necessary additional precondition. A more concrete example is given in sec-

tion 6.3.1.

Of course, using a resolution theorem prover to find all sets of contradictory axioms is a com-
putationally intractable process which is not even guaranteed to halt. In EGGS, the theorem prover
is given a time limit, after which it stops and returns proofs for all the contradictions it has found
so far. Consequently, the system does not actually guarantee the prevention of ordering contradic-
tions during later instantiation. Should such a contradiction arise, one could perform explanation-
based learning from failure to modify the plan at that time in order to prevent similar problems in
the future. Some actual systems that use EBL to learn from failures due to unforeseen interactions

are described in [Gupta87] and [Chien87a].

6.2.2.5. Simplifying the Results

The final set of wifs describing the preconditions, effects, and ordering constraints for a
macro-operator can be unnecessarily compiex. Consequently, EGGS uses a system for simplifying
logiéal expressions to clean up the final results. As described in [Minton87al, simplification or
compression helps to decreasé the matching cost needed 1o determine whether or not a macro-

operator applies.

The simplifier currently used by EGGS first converts expressions to conjunctive normal form
and eliminates tautological and subsumed clauses. Next, a set of axioms supplied by the user for
each domain are used to further simplify the CNF formula. If a literal ! in a clause together with
the domain axioms and other clauses implies another literal in the clause, then the literal { is
removed. The EGGS deductive retriever is used to prove the implication. This is a valid
simplification since:

(PAR)=Q) = (RA(PVQD = (RAQ))
Therefore, if (PAR)—Q is true in the domain, then the reduced formula is equivalent to the origi-
nal. Clauses that are implied by other clauses together with the domain axioms are also removed.

Once again, the EGGS deductive retriever is used to prove the implication. This simplification is

82

valid since:
(P—Q) = (PAQ) = P)
Therefore, if P—Q is true in the domain, then the reduced formula is equivalent to the original.
Finally, DeMorgan’s law is used to convert clauses that are more compactly represented as negated
terms. That is, clauses of the form:
SLV=L L NS VS
are changed to:

=(IN NAL)

A concrete example of the amount of simplification possible using this method is given in sec-
tion 6.3.1. Of course, the EGGS simplifier is not guaranteed to produce optimal simplifications;
however, general problems of minimizing logical expressions are known to be NP-Complete (see

Minimum Axiom Set and Minimum Disjunctive Normal Form in [Garey79]).

6.2.2.6. Relation to Nonlinear Planning

Work in nonlinear planning [Sacerdoti77, Tate76] has addressed the issue of building plans
with partially ordered actions by initially assuming there are no goal interactions and then detect-
ing protection viclations and imposing ordering constraints to prevent them. Although the task of
building a specific partially-ordered plan for achieving a specific goal is quite different from the
task of generalizing a specific totally-ordered plan into a general partially-ordered macro-operator,

some of the underlying processes are quite similar.

- In [Nilsson80], the procedure for detecting and preventing protection violations in nonlinear
planning is called DCOMP. The procedure in Figure 6.6 is in some ways more general and in some
ways less general than DCOMP. It is more general because it must determine the conditions (a)
under which a deletion will take place in the generalized plan. DCOMP works with a specific
instance of a plan and therefore does not need to determine which instantiations of a plan result in
a deletion. The procedure in Figure *6.6 is less geheral than DCOMP because it does not consider
alternative ways of achieving the preconditions of an action. The explanation structure explanation
determines how preconditions were met in the particular example, and these constraints are
retained in the generalization. Using the terminology from [Nilsson80], the procedure presented
here does not determine all of the possible adders of a precondition in the plan since each precondi-
tion is assumed to added by the action that added it in the original specific instance. Of course, an

even more general macro-operator could be produced by generalizing the explanation structure and

B3

considering alternative adders. However, this approach would even further complicate the pro-

cedure for generating a macro-operator.

The actual process of determining what Nilsson calls a noninferactive ordering for a particular
instantiation of a plan must be done when the final macro-operator is used to solve a future prob-
lem. Assuming zll inconsistent sets of ordering constraints were detected and prevénted by adding
additional preconditions to the macro-operator, for any situation that meets the preconditions,
there is guaranteed to be a partial ordering of the actions that satisfies all of the ordering con-
straints. However, due to the possible presence of disjunctive ordering constraints, actually finding
it may require an expensive search. However, this should not be surprising since the increased gen-
erality of a partially-ordered macro-operator can clearly result in a correspondiné decrease in

operationality.

6.3. Plan Examples

Unfortunately, the STRIPS example does not illustrate many of the aspects involved in con-
structing macro-operators with partially ordered actions because the explanation structure itself
imposes a total ordering on the two actions in the plan. Thié section presents an additional example
involving program assignment statements in which the actions are not totally ordered. In addition
to STRIPS and variable assignment examples like the ones presented in this chapter, the system has
also been tested on classical block stacking examples (like those in [Sussman73]) and narrative
understanding examples (see chapters 9-11 and appendix B, in particular the Arson example in sec-

tion B.2 contains an interesting potential protection violation).

6.3.1. Variable Assignment Example

An action definition for assigning a value to a variable modelled after LISP's SETQ function is
shown in Table 6.3. Setq(?a.?b) sets variable 7a to the value of variable ?b and Value(7a,?x) means
that variable ?a has value ?x. To make the problem interesting, it is assumed that we are modelling
parallel computation in which any number of Setq's can be performed simultanecusly. Asa result,
determining possible protection violations in this domain is equivalent to detecting interactions
between parallel computations; and imposing ordering constraints is equivalent to forcing certain

statements to be executed sequentially.
Consider the following simple problem and the plan for solving it:

Given: Value(A.B), Value(X,Y), Value(R,N), Value(S,M)

84

Table 6.3: Variable Assignment Actions
Action Preconditions Effects

Setq(?a,?b) | Value(?a,7x) | Value(?a,?y)
Value(?b,?7y) | ~Value(?a,7x)

Goal: Value(A,N) A Value(X,M)
Plan: Setq(A R), Setq(X.S)

The specific and generalized explanations constructed by EGGS while verifying this plan are shown
in Figure 6.7 and Figure 6.8 respectively. Notice that the explanation structure does not impose an
ordering on the two Setq operators. A trace of the process for determining deletions and preventing

protection violations for this example is given below:

In general Value(?a2,7y2) deletes =Value(?a1,7x1) when (?22=?a1 A ?y2=?x1) and Setq(7al,?b1)
precedes Setq(7a2,7b2) |

In general ~Value(7a2,7x2) deletes Value(?b2,7y2) when (?a2=7b2 A 7x2=7y2)

In general ~Value(?a2,7x2) deletes Value(7a2,7x2) when T

~ Setq(7al,7b1) should precede Setq(?a2,72) when (?a2=7b1 A 7x2=?y1) or else ~Value(7a2,7x2)

will clobber Value{?b1,7y1)

In general ~Value(7a2.7x2) deletes Value(?b1,7y1) when (?a2=?b1 A ?x2=7y1)

Setq(?a1,7b1) should precede Setq(?a2,7b2) when (?a2=7al A 7x2=7x1) or else ~Value(7a2,7x2)
will clobber Value(?a1,?7x1) -

(Value(A, N) A Value(X,M))

Value(X,M) ~Value(X,Y) Value(AN) -;VaIHE(A,B) -
Setq(X.S) Setq(A.R)
Value(S,M) Value(X,Y) Value(R.N) Value(A,B)

Figure 6.7: Variable Assignment Example -- Specific Explanation

85

(Value(?al.?y1) A Vatue(?a2,7y2))

Value(?a2,7y2) -Value(?a2,7x2) Value(?a1,7y1) ~Value(?a1,7x1)
Setq(?a2,7b2) Setg(7a1,7b1)
Value(7b2.7y2) Value(7a2,7x2) Value(?b1,7y1) Value(?a1,?x1)

Figure 6.8: Variable Assignment Example -- Generalized Explanation

In general ~Value(%a2,?7x2) deletes Value(?a1,?x1) when (?a2=721 A ?x2=7x1)

Setg(7a2,7b2) should precede Setq(?a1,7b1) when (?a2=7a1 A ?x2=?y1) or else ~Value(?a2,7x2)
will clobber goal: Value(?al,?y1)

In general Value(7a1,7y1) deletes =Value(?22,7x2) when (?a1=7a2 A ?y1=7x2) and Setq(?a2,7b2)
precedes Setq(?a1,?b1)

Setq(7a2,7b2) should precede Setq(?a1,?b1) when (?al=7b2 A ?7x1=7y2) or else
=Value(?al,7x1) will clobber Value(?b2,7y2)

In general ~Value(?al,7x1) deletes Value(?62,?y2) when (7a1=?b2 A ?x1=7y2)

Setq(7a2,?b2) should precede Setq(721.7b1) when (7a1=7a2 N 7x1=7x2) or else ~Value(?a1,7x1)
will clobber Value(7a2,7x2)

In'general ~Value(7a1,?x1) deletes Value(?a2.7x2) when (7a1=7a2 A 7x1=7x2)

Setq(?a1,?7b1) should precede Setq(?a2,762) when (?a1=7a2 A ?7x1=7y2) or else ~Value(?al1,7x1)
will clobber goal: Value(7a2.7y2)

In general -Value(?a1,7x1) deletes Value(7b1,?7y1) when (7a1=?b1 A ?x1=?y1)

In general ~Value(?a1,?x1) deletes Value(?a1,7x1) when T

(Before(Setq(?a2,7b2).Setq(?al1,?b1}) A Before(Setq(7al,7b1),Setq(?a2,762)))

results in a contradiction. Add precdndition: =(((7a2=7a1 A 7x2=7y1) V (2a1=7b2 A 7x1=7y2) V
(?a1="7a2 A ?7x1=7x2)) A ((7a2=701 A ?x2=2y1) V (?a2=7al A ?2x2=7x1) V (7al=7a2 A 7x1=7y2)))
which simplifies to =(?a1=7b2 A 7a2=7b1) A ~(?a2=7a1)

86

The system detects that each Setq could potentially clobber a precondition of the other one if cer-
tain variables are the same. Ordering constraints are posted to prevent protection vioclations in these
situations. However, these ordering constraints contradict each other in certain situations. For
example, when 7al=7a2 and 7x1=7x2 these constraints specify that each of the two Setgs should
precede the other since in this situation each one clobbers a precondition of the other. The process
described in éection 6.2.2.4 detects such possible contradictions and adds preconditions to prevent
them. In the example, this process results in both =(7a2=7a1) and -(7a1=7b2 A 7a2=7b1) being
added as preconditions to the macro-operator. When simplifying the final results, the system made
use of the following domain axiom: Value(?x,7a) A Value(?y.?b) A ?7x=?y — 7a=?b. This axiom sim-
ply states that a variable can have only one value at a time. Table 6.4 shows the macro-operator

definition resulting from the complete packaging process.

In summary, the system notices that if the two variables being set (?al and 7a2) are the same,
then the goal of héving them set to two different values cannot be achieved. Also, if either assign~
ment references the variable set by the other, then the two cannot be executed in parallel. In these
cases, the assignments must be properly ordered to prevent the referenced variable from being reset
before it is used. Finally, if each assignment references the variable set by the other, then two
assignments cannot solve the problem. This is the classic “variable swapping” problem which

requires the use of a temporary variable (see section 7.5.3 of [Nilsson80].).

Table 6.4: Macro-Operator Learned from the Variable Assignment Example
SetgSetq(?al,?01,7x2,7y2,7x1,7y1,7a2,7b2)

Preconditions Effects Orderings
Value(7a1,7x1) Value(?al.7y1) | ?al=?b2 — Before(Setq(?a2,?b2),Setq(?al1,701})
Value(7a2,7x2) Value(?a2,7y2) | ?a2=?bl — Before(Setq(?a1,?b1),Setq(?a2,702))
Value(?b1,7y1) -Value(?a1.7x1)
Value(?7b2,7y2) -Value(7a2,7x2)
| ?7a2#=7al
=(?a1=?b2 A 7a2=7b1)

87

CHAPTER 7

EGGS: EMPIRICAL RESULTS ON THE EFFECT OF LEARNING

This chapter summarizes some empirical results on the effect of learning on problem solving

performance in all of the domains discussed in chapters 3, 4 and 5%. The macro-rules learned by
EGGS affect its future performance in various ways. After learning a macro-rule from a particular
example, performance on similar problems is enhanced. However, performance may be degraded on

problems that are superficially similar but can not be solved using the macro-rule.

7.1. Performance Improvement

Table 7.1 summarizes empirical results on positive transfer, the ability of learning to improve
problem solving performance on similar problems. It gives the CPU time in seconds required to
solve a problem both before and after learning a macro-rule capable of solving the problem in one
step. In each of the domains, the learned rule is the one discussed in the associated section in
chapter 3, 4, or 5. The CPU time required to learn the rule is also given, where learning includes

pruning and generalizing the explanation as well as packaging it into a macro-rule. Performance

was tested on solving the test problem discussed for each domain before and after learning the rule

Table 7.1: Speedup Due to Learning

‘ Learning Solution CPU sec
Example Speedup

CPU sec Before After

CUP 1.08 4.82 3.70 1.30
Suicide .76 1.69 1.38 1.22
SafeToStack .81 3.69 1 2.72 1.36
LEAP .73 3.99 .79 5.05
MA 67 759.00 53 1432.00
LEX2 .76 2.02 1.31 1.54
Geometry 1.26 371 | 153 3.73
Geometry (difficult) 5.52 >1680.00 | 4.02 > 418.00
STRIPS (deductive) 6.11 14.50 | 3.94 3.68
LEAP (rewrite) .35 ' 1.10 .49 2.24
LEX2 (rewrite) 46 1.60 | 1.09 1.47
Equation Solving 8.08 21.40 | B8.78 2.44

YExamples in chapter 6 are not considered since EGGS does not have a planner for independently solving problems us-
ing STRIPS operators.

88

from the different but related learning example for that domain.? In all of the theorem-proving
examples, the backward-chaining depth bound was set to ten, the depth of the shortest known

proof for the hardest problem (the “difficult geometry™ example).

The speedup is the ratio of the two run times and representis how much faster the system
solves the test problem after learning. In the simple examples where little or no search is involved,
the speedup is only about 1.3; however, in the more realistic examples with larger search spaces,
the speedup ranges from about 4 to 1400 times faster. Since the difficult geometry problem shown
in Figure 4.17 could not even be solved before learning, the speedup due to learning from a sketchy

proof can only be given a lower bound of about 400.

Empirical results on positive transfer resulting from explanation-based learning have also
been reported for the PROLEARN learning PROLOG system [Prieditis87]. However, only one of the
PROLEARN examples involves any search, and this is the simple SafeToStack example which
requires minimal search. Therefore, no large speedups, like those reported here for the MA and
difficult Geometry examples, are presented in the PROLEARN results. More comprehensive experi-
ments in the single domain of proving theorems in elementary logic (the MA domain) are reported
in [O'Rorke87a, O'Rorke87b]. These experiments demonstrated that explanation-based learning can
improve performance to a greater degree than rote learning. On a set of 52 theorems from Princi-
pia Mathematica [Whitehead13], an EBL system using depth-bounded search proved 83% of the
theorems, compared to 79% for a rote-learning system, and 31% for a non-learning system (all sys-
tems were given the same depth-bound). Over all the problems, the EBL system searched 32% less

nodes than the non-learning system, while the rote learning system searched 20% more nodes than

the non-learning system.® Some recent experiments that compare & non-learning system, a standard
EBL system, and an EBL system that can learn iterative macro-operators are reported in

[Shav1ik88].

In order for the learning of macro-rules to contribute to the overall performance of a system,
there must be regularity in the class of problems to which the system is applied. It must be
assumed that it is likely that the system will encounter a problem that is similar to some past
problem from which it has already acquiréd a macro-rule. Fortunately, this assumption is prob-

ably not an unreasonable one since most domains are characterized by classes of problems that can

?Modified versions of the learning examples were used to iest the Cup and Suicide examples presented in chapter 3.
" 3These percentages were calculated from data presented in [0'Rorke87b, Table 3.1]

89

be solved using similar techniques. The advantage of learning from examples taken from the
environment instead of randomly generating macro-rules for various combinations of rules is that
the examples will hopefully characterize the types of problems the system will have to solve in the

future.

7.2. Performance Degradation

In addition to performance gains, there is also a price to pay for learning macro-rules. When
the system attempts to solve a problem that cannot be solved using the macro-rule, it wastes time
unsuccessfully trying to apply the rule. The result is negative transfer, a decrease in problem solv-
ing performance on superficially similar problems after learning. Table 7.2 summarizes some
empirical data that illustrates negative transfer. It gives the CPU time in seconds required to solve
a problem before and after learning a rule that cannot be used to solve the problem. Once again,

theorem-proving examples were run with a depth-bound of ten.

Slowdown is the ratio of the two run times, which represents how much faster the system
solved the problem before learning. The test problems were constructed with the goal of maximiz-
ing this slowdown effect. This was done by attempting to construct goals that match the conclu-
sion of the macro-rule, thereby causing the system to try (unsuccessfully) to use the rule to
achieve the goal. Unfortunately, this was only possible for the SafeToStack, LEX2, Geometry, and
STRIPS examples since the macro-rules for the LEAP and MA examples do not have antecedents

and equation solving examples that met the criteria could not be solved without adding a large

Table 7.2: Slowdown Due to Learning
Solution CPU gec

Example Test Problem Before Afier Slowdown
SafeToStack SafeToStack(Obj1,0bj2) | 1.06 1.09 1.03
(Given ~Fragite(Obj2))
LEAP Equiv(=(=aVb),?x) 1.49 1.50 1.01
MA NIL => P=(PVQ) 21.10 21.90 1.04
LEX2 Solution(/3x1dx,?a) 2.19 2.39 1.09
Geometry AABD=ACBD 4.63 8.18 1.77

(Given AB=CB, AD=CD)
STRIPS (deductive) | Achieve(inroom(Robot.Room?2),7s) 3.62 | >2100.00 | >580.00
(Given facts for Figure 3.6)
LEAP (rewrite) =(=aVb) 64 69 1.08
LEX2 (rewrite) S3xlax 1.28 1.41 1.10
Bquation Solving | In(x+3)+1n(5)=c 11.40 11.70 1.03

90

number of extra rules. In an attempt to maximize slowdown in these remaining cases, problems

were constructed which match the conclusion of the macro-rule as much as possible.

In these experiments, the slowdown effect of learning a particular rule was generally much
less than the speedup, so the gain of learning the macro-rules probably out-weighs the loss. In the
STRIPS example, however, 'learning causes the system te waste a great deal of time attempting to
use the macro-rule on a relatively simple problem that is much more easily solved from first prin-
ciples. The system eventually exhausts its storage before it abandons its attempt to use the new
macro-rule to solve the problem. [Minton85] describes a more comprehensive experiment in a sin-
gle domain very much like STRIPS’ domain which demonstrates that indiscriminately learning
macro-operators can eventually lead to the slowdown effect dominating and tesult in an overall

decrease in performance.

In these cases, it is important to be selective about which macro-rules are created and which
are retained. The problem of determining whether a macro-rule’s positive contribution to perfor-
mance outweighs its negative effect has been called the wtility problem [Minton87a]. The possibility
of generating large numbers of macro-operators which adversely affect performance was first men-
tioned in the conclusion of the STRIPS learning paper [Fikes72]. Fikes et. al. proposed that a possi-
ble solution to this problem might be the inclusion of a mechanism for forgetting infrequently used
macro-operators. This mechanism would keep statistics on the frequency with which each macro-
operator is used and discard those which fell below a certain threshold. The learning of S-Macros
in MORRIS [Minton85] is an implementation of this proposal. Experiments conducted with
MORRIS indicate that this technique can result in improved performance [Minton85]. Analytical
methods for judging the wtility of macro-operators (i.e. their ability to improve performance) have
also been developed and tested [Iba85, Minton85, Minton87a). If macro-operators that are known
to prevent backtracking (7-Macros) are selectively retained, empirical results indicate that overall
performance can be improved [Minton85]. Some additional untested suggestions for dealing with
the'problem of slowdown are given in [Prieditis87). Unlike STRIPS or the current PROLEARN Sys-
tem, GENESIS does not learn from every explanation. The criteria GENESIS uses to determine

when an explanation is worth learning from are discussed in chapter 11.

7.3. A Suggestion for Better Controlled Experiments

Macro-rules can improve a resource-bounded problem solving system in two important ways.

It can increase the class of problems the system is inherently capable of solving and it can increase

91

the speed of problem solving. A good experimental comparison of the performance of a learning
and non-learning system must consider both of these factors. An experiment that examines only

one of these factors without controlling for the other can produce misleading results.

Specifically, when the froblem solver is depth-first and depth-bounded. like the theorem
prover in EGGS and in [O'Rorke87b), performance data is actually biased against a system that
learns macro-rules. Such a system can waste a great deal of time trying to use a macro-rule to
solve a problem by combining it with other macro-rules and with rules in the original domain
theory. With the same depth-bound for both the learning and non-learning systems, a system that
learns macro-rules is capable of solving a larger set of problems. This is because a2 macro-rule that
can represent an arbitrarily deep proof in the original domain theory counts as only one rule appli-
cation when used to solve new problems. Therefore, the search space the learning system must
explore is constantly getting larger since learned rules increase the branching factor while the depth
‘of its search tree remains constant. On the other hand, the search space the non-learning system

must explore remains constant.

For example, in the STRIPS example, since the learned macro-rule has depth 7, in some places
the learning system is exploring the search space of the original domain theory to a depth of 16
‘instead of 10 when using this rule. This in turn accounts for the large amount of time spent trying

to use this particular macro-rule on the slowdown-testing problem for the STRIPS domain.

In summary, in order for the overall execution time of the learning system to be less than the
non-learning system’s, it must be capable of both solving more problems and solving them faster.
A fairer comparison of overall search or execution time would require a controlled experiment in
which ‘the class of problems solvable by both systems remained constant. This could be done by
marking the depth of each antecedent of a macro-rule in terms of the rules in the original domain
theory. During problem solving, each antecedent would only be pursued until it has reached the
depth-bound in terms of rules in the original domain theory. This would prevent large amounts of
time being consumed trying to use macro-rules and result in a fairer comparison of the perfor-

mance of the learning and non-learning systems.

.92
CHAPTER 8

GENESIS: SYSTEM OVERVIEW

This chapter concerns the organization of the complete GENESIS narrative processing system.
GENESIS is built on top of the EGGS explanation-based learning system and enhances its ability to
deal with plan-based explanations. The narrative understanding process in GENESIS is used to
construct explanations for character’s intentional behavior. EGGS then generalizes these explana-
tions to produce plan schemata which GENESIS can then use to improve its understanding ability.
Figure 8.1 illustrates the overall architecture of the system. The architecture of GENESIS is a
‘straight-forward instantiation of the prototypical explanation-based learning system (PEBLS) as
defined in [Segre87a) in which the performance element is the same as the understander. This

. chapter briefly summarizes the function of each of the components shown in Figure 8.1. The
schema library, understander, causal model, schema learner, word learner, and indexer /retriever are

discussed in detail in subsequent chapters.

8.1, The Parser and Lexicon

An adaptation of McDYPAR [Dyer83] (a micro-version [Schank81b] of the parser used in the
BORIS system) is used to parée English sentences into predicate calculus wifs. The parser makes
uses of word definitions stored in the lexicon. Numerous examples of the output of the GENESIS
parser are given for the exampie narratives discussed in chapter 10 and appendix B. Since parsing is
not the focus of the current research, no claims are made about the parser and alternative

‘approaches could be used for this task (e.g. [Hirst87, Marcus80, Waltz84]).

8.2, The Understander, Schema Library, and Causal Model

The output of the parser is processed by the understander which attempts to construct expla-
nations for characters’ actions. The understander uses the system’s existing knowledge of actions
and inferences stored in the schema library in order to find connections between character’s actions
and infer the ultimate goals that motivated their actions. The embellished representation that it
constructs for a narrative is referred to as the causal model. The explanation for a particular goal
achievement is the subset of the causal model that supports the given goal state. The representation
of actions used in GENESIS is an enhancement of the STRIPS-like representation presented in

chapter 6 and is discussed in chapter 9. The technigues used in the understanding process are

93

Text

Lexicon Parser Understander
y !
Word Schema
Learner Q/A — Learner
A Rt

Vocab- Indexer/
ula?' v Genjrator Paraphraser Retriever

Text

Figure 8.1: Architecture of GENESIS

similar to those used in previous work in narrative understanding [Charniak77, Cullingford78,

DeJong82b, Dyer83, Schank81b, Wilensky83] and are discussed in chapter 10.

8.3. The Question-Answerer

A simple question-answerer is used to inspect the causal model built by the understander.
Since the focus of the system is on the construction of generalizable explanations, this sub-system
is primarily used to answer questions about why a character performed a certain action or why a

particular state exists.

The question-answerer takes questions from . the user after they have been parsed and
employs a number of heuristics for retrieving an answer from the causal model. For example, one
heuristic for answerering a question about why a character pérformed a particular action is to find
another action that this action enabled and reply that the character executed the action so he could
perform the subsequent action. The answer to the following question about the kidnapping narra-

tive presented in chapter 2 was produced using this heuristic.

94

> Why did John approach Mary?
So John could aim the gun at Mary.

The generdtor is used 1o translate the question-answerer's replies into English.

Of course. there are many difficult issues involved in the retrieval of the most appropriate
answers to questions that the question-answerer in GENESIS does not address (see [Lehnert78,
Waltz78) for discussions of such issues). Consequently, its answers may sometimes seem a little

strange or inappropriate.

8.4. The Paraphraser

A paraphrasing system is used to output information the system has obtained from its pro-
cessing of a story. The purpose of this sub-system is not to concisely summarize the plor or the
point of a narrative (as in [Lehnert82, Wilensky82]), but rather to simply convey the system's

overall understanding of a piece of text.

If a narrative is recognized as an instance of a known schema or if a new schema is learned
from the narrative, that sChema is used to paraphrase the text. This is accomplished by printing
out the instantiated actions composing the schema in chroﬁological order. In addition, before print-
ing out each action, any of its preconditions that have not previously been mentioned are also
stated. The generator is used to compose English sentenc!es for the assertions produced by the para-
phraser. This technique for paraphrasing an instance of a schema is also used to produce English
descriptions of general schemata (e.g. the English description of CaptureBargain shown in the trace
in chapter 2). If a particular narrative cannot be interpreted as an instance of either an old or a
new schema, the paraphraser simply generates Eﬁglish sentences for each of the individual actions

in the text.

8.5. The Generator and Vocabulary

An adaptation of McMUMBLE [Schank81b] (a micro-version of the generator used in the
TALE-SPIN narrative generating system [Meehan76]) is used to translate the output of the
question-answerer and the paraphraser into natural language. Each predicate the system knows has
a short program associated with it which instructs it how to state an instance of the predicate in
English. These programs are stored in the vocabulary. Unfortunately, like many natural language
systems, GENESIS’ knowledge of words is separated into two different “lexicons.” one for parsing

and one for generating. A system that uses one lexicon for both tasks is presented in [Wilensky80].

95

8.6. The Schema Learner

The schema learner analyzes the causal model built by the understander in order to learn new
plan schemata. It first monitors the causal model and detects when a character has achieved an
important goal in a novel manner (i.e. in a manner for which the system does not already possess a
schema). The explanations for how such goals are achieved can be used to learn new schemata. In
addition to deciding when to learn, this sub-gystem includes an explanation pruner, generalizer, and
packager as defined in chapter 3.1 After the explanation for the goal achievement is extracted from
the causal model, a special pruning function is used to remove actions and states that only support
the goal through more abstract concepts. The pruned explanation is then generalized using the
EGGS explanation generalization algorithm. Next, an enhancement of the procedure for building
macro~operator discussed in section 6.2.2 is used to package the generalized explanation into a
schema. Finally, this schema is stored in the schema library and indexed so that it can be used to
aid the understanding of future narratives. The pruning, packaging, and indexing procedures as

well as the procedure that decides when to learn are all discussed in detail in chapter 11.

8.7. The Word Learner

An additional feature that has been added to GENESIS is the ability to learn provisional
definitions for unknown schema-related words. For example, as shown in the trace in chapter 2,
GENESIS acquires, from a single narrative, definitions for “kidnapper,” “ransom,” and “kidnap™ as
well as a kidnapping schema. The word-learning process involves detecting the conceptual role that
.3.1;1 unknown word fills in the schema that is being learned. After a word is associated with a slot
in a new schema or with the new schema itself, a definition for the new word is constructed for
both the lexicon and the vocabulary. This allows both the parser and generator to use the new
‘word for, respectively, understanding narratives and answering questions. GENESIS ability to

learn new words is discussed in further detail in chapter 12.

8.8. The Indexer/Retriever and the Long Term Store

GENESIS also has the ability use the schemata it learns to index and retrieve specific narra-
tives. After processing a narrative, the indexer stores the causal model constructed for this piece of

text in the long-ferm store and indexes it under the most comprehensive schemata used in

Yn PEBLS [Segre&7al. the term generalizer is used 1o refer to the entire schema learning module; however, in GENESIS,
this term is used solely for the EGGS explanation generalization process.

9%

interpreting the story. When answering questions about a particular narrative, the retriever can be
instructed to retrieve past episodes that are indexed under the same schema used to interpret the
current text. These modules allow GENESIS to function as a conceptual retrieval system
(Schank81a] which, during normal operation, automatically learns new ways to index events.

Further details on this aspect of GENESIS are given in chapter 13.

8.9. The Importance of the Complete System

Although GENESIS is primarily a tool for exploring learning, this chapter has revealed that it
contains a large number of components that have no direct connection to learning, such as a parser,
question-answerer, paraphraser, etc.. An important question concerns the relevance of these addi-
tional components. While the non-learning components in GENESIS certainly make the learning
system easier to test and debug, they also serve a more important purpose. The primary goal of
learning is to improve the performance of an overall system in some relevant task domain. Several
Al researchers have stressed the importance of viewing learning in the context of a performance
system [Buchanan77, Mitchell83, Simon83]. The requirement of improving overall system perfor-
mance often imposes important constraints on a learning system. As a result, certain degrees of

freedom are eliminated that could otherwise be unfairly manipulated to bias the performance of an

isolated learning system.?

For example, in GENESIS, the same explanations that support léarning must also be used to
answer guestions about the text, and the schemata produced by the learning mechanism must be
able 1o aid the understanding of future narratives as well as support reasonable paraphrases. Many
representations suitable for learning are unsuitable for performing these other tasks. Most other
EBL systems, on the other hand, do not use the explanations they construct for any task other than
to support generalization. In fact, most do not even retain the entire generalized explanation, but
- rather extract only a macro-rule or macro-operator that summarizes the overall preconditions and
post-conditions. These data structures do not generally contain information on the sub-structure
that composes and justifies them.? In GENESIS, the entire generalized explanation is retained in
order to be able 10 use the learned schema to understand future narratives and answer questions

about them.

2A similar point is made in [Falkenhainer87 (section 4.1)].

3The generalized triangle tables retained by STRIPS do contain much of this information. This knowledge is used to
detect and correct problems encountered during execution monitoring. .

97

Complementing the impact that the understanding system has on the learning system is the
impact that the learniﬁg system has on the understanding system. Building explanations sufficient
to support generalization and schema acquisition is an important test of how well a text processing
system has actually “understood” a piece of text. Previous tasks that have been used to test under-
standing are question-answering [Lehnert78], paraphrasing [Cullingford78, DeJong82b}, and sum-
marizing [Lehnert82]. Unlike these tasks, the ability to construct an explanation sufficient for gen-
eralization is a crucial tést of how well the system has comprehended the global causal structure of
a piece of text. Answering why and how questions are good ways of testing comprehension of local
causal structure; however, unlike question-answering, generalization requires the construction of a
globally consistent causal model. Paraphrasing and summarizing require having an adequate global
structure for the text; however, they do not generally test the understanding of causal structure.
For example, FRUMP [DeJong82b] prodﬁced summaries of neWspaper articles using sketchy scripts
which contain only temporally ordered lists of events with very little causal information. In sum-
mary, for many narratives (e.g. the examples in this thesis), it is fair 1o say that a system has not
truly “understood” the text unless it has the ability to produce an explanation that could be gen-
eralized into a new schema using EBL techniques. Therefore, the ability to learn a schema from a
narrative can be viewed as an additional test of the understanding abilities of a natural language

system.

98

CHAPTER 9
GENESIS: SCHEMA REPRESENTATION

All domain specific knowledge in GENESIS is represented in a declarative fashion in the
schema library. This knowledge is divided into information about objects, attributes, states, and
actions. This chapter is comprised of separate discussions of the representations used for each of
these classes of knowledge. A complete listing of all of GENESIS® initial knowledge is given in
appendix C. ' 7

9.1. Objects

An isa hierarchy is used to specify a taxonomy of object classes. The complete GENESIS
object hierarchy is shown in Figure 9.1. The system uses standard path-finding inheritance tech-
nigues to determine class membership [CharniakSS,. Nilsson80]. If a path is found, the system con-
structs a proof of class membership based on the path. This proof is composed of inference rules

such as:
Isa(?x, Gun) — Isa(?x, Weapon)

For efficiency reasons, this specialized inference technique is preferred to giving the EGGS theorem
prover explicit axioms specifying the taxonomy and allowing it to construct proofs of class
membership. Since queries regarding class membership are quite frequent, a specialized strategy for

these queries substantially increases the overall efficiency of the system.

9.2, Attributes and States

Attributes are facts about objects that are intrinsic [Kedar-Cabelli87b] and are not changed by
- actions, while szafes are facts about objects that are affected by actions. GENESIS’ hierarchies of
attributes and states are shown in Figure 9.2 and Figure 9.3, respectively. Like the object isa-

hierarchy, these hierarchies support abstraction inferences such as:
Father(?x,7y) = Parent(?x,7y)

Knowledge of attributes and states also includes backward-chaining rules for inferring instances of

a predicate and forward-chaining rules for making inferences from an instance of a predicate. For

!Special notice should be taken of the distinction between a Character and a Person. A Person is a human being while a
Character is any agent that is capable of executing a voiitional action and includes Persons as well as collective agents such as
Companies.

99

Company InsuranceCo
Animate Character <
Person.
Game Lottery
Jeans
Apparel <
Skirt
Barn
Hotel
Building Jail
Restaurant
. Warehouse
PhysicalObject
Inanimate Food Mushroom
Phone
Room Basement
Estate
Valuable <
Money
Vehicle Car
Weapon Gun
Location Corner

Figure 9.1: GENESIS Hierarchy of Objects

100

Amount
Color
Fit
Gender

Length

Attribute

Name
Poisonous

Seductive

Figure 9.2: GENESIS Hierarchy of Attributes

example, the following rule is used in a backward-chaining fashion to infer that someone possesses

a particular amount of an object if he possesses a larger amount of that object:

Amount(?y,?7g,7u) A Possess(?a.7y) A" Amount(?x,71,7u) A Isa(?x,71) A Isa(?y.7t) A

LessThan(?1,7g) —+ Possess(7a,7x)

In this rule, Amount(?x,?1,7u) specifies that the object ?x consists of a number, 71, of units. ?u (e.g.
Amount(Money1, 100, dollars)). All of the rules attached to states and attributes in GENESIS are

given in section 2 of appendix B.

9.3. Actions

Actions specify dynamic changes in the state of the world and are also arranged in an abstrac-

tion hierarchy. A graph of the complete GENESIS action hierarchy is shown in Figure 9.4. Actions
i

are divided into volitional actions, such as Murder, which are goal directed actions willingly exe-

cuted by an actor, and ron-volitional actions, such as Die.

Actions are represented using an enhancement of the STRIPS-like representation discussed in
section 6.1. The first modification is that preconditions are divided into constraints, preconditions,
and motivations. Constrainis are required attributes or classes of the arguments of an action and
therefore can not be achieved by other actions. Preconditions are states that enable an action and

can be achieved by other actions. Motivations are mental states of the actor, such as goals, goal

101

State

Arrested

ji At
Attire
BadHealth

Burnt
Captive
CommPath
Dead
EQUAL
i Flammable
Free
HasPhoneNumber
Heir
Illegal
Implies
Inside

Insured
Isa

Know

LessThan Believe
LosPath Goal

MentalState GoalPriority
Not NeedSex

Occupation NeedSustenance
PhoneRinging

Father
o . Parent <
PointingAt Mother

PositiveIPT Husband

21110‘: Goall Spouse <
eme et
oa Wife

Possess :

In
Residence

Figure 9.3: GENESIS Hierarchy of States

102

GenesisAction

NonVolitionalAct

VolitionalAct

Die

Inherit

Win
Aim
AnswerTelephone
Arrest
Atrans —— Indemnify
Bargain
Burn
Capture
Coitus
Communicate
Confine
DialTelephone
Dress
Incarcerate
Ingest
InsureObject
Mtrans -————— Talk

Poison

Murder ShootToKill
Strangle

Ptrans ——— Drive
Release

Shoot

Solicit

Threaten

Figure 9.4: GENESIS Hierarchy of Actions

———— Telephone

103

priorities, and beliefs, that motivate him to perform a volitional action.? Together, constraints,
preconditions, and motivations are called the supports of an action. As in the representation in
chapter 6, effects are states, possibly negated ones, resulting from the execution of an action. An
action definition includes only the supports and effects unique to that particular action. Supports
and effects that are inherited from more abstract actions are defined at that level. As an example,
the supports and effects of the Murdér action and one of its specializations {Poison) are shown in
Table 9.1. The effect stating that the victim is dead is specified only in the definition of Murder.
The preconditions that the actor must possess a poisonous food and the victim must be hungry and
the effects that the poisonous food is inside the victim and no longer possessed by either the actor or

victim are specific to Poison and are specified only in its definition.

Knowledge about an action may also include information about its expansion, i.e. its decom-
position into more primitive actions. An action can be recursively defined as a macro-operator that

hag an expansion in terms of other actions (which may also be macro-operators). The expansion of

an action is also analogous to the body of a script [Schank77] or MOP [Schank82].2 The complete
set of action specifications in GENESIS should not be interpreted as defining an ultimate set of
primitive actions. Action definitions that do not include expansions are not necessarily primitive
actions; rather, they should generally be interpreted as currently lacking a complete definition.
Although such action definitions must eventually bottom out in a set of primitives, seté that have
been proposed have many inadequacies [Wilks75]. Therefore, in GENESIS, no commitment is made

regarding an unitimate set of primitives.

Table 9.1: Sample Definition of Action Supports and Effects
Action Constraints Preconditions Effects
Murder(?a,?v) Isa(?a,Character) Dead{?v)
"?a murdered ?v" - Isa(?v,Person)
Poison(7a,?v.7p) Poisonous(7p) Possess(?a,?p) Inside(?p.?v)
“?a poisoned ?v with ?p" | Food(?p) NeedSustenance(?v) | -Possess(?7a,7p)
-Possess(?v,?p)

>The distinction between preconditions and motivations is used by the question-answerer when determining the ap-
propriate answer to a why guestion.

3Scripts are defined directly in terms of primitive conceptual dependency actions [Schank75) while MOPs, like our ac-
tions, are defined recursively.

104

The expansion of an action schema includes subactions, internal states, links, abstractions, and
ordering constraints. Subactions are the set of more primitive actions which compose the action.
Internal states (also referred 1o as internals) are states that are true sometime during the execution
of an action but are neither preconditions nor effects. Links define the relationships among the
subactions, supporters, and internal states, and thereby specify the causal structure of the expan-
sion. Abstractions specify the relationships between facts in the expansion and facts in the expan-
sions of more abstract actions. Ordering constraints (also referred to as orderings) are additional
constraints on the temporal ordering of the subactions that are not implicit in the support structure
specified by the links: These are needed to avoid protection violations as discussed in section 6.2.2.
As an illustration of expansion definitions, the expansions of Murder and Poison are shown in Table
9.2 and Table 9.3, respectively. A link of the form: (Effect (Subaction 2)(Effect 1)) specifies that
the first effect of the action is an effect of the action’s second subaction. Other links are interpreted
in a corresponding fashion. An abstraction of the form ((Subaction 3) Murder (Subaction 2))
specifies that the third subaction of the action corresponds to or is a specialization of Murder's

“second subaction. Other abstractions are interpreted in a corresponding manner.

Table 9.2: Expansion of Murder

Subactions Internals Links
GenesisAction(?a) | State(?v) (Effect (Subaction 1)(Internal 1))
Die(?v) State(?0) (Antecedent (Internal 3) (Internal 1))

BadHealth(?v) | (Antecedent {(Internal 3) (Internal 2))
(Precondition (Subaction 2) (Internal 3))
(Effect (Subaction 2)(Effect 1))

Table 9.3: Expansion of Poison

Subactions Internals Abstractions
Atrans(?a,7p.?v.71) | Possess(?v.?p) ((Subaction 1) Murder (Subaction 1))
Ingest(?v,?p) BadHealth{?v) “((Subaction 3) Murder (Subaction 2))
Die(?v) ((Internal 1) Murder {(Internal 1))

((Effect 1) Murder (Internat 2))
((Internal 2) Murder (Internal 3))

Links
(Precondition (Subaction 1) {Precondition 1)) (Effect (Subaction 1) (Internal 1))
(Effect (Subaction 1) (Effect 2)) {Constraint (Subaction 2) (Constraint 2))
(Precondition (Subaction 2) (Internal 1)) (Motivation (Subaction 2) (Precondition 2))
(Effect (Subaction 2) (Fffect 1)) ' (Effect (Subaction 2) (Effect 3))
(Antecedent {(Internal 2) (Constraint 1)) (Antecedent (Internal 2) (Effect 1))

(Precondition (Subaction 3) (Internal 2)))

105

A graphical display of the expansions of Poison and Murder and how they relate to each other
is shown in Figure 9.5. The expansion of Murder can be summarized as follows: An actor, ?a, per-
forms some action that causes a victim, ?v, to be in a state that implies he is in a state of bad health
which in turn enables the victim's non-volitional death. The expansion of Poison can be summar-
ized thus: An actor, 7a, gives a poisonous food, ?p, to a victim, 7v, which results in the victim pos-
sessing the food. Since the victim is hungry and has the food, he eats the food that results in the
food being inside him. The fact that the food is poisonous and inside him implies that the victim is
in a state of bad health. This in turn enables his non-volitional death. The actor's action of giving
the victim poisonoué food corresponds to the actor’s unspecified action in the expansion of Murder
while the state of bad health and death correspond to these same parts in Murder's expansion. The
relationships between facts and more general abstractions are represented as logical implications.

For example:

Poison(%a, ?v, 7p) = Murder(%a, 7v).

Atrans(?a, 7p, 7v, M) = GenesisAction(?a)

It should be noted that motivations of other characters’ actions in the expansion of a voli-
tional schema are always preconditions of the overall schema or the effects of actions performed by
the volitional actor of the schema. For example, since the fact that the victim is hungry motivates
him to ingest the poion, the victim being hungry is a precondition of the volitional Poison schema.
The simplifying assumption is made that other actors will always perform their subactions if the
motivations for these actions are met. This insures that all of the effects of the action will be

achieved if the volitional actor performs all of his actions.

A final type of information attached to actions is suggestions. A part of each action definition
is a list of larger schemata of which that action is a subaction. An action is said to suggest schemata
of which it may be a part and which therefore may provide a reason for its execution. This process
forms a crucial part of the understanding mechanism and is discussed in detail in the following

chapter.

In conclusion, it should be noted that the representation presented in this section has been
used to represent a variety of actions needed for the understanding of narrative text. Numerous
additional examples of action definitions using this representation are presented in section 1 of

appendix C.

106

Murderl
w BadHealthl -= Die3 Deadl

Possess3 -5 Atransl *Tngestl A Insidel

Dead1 Dead(?v) v is dead.
Murderl Murder(?a,?v) ?a murdered ?v.
Poisonl Poison(7?a.7v.7p) 7a poisoned 7v with 7p
Isa7 Isa(?p.Food) ?p is a food.
Poisonous?2 Poisonous(?p) ?p is poisonous.
NeedSustenancel NeedSustenance(?v) ?v is hungry.
Possess3 - Possess(?a,7p) ?a had 7p.
Insidel Inside(?p,?v) 7p is inside ?v.
Ingest1 Ingest(?v,?p) ?v ate 7p.
Possess4 Possess(?v,7p) ?v had ?p.
Atrans1 Atrans(?a,?p.7v.?12) 7a gave 7v 7p.
Not2 -Possess(?a,7p) ?a does not have 7p.
Not3 -Possess(?v.7p) ?v does not have ?p.
Die3 -~ Die(?v) Tv died. :

- BadHealthl BadHealth(?v) ?v is in bad health.
State2 State(?p) ?p is in some state.
Statel State(?v) v is in some state.
GenesisAction1 GenesisAction(?a) ?a did something.

Figure 9.5: Expansions of Murder and Poison

107

CHAPTER 10

GENESIS: NARRATIVE UNDERSTANDING

A substantial body of research in natural language processing has addressed the problem of
“understanding” narrative text. Most of the research in narrative understanding has focussed on
constructing explanations for character’s actions and inferring missing actions that are only impli-
~citly mentioned [Charniak85 (chapter 10), Schank81b]. Although these are difficult problems
which are far from completely solved, a reasonable amount of progress has been made and a

number of useful mechanisms have been developed.

In the work on narrative understanding, a distinction can be made between schema-based (also
called script-based) and plan-based understanding mechanisms [Schank77]. A schema-based under-
standing mechanism attempts to directly and efficiently access a relatively specific knowledge
structure (a schema) that accounts for the actions in the text. This schema can then be efficiently
used to causally connect actions in the narrative and fill in missing actions. In terms of problem
solving, it is analogous to using a macro-operator to solve a particular problem in one step. Exam-
ples of systems that use schema-based understanding are SAM [Cullingford78] and FRUMP
[DeJong79].

- A plan-based understanding mechanism, on the other haﬁd, can be used for understanding
novel situations. It involves searching for a set of missing actions that causally connect to observed
actions to form a plan that achieves a character’s goal. In terms of problem solving, this approach
is more like doing search-intensive planning to achieve a goal. In Newell's terminology [Newell73],

plan-based understanding is a weak method while schema-based understanding is a strong method.

PAM [Wilensky78] is an example of a system that does plan-based understanding. Although
planning and plan-based understanding can make use of the same database of actions, they are
quite different processes. In planning, one is given an initial state and a goal and must search for a
plan that can be executed in the initial state and that achieves the goal. In plan-based understand-
ing, one is given a set of observed actions and must search for a plan that includes or “covers” these
actions and that achieves a character’s goal. In understanding, goals must usually be inferred since

they are rarely explicitly mentioned.

Since a robust understanding system must be able to deal with both mundane and novel

situations, several recent understanding systems perform both schema and plan-based

108

understanding. For example, BORIS [Dyer83] and FAUSTUS [Norvig83, Wilensky83] are systems
that use both of these understanding mechanisms. GENESIS alsoc employs both schema and plan-
based mechanisms in its understanding process. First, the system tries to find an action schema
that will directly explain the characters” actions. If this fails, it resorts to trying to causally con-
nect individual actions in a plan-based manner. However, the search it performs during plan-based
understandirig is 'very limited in order to prevent it from spending an inordinate amount of time
performing combinatorially explosive search through the space of all possible explanations. Conse-
quently, GENESIS cannot produce adequate explanations for certain narratives although it theoreti-
cally could und.erstand them gi\;ren an exhaustive search algorithm and unlimited time and space.
Nevertheless, the system’s limited ability to do plan—baéed understanding allows it to construct
explanations for many novel plans presented in narratives. The system then uses the EGGS gen-
eralizer to perform explanation-based learning on these explanations in order to learn new schemata
which allow it to understand future instances of the plan using schema-based understanding.
Explanation-based learning in GENESIS can therefore be viewed as the acquisition of schemata that
allow the system to process nar‘ratives using efficient schema-based techniques which previously

could only have been understood using inefficient, search-intensive, plan-based understanding.

In order to understand exactly how learning can improve performance and allow GENESIS to
construct explanations for narratives that it previously could not comprehend, detailed knowledge
of the understanding process is needed. The remainder of this chapter examines the schema and
plan-based understanding mechanisms in GENESIS. A narrative used in the acquisition of a
“murder for inheritance” schema (an example due to Paul O'Rorke and introduced in [DeJong83])
is used to illustrate these processes. The English text and parsed version for this narrative are
shown in Figure 10.1* and additional action definitions needed for this narrative are shown in Table
10.1. A detailed system trace for this example is presented in appendix D. The reader may find it
helpful to refer to this trace while reading subsequent passages describing tile processing of this

example.

10.1. Schema Selection

If a schema-based mechanism is to be able to process a broad range of texts, it must have
access to a large number of schemata. Therefore, in order to avoid repeated searching through the

entire database of schemata, it must also have an eflicient method for selecting the particular

YVariables in parser output should be interpreted as being existentially quantified.

109

Claudius was Agrippina’s husband and owned an estate.
Agrippina gave him a poisonous mushroom and he died.
She inherited the estate.

Isa(Personl,Person), Gender(Personl,male), Name(Personl,Claudius), Isa(Person2,Person),
Gender(Person2,female), Name(Person2,Agrippina), Isa(Estatel,Estate), Husband(Personl,
Person2), Possess(Person1,Estatel), Poisonous(Mushroom1), IsalMushroom1,Mushroom),
Atrans(Person2,Mushroom1,Person,?AT6), Die(Personl), Inherit{Person2,Estate1,?FROM3)

Figure 10.1: English and Parsed Versions of the Learning Narrative for the Murder Example

Table 10.1: Additional Action Definitions for the Murder Example

Action Constraints Preconditions Effects Suggestions
Atrans(?a.20,7t,71) | Isa(7a,Character) | Possess(?a.%0) | Possess(?t.20) Atrans(7a,%,?t)
"?a gave 7t 70 Isa(%0.Inanimate) -Possess(?a,?0) | ~> '

at 711" Isa(?t,Character) Poison(?a.?t.70)
Isa(?1,Location)

Die(?a) Isa(?a,Person) ‘ Dead(7a)
"?a died" '
Inherit(?a,?0,7d) Isa(?a,Character) | Heir(?a,7d) Possess(?a,?0)
"?a inherited Isa(7d,Person) Possess(?7d,70)} | =Possess(?d,?0)

2d’s 70" Isa(?0,Inanimate) | Dead(?d)

schemata that are applicable to the current input. This process is frequently referred to as schema
selection or frame selection. It is a difficult problem and has been the subject of several research

efforts [Charniak 78, Charniak82, DeJong82b, Lytinen84, Norvig83].

In GENESIS, the process of selecting a schema has two stages: suggestion and determination.
An action A in a narrative suggests a schema B if A is a subaction of B. Each suggested schema is
instantiated (i.e. a unique instance is created with the appropriate variable bindings) and monitors
the inputs in order to find confirming evidence. When a schema has found enough confirming evi-
dence, it is determined and its complete expansion is added to the causal model.? An early discus-
sion of this approach and some of its advantages was presented in [DeJong84]. The same basic tech-

nique was also used in the original implementation of GENESIS [Mooney85a, Mooney85b].

2The term determination is taken from [Norvig83] where it is used to refer 1o 2 similar process in FAUSTUS. Sugges-
tion in GENESIS corresponds to the combination of invecation and instantiation as defined in [Norvig83].

110

10.1.1. Schema Suggestion

A specification of the suggestion process is shown in Figure 10.2. As mentioned in the previ-
ous chapter, an action definition includes suggestions of relevant schemata. For example, the

definition of Atrans given in Table 10.1 includes the following suggestion:
Atrans(?a,70,7t,71) ~> Poison(?a,?t.%0)

where a statement of the form: A ~> B is read: A suggests B. Therefore, the input:
Atrans(Person2, Mushroom1, Personl, ?AT6) in the murder story potentially suggests the schema:
Poison(Person2, Personl, Mushroom1). A suggestion is not complete, however, until it is confirmed
that the suggested instance obeys all of the constraints on the schema. For the example, the system

- must first prove the following facts using the deductive retriever in EGGS.
Poisonous(Mushroom1), Isa(Mushroom1, Food), Isa(Person1, Character), Isa(Person2, Person)

The first and fourth constraints were given explicitly in the input and the second and third ones are

easily inferred using the object hierarchy. Therefore, the instantiated Poison schema is added to the

list of suggested schemata where it is monitored for subsequent determination.? The final step in

procedure SuggestSchemata(i)
(* Suggest schemata for input i ¥)
for each suggestion a~>b in the action definition of i do
if i unifies with a with MGU 0

then
let s = bl
let g = true

for each constraint c of s do
if ¢ does not have any variables A =Retrieve(c)
then let q = false
if q
~then ‘
put s on the list of suggested schemata
for each super b of action s in the action hierarchy do
put b on the list of suggested schemata

Figure 10.2: Procedure for Suggesting Schemata

3For this particular example, it may seem that the input Poisonous(Mushrooml) should directly suggest Poison instead
of being checked by a suggestion initiated by the Atrans action. However, in order to keep the suggestion mechanism simple,
only subactions suggest higher-level schemata that can explain them. Allowing constraints to suggest schemata would great-
1y complicate the process of learning suggestions. Having all constraints suggest a schema would result in inputs such as

111

the suggestion of a schema is the suggestion of its generalizations in tbe abstraction hierarchy. For
example, when the Posion schema is suggested in the example narrative, it also causes

Murder(Person2, Person1) to be suggested.

In general, a suggested instance of a schema may contain existentially guantified variables.
For example, if the arguments to Poison had included a location, the variable used to denote the
location of the Atrans (?AT6) would be included in the suggested schema. Constraints on such
variables (e.g. Isa(?AT6, Location)) are not checked during suggestion; however, any constant that
is later matched to such variables must satisfy these constraints. If the EGGS’ deductive retriever
were used during suggestion to retrieve constraints with variables, it would lead to premature
assignment of unknown schema variables. In the example, TAT6 could be immediately associated

with any previously mentioned location..

10.1.2. Schema Determination

A suggested schema continually checks inputs in the narrative to see if they match facts in its
expansion. This process of examining suggested schemata for determination is described in Figure
10.3. Each fact in the expansion of a suggested schema is checked to see if it matches the input
fact. If an input matches a suggested fact and all new schema variable bindings resulting from this
-match satisfy the schema constraints, then these variable bindings are applied to the schema expan-
sion.* The first input that is checked by this process is the input that suggested the schema. In the
example, this is the Atrans input and it matches a subaction in the expansion of the Posion schema

(shown in Figure 10.4).

Each time a fact in the expansion of a suggested schema is matched to an input, it is marked as
having been "found." In addition, facts related to the "found” fact are assumed to be true and also
marked as "found.” When an action is marked as "found”, all of its effects, preconditions, motiva-
tions, and constraints are also marked. This is because if an action has occurred. then all of its sup-
ports must have been true and all of its effects must now be true. When a fact is marked as
"found", all of its antecedents (if it has ény) are also marked. If it is the antecedent of another fact,

all of whose antecedents are now marked, this fact is also marked since it must be true if all of its

Isa(Person2, Person) and Isa(Mushroom1, Food) suggesting Poison, which is clearly worse. Distinguishing between con-
straints such as Poisonous(Mushroem1) and Isa(Mushrooml, Food) would Tequire a complex analysis of the frequency of
occurrence of sech constraints.

1n FAUSTUS, the corresponding process of determining the values of additional frame slots after instantiation is
called elaboration [Norvig83].

112

procedure CheckSuggestedSchemata(i)
(* Check if input i is a part of a suggested schema *)
for each suggested schema s do
for each fact f in the expansion of s do
if f and i unify with MGU 6 A
any newly bound schema variables in @ satisfy the schema constraints
then
for each fact g in the expansion of s do
replace g with g0
AssumeFound(f)
if all the subactions in the expansion of s are “"found"
then determine s (i.e. add its expansion to the causal model)

procedure AssumeFound(f)
if f is not already marked as "found" then
mark f as "found"
if f is an action
then
for each support b and each effect b of f do AssumeFound(b)
else -
for each antecedent a of f do AssumeFound(a)
for each consequent ¢ of which f is an antecedent do
let q = true
for each antecedent a of ¢ do
if a is not "found" then let q = false
if q then AssumeFound(c)
for each action a of which f is an effect do
let g = true
for each effect e of a do
if e is not "found” then let g = false
if g then AssumeFound(a)
if f has an abstraction b or is an abstraction of b
where b is in the expansion of another suggested schema
then AssumeFound(a)

Figure 10.3: Procedure for Checking a Schema for Determination

113

NeedSustenancel
Poisonous2 =i Poi Murderl

Statel

y BadHealthl -» Die3 Peadl

Possess3 = Atransl ¥ Tngestl 3 Insidel

Deadl Dead{Personl) Claudius is dead.

" Murderl Murder(Person2,Personl) Agrippina murdered Claudius.
Poizonl Poison(Person2,Personl,Mushroom1) Agrippina poisoned Claudius with the

' mushroom,

Isa7 Isa(Mushroom1,Food) The mushroom is a food.

Poisonous2 Poisonous(Mushroom1) The mushroom is poisonous.
NeedSustenancel NeedSustenance(Personl) Claudius is hungry.

. Possess3 Possess(Person2,Mushroom1) Agrippina had the mushroom.
Insidel Inside(Mushrooml,Personl) The mushroom is inside Claudius.
Ingestl Ingest(Personl,Mushrooml) Claudius ate the mushroom.

Possess4 Possess{Personl,Mushrooml) Claudius had the mushroom.

"Atransl Atrans(Person2,Mushroom1,Person1,?12) Agrippina gave Claudius the mushroom.
Not2 -Possess(Person2,Mushroom1) Agrippina does not have the mushroom.
Not3 =Possess(Personl,Mushroom1) Claudius does not have the mushroom.
Die3 Die(Personl) Claudius died,

BadHealthl BadHealth(Personl) ‘ Claudius is in bad health,

State2 State(Mushroom1) The mushroom is in some state,

Statel State(Personl) : Claudius is in some state,
GenesisActionl GenesisAction(Person2) Agrippina did something,

Figure 10.4: Expansions of Suggested Poison and Murder Schemata

aﬁtecedents are. If a marked state is the effect of an action, all of whose positive effects are now
marked, this action is also marked. This results in assuming suggested actions whose effects are all
known (or assumed) to be true. Finally, any facts in the expansions of other suggested schemata
that are abstractions or specializations of a marked fact are also marked as "found." Whenever all
the subactions in the expansion of a suggested schema are all marked as "found," that schema is
determined. This adds the suggested action as well as its supports. effects. and expansion to the

causal model where they become part of the system’s “interpretation™ of the text.

In the murder example, when Atransl (see Figure 10.4) is found. it causes precondition Pos-
sess3, precondition Not2, effect Possess4, and abstractions Statel and GenesisActionl all to be
marked as “"found”. The next input in the example is: Die(Person1). This input matches the fact
Die3 in the expansions of both the Poison and Murder schemata. Although it does not result in any

new variable bindings, it causes all of the other facts in the expansions of Murderl and Poisonl to

114

be marked. In particular, it marks the fact that Claudius ate the mushroom (Ingest1) because he
must have been sick (BadHealthl) as a precondition of dying (Die3) and this sickness can be
inferred from the fact that the mushroom is poisonous (Poisonous2) and inside him (Insidel) which
in turn is the only positive effect of the Ingest. Once this missing action is inferred, the Poison
sch.e1_1.1a is determined since all of its subactions (Atrans1, Ingestl, and Die3) have either been found
in the inputs or assumed to have occurred. The determination process simply adds all of the facts

shown in Figure 10.4 to the causal model.

10.1.3. Comparison to Other Approaches to Schema Selection

Although GENESIS' understanding system is primarily intended as an implementation of
established techniques rather than original research in narrative understanding, its approach to
schema selection is somewhat different from previous methods. In general, its approach is more

conservative and gradual than previous approaches.

Both SAM [Cullingford78] and FRUMP [DeJong?Q] selected a schema based on the conceptual
representation of a single input. SAM worked by “...introducing the "largest,” most inclusive script
it possesses which is initiated by the first conceptualization™ [Schank81b (p. 109)]. Although
FRUMP had many more scripts than SAM and was not tied to activating one from the first input,
it also used a single conceptualization to determine a relevant script. A discrimination net was used
to index relevant scripts based on the content of a single conceptual dependency form [DeJong79].
The problem with this approach is that it may prematurely decide on a schema that does not actu-
ally account for the rest of the inputs. Since neither SAM nor FRUMP was able to backtrack and
consider alternative interpretations, such a mistake results in misunderstanding the text. More
recent work has addressed the issue of backtracking and considering alternative interpretations
after an initial schema fails to account for later inputs [Granger80, O’'Rorke83, Orejel-Opisso84]. In
addition, psychological studies indicate that humans perform backtracking of this sort when under-

standing certain stories [Collins80].

Separating schema selection into an initial suggestion process followed by a confirming process
of determination is an attempt to minimize misunderstanding and the need for backtracking by
being more cautious when selecting an initial schema. The system does not commit itself to a par-
ticular schema (i.e. it is not determined) until it is clear that it can account for other inputs in the
narrative. Also, the process of inferring missing actions that complete a causal chain [Schank81b] is

integrated with the process of checking a schema for determination. A schema is determined when

115

-all of its subactions have been observed or can be inferred as filling gaps in a causal chain of events.
However, once a schema is determined, GENESIS is incapable of retracting it and cannot backtrack

to consider alternative interpretations.

Several other recent understanding systems have also taken a more cautious approach to ini-
tial schema selection. As in GENESIS, the basic approach is to insure that a schema accounts for a
number of inputs before actually selecting it. FAUSTUS has three stages in its process of selecting
a frame. A frame is first invoked then instantiated and finally determined [Norvig83]. WIMP
[Charniak86] uses spreading activation to “suggest” relevant frames. A process based on Occam’s
Razor then selects the suggested frame that accounts for the most inputs while making the least
number of assumptions. A plan recognition technique based on non-monotonic deduction is dis-
cussed in [Kautz86). It also uses an "Occam's Razor” approach which picks the least number of |
plans needed to account for all of the inputs. The understanding system used to explain observed
-assembly sequences in the ARMS robotics system does not determine a schema until all of its
subactions have been directly observed [Segre87a). This is possible in the ARMS domain since one
is guaranteed to observe a complete sequence of low-level operators. In narrative understanding.
one must have some way of inferring missing actions since stories rarely (if ever) mention all of

the actions that took place.

10.2. Causally Connecting Actions Without a Schema

If, while processing a narrative, GENESIS encounters an input action that does not match part
of an existing or suggested schema nor suggest any schemata, it attempts to explain the action in a
more plan-based fashion by attempting to connect the new action to the effects of previous actions.
The procedure GENESIS uses to connect actions without a schema is an elaboration of the plan
verification algorithm given in section 6.2.1. Since, in GENESIS, this process is only attempted
when schema-based understanding cannot be used to explain an action, a description of it is embed-

ded in the complete understanding process shown in Figure 10.5.

The implicit goal of the understanding procedure is to determine an action or connected set of
actions taking place in the narrative that achieve a character's ultimate goal. Since narratives do
not always explicitly reveal characters’ ultimate goals, the system must have a way of inferring
them. An aspect of Schank and Abelson’s theory of goals and themes [Schank77] is used to deter-
mine such goals. In their view. a goal arises either as a subgoal of a plan to achieve a higher level

goal, or as a result of a theme. Schank and Abelson define themes as: “containing the background

116

for each parsed input i do
if i is not an action
then ProcessFact{i)
else ProcessAction(i)

procedure ProcessFact(i)
if ~Retrieve(i)
then

Assert(i)

CheckSuggestedSchemata(i)

if i does not match part of a suggested schema

then

let g = Retrieve(ThemeGoalMet{?x, 1))
if g then call schema learner on explanation for g

procedure ProcessAction(i)
Agsert(i)
CheckSuggestedSchemata(i)
if i does not match part of a suggested schema
then
if i does not achieve a thematic goal
then '
SuggestSchemata(i)
CheckSuggestedSchemata(i)
" if i does not suggest any schemata
then
for each support s of i do
" if sis a constraint with variables
then let r = false
else let r = Retrieve(s)
let @ be the MGU of sand r
if r A any newly bound schema variables in 6
satisfy the schema constraints
then
equatestor
replace i with 0
for each support b and effect b of i do
replace b with b6
else ProcessFact(s)
for each effect e of x do
let d = Retrieve(-e)
if d then Delete(d)
ProcessFact(e)

for each super b of action i in the action hierarchy do

ProcessAction(b)

Figure 10.5: The Understanding Procedure

117

information upon which we base our prediction that an individual will have a certain goal (p.
13_2).” Thematic goals are therefore defined as goals that arise frc;m basic human wants and needs
and therefore require no further explanation. They are further classified as either satisfaction goals
such as satisfying hunger or sexual desires. achievernent goals such as acquiring money or power,
enjoyment goals such as wanting to be entertained, and preservation geals such as preserving one’s
health or safety. GENESIS has a set of inference rules that determine when a thematic goal has
been achieved. These inference rules effectively define a set of known thematic goals. For éxample,

the following inference rule defines the thematic goal of wanting to possess valuable items:
Possess(?x,7y) A Valuable(?y) ~ ThemeGoalMet(?x, Possess(?x,?y))

The complete list of rules for inferring that a thematic goal has been achieved is given in section 2

of appendix C.

The outer loop of the understanding procedure in Figure 10.5 sequentially processes each of
the inputs in the narrative. If an input is not an action and cannot be inferred from what is
already known, then it is ﬁrét added to the causal model. Next, suggested schemata are checked to
see if the input matches a fact in one of their expansions. Finally, the system tries to infer that the
fact achieves a thematic goal for some character.. If it does, the explanation for how the goal was
achieved is passed to the schema learner for possible generalization. In the murder example, all but
the last three inputs are facts that simply define the various cobjects in the narrative and the rela-

tionships between them. All of these inputs are simply asserted in the causal model.

If an input is an action, it is first checked to see if it matches an action in the expansion of a
suggested schema. If it does, this schema is a likely explanation for the action and the system
proceeds to the next input. Otherwise, the system checks if it suggests a schema that might explain
it. However, if an action achieves a thematic goal, it is not used 1o suggest schemata since the sys-
tem already has an explanati()/n for why the action was performed and does not need to search for
an explanation in terms of it being part of a larger schema. An action is said to achieve a thematic
goal if one of its effects can be inferred as satisfying a thematic goal of the actor. This process of
preventing explained actions from suggesting schemata was first discussed in [Mooney85b] but was
not implemented in the original version of GENESIS. The importance of this process is illustrated

with an example in section B.2.4 of appendix B.

If an action does not suggest a schema that can explain it, then the system attempts to connect
its preconditions to the effects of previous actions. As in the plan verification procedure given in

chapter 6, the system tries to infer each of the supports of the action using the deductive retriever

118

and if it fails, it simply assumes the support must be true and adds it to the database. An excep-
tion to this rule is that if a constraint contains an unbound schema variable, then the system does
not try to infer that constraint. This is to prevent premature assignment of unknown variables.
For example, if a particular role in the action is not mentioned and this role has a constraint that it
be a Person, using the deductive retriever 1o satisfy this constraint could assigﬁ any known person
to this role. If the support is a precondition or motivation with variables, then any schema vari-

able bindings that are created by matching it to a known fact must satisfy the schema constraints.

After an action’s preconditions have been considered, its effects are asserted and deletions are
determined as in the procedure in section 6.2.1. The procedure ProcessFact is used to assert each
effect and check if this state satisfies a thematic goal for some character. The final step in processing
an action is to call ProcessAction recursively on any abstractions of the input action in the action

hierarchy.

In the murder example, Agrippinna giving Claudius the poisonous mushroom and Claudius
dying is explained in terms of Poison and Murder as described in section 10.1.2. When an action
schema is determined, the procedure ProcessAction is called on the action in an attempt to connect

it to previous actions. The following facts are supports of the Posion action:

Isa(Mushroom1, Food), Poisonous(Mushroom1),

NeedSustenance(Personl), Possess{Person2, Mushroom1)

The first one is inferred from the input: Isa(Mushroom1, Mushroom) using the object hierarchy.
The second directly matches a previous input. The facts that Claudius was hungry and that Agrip—
pina had the mushroom cannot be retrieved and are assumed to be true and asserted in the data-

base. The following facts are asserted as effects of the Poison:
Inside(Mushroom1,Person1), ~Possess(Person1, Mushroom1), ~Possess(Person2, Mushroom1)

The final fact deletes the precondition that was just assumed. When ProcessAction is called on the

determined Murder action, the only supports are the constraints:
Isa(Personl, Person), Isa(Person2, Character)
both of which are retrieved from input facts. The only fact added as an effect is: Dead(Person1).

The final input in the example is: Inherit(Person2, Estatel, ?FROM3), which states that Agrip-
pina inherited the estate from someone. This does not match any action in a suggested schema nor
does it suggest any schemata. Therefore, the system tries to connect it to previous actions. The

supports of the action are:

119

Dead(?FROM3), Possess(?FROM3, Estatel), Heir(Person2, ZFROM3),
Isa(?FROM3, Person), Isa(Person2, Character), Isa(Estatel, Inanimate)

The first support matches the effect of the Murder: Dead(Personl) by binding the variable 7FROM3
to Personl. Since Personl is a Person, this binding satisfies the schema constraint: Isa(?FROMS3,
Person) and this identification is made throughout the action. The presence of "FROM3 in the sup-
ports also illustrates why constraints with variables are not allowed to be retrieved. If the sup-
port: Isa(?FROM3, Person) were considered first, 7FROM3 could be incorrectly bound to Person2
since Isa(Person2, Person) is in the database. Preconditions are generally less likely to result in
such mistaken assignments. A still better approach might be to find a set of bindings that maximize
the number of supports that can be retrieved; however, such a process could require searching an
exponential number of possible bindings. Once 7FROM3 ié bound to Personl, all of the constraints
are easily deduced using the object hierarchy and the precondition Possess(Personl, Estatel)
matches an input. The remaining precondition: Heir(Person2, Person1) is deduced from the input:

Husband(Person1, Person2) using the following inference rules:

Husband(?x, ?y) — Spouse(?x, ?y)
Spouse(?x, ?y) — Spouse(?y, ?x)
Spouse(?x, ?7y) = Heir(?x, ?y)

Finally, the following effects of the Inherit are asserted:
Possess(Person2, Estatel), -Possess(Person1, Estatel)

The second effect deletes the fact that Claudius owned the estate. The first effect is recognized as
achieving a thematic goal for Agrippina since the object hierarchy specifies that an estate is a valu-
able item. The explanation for how this goal was achieved is shown in Figure 10.6. The explana-
tion shown in the figure is called a highest-level explanation since it includes only the “largest” or
highest-level schemata that support the goal. Actions that only support the goal because they are a
part of the expansion of a higher-level schema are not included in the highest-level explanation.

Consequently, the expansions of the Murder and Poison schemata are not included in Figure 10.6.

The explanation constructed by the understanding process allows the system 10 answer a
number of questions about the narrative. Below is the input/output trace produced by GENESIS

when it is run on this example:

Input: Claudius was Agrippina’s husband and owned an estate. Agrippina gave him a poiso-

nous mushroom and he died. She inherited the estate

120

Husbandl —» Spousel --> Spoused4 —» Heir2

Possess3
NeedSustenance2
" Poisonousl
Isad -—= Isa$s

ThemeGoalMetl

Isal7
Isa3
Possess?
Inheritl
Isals
Isal
IsalQ
Isa2
Deadl
Murder2
Poisonl

Isas

Isad
Poisonousl
NeedSustenance2
Possesss
Insidel
Not2

Not3
Possessl
Heir2
Spoused
Spousel
Husband1l
Noté
Genderl
Gender2
Namel
Name2

1sal0
1sa2 7~

Insidel
Not2
Murder2 -« Dead1
Not

Possessl

Poisonl

Isal

ThemeGoalMet(Person2,
Possess(Person2 Estatel))
Isa(Estatel,Valuable)
Isa(Estatel,Estate)
Possess(Person?,Estatel)
Inherit(Person?,Estatel,Personl)
Isa(Estatel Inanimate)
Isa(Personl,Person)
Isa{Person2,Character)
Isa{Person2,Person)
Dead(Personl)
Murder(Person2,Personl)
Poison(Person2,Personl,Mushroom1)

Isa(Mushroom1,Food)
Isa(Mushroom1,Mushroom)
Poisonous(Mushroom1)
NeedSustenance(Personl)
Possess{Person2,Mushroom1)
Inside(Mushrooml,Personl)
—-Possess(Person2,Mushroom1)
—Possess{Personl, Mushroom1)
Possess(Person] Egtate])
Heir(Person2 Personl)
Spouse(Person2,Personl)
Spouse(Personl,Person2)
Husband{Personl,Person2)
-Possess(Personl,Estatel)
Gender(Personl,male)
Gender(Person2,female)
Name(Personl,Claudius)
Name(Person2,Agrippina)

Noté
4 Possess9

mheritl ThemeGoalMetl
Isals
Isa3 —> Isal7 Genderl Gender2 Namel Name2

Agrippina is happy that Agrippina has the
estate.

The estate is a valuable,

The estate is an estate,

Agrippina has the estate.

Agrippina inherited Claudius’s estate.

The estate is an inanimate object.

Claundius is a person,

Agrippina is a character,

Agrippina is a person.

Claudius is dead.

Agrippina murdered Claudius.

Agrippina poisoned Claudius with the
mushroom,

‘ The mushroom is a food.

The mushroom is a mushreom,

The mushroom is poisonous,

Claudius is hungry.

Agrippina had the mushroom.

The mushroom is inside Claudius.
Agrippina does not have the mushroom,
Claudius does not have the mushroom.
Claudius had the estate,

Agrippina is Claudius’s heir,
Agrippina is Claudius’s spouse.
Claudius is Agrippina’s spouse.
Claudius is Agrippina’s husband.
Claudius does not have the estate.
Claudius is male,

Agrippina is female.

Claudius’s name is Claudius,
Agrippina'’s name is Agrippina.

Figure 10.6: Murder Example — Specific Explanation (Highest-Level)

121

Thematic goal achieved: Agrippina is happy that Agrippina has the estate.
Explanation suitable for generalization. Pruning...Generalizing...Packaging...

Creating New Schema: (MurderInherit ?a5 204 7d1)

?a5 is a character. 7d1 is a person. 7a5 murders ?d1. 704 is an inanimate object. 704 is a valu-

able. 7d1 has 704. 7a5 is 7d1's heir. 7a5 inberits ?d1’s 7o4.
Having: 7a5 murdered 7d1. suggest MurderInherit
Ready for questions:

>Summarize
Agrippina murdered Claudius. Claudius had an estate. Agrippina was Claudius’s heir. Agrip-

pina inherited Claudius's estate.

> Why did Agrippina give Claudius the mushroom?

So Claudius would eat the mushroom and so Claudius would die.

>Why did Claudius eat the mushroom?

Because Claudius was hungry.

>Why is Claudius dead?

Because Agrippina poisoned Claudius with the mushroom.

>Why did Agrippina kill Claudius?

So Agrippina could inherit Claudius’s estate.

>Why did Agrippina inherit the estate?
Because Claudius was Agrippina’s husband, because Claudius had the estate and because Agrip-

pina poisoned Claudius with the mushroom.

> Why is Agrippina Claudius’s heir?

Because Claudius was Agrippina’s husband.

122

10.3. Limiting Search in Understanding

GENESIS’s understanding process is built on the assumption that combinatorially explosive
search through possible explanations should be avoided. PAM [Wilensky78], on the other hand, is
an explanation-based understanding system that searches for an explanation of an action until it
exhausts its applicable knowledge. PAM searches for an explanation of a character’s action by
predicting future actions the character might take and seeing if any of them satisfy a known goal
for that character. In terms of the representation presented here, when PAM processes an action, it
searches through possible next actions that have preconditions that match the effects of the previ-
ous action. For example, consider the following narrative, which is normally used as an example of

how PAM processes a narrative.
Willa was hungry. She picked up the Michelin guide and got in her car.

‘When the system processes the action that Willa has picked up the Michelin guide, it considers that
the next action she might perform is to read the guide since possessing a book is a precondition for
~reading it. The effect of reading the Michelin guide is that she will know the location of a restau-
rant. Since knowing the location of a restaurant is a precondition for going to a restaurant, it con-
siders the next action she might take is to go to a restaurant. Finally, since being at a restaurant is
a precondition for eating there, it considers eating at the restaurant to be a possible next action.
This action is realized as satisfying her hunger and therefore the chain of actions just discussed is
considered to be the explanation for her actions. If at some time the system cannot propose a possi-
. ble next action due to lack of knowledge of an action that has a precondition that matches the pre-
vious action’s effect, then it backtracks to the last choice and picks another possible action. This
search is continued until the system encounters an action that satisfies a known goal or until it has

exhansied its knowledge and cannot predict any more possible future actions.

However, searching through a space of possible future actions is combinatorially explosive.
Consequently, such an approach is intractable if a system’s knowledge of actions is large, which it
obviously must be if it is to be able to understand a wide range of narratives. Consider what a
PAM-like system would do if it where used to process the murder-for-inheritance narrative. Upon
determining that Agrippina had murdered Claudius, it would conduct an exhaustive search for an
explanation of this action. Such a system would spend a long time exploring possible courses of
action that Agrippina could take now that Claudius is dead. She could bury him, she could cre-
mate him, she could donate his bedy to medicél science, etc.. A system with a large knowledge base

of actions could search a long time before stumbling upon the idea of her inheriting his property.

123

Currently, in order to avoid such combinatorially explosive search, GENESIS does not try to
predict future (or past) courses of action in this manner. If an action does not suggest a known
schema, the system only tries to connect its preconditions to the effects of a previous action. Of
course, suggesting schemata can be seen as predicting possible future or past actions. In fact, if sug-
gested schemata were immediately used to recursively suggest other schemata, the system would
simply be conducting combinatorially explosive search through a different space.’ However, in
GENESIS, a suggested schema is not used to suggest other schemata until it has accounted for addi-
tional actions and is determined. Therefore, GENESIS' conservative approach to schema selection

greatly limits the search it performs during this process.

Overall, GENESIS performs relatively little search during understanding. Its approach to
understanding is for the most part ron-predictive [Segre87al. or “wait and see” [Marcus74]. In
fact, GENESIS is a little oo conservative with regards to searching for an explanation. Performing
search for missing actions is clearly necessary for understanding narratives such as the PAM exam-
ple shown above. But searching for missing actions must be tightly constrained since it quickly

becomes intractable.

Since GENESIS does not conduct a complete search for an explanation, it is incapable of
“understanding” narratives that have missing actions and do not suggest known schemata. For
example. consider the processing of the following test narrative for the murder example before the

system learns a murder-for-inheritance schema.

Input: Martha is Gene's mother and is a millionaire. He shot her and she died. Gene got
$1000000.

Ready for questions:

>Summarize

Gene shot Martha and killed her.

*Plan-based understanding as performed by PAM can be modelled as schema selection if each action has an additiona}
subaction for achieving each of its preconditions. In this case, if an action A meets a precondition for action B, then A must
be be a subaction of B and therefore B wouid be suggested as a possible reason for performing A. If suggested schemata re-

- cursively suggest other schemata, the result is the same search through future actions that PAM performs. A schema is
selected if it is the final action in a chain of actions that begins with the cbserved action and ends in the achievement of a
thematic goal. The formulation of motivation analysis presen‘ted in [Charniak85 (chapter 10)] can be viewed as taking this
approach.

124

>Why did Gene shoot Martha?
So Martha would die.

>Why did Gene kill Martha?

_Cannot find sufficient reason.

>Why did Martha die?
Because Gene shot Martha and killed her.

>How did Gene get the money?

Cannot find sufficient cause.

The parsed representation of this narrative is shown in Figure 10.7. The crucial difference between
this story and the Claudius and Agrippina story is that the current narrative only states that Gene
has the money. It is missing the action declaring that he inherited it. A couple of additional
actions used in the proc;essing of this narrative are Shoot and ShootToKill (a specialization of

Murder). Definitions for these actions are shown in Table 10.2 and Table 10.3.

When processing this story, the input: Shoot(Person2, Personl, 2INSTR6) suggests the schema:
ShootToKill(Person2, Personl, ?INSTR6). The subsequent input is Die(Person1), which matches a

Isa(Person1,Person), Gender(Person1.female), Name(Personl ,Martha),

Isa(Person2,Person), Gender(Person2,male), Name(Person2,Gene), Isa(Money1,Money).
Amount(Money1,order-millions.dollar), Mother(Person1,Person2), Possess(Person1,Money1),
Shoot(Person2 Personl,2INSTR6), Die(Person1), Isa(Money2,Money),
Amount(Money?2,1000000,dollar), Possess(Person2,Money2)

Figure 10.7: Parsed Version of the Murder Test Narrative

Table 10.2: Additional Definitions of Action Supports and Effects
Action Constraints Preconditions Effects
Shoot(7a,?v,7g) Isa(?g,Gun) Possess(?a,?g) Shot(?v)
"?a shot ?v with ?g" Isa(?a,Person) | PointingAt(7a.?g.?v)
ShootToKill(?a,?v.7g) Isa(7g,Gun) Possess(?a,?g) Shot(?v)
"?a shot ?v and killed it"

125

Table 10.3: Expansion of ShootToKill

Subactions Internals Links
Shoot(?a,?v,7g) | BadHealth(?v) (Precondition (Subaction 1) (Precondition 1))
Die(?v) (Effect (Subaction 1) (Effect 1))

(Antecedent (Internal 1) (Effect 1))
(Precondition (Subaction 2) (Internal 1)))

Abstractions
((Effect 1) Murder (Internal 1)) ((Bffect 1) Murder (Internal 2))
((Internal 1) Murder (Internal 3)) {(Subaction 2) Murder (Subaction 2))

((Subaction 1) Murder (Subaction 1))))

subaction in the suggested ShootToKill schema. Since both of the subactions of the suggested
schema have been explicitly mentioned, it is determined and added to the causal model. The facts
that 7INSTR6 is a gun and that Gene possesses it are assumed since they are supports of the deter-
mined schema. The final input stating that Gene has $1,000,000 does not match part of a suggested
schema and is simply added to the causal model as a disconnected fact. The final causal model con-

structed for this narrative is shown in Figure 10.8.

The causal connections added by the ShootToKill schema allows the system to answer a cou-
plé of questions about the narrative; however, the causal model is not sufficient to explain why
* Gene killed Mary or how he got the money. Without a schema for murder-for-inheritance, the
system cannot infer the missing Inherit action since it does not conduct a potentially expensive

search for an action that would connect Gene's acquisition to the rest of the narrative.

126

Motherl —— Parentl —> PositivelPT1

GenesisAction2 State3
/ M BadHealthl —s Die3
Possess3 Shootl Shot2

Isa2 —> Isa8 Deadl
Isa7 ShootToKill1 Isal S Murder2
Isa3 Genderl Namel Amountl Possess1
Isat0 Gender2 Name?2 Amount2 Possess4
Deadl Dead(Personi) ' Martha is dead.
Murder2 Maurder(Person2,Personl) Gene murdered Martha.
ShootToKilll ShootToKill(Person2,Personl,YINSTR6)} Gene shot Martha and killed her.
Isa7 Isa(7INSTR6,Gun) : The gun is a gun.
Possess3 Possess(Person2,7INSTR6) Gene has the gun,
Shot2 Shot(Personl) _ Martha is shot.
Shootl Shoot(Person2,Personl,?INSTRS) Gene shot Martha with the gun.
Isal Isa(Personl,Person) Martha is a person.
Isa8 Isa(Person2,Character) Gene is a character.
Isa2 Isa(Person2,Person) Gene is a person.
Die3 Die(Personl) Martha died.
BadHealthl BadHealth{Personl) Martha is in bad health.
State4 State(Personi) Martha is in some state;
State3 State{Personl) Martha is in some state.
GenesisAction2 GenesisAction{(Person2) Gene did something,
PositivelPT1 PositiveIPT(Personl,Person2) Martha has a positive relationship with Gene.
. Parentl _ Parent(Personl,Person2) Martha is Gene’s parent.
Motherl Mother(Personl,Person2) : Martha is Gene's mother.
‘Isa3 Isa(Money1,Money) Millions of dollars is money.
IsalC Isa(Money2,Money) The $1000000 is money.
Genderl Gender(Personl,female) Martha is female,
Gender?2 Gender(Person2,male) Gene is male,
Namel Name(Personl,Martha) Martha’s name is Martha.
‘Name2 Name(Person2,Gene) Gene’s name is Gene.
. Amountl Amount(Moneyl,order-millions,dollar) Millions of dollars is order-millions dollars
: of money.
Amount2 Amount(Money2,1000000,dollar) The $1000000 is 1000000 dollars of money.
Possess] Possess(Personl Money1) Martha has millions of dollars.
Possessd Possess(Person2,Money2) Gene has the $1000000.

Figure 10.8: Causal Model for Murder Test Example Before Learning

127

CHAPTER 11
GENESIS: SCHEMA ACQUISITION

- If the understander is capable of constructing an explanation for how a goal was achieved,
GENESIS may be able to use EGGS to generalize this explanation and learn a new schema which can
aid in the understanding of future narratives. First, the system must decide whether or not an
explanation is worth generalizing. This process is described in section 11.1. Next, a special pruning
procedure for EGGS eliminates overly specific parts of the explanation. The pruner used in
GENESIS is described in section 11.2. Next, the EGGS generalizer is used to generalize the resulting
explanation. In addition to this process, a couple of additional constraints must be added to insure
that all actions are motivated. This process is discussed in section 11.3. Finally, a special packager
for EGGS constructs a new schema from the generalized explanation and indexes the schema so that
its subactions suggest it. This packager is an enhancement of the procedure for extracting
partially-ordered macro-operators (see section 6.2.2) and is discussed in section 11.4. In addition, a
description of how a learned schema can aid the understanding of future narratives is presented in
section 11.5. Throughout the chapter, the learning of the murder-for-inheritance schema is used as

an example.

11.1. Deciding When to Learn

If every explanation GENESIS encountered was generalized ihto a new schema, the system
would soon become overloaded with rarely used schemata. Most actions would suggest a large
number of schemata and selecting among these would require an excessive amount. of processing
time. This problem is analogous to the phenomenon of slowdown in problem solving systems that

learn macro-rules (see section 7.2).

One approach to this problem is to generalize all explanations and later eliminate those sche-
mata that are empirically found to be infrequently used. In the PEBLS model [Segre87al, the con-
ditions used to determine which schemata are retained are called the retention criteria. An example
of this approach is the learning of S-Macros in MORRIS [Minton85], which was discussed in
chapter 7. Another approach is to selectively learn those schemata that are judged likely to be use-~
ful in latter processing. In the PEBLS model. the conditions used to determine whether or not an
explanation is worth generalizing are called the learning criteria. The learning of T-Macros in

MORRIS, also mentioned in chapter 7, is an example of this approach. Of course, these two

128

approaches to determining utility are not necessarily mutually exclusive and MORRIS and PRO-

DIGY [Minton87a, Minton87b] employ both techniques.

Currently, GENESIS only has criteria for selectively learning schemata. Below are the set of

criteria that GENESIS uses to determine whether an explanation is worth generalizing.
(1) It should be an explanation of how a thematic goal was achieved.

(2) The highest-level explanation for the goal achievement should not be simply an instantiation

of a known schema.

(3) Al actions in the highest-level explanation should rely on the character whose thematic goal

was achieved.
A\

The first criterion is crucial for insuring that the acquired schema will be a useful one. A
method for achieving a state that satisfies normal human wants and desires is likely to make a
schema that will arise again and again. Recall that thematic goals were defined as the highest level
goals that motivate a character’s action. If an action achieves a thematic goal for its actor, it
requires no further explanation. Consequently, an explanation is considered to be worth generaliz-
ing into a new schema only if it achieves a themaltic goal. Since the understander detects the
achievement of thematic goals and passes them on to the schema learner (see section 10.2), the
schema learner itself does not need to explicitly check this criterion. In the murder example, the
explanation shown in Figure 10.6 satisfies this criterion since it is an explanation of how Agrippina

achieved her thematic goal of possessing a valuable item, namely, Claudius’ estate.

_The second criterion is the obvious one of not already possessing a schema for the combination
of actions that achieves the goal. This simply involves checking the highest-level explanation for
the goal achievement to make sure it contains several different actions. If the system already had a
schema for this case, it would have used it in processing the narrative and the goal achievement
would be explained at the highest level by an instance of this schema instead of by a combination
of several actions. In the murder example, the highest-level explanation satisfies this criterion since
it is composed of a Poison and an Inherit action. It should be noted that actions like Murder, which

are generalizations of other actions in the explanation, do not count as separate actions.

The third and final criterion insures that the schema that is learned from the explanation is a
volitional action that a character can use to achieve his own thematic goal. Let the term main char-
acter refer to the character whose thematic goal was achieved. If the learned schema is to represent

a plan that can be executed by the main character to achieve his thematic goal, actions in the

129

schema that are not volitionally performed by the main character should at least be motivated by
actions that he performs. In order to insure this, non-volitional actions in the explanation must
have a precond'ition supported by a volitional action performed by the main character. For exam-
ple, the explanation for the murder story contains the non-volitional action Inherit; however. the
precondition of this action that states that the benefactor must be dead is achieved by Agrippina’s
Murder action and Agrippina is the main character since it is her thematic goal that is achieved.
Also, volitional actions in the highest-level explanation performed by actors other than the main
character must have a motivation supported by an action performed by the main character. For
example, in the learning of an arson-for-insurance schema (an example presented in appendix B),
someone burns his own warehouse, which canses his insurance company to reimburse him for the
loss. The explanation for this example can be generalized into a volitional schema. Even though the
-volitional indemnify action in the explanation is performed by another actor (i.e. Prudential), this
action is motivated by the fact that they believe his barn is burnt, which in turn is supported by

the Burn action performed by the main character (see section *B.2.3 for details).

If the third criterion were not used. the system could learn schemata that contain serendipi-
tous actions over which the main character has no control. For example, assume GENESIS had the

knowledge to explain the following narrative but did not have the third learning criterion.
John’s rich uncle was killed in an earthquake. John inherited a million dollars.

Such a system would acquire an Earthquakelnherit schema (or possibly a NaturalDisasterInherit
schema) from its explanation of this narrative. Such a non-volitional schema would probably not

be that useful for understanding later narratives.

11.2. Pruning the Explanation

If an explanation meets all three learning criteria, GENESIS proceeds to generalize it into a
new schema. In order to increage to the generality and applicability of the resulting schema,
GENESIS has a pruning procedure that removes unnecessarily specific branches from the explana-
tion prior to generalization. If such pruning were not performed, the sysiem would frequently
learn schemata that are too restrictive to be useful. For example, if the explanation for the Clau-
dius and Agrippina narrative were not pruned, the resulting schema would only cover cases in

which a wife poisoned her husband with a mushroom in order to inherit an estate.

A description of the GENESIS pruning algorithm is given in Figure 11.1. The fact that only

the highest-level explanation is considered during generalization is in itself a type of pruning. This

130

for each inference rule a,...a_~c in the highest-level explanation structure do
if PrunableType(a,...a_—¢c)
then
let g = true
for each fact f which eventually supports ¢ do
for each path p from f to the goal do
let r = true
for each inference rule b,...b_~d in pdo
if PrunableType(b,...b —d) then let let r = false

if r then let q = false

if q then remove a,...a_-*¢ from explanation

function PrunableType(a,...a —c)
if a,...a,—c is an abstraction inference then return true

if there is more than one inference rule in the library whose conclusion unifies with ¢
then return true
else return false

Figure 11.1: GENESIS Pruning Procedure

. is because the highest-level explanation does not include expansions of schemata that only support
the .goal through the overall effects of the schema. For example, in the murder example, the
highest-level explanation (see Figure 10.6) does not include the Atrans, Ingest. or Die actions in the

expansion of the Poison schema.

In addition, the procedure in Figure 11.1 attempts to prune certain types of inferences from
the highest-level explanation structure. One type of prunable inference includes abstraction infer-
ences based on GENESIS’ hierarchies of objects, states, or actions. For example, below is a list of

the abstraction inferences in the explanation of the Claudius and Agrippina example:

Isa{Mushroom1, Mushroom) — .Isa(Mushroom, Food)
Isa(Estatel, Estate) — Isa(Estatel, Valuable)
Isa(Estatel, Valuable) — Isa(Estatel, Inanimate)
Isa(Person2, Person) - Isa(Person2, Character)
Husband(Personl, Person2) — Spouse(Person1, Person2)

Poison(Person?, Personl, Mushroom1) — Murder{Person2, Personl)

Another type of prunable inference includes inferences that conclude facts that cduld be deduced in

131

a variety of other ways in general. For example, below is a list of such inferences in the murder

example.

Spouse(Personl, Person2) — Spouse(Person2, Person1)

Spouse(Person2, Person1) — Heir(Person1, Person2)

The first rule is in this class because the system has rules for deducing that someone is somebody’s
spouse other than by commutativity (e.g. from Husband, Wife, or Married). The second rule is in
this class because the system has rules for deducing that someone is somebody’s heir otber than
from an instance of Spouse (e.g. from an instance of Parent). In order to prevent the system from
generating a schema that has a support that is logically entailed by another support, not all prun-
able inferences are immediately removed from the explanation. An inference rule that is classified
as prunable is not pruned if it is supported by a fact that cannot itself be pruned because it sup-

ports the goal directly (i.e. not through a prunable inference). In the murder example, the rule:
Isa(Estatel, Valuable) — Isa(Estatel, Inanimate)

is not actually pruned because the antecedent: Isa(Estatel, Valuable) directly supports the fact that
a thematic goal has been achieved. If this rule were pruned, the resulting schema would have two
constraints on the inherited item, one stating that it is a Valuable and one stating that it is Inani-~
mate since both facts would become leaves of the final explanation. However, the latter fact can be
easily deduced from the former, as it was in the original explanation. Retaining prunable rules that
are supported by facts that directly support the goal prevents such redundant constraints from
appearing in the final schema. All of the other prunable rules listed above are removed since they
are not supported by facts that support the goal through a path that does not contain a prunable

inference.

Not pruning rules with antecedents that directly support the goal also prevents the removal
of specialized actions that are crucial to the goal achievemeni. For example, if the Poison action
had an effect that was not inherited from Murder and that supported the goal achievement directly,
then it would not have been pruned. However, since all of its effects that eventually support the
goal are inherited from Murder, the system does not consider it to be crucial to the overall plan and

removes it.

Due to the representation of actions and their abstractions, the pruning algorithm shown in
‘Figure 11.1 is capable of performing the task of generalizing predicates discussed in [DeJong86b].

Generalizing predicates refers to the process of altering the descriptions of actions by changing

132

relatively specific predicates such as Poison to more general predicates such as Murder. Unlike the
current version, the original GENESIS system [Mooney85a, Mooney85b), required a special pro-

cedure for this task.

-11.3. Generalizing the Explanation

After the initial explanatibn is pruned, it is generalized using the EGGS generalizer. The gen-
eralized explanation for the murder example is shown in Figure 11.2. Unfortunately, this generali-
zation does not correspond to the intuitive generalization of the Claudius and Agrippina narrative
since the explanation structure itself does not impose the constraint that the murderer (?x26) and
the heir (7a5) be the same. This is because the schema still “works™ if they are different; however,
the Murder is left unmotivated in this case. Since the resulting plan contains an unmotivated
action by another agent, it does not represent a volitional action and is probably not worth learn-

ing. However, the plan can be made volitional by requiring the actor of every unmotivated

Heirl
Possess8
Murderl —= Deadl

- Isa8

Noté
Inheritl 4 Possess9

ThemeGoalMet1
Isa20
Isa21

"ThemeGoalMetl ThemeGoalMet(%a5 Possess(?25,704)) ?a5 is hdppy that 7a5 has 704.

Isa2l Isa(?04,Valuable) 704 is a valuable.
-Possess9 Possess(7a5,704) ?a5 has 7o4.

Inheritl Inherit{7a5,704.7d1) ?a5 inherited ?d1's 7od.
Isals Isa(?04.Inanimate) 704 is an inanimate object.
15220 Isa(?d1,Person) ?d1 is a person.

Isal2 Isa(?a5,Character) ?a5 is a character.
Dead1 Dead(?d1) ?d1 is dead.

Murder1 Murder(?x26,7d1) 7x26 murdered 7d1.
Isa8 Isa(?7x26.Character) ' 7126 is a character.
Possess8 Possess(?d1,704) ?2d1 had 704.

Heirl Heir(?a5,2d1) ?a5 is 7d1’s heir.

Noté -Possess(?d1,704) 7d1 does not have 7o4.

Figure 11.2: Murder Example — Initial Generalized Explanation

133

volitional action to be the same as the character whose thematic goal is achieved. A more formal
description of this process is given in Figure 11.3. This procedure insures that actions that are oth-
erwise unmotivated are motivatéed by the eventual thematic goal achievement. Any volitional
~ action in the explanation that was performed by another actor in the original instance is guaranteed
to have motivation supports. This is because any unmotivated action by another actor would have
violated the third learning criterion and prevented generalization. In the murder example, the pro-
cedure in Figure 11.3 substitutes a5 for ?x26 and produces the final generalization shown in Fig-

ure 11.4.

It might be argued that requiring an additional step to fix such a problem is somewhat ad hoc
and that all constraints should be represented in the explanation structure and enforced by the. nor-
. mal generalization process. A better solution to this problem might be to explicitly add motiva-
tions to actions in the explanation structure. That is, if the ultimate goal ist ThemeGoalMet(x,y)

the motivation: Goal(ai.y) would have to be added to each unmotivated action, where a, is the actor

of that action in the explanation structure. All of these motivations would then have to be equated
to the form: Goal(x,y) in order to insure that all of these actions were motivated by the final goal
achievement. The normal EGGS process would then enforce the unifications now enforced by the
procedure in Figure 11.3. Although this approach is in some sense “cleaner,” it is functionally
equivalent 1o the procedure in Figure 11.3, and the added motivations would have complicated the

guestion-answering process.

At this point, a brief digression is warranted regarding the third learning criterion since it

interacts in an interesting way with the process of equating actors to the main character. For

let m be the variable for the main character in the generalized explanation
for each volitional action a in the generalized explanation do
if a does not have any motivation supports
then
let b be the actor of a
if b==m then
let 6 = {m/b}
for each wif f in the generalized explanation do
replace f with f6

Figure 11.3: Procedure for Equating Actors to the Main Character

134

Heirl .

Possess8 Not6
Murderi —= Dead1 /

Inheritl P 9
nhen OSSesS ThemeGoalMetl
Isals :)
Isa21

ThemeGoalMetl ThemeGoalMet(?a5 Possess(?a5,704)) 7a5 is happy that 7a5 has ?o4.

Isa22
TIsa20

Isa21 Isa(?04,Valuable) 704 is a valuable.

~ Possess? Possess(7a5,%04) ?a5 has 704.
Inheritl Inherit(?a5,%04,7d1) 7a5 inherited 7d1’s 7o04.
Isals Isa(704,Inanimate) 704 is an inanimate object.
Isa20 Isa(?d1,Person) ?d1 is a person.
Isa22 Isa(?a5,Character) ?a5 is a character.
Dead1 Dead(?d1) 2d1 is dead.
Murderl Murder(?a5,7d1) ?a5 murdered ?d1.
Possess8 Possess(?7d1,704) ?d1 had ?04.
Heirl Heir(?a5,7d1) 7a5 is 7d1’s heir.
Noté ~Possess{(?d1,704) : 7d1 does not have 704.

Figure 11.4: Murder Example — Generalized Explanation

example, the third learning criterion prevents GENESIS from generalizing the explanation con-

structed for the following narrative.
Bob is Jane's husband and is a2 millichaire. Stan murdered Bob and Jane inherited $1,000,000.

This is because Jane's inheritance is not supported by her own volitional action. However, the gen-
eralization EGGS produces for the explanation of this example is exactly the same as the one it pro-
duces for the Claudius and Agrippina narrative (see Figure 11.2). If the process of equating the
actors of otherwise unmotivated actions to the main character is also applied to the generalization
of this narrative, the murderer is required to be the same as the heir and the result is the same as
the final generalized explanation for the Claudius and Agrippina story (see Figure 11.4). GENESIS
could be altered to apply the third learning criterion only afte\r the explanation has been general- .
ized, in which case it could learn the same schema from this story as it learns from the Claudius
~and Agrippina one. However, since in the general case this process would be equating actors that
were not necessarily the same in the specific instance, it might be equating variables that result ina

protection violation (see section 6.2.2.1). Consequently, judging the third learning criterion would

135

have to be delayed even further until the packaging process determined the necessary constraints to
prevent protection violations. If equating all the actors of unmotivated actions to the main charac-
ter did not violate any of these constraints, then it could be carried out and a volitional schema

could be learned.

This approach could result in learning a schema that is not a generalization of the narrative
that gave rise to it. For example, the schema that would be acquired from the narrative about Bob
and Jane would require that the murderer and the heir be the same although they were different in
the original story. Since the goal of EBL is to maintain the structure of the explanation for the ori-
ginal example, this'approach is not taken and the third learning criteria is applied prior to generali-
zation. Also, waiting to apply the third criterion could result in wasting work on pruning, general-
izing, and packaging an explanation that does not result in acguiring a schema since it fails to meet

- the learning criteria.

11.4. Packaging the Explanation

‘The final step in learning a schema is packaging the generalized explanation into a form suit-
. able for the schema library. The packaging process used in GENESIS is a slight enhancement of the
procedure for learning partially-ordered macro-operators (see section 6.2.2). First the leaves of the
generalized explanation are divided into constraints, preconditions, and motivations based on the
manner in which they support actions in the generalized explanation. For example, since the leaf:
Heir(?a5, 7d1) is a precondition of the Inherit action in the generalized explanation for the murder
example, it is made a precondition of the o#erall schema. Protection violations are prevented and
the effects of the schema are determined using the procedure presented in section 6.2.2. The sup-
ports and effects for the schema constructed from the murder example are shown in Table 11.1. A
name for the new schema, such as Murderlnherit, is constructed by concatenating the names of the

actions in the generalized explanation.

Table 11.1: Supports and Effects of the MurderInherit Schema
Murderlnherit{?a5.704,7d1)

Constraints Preconditions Effects '
Isa(?a5.Character) | Heir(7a5,7d1) Dead(7d1)
Isa(?d1,Person) Possess(?d1,%04) -Possess(?d1,704)
Isa(?04,Valuable) Possess(?a5,7%04)

136

In addition, the internal structure of the explanation is stored as the expansion of the new '
schema. The actions in the explanation form the subactions of the new schema and other facts in
the explanation that are neither supports nor effects make up the internals. The connections
between all of the facts in the explanation make up the links of the new schema. The expansion
that GENESIS constructs for the MurderInherit schema is shown in Table 11.2. An English sum-

mary of the resulting schema is given in the trace for this example presented in section 10.2.

The final step in the packaging of a new schema is to index the schema so that the system is
“reminded” of it whenever it might be helpful in processing a future narrative. Indexing is per-
formed by having the schema’s volitional subactions suggest it. This is appropriate because the new
schema may now provide an explanation for why someone is executing the subaction. In the

murder example, the following suggestion is added to the Murder action:
Murder(?a5, ?2d1) ~> Murderlnherit(?a5, 704, 7d1)

A suggestion is not added to Inherit because it is a non-volitional action.

11.5. Using the Learned Schema

Once a schema is added to the schema library and suggestions are added to index it, instances
of its subactions in future narratives will suggest it. If an instance of the new schema is subse-
quently determined, it can result in GENESIS inferring missing actions that it was previously inca-
pable of inferring. For example, consider the processing of the murder test narrative after the sys-

tem has acquired Murderlnherit.

Input: Martha is Gene's mother and is a millionaire. He shot her and she died. Gene got

$1000000.

Table 11.2: Expansion of MurderInherit
Subactions Internalg

Murder(?a5,7d1) Isa(?04 Inanimate)
Inherit(7a5.704.7d1)

Links

(Antecedent (Expansion 1) (Constraint 3))
(Constraint (Determine 1) {Constraint 1))
(Precondition (Determine 2) (Effect 1))

| (Precondition (Determine 2) (Precondition 1)}
- | (Constraint (Determine 2) (Constraint 2))
(Effect (Determine 2) (Effect 2))

(Constraint (Determine 1) {Constraint 2))
(Effect (Determine 1) (Effect 1))
(Precondition (Determine 2) (Precondition 2))
(Constraint (Determine 2) (Expansion 1))
(Constraint {(Determine 2) (Constraint 1))
(Effect (Determine 2) (Effect 3))

137

Thematic goal achieved: Gene is happy that Gene has the $1000000.
Ready for questions:

>Summarize
Gene murdersed Martha. Martha had $1000000. Gene was Martha's heir. Gene inherited
Martha's $1000000.

> Why did Gene kill Martha?
So Gene could inherit Martha's $1000000.

>How did Martha die?
Gene shot Martha and killed her.

>How did Gene get the money?
Gene inherited Martha's $1000000.

>Why did Gene inherit the money?
Because Gene shot Martha and killed her, because Martha had millions of dollars and because

Martha was Gene's mother.

> Why was Gene Martha's heir?

Because Martha was Gene's mother.

>Why did Martha have $1000000?

Because Martha had millions of dollars.
This time, when a Murder action is determined from the actions in the second sentence (see section
10.3), it suggests the following instance of the new schema:

MurderInherit(Person2, ?04-2, Personl)

In addition, the Murder action in the suggested schema is marked “found” as are its following sup-

ports and effects:

138

JIsa(Person2, Character)
Isa(Personl, Person)

Dead(Personl)

The final input: Possess(Person2, Money2) matches an effect of the Inherit action in the suggested
MurderInberit schema and binds 704-2 to Money2 since Money?2 satisfies the constraint of being a
Valuable. Since both of the positive effects of the Inherit action are now marked as found (ie
Dead(Personl) and Possess{Person2, Money2)), the MurderInherit schema is determined and the
missing Inherit action is added to the causal model. The precondition stating that Martha must
have possessed $1,000,000 is inferred from the fact that she had millions of dollars and the precon-
dition stating that Gene is Martha’s heir is inferred from the fact that she is his mother. The final
explanation that GENESIS constructs for this example is shown in Figure 11.5. This explanation
allows the system to answer questions that it could not answer based on the representation it built
without the MurderInherit schema (see Figure 10.8). The Murderinherit schema also provides a

structure for paraphrasing the narrative.

The Murderlnherit schema can also be used to understand narratives missing even more infor-

mation. For example, consider the following GENESIS' input/output trace:

“Input: Mary is the Bob's mother and is a millionaire. Someone strangled Mary. Bob got
$1000000.

Thematic goal achieved: Bob is happy that Bob has the $1000000.
- Ready for questions:
>Summarize
Bob murdered Mary. Mary had $1000000. Bob was Mary's heir. Bob inherited Mary's

$1000000.

> How did Bob get the money?
Bob inherited Mary's $1000000.

>Who strangled Mary?
Bob strangled Mary.

139

Possess3
Isa7

ThemeGoalMet2

Isals
Isald
Possess5
Inheritl
Isa8

Isa2

Isal

Isal3
Heir2
Parentl
Motherl
Possess8
LessThanl
Isa3
Amount2
Possessl
Amountl

Deadi
Murder2
ShootToKilll
Isa7

Possess3
Shot2

Notl

ShootToKilll
Isa2 — Isa8

Murder2 —= Dead 1

Isal
Possess8
LessTha,
Isal4 al3

Mothert —— Parentl —= Heir2

ThemeGoalMet{Person2,
Possess(Person2,Money2))
Isa(Money2,Valuable) -
Isa(Money2,Money)
Possess(Person2,Money2)
Inherit(Person2,Money2,Personl)
Isa(Person2,Character)
Isa{Person2,Person)
Isa{Personl,Person)
Isa(Money2,Inanimate)
Heir(Person2,Personl)
Parent(Personl,Person2)
Mother{Personl,Person2)
Possess(Personl,Money2)
LessThan({1000000,0rder-millions)
Isa(Money1,Money)
Amount(Money2,1000000,dollar)
Possess(Personl,Money1)
Amount(Moneyl,order-millions,dollar)

Dead(Personl)
Murder(Person2,Personl)
ShootToKill(Person2,Personl,?INSTRG)
Isa(?7INSTR6,Gun)
Possess(Person2,7INSTR6)
Shot(Personl)
—Possess(Persont,Money2)

Inherit1 PossessS

Notl

ThemeGoalMet2

Gene is happy that Gene has the $1000000,

The $1000000 is a valuable.

The $1000060 is money.

Gene has the $1000000.

Gene inherited Martha’s $1000000.

Gene is a character,

Gene is a person.

Martha is a person.

The $1000000 is an inanimate object.

Gene is Martha’s heir.

Martha is Gene's parent.

Martha is Gene’s mother.

Martha had the $1000000.

1000000 is less than order-millions,

Millions of dollars is money.

The $1000000 is 1000000 dollars of money.

Martha has millions of dollars.

Millions of dollars is order-millions dollars
of money.

Martha is dead.

Gene murdered Martha,

Gene shot Martha and killed her,

The gun is a gun.

(Gene has the gun.

Martha is shot,

Mazrtha does not have the $1000000,

Figure 11.5: Murder Test Example After Learning -- Specific Explanation

> Why did Bob strangle Mary?
So Bob could inherit Mary's $1000000.

Since Strangle is a specialization of Murder, the input: Strangle(?ACTOR1, Personl) suggests the

- schema: MurderInherit(?ACTOR1, 704-2, Person1). The input stating that Bob got a million dollars

140

matches the effect: Possess(?ACTOR1, 704-2) of the suggested schema since Bob is a character and a
million dollars is a valuable item. This match leads to the determination of MurderInherit and

identifies Bob as the actor.

However, it is also important to note that not every narrative that might possibly fit the new

schema actually suggests it. For example, consider the following GENESIS' input/output trace:

Input: Martha is Gene's mother and is a millionaire. She died. Gene inherited $1000000.
Thematic goal achieved: Gene is happy that Gene has the $1000000.
Ready for questions:

>Summarize

Martha died. Gene inherited Martha’s $1000000.

>Who murdered Martha?

Question refers to unknown event, person, place, or thing.

>Why did Martha die?

Cannot find sufficient reason.

>Why did Gene inherit the money?

Because Martha was Gene's mother, because Martha had millions of dollars and because Martha died.

The system identifies Martha as the benefactor of the inheritance since she is the one that is dead
and has the money; however, Murderlnherit is never suggested because the Inherit action is non-

volitional and does not suggest the new schema.

141

CHAPTER 12

GENESIS: LEARNING WORD MEANINGS

As revealed in the I/0 trace presented in chapter 2, GENESIS also has the ability to learn pro-
“visional meanings for words from one example of their use. While processing the learning narra-
tive for the kidnapping example, the system encounters the following unknown words: “kid-
napper,” “ransom,” and “kidnap.” Based on the context in which these words appear and their
relation to the overall schema that is learned, the system acquires preliminary meanings for each of

these unknown words. This chapter describes the procedure GENESIS uses to learn related word

meanings when it is acquiring a new schema.! Section 12.1 attempts to motivate the approach taken
in GENESIS by revealing a problem with previous approaches. Next, since the procedure for learn-
ing role labels such as “kidnapper’” and:"ransom” is significantly different from that used to learn

schema labels such as “"kidnap,” a separate section is dedicated to each of these processes.

12.1. A Problem with Previous Models of Learning Word Meanings

Previous computational models of fhe acquisition of word meaning [Berwick83, Granger77,
Selfridge82] have assumed existing knowledge of the concept underlying the word to be learned. In
these models, word learning is a process of using surrounding context to establish an identification
between a new lexical item and a known concept. However, new words are not always encoun-
tered as labels for known concepts. When encountering a new concept in natural language text or
discourse, it is quite likely that one will also come across unknown words that refer to various
aspects of the new concept. A word learning model that requires prior knowledge of the underly-
ing concept will be unable to acquire even provisionall meanings for such words. For example, such
an approach could not learn meanings for the unknown words in the learning narrative for the kid-
nap example since when the system first encounters these words, it does not have any knowledge of

the concepts underlying them.

In addition, developmental studies in psychology suggest that the learning of words and their
underlying concepts frequently occurs concurrently in children. Experiments by Gopnik and
Meltzoff revealed that children’s acquisition of “disappearance” words occurred at about the same

time they learned to solve object-permanence tasks involving invisible displacements [Gopnik86].

1A deseription of GENESIS’ word learning abilities is alse presented in [Mooney87al.

142

From this data, they concluded that learning may often involve “concurrent cognitive and semantic
developments, rather than involving cognitive prerequisites for semantic developments™ (p. 1051).
They also state: “This raises the interesting possibility that conceptual and semantic development
may occur concurrently, with each area of development influencing and facilitating the other.(p.
1051)" Bowerman [Bowerman80] and Kuczaj [Kuczaj82] have also used developmental data to

argue for an interactive approach to language and concept acquisition.

In GENESIS, word learning is integrated with schema acquisition. This integration allows the
system to simultaneously learn both a concept and a word that refers to the concept. Conse-
quently, GENESIS can acquire definitions for words that cannot be learned by a system that
requires prior conceptual knowledge. In addition, the system exhibits behavior similar to that

observed in children’s acquisition of word meanings.

12.2. Learning Role Labels

Role labels are words that refer to the role that an object or character plays in a schema.,
Examples of role labels include “kidnapper,” “ransom,” and “victim.” The procedure GENESIS
uses to learn role labels is similar to the technique used by the FOUL-UP system [Granger77]
except that it is integrated with the schema learning and schema suggestion processes. When the
parser encounters an unknown word where it expects a noun for an object of a particular class, a
dummy variable is created, annotated with the unknown word, and allowed to fill the expectation.
For example, the phrase “Fred paid him the ransom” in the kidnapping narrative is parsed into the
assertion: Atrans(Person7, ?PhysicalObjectl, Person9, 7AT24) where the variable 7PhysicalObject1
is marked with the fact that it came from the unknown word “ransom.” If an input with an
unknown-word variable like ?PhysicalObject1 matches a form in a suggested schema, then a provi-
sional definition for the word is made based on the constraints on the schema variable that matches
the unknown-word variable. For example, in the case of the unknown word “ransom,” the previ-
ous senternce in the story suggests a Bargain schema between John and Fred. The subactions of this

suggested schema are:

1) John told Fred that if Fred gave John the $250000 at Trenos then John would release Mary.
2) Fred gave John the $250000 at Trenos.
3) John released Mary.

Since “'Fred paid him the ransom” matches the suggested subaction “Fred gave John the $250000 at

Trenos™ ‘and since “ransom” fills the role of the item whose possession is transferred, an initial

143

definition is made for “ransom’ stating that it is a physical object whose possession is transferred

during a Bargain.

-However, this is not the final definition created for “ransom™ since an additional process is
performed when a new schema is learned. Fach of the subactions composing a new schema is
checked for roles that are filled by unknown-word variables or that were previously matched to
such a variable resuiting in an initial definition. - In either case, a new definition is created for the
unknown word based on the role it fills in the learned schema and the schema constraints on this
role. Consequently, when the CaptureBargain schema is subsequently learned from the kidnapping
narrative, it causes “ransom” to be redefined as a valuable item whose possession is transferred to
the actor in a CaptureBargain schema. In other words, the word “ransom’ is tentatively associated
with the schema variable 7y5 in CaptureBargain, whose English paraphrase is repeated below for

convenience:

709 is a person. ?c4 is a location. 7r5S is a room. %4 isin ?r5. ?x55 is a character. 7b9 is free.
7x55 captures 7b9 and locks him/her in 7r5. 7a34 is a character. ?x55 contacts 7a34 and tells it
that 769 is 7x55's capﬁve. 7y5 is a valuable. 7x55 wants to have 7y5 more than it wants 7b9
to be 7x55's captive. ?a34 has a positive relationship with ?b9. 7a34 has ?y5. 7x55 and 7a34

carry out a bargain in which ?x55 releases 769 and 7234 gives 7x55 ?y5 at 7111,

The rationale for having learned schemata take precedence when defining new role labels is that a
learned schema represents a new situation and therefore new words are deemed more likely to be

directly associated with it than with an existing schema like Bargain.

The provisional definition added to the lexicon for a role label contains two parts. The first is
a set of constraints on the object itself, such as the constraint thaf “ransom” refers to a Valuable.
The second part is a suggestion of the schema of which it is a role. The fact that a role label
definition can suggest a relevant schema allows GENESIS to use the definition to construct explana-
tions for narratives that it otherwise would not understand. For example. the definition acquired

for the word “"ransom” is crucial to the system’s understanding of the following narrative.

Input: Ted is Alice’s husband. John took Alice into a room. Ted paid John the ransom and John

released Alice.

Thematic goal achieved: John is happy that John has the ransom.

144

Ready for questions:

>Summarize

Alice was free. John captured Alice and locked her in a room. John contacted Ted and told
“him that Alice was John's captive. John wanted to have a ransom more than he wanted Alice
to be John's captive. Ted had a positive relationship with Alice. Ted had the ransom. John

and Ted carried out a bargain in which John released Alice and Ted gave John the ransom.

>Why did John take Alice into the room?

So John could confine Alice in the room.

>Why did Ted pay John?
Because Ted believed that if Ted gave John the ransom then John would release Alice and

because Ted wanted Alice to be free more than he wanted to have the ransom.

When the word “ransom’” is encountered in this narrative, it suggests that the CaptureBargain
schema might be ‘relevant. This schema is then used in a top-down fashion to construct an explana-
tion for the text. Since no other piece of information suggests CaptureBargain, the learned
definition for “ransom™ is crucial in understanding this story. If the definition for this word is
removed, the system is no longer able to understand the narrative as illustrated by the following

trace:

Input: Ted is Alice’s husband. John took Alice into a room. Ted paid John the ransom and John

released Alice.
Ready for gquestions:

>Summarize

John moved Alice into a room. Ted gave John a ransom. John released Alice.

>Why did John take Alice into the room?

Cannot find sufficient reason.

>Why did Ted pay John?

145

“Cannot find sufficient reason.

A definition that associates the word “kidnapper” with the main character of a CaptureBar- -
gain schema (?x55) is learned in 2 manner directly analogous to the learning of the word “‘ransom.”
This word is also made to suggest the new schema, and this suggestion allows GENESIS to under-

stand the following narrative:

Input: Ted is Alice's husband. A kidnapper took Alice into a room. Bob got 75000 dollars and

released Alice.
Thematic goal achieved: Bob is happy that Bob has the $75000.
Ready f or questions:

>Summarize

Alice was free.” Bob captured Alice and locked her in a room. Bob contacted Ted and told him

that Alice was Bob's captive. Bob wanted to have $75000 more than he wanted Alice to be
Bob's captive. Ted had a positive relationship with Alice. Ted had the $75000. Bob and Ted

carried out a bargain in which Bob released Alice and Ted gave Bob the $75000.

>Who took Alice into the room?

Bob moved Alice into the room.

> Why did Bob take Alice into the room?

So Bob could confine Alice in the room.
> How did Bob get the money?
Bob kidnapped Alice.
If the definition for “kidnapper” is removed, the following trace reveals the result:

Input: Ted is Alice’s husband. A kidnapper took Alice into a room. Bob got 75000 dollars and

released Alice.

146

Ready for quesfions:

>Summarize

A kidnapper moved Alice into a room. Bob released Alice.

>Who took Alice into the room?

The kidnapper moved Alice into the room.

> Why did Bob take Alice into the room?

Question refers to unknown event, person, place, or thing.

>How did Bob get the money?

Cannot find sufficient cause.

Although learning definitions for words such as “kidnapper” and “ransom.” can be very help-
ful, many times a new word that fills a slot in a schema will not actually be a role label. For exam-~
ple, consider replacing the word “ransom” in the kidnap learning narrative with the word “moo-
lah.” Since the word “moolah™ is unknown, GENESIS gives it a definition identical to the one it
learns for “ransom.” In order to be able to recover from such mistakes, the system monitors the
schemata suggested by newly learned words. If a new word subsequently suggests a schema that
does not explain any future inputs, the suggestion is removed. For example, consider processing the
following murder-for-inheritance story after the system has acquired a “ransom definition™ for

“moolah.”
Mary had $100000. Stan murdered Mary and inherited the moolah.

The word “mooclah™ suggests a CaptureBhrgain schema; however, none of the actions in the narra-
tive match the subactions in its expansion. Consequently, the suggestion is considered to be

misleading and is removed from the learned word.

12.3. Learning Schema Labels

Scherna labels are verbs that refer to an entire plan schema. Examples of schema labels include
“kidnap,” “rob,” and “poison.” Learning meanings for schema labels is a more difficult task since
the relevant context is potentially much broader. A sentence such as “John robbed the store” may

be used to introduce a long piece of text elaborating the situation, to succinctly summarize a

147

previous piece of text, or to refer to a single action in an even larger plan. A few heuristics have
been developed that allow a reasonable guess to be made regarding the referent of such unknown
verbs. The following one is used to resolve the meaning of “kidnap” as used in the kidnap learning

narrative.

If one character informs another that.some unknown action occurred and a schema whose actor
is the same as this action’s was recently acquired from the narrative, and this schema also has
roles filled by the speaker and any direct and indirect objects of the action, then assume that

the speaker is summarizing the event and that the unknown act refers to the new schema.

Specifically, since Fred tells his wife that “someone kidnapped Mary” and since both he and Méry
were participants in the just completed CaptureBargain schema, GENESIS assumes that the word
“kidnap” refers to CaptureBargain. A definition for “kidnap’ is added to the lexicon where it can
be used in the parsing of future sentences. This definition states that the word refers to an instance
of CaptureBargain in which the subject of the clause is the actor (?x55) and the direct object is the
victim (769). Of course, the word “kidnap” is frequently used to refer to only an act of abduction
rather than to an entire kidnap-for-ransom schema; however, the definition that GENESIS learns is
a reasonable one given its current experience with the new word. In addition, a data-structure is
added to the vocabulary of the generator where it can be used in the pfoduction of English replies
to users’ questions. For “kidnap”, the added data-structure states that an instance of CaptureBar-

gain can be stated in English by saying: “?x55 kidnapped 7b9.”

The new definition of “kidnap” in the lexicon is crucial to GENESIS™ understanding of the fol-

lowing narrative:

Input: Steve kidnapped Valerie. Mike was Valerie's father and paid Steve $30000.

Thematic goal achieved: Steve is happy that Steve has the valuable.

Reaay for questions:

>Summarize

Valerie was free. Steve captured Valerie and locked her in a room. Steve contacted Mike and

told him that Valerie was Steve's captive. Steve wanted to have $30000 more than he wanted

Valerie to be Steve's captive. Mike had a positive relationship with Valerie. Mike had the

148

$30000. Steve and Mike carried out a bargain in which Steve released Valerie and Mike gave
Steve the $30000.

>Why did Mike pay Steve the money? M el

- Because Mike believed that if Mike gave Steve the $30000 then Steve would release Valerie and

because Mike wanted Valerie to be free more than he wanted to have the $30000.

> Why did Steve kidnap Valerie?

Because Steve wanted to have the $30000 more than he wanted Valerie to be Steve’s captive.

In this narrative, “Steve kidnapped Valerie” is interpreted as describing an instance of CaptureBar-
gain in which Steve is the actor and Valerie is the victim. The assertion that “Mike paid Steve
$30000" matches a part of the expansion of this instance of CaptureBargain, and the input “Mike is
Valerie's father™ implies the precondition that Mike values her freedom more than material posses-
sions. If the definition of “kidnap” is removed from the lexicon, the narrative no longer directly
references CaptureBargain nor even suggests it, and GENESIS can no longer understand the story as

illustrated by the following trace:

Input: Steve kidnapped Valerie. Mike was Valerie's father and paid Steve $30000.

Thematic goal achie\}ed: Steve is happy that Steve has the $30000.

Ready for questions:

>Summarize

Steve did something to Valerie. Mike gave Steve $30000.

> Why did Steve kidnap Valerie?

Cannot find sufficient reason.

>Why did Mike pay Steve the money?

Cannot find sufficient reason.

149

The same technique used to learn a definition for “kidnap' has also been used to acquire a
preliminary definition for the schema label “entrap.” The details of this example are presented in

the discussion of the acquisition of a solicitation-for-entrapment schema presented in appendix B.

12.4. Comments on the Integrated Learning of Words and Concepts

Procedures in GENESIS for the integrated learning of words and their underlying concepts
repi-esent only a preliminary exploration of the potential interaction between language and concept
acquisition. As such, there are many refinements that could be made and many problems that need

to be addressed. Below is a short list of some of the obvious areas for future research.

(1) The procedure for removing schema suggestions from new definitions is too strict. One
counter-example should not eliminate a suggestion and repeaied usefulness of a suggestion

should make it resistant to elimination.

(2) Morphology of unknown words should be considered. A "kidnapper” is clearly the actor of a
"kidnapping." '
(3) More and better heuristics are needed for determining whether a word might be a schema label

and to what schema it might refer.

(4) Only role labels and schema labels are considered. Many words do not fall into either of these

two categories.

(5) Only integration with explanation-based learning has been considered. Integration with

similarity-based learning should also be examined.

150

CHAPTER 13

GENESIS: LEARNED SCHEMATA AS RETRIEVAL INDICES

Conceptual information retrieval involves indexing and retrieving textual information based
on an interpretation of its “meaning.” As discussed in [Schank81a], this approach has a number of
advantages over standard information retrieval systems based on keywords. A conceptual infor-
mation system like the CyFr system presented in [Schank81a] indexes specific textual passages
under the schemata that an understanding system used in processing the text. These schemata can
then act as indices for the retrieval of information by a question answering system. In CyFr,
FRUMP [DeJong82b] was used to process news stories and CYRUS [Kolodner84] was used to index

and retrieve episodes for the purpose of answering questions.

CYRUS was also capable of learning specializations of existing schemata and using these new
schemata to index and retrieve specific events. For example, CYRUS stérted with a general schema
for diplomatic meetings and then learned a specialization in which military aid was the topic of
discussion. Specific episodes involving meetings about military aid were then indexed under this
new schema, and this indexing was used to retrieve answers 1o questions such as: “Who has Vance
talked to about military aid?” The ability to learn new ways of indexing episodes is important in
maintaining an efficient and useful dynamic memory [Schank82]. It is crucial for maintaining
organization in very large databases of information. Learning new indices also allows a system to
notice similarities among texts unforeseen by the system’s implementors and use these similarities

to help retrieve related information [Mconey87b].

Like CyFr, GENESIS indexes specific episodes under schemata that were used in understanding
the episode. In addition, since GENESIS can learn new schemata, the system is also capable of learn-
ing new ways of indexing episodes. However, GENESIS uses explanation-based methods to learn
- schemata for novel combinations of existing schemata, unlike CYRUS, which used empirical
methods to learn specializations. A number of case-based reasoning systems also learn new sche-
mata for indexing episodes in memory [Bain86, Kolodner87]. However, like CYRUS, these systems
create schemata by noticing similarities between specific cases that were stored in the same place in
memory. GENESIS, on the other hand, creates a schema from a single instance and actually uses
this schema to notice the similarity between two instances and therefore store them in the same
place in memory. Therefore, the learning of memory indices in GENESIS is very different from

that performed by systems using case-based reasoning. The remainder of this chapter describes the

151

simple indexing scheme used in GENESIS and gives examples of how it can be used to retrieve

related episodes.!

When GENESIS has finished processing a narrative, the indexer examines the highest-level
explanation for each of the thematic goals achieved in the narrative. It then stores the complete
causal model created for this specific narrative in the long-term store, indexing it under each of the
schemata in these highest-level explanations. An exception to this rule is if the system acquires a
new schema from an explanation, in which case the episode is indexed under the new schema
instead of under the schemata that compose it. When answering questions about a particular nar- ‘
rative. the system can be told to “Review similar storie§.”” This causes the system to retrieve past
episodes that are indexed under the same schemata used to index the present story and make them
available for question answering and paraphrasing. Reviewing is done by temporarily replacing the
causal model of the current text with the causal model previously constructed and saved for the
episode being reviewed. For example, consider the state of the system after it has processed both
the learning and test narratives for both the kidnap and murder examples. The following trace

shows the behavior of the system when processing a third murder-for-inheritance story:

Input: Mary is the Bob's mother and is a millionaire. Someone strangled Mary. Bob got
$1000000.

‘Thematic goal achieved: Bob is happy that Bob has the $1000000.

Ready for questions:

>Summarize

Bob murdered Mary. Mary had $1000000. Bob was Mary’s heir. Bob inherited Mary's

$1000000.

>How did Bob murder Mary?
Bob strangled Mary.

>Why is Bob Mary's heir?

1A deseription of GENESIS' ability to use learned schemata to index episodes is also presented in [Mooney87b].

152

Because Mary was Bob's mother.

>Review similar stories
There are 2 other instances of this schema. Enter number of story to be reviewed> 1

Reviewing MurderInheritStoryl -

Ready for questions:

> Summarize

Agrippina murdered Claudius. Claudius had an estate. Agrippina was Claudius’s heir. Agrip-

pina inherited Claudius’s estate.

>How did Agrippina murder Claudius?

Agrippina poisoned Claudius with the mushroom.

>Why is Agrippina Claudius’s heir?

Because Claudius was Agrippina’s husband.

>
There are 2 other instances of this schema. Enter number of story to be reviewed> 2

Reviewing MurderInheritStory2

Ready for questions:

>Summarize

Gene murdered Martha. Martha had $1000000. Gene was Martha's heir. Gene inherited

Martha's $1000000.

> How did Gene murder Martha?
Gene shot Martha and killed her.

>

There are 2 other instances of this schema. Enter number of story to be reviewed>

153

Review finished.

>Review kidnapping stories
There are 2 instances of CaptureBargain. Enter number of story to be reviewed> 1

Reviewing CaptureBargainStory1
Ready for questions:

>Summarize

Mary was free. John captured Mary and locked her in a room. John contacted Fred and told
him that Mary was John's captive. John wanted to have $250000 more than he wanted Mary
to be John's captive. Fred had a positive relationship with Mary. Fred had the $250000. John
and Fred carried out a bargain in which John released Mary and Fred gave John the $250000 at

Trenos.

>How did John communicate to Fred?

John called Fred and told him that Mary was John's captive.

>Why did Fred want Mary free?

Because Fred was Mary's father.

>

There are 2 instances of CaptureBargain. Enter number of story to be reviewed >

Rei/iew finished.

An additional feature that is illustrated in this trace is GENESIS' ability to use learned words in
the retrieval of past episodes. For example, given the definition acquired for “kidnap™ and some
knowledge of English morpho.logy, the system interprets: “Review kidnapping stories” as a com-

mand to retrieve past instances of the CaptureBargain schema.

154

CHAPTER 14

THE PSYCHOLOGICAL STATUS OF EXPLANATION-BASED LEARNING

Most theories of concept and schema acquisition in cognitive psychology have been
similarity-based and postulated learning mechanisms based on inductive generalization across
numerous examples (e.g. [Anderson79, Medin87b, Posner68, Rumelhart78, Thorndyke79]). How-
ever, several recent articles [Medin87a, Murphy85, Schank86b] have criticized this approach for its
failure to acknowlédge the importance of subjects’ existing knowledge and its inability to explain

subjects’ preference for correlations that have causal explanations.

This raises the interesting question of whether an explanation-based learning mechanism can
be productively interpreted as a cognitive model of cértain types of human learning. Although a
number of psychological experiments demonstrate people’s ability to learn concepts or schemata
from two examples using analogy [Gick83, Spencer86] or from many examples using similarity-
based induction [Medin87b, Posner68], until very recently, there were no experiments that demon-
strated people’s ability fo learn a concept or schema by explaining a single example. This chapter
reviews some recent experiments that indicate that people, like GENESIS, can learn a plan schema
by explaining and generalizing a single specific instance presented in a narrative. These experiments
are more completely reviewed in [Ahn87a] and details on the experimental methodology are given

in [Ahn87b).

14.1. Overview of the Experiments

The overall design of the experiments involved subjects reading a single narrative describing a
specific instance of a novel plan and performing a variety of tests constructed to determine whether
or not they had acquired an abstract schema from this single example. Three passages were con-
structed to present situations for which the subjects presumably did not already have a pre-
established schema but which they could understand using plan-based understanding. For example,
one passage involves a cooperative buying scheme used in other countries. In Korea the system is
calied a "Kyeah” and in India it is called a “chit fund”. The experimental narrative describing a

single instance of this plan follows:

Tom, Sue, Jane, and Joe were all friends and each wanted to make a large purchase as soon as

- possible. Tom wanted a VCR, Sue wanted a microwave, Joe wanted a car stereo, and Jane

155

wanted a compact disk player. However, they each only had $50 left at the end of each month
after paying their expenses. Tom. Sue, Jane, and Joe all got together to solve the problem.
They made four slips of paper with the numbers 1,2,3, and 4 written on them. They put them
in a hat and each drew out one slip. Jane got the slip with the 4 written on it, and said. "Oh
darn, I have to wait to get my CD player." Joe got the slip with the 1 written on it and said,
"Great, I can get my car stereo right away!" Sue got the number 2, and Tom got number 3.In
January, they each contributed the $50 they had left. Joe took the whole $200 and bought a
Pioneer car stereo at Service Merchandise. In February, they each contributed their $50 again.
This time, Sue used the $200 to buy a Sharp 600 watt 1.5 cubic foot microwave at Service
Merchandise. In March, all four again contributed $50. Tom took the money and bought a
Sanyo Beta VCR with wired remote at Service Merchandise. In April, Jane got the $200 and
bought a Technics CD player at Service Merchandise.

In addition to a group given specific narratives (the instance group). some experiments also used a
control group that was given abstract descriptions of the schemata underlying each of the example
narratives (abstract group). The description of the Kyeah schema given to the abstract group fol-

lows:

"Suppose there are a number of people (let the number be n) each of whom wants to make a
- large purchase but does not have enough cash on hand. They can cooperate to solve this prob-
lem by each donating an equal small amount of money to a common fund on a regular basis.
- {Let the amount donated by each member be m.) They meet at regular intervals to collect
everyone's money. Each time money is collected, one member of the group is given all the
- money collected (n X m) and then with that money he or she can purchase what he or she
wants. In order to be fair, the order in which people are given the money is determined ran-
domly. The first person in the random ordering is therefore able to purchase their desired item
immediately instead of having to wait until they save the needed amount of money. Although
the last person does not get to buy their item early, this individual is no worse off than they

would have been if they waited until they saved the money by themselves.

Since subjects in the abstract group had been directly told the content of the schema, they were
presumed to have learned the schema. Consequently, if the instance group performed as well ag
 the abstract group on a task requiring knowledge of the general schema, then it is reasonable to

~ assume that the subjects in the instance group had also acquired the schema.

156

Before any of the experiments were conducted, the experimenters analyzed the instance pas-
sages from an EBL perspective and determined a set of variables and constraints characterizing the
schema that could be learned from generalizing an explanation of the marrative. A constraint in
this context is defined as a property that supports the explanation for how the thematic goals in the
narrative were achieved. For example, the variables and constraints for the Kyeah passage are
shown in Table 14.1. In order to determine whether a learned schema agreed with that predicted
by EBL, subjects’ learning in each task was judged based on how well they obeyed the constraints

and recognized the mutability of the variables.

14.2. Experimentl: Abstract Description Generation

The first experiment investigated .whether subjects could acquire a schema from a single
example by asking them to “write, in abstract terms, a description of the general technique iltus-
trated in the narrative.”” Only the instance group was used in this experiment, since this task
would simply be a memory test for the abstract group. In general, subjects in the instance group
produced good desériptions of the schema. The following is the description of the Kyeah schema

written by one subject:

Suppose in a group of people, each person would like to buy something expensive, but over a
period of time, each person cannot earn enough to buy what he would like. By using random
selection, each person could be assigned a number. when the group had saved enough money
together to purchase an item, the person with the first number would get his item. This would

continue for the rest of the group until everyone had gotten what he wished.

Table 14.1: Variables and Constraints for the Kyeah Schema
Variables Constraints
identity of participants participants want items of similar value
number of participants (n) participants cannot afford items
exact time of meetings participants trust each other
interval between meetings (t) | participants can afford m each t
amount of donation (m) each participant donates same amount
items bought cost of desired items =nX m
stores where items bought number of meetings = number of participants
| method of determining order order must be assigned randomly

157

A more objective measure of their performance is that, overall, subjects given a specific instance
explicitly mentioned 75% of the constraints and identified 89% of the variables in their descriptions

of the general schema. Details on the scoring methods used are given in [Ahn87b].

14.3. Experiment 2: New Instance Generation

The second experiment was constructed to determine whether subjects in both the instance
and abstract group could produce another specific instance of the learned schema. Subjects in the
instance group were told to “write another story in which characters use the general method illus-
trated in the story but that is otherwise as different as possible” while subjects in the abstract
group were told to “write a story in which particular individuals use the technique described in the
passage in a specific case.” In general, both groups produced equally good narratives. The following

is the new Kyeah narrative written by one subject in the instance group.

Bill, Kim, John and Mary were all business associates. Bill wanted some land in Northern Illi-
nois, Kim wanted a new house in Switzerland, John wanted a new Porshe 928S with all all
accesories, and Mary wanted to take a trip around the world. The only problem was they each
‘ iny had $25,000.00 left unspent at the end of each month. They all got together and picked
random variables on Bill's business computer. Mary was farthest from her variable so she
would have to wait till last to get her trip around the world. John nailed his variable and
.'_.fjumped enthusiastically saying, "Yea, I get to get my new Porshe 928S right now." They each
talked with their banker and drew the $25 Thousand dollars out and pooled it together after
the first month and the next day John drove up in [his new, black, 9288 wiﬁh all accessories. At
the end of the next month they again pooled their money and Kim got her chalet in Switzer-
land. Again at the end of the next month they pooled their money an Bill got his land in
Northern Illinois. Finally, after the fourth month they pooled their money together and Mary

left for her trip around the world.

A more objective measure of their relative performance is that the stories written by the instance
group explicitly and correctly instantiated 81% of the constraints compared to 76% for the abstract
group. The difference between the two groups is insignificant, indicating that subjects in both

groups learned the schema equally well.

158

14.4. Experiment 3t Yes/No Questions

The third and final experiment directly tested whether subjects could correctly identify
whether or not a particular component was a variable or a constraint in the general schema. Sub-
jects in both the instance and abstract group were explicitly asked yes/no questions like: “Can some
people consistently donate less than others and have the system work?” and “'Is there any particu-
lar number of people required for this plan?"" Overzll, the two groups were able to answer these
questions equally well. The instance group correctly answered 85% of the questions compared to

81% for the abstract group.

14.5. Discussion of the Experimental Results

In general, the experiments reviewed in this chapter support the claim that people can learn a
schema by explaining and generalizing a single narrative a la GENESIS. However, also like
GENESIS. people can only perform explanation-based learning when they can explain all of the
actions that compose the schema. In [Ahn87b], additional experiments are presented that demon-
strate subjects’ inability to learn schemata from narratives for which they cannot construct com-
plete causal explanations. For example, subjects could not learn a schema for an American Indian
potlatch ceremony from one example since they could not determine motivations for all of the

actions in the example.

There are also some interesting observations that can be made regarding subjects’ apparent
generalization processes. For example, unlike SOAR .(see section 3.8), they obviously do not simply
change each constant in the explanation to an independent variable. Since in the Kyeah narrative
all of the characters made their purchases at the same store (i.e. Service Merchandise), simply
changing the constant representing this store to a variable would result in a schema in which all of
the participants had to buy their items at the same store. However, in none of the experiments did
any of the subjects believe that this was a constraint on the underlying schema. Of course, this
does not imply that subjects must therefore use a generalization process analogous to the unification
algorithms discussed in chapter 3; however, it does indicate that people’s generalization processes
are not as simple as changing constants to variables. Subjects’ generalization process takes greater
advantage of their existing knowledge of the domain. In fact, it is clear that in some ways people’s
ability to generalize explanations is even more powerful than algorithms like EGGS, EBG, and
STRIPS. For example, in the Kyeah example, almost all of the subjects realized that the plan

would work with any number of people as long as there was an equivalent number of meetings for

159

collecting and allocating the money. However, producing this generalization requires recognizing
the repeated structure of the original example and producing a general iterative plan for the overall
schema. Performing this process of geﬂeralizing to n from one example in a machine learning sys-
tem requires additional generalization techniques. BAGGER [Shav!ik87a, Shavlik88] is an EBL sys-
tem which, in addition to EGGS, uses a process for analyzing recursive rule applications in order to

learn iterative plans from one example.

160

CHAPTER 15

CONCLUSIONS AND FUTURE WORK

This thesis has demonstrated that a general explanation-based learning mechanism can
- efficiently learn and improve its performance in a wide variety of domains. In particular, it has
shown that a general EBL mechanism is capable of improving performance on the complex task of
understanding narrative text by acquiring schemata for novel plans that achieve important goals.
Finally, it has reviewed empirical evidence that indicates that explanation-based learning is a plau-
sible model of certain types of human learning in this domain. This final chapter summarizes the
unicjue features of the research presented in this thesis and outlines some problems requiring future

research.

15.1. Relation to Other Work
Below are four aspects that make the work presented in this thesis unique:

(1) It is based on a general domain-independent explanation-based learning mechanism which has

been tested on numerous examples from different domains.

(2) It has addressed the problem of generalizing the temporal order of actions in plan-based

explanations.

(3) It has illustrated the ability of EBL to improve the performance of an understanding system

as well as a problem-solving system.

(4) Tt has examined the psychological plausibility of an explanation-based learning system.

15.1.1. Generality and Domain-Independence

Earlier explanation-based learning systems were constrained by the particular domains to
which they were applied and were never tested on examples from a variety of domains. This"
includes such systems as STRIPS [Fikes72]. LEX2 [Mitchell83], CUPS [Winston83)]. LP [Silver83],
MA [O'Rorke84], ARMS [Segre85], LEAP [Mitchell85], PHYSICS-101 [Shavlik85], and the original
GENESIS [Mooney85a].

More recent EBL systems such as PROLOG-EBG [Kedar-Cabelli87a], MRS-EBG [Hirsh87],
PROLEARN [Prieditis87], and PRODIGY [Minton87a, Minton87b] are general domain-independent

EBL systems; however, these systems have not been tested on as wide a variety of examples.

161

According to {Kedar-Cabelli87a], “PROLOG-EBG has been tested on the ‘cup’ and 'safe-to-stack’
examples, and the ’suicide’ example” (p. 389). In [Hirsh87], the examples presented are the Safe-
To-Stack and LEX2 examples; no other examples are mentioned. In [Prieditis87], the Safe-To-Stack
and LEAP examples and examples on list membership and Towers of Hanoi are the only ones men-
tioned. In [Minton87b], it states that PRODIGY has been tested on machine shop scheduling and 3-

D robotics construction as well as the “"blocks world.”

In addition, none of these systems support all of the representational formalisms supported in
EGGS (i.e. Horn clauses, rewrite rules, and STRIPS opérators). PROLOG-EBG, MRS-EBG, and
- PROLEARN only use Horn clauses and PRODIGY supports STRIPS operators and Horn clauses.
Also, except for PRODIGY, none of these systems have been integrated with a performance system
operating in a complex domain. Finally, unlike EGGS, none of these systems have facilities for

learning from the observed problem solving behavior of other agents.

15.1.2. Generalizing Temporal Ordering

Previous research on EBL and macro-operators has not addressed the problem of learning
macro-operators with partially ordered actions. STRIPS [Fikes72] and most other systems that
learn macro-operators (e.g. [Iba85, Korf85, Minton85]) learn linear sequences. Some recent work
has addressed the issue of learning iterative macro-operators [Cheng86, Prieditis86, Shavlik87al.
However, the packaging procedurelpresented in section 6.2.2 is apparently the first system that
learns macro-operators with partially-ordered actions. Although the procedure for generating
partially-ordered macro-operators is closely related to certain processes in nonlinear planning, there

are a number of important differences which were discussed in section 6.2.2.6.

15.1.3. Leafni:ng for Understanding

Unlike GENESIS, almost all machine learning systems with performance components use
learning to improve the abilities of a problem-sclver or planner rather than an understander. IPP
[Lebowitz80, Schank82] is still one of the few machine learning systems that improved its ability
to understand. IPP processed news articles and used a similarity-based approach to learn speciali-
zations of éxisting schemata. For example, the system already had a schema for kidnapping and
| after processing several stories that described kidnappings in Italy carried out by the terrorist
group the Red Brigades, it created a specialized schema for kidnappings in Italy in which the Red
Brigades was the default kidnapper. Later. if it encountered an article describing a kidnapping in

Italy in which the kidnappers were not mentioned, it assumed the Red Brigades was the responsible

162

party. Besides using a similarity-based instead of an explanation-based approach to learning, IPP
learned specializations of existing schemata instead of new schemata for compositions of actions
that achieve important goals. As mentioned in chapter 13, CYRUS [Kolodner84] also wused
similarity-based methods to learn specializations of existing schemata, which it used to index and

retrieve specific episodes.

Other than GENESIS, the only EBL system that improves its ability to understand external
problem solving behavior is the ARMS system [Segres 7al. ARMS uses learned schemata to aid the
understanding of assembly sequences in a robotics domain. However, as mentioned in section

110.1.3, the understanding system in ARMS is incapable of inferring missing actions and therefore,

unlike GENESIS, the plan schemata it learns can not be used to fill in gaps in future observations.

15.1.4, Psychological Plausibility

This research is also unique in that it has motivated psychological experiments that demon-
strate that people can perform explanation-based learning from a novel plan presented in a narra-
tive [Ahn87a, Ahn87bl. There are currently no other psychological experiments specifically
direcied at judging the ability of an EBL system to model human learning. Nevertheless, as
reviewed in [Murphy85), there is a substantial amount of psychological research that reveals the
important effect subjects’ background knowledge and naive theories of the world have on the pro-

cess of concept acquisition.

15.2. Problems f or Future Research

The research presented in this thesis as well as numerous related projects has revealed a
number of interesting problems that need to be addressed. This section briefly discusses several
problem areas in explanation-based learning and mentions current research efforts that are attempt-

_ing to confront these problems.

15.2.1. The Effect of Learning on Performance

Ag illustrated with empirical data in chapter 7, explanation-based learning can have both
positive and negative effects on future performance. However, for unrestricted learning of macros
in problem solving, there is conflicting empirical evidence regarding which of these effects dom-
inates in the long run [Minton85, O'Rorke87a, Shavlik88]. Consequently, further empirical and
theoretical analysis of the effect of learning on performance is required. Of course, learning and

forgetting the right macros is crucial to performance improvement.

163

15.2.2. Operationality and Pruning

Learning macros or schemata at the appropriate level of generality is one aspect of insuring
that learning improves performance. However, there is currently no general domain-independent
characterization of what makes a concept operational. In EGGS, pruning for operationality requires
a special procedure for each domain. In PROLOG-EBG, arbitrary axioms are used to define particu-
lar predicates as operational and in MRS-EBG, an arbitrary set of axioms can be used to prove that
an expression is operational. While these approaches allow for flexibility in determining opera-
tionality, they do not help to characterize the notion of operationality in a general way. Some
recent research in EBL has been directed at the problem of determining operational descriptions.
Systems in particular domains have been used to explore learning schemata at different levels of
generality [Segre87b, Shavlik87b] and the METALEX system [Keller87a] searches for specific con-

_cept descriptions that empirically improve performance. However, there is currently no analytical
characterization of operationality. In fact, current experience probably indicates that such a char-
acterization is not forthcoming and that heuristic and empirical methods will continue to be the

only ways of determining an appropriate level of generality for what is learned.

15.2.3. Deciding What to Learn

A slightly different problem is determining whether or not a particular macro or schema is
worth learning at all. Learning large numbers of useless rules only exacerbates the problem of
slowdown. As mentioned in chapter 7, there has been some research on analytical and empirical
methods for determining utility. In particular, this has beem the primary focus of Minton's
research [Minton85, Minton87a]. However. the problem of determining what must be learned and
what must be forgotten in order to improve overall system performance is still largely an open

guestion.

15.2.4. Understanding Observed Behavior

Learning from observed problem solving behavior like that performed by GENESIS and vari-
ous learning apprentice systems [Mitchell85, O'Rorke87b, Segre87a, Wilkins86], is an efficient
method for acquilring expert knowledge. Since this process requires the ability to explain the inten-
tional actions of external agents, the process of understanding or plan recognition [Schmidt78],
becomes an important part of the learning process. However, understanding is a difficult process
which is far from completely understood despite the fact that it has been fairly extensively studied

in natural language processing. The understanding component in GENESIS and other current

164

systems is clearly incapable of explaining the wide variety of situations that humans can
comprehend. Of course, research in this area is continuing and the\:re has recently been some new
approaches to the problem. Recent work by Charniak [Charniak86] and Kautz and Allen [Kautz86]
Were briefly discussed in section 10.1.3. Recent understanding research by Schank and his col-
leagues [Kass86, Leake86, Schank86a] has involved the SWALE system, which constructs explana-
tions for situations by modifying or tweaking existing schemata or explanation patterns. This
approach is an attempt to avoid the combinatorially explosive nature of plan-based understanding

while maintaining the ability to explain novel situations.

15.2.5. Intractable Domain Theories

In EBL, the combinatorially explosive nature of explaining why a plan works or why an
example is a member of a concept has been referred to as the infractable theory problem
[Mitchell86]. In any realistic domain, constructing a complete explanation for why a plan actually
works is an expensive process. For example, the kidnapping schema GENESIS learns is actually
overly-general because it does not consider the possibility that the police or other counter-agents
might interfere with the plan. The act of communication between the kidnapper and the ransom
payer should actually be constrained so that it does not reveal the kidnapper's identity and thereby
result in his arrest. GENESIS is implicitly making the assumption that external agents will not
interfere; however, it has no way of recovering if this assumption is violated. Attempting to con-
strain the plan to prevent any possible interference on the part of any other agent is clearly not a
tractable solution. Systems that attempt to deal with this problem are described in [Chien87a,
Chien87b]. The basic approach taken in Chien's work is to make simplifying assumptions during
the explanation process in order to make it tractable. When a subsequent failure occurs, it is
explained in terms of a violation of an initial assumption and the learned concept is refined to
account for the failure. Alternative approaches to dealing with the intractable domain theory prob- .

lem are described in [Bennett87, Doyle86, Tadepalli86].

15.2.6. Incomplete Domain Theories

Corresponding to the intractable theory problem is the incomplete theory problem [Mitchell86]
in which the current domain theory is incapable of completely explaining an example. One
approach to refining an initial domain theory based on experimentation is described in [Rajamo-
ney85, Rajamoney87]. When a prediction supported by the current theory is contradicted by

empirical evidence, the system examines the domain axioms underlying the faulty prediction and

165

-conducts experiments to determine exactly which of these axioms is incorrect. Another approach to
dealing with incompleteness is to use similarity-based methods to induce initial causal theories

[Anderson87a, Pazzani87].

15.2.7. Hybrid Learning Methods

Approaches to dealing with intractable and incomplete theories frequently involve integrating

explanation-based and similarity-based learning.! For example, integrated appfoaches can be used
to deal with intractability by using the detection of similarities to focus the explanation process.
This approach is taken in [Lebowitz86], in which similarities in the congressional voting record are
used to focus the process of explaining why certain members of congress voted for or against a par-
ticular bill. If the incompleteness arises from the fact that operators are represented procedurally
instead of declaratively, empirical techniques can be used in the actual process of generalizing

explanations {Porter85, Porter86].

Correspondingly, EBL methods can be used to address problems with purely empirical
approaches. For example, explanations of particular examples can be used to select relevant
features for similarity-based methods [Danyluk87, Flann86, Mitchell84]. Also, goal-related
knowledge can be used to guide feature selection for conceptual clustering systems [Mogensen87, |
Stepp86]. In general, this approach allows explanations to contribute to a similarity-based system’s
inductive bias [Utgoff86].

Current approaches to combining the two learning methods effectively use one of the methods
to focus or direct the other. An interesting area for future research involves using each method to
learn different parts or features of a single concept. For example, imagine a system like GENESIS
trying to learn a schema for a birthday party by reading narratives about particular celebrations.
Such a system could probably use its domain knowledge to explain the baking, cutting, and eating
of the birthday cake since these actions are causally connected and satisfy important hunger and
enjoyment goals. However, it would probably not be able to explain why someone put a particular
number of candles on the cake and why someone else made a wish and then blew them out while
everyone else sang. Iowever, these components of the birthday-party schema might be learned
using a similarity-based approach. Since many stereotypical actions (e.g. a wedding ceremony or a

trip to the restaurant or supermarket) contain both features that are causally necessary and others

Some researchers may sugges? that EGGS would combine nicely with BACON [Langley81]; however, four out of five
doctors would probably agree that this is not a healthy combination.

166

that are conventional, such an approach to integrating the two methods could be very useful, par-

ticularly in the domain of narrative understanding.

15.3. Conclusions

This thesis has shown that a single general learning mechanism can perform explanation-based ‘
learning in a wide variety of domains. The generalization mechanism in the EGGS system has been
shown to be able to generalize explanations based on logical proofs, term rewritings, and plans com-
posed of STRIPS operators. This generalization algorithm was compared to the generalization algo-
rithms in STRIPS and PROLOG-EBG. Like EGGS, both of these algorithms use unification pattern
matching to compute the most general explanation that maintains the structure of an explanation
for a specific example. Theoretically, the time required to compute a generalized explanation was
shown to be linear in the size of the explanation. Compared to generalization algorithms based on
unification, the generalization algorithm in SOAR was shown to be susceptible to under-

generalization.

With regard to logical proof explanations, mechanisms in EGGS for proof construction, proof
~completion, and macro-rule learning were presented. Examples of learning using logical proof
explanations were given for the following domains: logic circuit design (as in the LEAP system),
logic theorem proving (as in MA), integration problem solving (as in LEX2), geometry theorem

proving (as in ACT* and PUPS), and blocks world planning (as in STRIPS).

Regarding explanations composed of rewrite rules, mechanisms in EGGS for rewriting expres-
sions and learning rewrite macro-rules were discussed. Examples of learning using term rewritings
were presented for the following domains: logic circuit design, integration problem solving, and

equation solving.

Finally. regarding plan-based explanations composed of STRIPS operators, mechanisms in
EGGS for verifying plans and learning macro-operators with partially ordered actions were
presented. The process of learning partially ordered macro-operators from specific plans was com-
pared to the task of nonlinear planning. Examples of learning using plan-based explanations were

given for blocks world planning and computer programming.

Empirical results on the effect of macro-rules on problem solving performance were also
presented. These results show that learning macro-rules can greatly improve performance on simi-
lar problems; however, in certain situations, it can also substantially degrade performance.

Approaches to dealing with the problem of degraded performance were reviewed and suggestions

167

for conducting properly controlled experimental comparisons of learning and non-learning systems

were given.

The EGGS learning system has been tested most thoroughly as a component of the GENESIS
narrative understanding system. The overall architecture of GENESIS was reviewed and the
importance of learning to improve the performance of a complete Al system was discussed. The
~ knowledge representation used in GENESIS and its ability to construct explanations for narratives
were discussed in detail using the learning of a murder-for-inheritance schema as an example. The
schema and plan-based understanding processes in GENESIS were presented and compared to those

in previous narrative understanding systems.

It was shown how schema acquisition in GENESIS uses the EGGS system to generalize' the
explanations constructed for characters’ actions in a narrative. An additional generalization step
that insures that the learned schema represents a volitional action and does not contain any unmo-
tivated actions waé also discussed. The description of schema acquisition in GENESIS also included
discussions of processes for deciding when to learn, packaging a generalized explanation into a

schema, and indexing a schema so that it can be used to aid subsequent understanding.

In addition, GENESIS’ ability to learn provisional meanings for unknown schema-related
words was reviewed. Unlike other approaches to the acquisition of word meaning, GENESIS is
capable of Sifnultaneously learning a concept and meanings for related words from a single exam-
ple. GENESIS's ability to use learned schemata to index and retrieve specific episodes was also

presented.

Finally, psychological experiments were reviewed that revealed that human subjects. like
GENESIS, could learn a novel plan schema from a single example. These experiments demonstrated
that after reading a specific instance of a novel plan, subjects could write a good description of the
underlying schema. They could also produce another instance of the schema and answer questions

about the schema as well as subjects who read a passage directly describing the abstract plan.

‘Together with other recent projects investigating general EBL mechanisms, the work presented
in this thesis is an indication that research in EBL has reached a certain level of “maturity’ and has
moved beyond the stage of exploratory programs that operate in a single domain. Nevertheless, as
outlined in the previous section, there continue to be even more interesting issues on the horizon

which are already attracting a great deal of attention.

168

APPENDIX A

LINEAR SUBSTITUTION APPLICATION

Although a linear-time unification algorithm is described in [Paterson78], a linear-time algo-
rithm for applyﬁng a substitution to a Wif is required in order insure that a generalized explanation
- can be computed in linear time (see section 3.4). To insure linear performance, a substitution

application algorithm must be careful to avoid tracing down the final value of a variable multiple
times. Such duplication of work can be prevented by using path compression like that performed in
the standard UNION-FIND algorithm [Reingold77]. One approach is to first compress or “flatten” a
- substitution so that every variable in the substitution is directly bound to its final value. Since a
- flattened substitution can easily be applied to a wif in linear time, if the flattening can be per-

formed in linear time, then the complete process will be linear.

As in [Paterson78], it is assumed that wifs are represented as directed acyclical graphs in
which common subexpressions are represented by a single subgraph. A node representing a k-ary
function or predicate has outdegree k and son(n, i) (1 € i € k) refers to the ith son (argument) of
node n. A substitution will consist of a list of nodes representing variables that have pointers to
nodes representing their values (i.e. Value(v) refers to the value of variable node v and is NIL if v is
not bound). It is assumed that this substitution is generated by a unifier and therefore does not
have any occur-check violations. Given this representation, an algorithm for applying a substitu-

tion to a wif is given in Figure A.1.

The procedure FlattenSubstitution changes the substitution into one in which variables point
directly to their final values. This is done by first finding the final value for each variable by fol-
lowing value pointers and performing patﬁ compression [Reingold77] so that all variables encoun-
tered along the way are also made to point to their final values. Finding the final value of any
variable will be called a FIND since it is analogous to the corresponding process in the UNION-
- FIND problem. Performing a FIND on all the variables in the substitution is linear in the size of
the substitution for the following reasons. Let n be the number of variables in the substitution
(the total number of value pointers) and let p be the total number of value pointers followed by
doing a FIND on all variables. Every FIND requires following exactly one last pointer to a value
that is either an unbound variable or not a variable at all (let such pointers be called final pointers).
Consequently, following final pointers accounts for n of the total number of pointer references.

Let 0 be the total number of pointers traversed that are not final pointers. Therefore, p=n+o.

169

let S be the substitution and w be the wif to which it is to be applied
FlattenSubstitution(S)
ReplaceVariables(w)

procedure FlattenSubstitution(S)
for variable v in S do
let A be an empty stack
while v is a variable node and Value(v)=NIL do
push(v, A)
let v = Value(v)
while A is nonempty do
Value(pop(A)) = v
for variable v in S do
if Value(v) is not marked as already visited then
mark Value(v) as visited
ReplaceVariables(Value(v))

procedure ReplaceVariables(n)
if n is a node for a variable or a constant
then return
else
for i from 1 to outdegree(n) do
if son(n,i) is a variable node and Value(son(n,i))=NIL

then let son(n,i) = Value(son(n.i))
else ReplaceVariables(son(n,i))

Figure A.1: Linear Substitution Application Algorithm

Each of the o non-final pointers followed in a FIND results. in that pointer being deleted and being
replaced by a final pointer. Since the initial number of non-final pointers is clearly less than n (the
total number of pointers), there are at most » non-final pointers to be deleted and hence 0 € n.
Consequently, p € 2n and therefore finding the final values for all the variables takes orily linear

time.

The procedure ReplaceVariables simply traverses a wff and replaces any bound variables
encountered with their previously computed final value. Since traversing a graph is linear in the
size of the graph, this process is clearly linear in the size of the input wiff. After the final values for
all variables has been computed. ReplaceVariables is called on all the final values in order to replace
anfy variables within them with zheir final values. Values are marked when they are traversed to

avoid traversing them more then once. Since ReplaceVariables is linear, the process of replacing

170

variables in values is also linear with respect to the size of the overall substitution. This finishes
the process of “flattening” and all variables are now bound to their completely instantiated final
values. Calling ReplaceVariables on the input wff will, in linear time, replace all variables with
their final instantiated values. Since “flattening” is linear in the size of the substitution and since
replacing variables in the input wif is linear in the size of the wiff, the algorithm in Figure A.2 is

linear in the size of its inputs.

171

APPENDIX B
ADDITIONAL GENESIS EXAMPLES

In chapters 9-11 a detailed description was given of how GENESIS learns, indexes, and subse-
quently uses a murder-for-inheritance schema. In addition, in chapter 2, a trace of GENESIS' 1/0
behavior was given for the learning of a kidnap-for-ransom schema. This appendix provides
further details on the kidnapping example as well as detailed descriptions of two additional
GENESIS examples. The two additional examples include learning a schema for a person burning
their own property in order to collect the insurance money and learning a schema for a police-
officer impersonating a prostitﬁte in order to arrest potential customers. Definitions for all of the

schemata and rules needed to process these examples are given in appendix C.

B.1. The Kidnap Example

This section presents additional information on the kidnapping example. The test and learning

narratives as well as a system trace for this example were presented in chapter 2.

B.1.1. Processing the Test Narrative Before Learning

The parsed version of the test narrative for the kidnap example is shown in Figurt? B.1. When
processing this narrative for the first time given only the knowledge in appendix C, GENESIS con-
structs the causal model shown in Figure B.2. Except for connecting Alice's imprisonment to her
subsequent release, relatively little causal structure is built. The fact that Bob locked Alice in his

basement (which is parsed as a Confine action) suggests a Capture schema and this schema is

(Isa Personl Person) (Gender Personl male) (Name Personl Ted) (Isa Person2 Person)
(Name Person2 Alice) (Gender Person2 female) (Husband Person1 Person2)

(Isa Money1 Money) (Amount Money1 100000 dollar) (Isa Lotteryl Lottery)

(Win Persont Moneyl Lottery1) (Isa Person3 Person) (Gender Person3 male)

(Name Person3 Bob) (Isa Basement1 Basement) (Isa Location1 Location)

(In Location1 Basement1) (Confine Person3 Person2 Location] Basement1) '
(Residence Person3 Basementl) (Isa Money2 Money) (Amount Money2 75000 dollar)
(Possess Person3 Money2) (Release Person3 Person2 7FROMS6 ?7IN12)

Figure B.1: Parsed Version of the Kidnap Test Narrative

172

Isal — Isald

Isa3 —= lIsal2 —> Isall

Isad — Isa§ §'\Vm1€- Possess2

Confinel Believel Not4
Isal7 —> Isa20- Z

Captivel — Releasel Freed4

B Capturel

Notl
Husbandl — Spousel — PositivelPT1

Isal8 —= Isa22

Inl
Genderl Gender2 Namel Name3 Amount2 Residencel
Isa28 Gender3 Namez Amountl Possess4

Freed Alice is free, Winl Ted won the $100000 in the lottery.

""Releasel Bob released Alice, Isa8 The lottery is a game.

- Captivel Alice was Bob’s captive, Isad The lottery is a lottery,

"_Ca.pturel Bob captured Alice, IsalQ The $100000 is an inanimate object.
Inl In the basement is in the basement, Isal2 The $100000 is a valuable,
Isa22 The basement is a room. Isa3 The $100000 is money,
Isal8 The basement is a basement. Isald Ted is a character.
Isal9 In the basement is a location. Isal Ted is a person.
Isa2 Alice is a person. PositivelPT1 Ted has a positive relationship with Alice,
Isa20 Bob is a character, Spousel Ted is Alice’s spouse.
Isal? Bob is a person. Husbandl Ted is Alice’s husband,
Free2 Alice was free. Isa23 The $75000 is money.
Notl Alice was not free. Genderl Ted is male.
Confinel Bob confined Alice in the basement. Gender2 Alice is female,
At2 Alice is in the basement, Gender3 Bob is male.
Ptransl Bob moved Alice into the basement. Namel Ted’s name is Ted.
Atl Alice is at some place. Name2 Alice’s name iz Alice.
Ptrans2 Bob moved Alice. Name3 Bob’s name is Bob.
Possessd Bob has the $75000, Believel Bob believes that Alice is Bob’s captive.
Notd Alice is not Bob’s captive, Amountl The $100000 is 100000 dollars of money.
Possess2 Ted has the $100000, Amount2 The $75000 is 75000 dollars of money.

- Residencel Bob lives in the basement.

Figure B.2: Causal Model for Kidnap Test Example Before Learning

immediately determined since the Confine step is causally supported by all of the other steps in
Capture. Bob's release of Alice is connected to his previous Capture since the Release’s precondition
of having Alice held captive is achieved by the Confine action in the Capture. As shown in Figure

B.2, the fact that Bob has $75,000 is not connected to the rest of the actions in the narrative.

Due to this impoverished representation of the narrative, the system is unable to answer the
questions presented in chapter 2. This example originally revealed an interesting problem with an

early version of GENESIS' question-answering system. When asked: “Why did Bob lock Alice in

173

his basement,” it produced the reply: "“So Bob could release Alice.” It judged this to be a reason-
able answer because one of its heuristics for answerering a why questions about an action was to
find a later action that it enabled. This heuristic was later refined to eliminate enabled actions that
simply re-achieve states that were already true before the execution of the action in question. This
eliminates the answer: “So Bob could release Alice” since this release only achieves the state of

having Alice free, which was already true before he locked her in the basement.

B.1.2. Processing the Learning Narrative

The parsed version of the learning narrative for the kidnap example is shown in Figure B.3
While processing this narrative, GENESIS builds a very large and interconnected causal structure.
Pieces of this causal structure are shown in Figures B.4 -~ B.8. Figure B.4 shows the explanation for

why Mary got in the car. This explanation can be summarized as follows. John's action of

(Isa Person7 Person) (Gender Person7 male) (Name Person7 Fred)
(Isa Person8 Person) (Name Person8 Mary) (Gender Person8 female)
(Isa Money3 Money) (Amount Money3 order-millions dollar)
(Father Person7 Person8) (Possess Person7 Money3) (Isa Person9 Person)
(Gender Person9 male) (Name Person9 John) (Isa Location2 Location)
(At Person8 Location2) (Ptrans Person9 Person9 7ZFROM11 Location2)
(Isa Gun1l Gun) (Aim Person9 Gunl Person8) {(Color Jeans1 blue) (Isa Jeansl Jeans)
(Attire Person8 Jeansl) (Isa Carl Car) (Isa Location3 Location) (In Location3 Carl)
(Mtrans Person9 (Implies (Not (Ptrans Person8 Persond ?FROM61 Location3))
{Shoot Person9 Person8 ?INSTRUMENT9)) Person§)
. (Possess Person9 Car1) (Isa Hotell Hotel) (Isa Location4 Location)
(At Hotell Locationd4) (Drive Person9 Person8 ?FROM116 Location4 ?VEHICLE10)
* (Residence Person9 Hotell) (isa Room1 Room) (Isa Location5 Location)
(In Location5 Room1) (Confine Parson9 Person8 Location5 Room1)
(Residence Person9 Room1) (DialTelephone Person9 Person7 INUMBER36)
(Mtrans Person9 (Captive Person8 Person9 7LOC1S ?7IN18) Person7) (Isa Money4 Money)
(Amount Money4 250000 dollar) (Isa Restaurant! Restaurant)
(Name Restaurantl Trenos) (Isa Location6 Location) (At Restaurantl Location6)
(Mtrans Person9 (Implies (Atrans Person7 Money4 Person9 Location6)
(Release Person9 Person8 7FROMS00 ?2ING2)) Person?7)
(Atrans Person7 ?PhysicalObject] Person9 7AT24)
(Release ?PhysicalObject2 Person8 ?FROM633 7IN169) (Isa Person22 Person)
(Gender Person22 female) (Name Person22 Valerie) (Husband Person7 Person22)
(Mtrans Person7 (?Action1 ?Personl Person8) Person22)

Figure B.3: Parsed Version of the Kidnap Learning Narrative

174

approaching Mary puts them both in the same location and enables him to aim his gun at her. John
telling Mary that he would shoot her if she didn’'t get in the car suggests a Threaten schema. Since
John driving Mary to the hotel requires as a precondition that Mary be in the car and since this
state is the effect of the successful completion of the Threaten, the Threaten schema is determined.
This in turn adds the assertion that Mary got in the car because she didn't want to be shot and

causes the effect of the Aim to be equated to a precondition of the Threaten.

The remaining explanation for how Mary became John's captive (an expansion of the Capture
schema) is shown in Figure B.5, which can be summarized as follows. Jobn driving Mary to the
hotel brings them all to the hotel’s location. John confining Mary in the hotel room suggests a com-
plete Capture schema, which is immediately determined since the Confine action is supported by all
the other actions in Capture. This determination adds the assertion that John must have moved

Mary into the room, which in turn is connected to the fact that she was already at the hotel.

The complete highest-level explanation for how John got the $100,000 is shown in Figure B.6
and can be summarized as follows. John calling Fred suggests a Telephone schema, which is subse-
quently determined when John tells Fred he is holding Mary captive. This Telephone instance is
possible because John believes that he is holding Mary captive as an effect of the Capture. It should
be noted that GENESIS has a very naive view of communication in which believing a proposition is
a precondition for communicating it and in which everyone believes everything that they are told.
Next, John telling Fred that he would release Mary if Fred gave him $100,000 suggests a Bargain
schema, which is determined when both of these actions take place. Preconditions of the completed
Bargain include that John have Mary held captive (which matches an effect of the Capture), that
Fred have the $100,00 (which is inferred from the fact that he is a millionaire), that Fred believe
that Jobhn has Mary (which matches an effect of the Telephone), and that Fred value Mary’s free-
dom more than $100,000 (which is inferred from the fact that he is her father). Figure B.7 shows
the expansion of the Bargain schema and Figure B.8 shows all the facts in the narrative that remain
unconnected to the rest of the text. The causal model constructed for this narrative and illustrated
in Figures B.4 - B.8 allows GENESIS to answer the wide variely of questions presented in the trace

in chapter 2.

At this point it is appropriate to note that the Bargain and Threaten schemata are more com-
plicated to define than the other schemata in GENESIS. This is because the effects of these schemata
~ depend on the actions that are involved. Consequently, a special construct (*Pointer*) is used in

the definitions of these schemata in order to indirectly reference the effects and preconditions of

175

Not2
Not3

Believel

Isal3l |

} Ptransl

IsalQ
Isas

PointingAt2

At9
isal7 — Isa3l —> Threatenl
Isad = Isal5
Isa2 — Isa25

A1S Mary was in the car,
Threatenl John threatened to shoot Mary with the gun unless Mary went from John into the car,
Isa25 Mary is a character.
Isa2 Mary is a person.
Isals John is a character.
Isad John is a person.
Goal2 Mary wants not to be shot,
Atl Mary was at John.
PointingAt2 = John is pointing the gun at Mary.
Aiml -+ John aimed the gun at Mary,
Isa2l " 'Mary is a physical object,
Isa23 Mary is an animate object.
Isa27 The gun is a physical object.
Isa29 The gun is an inanimate object.
Isa31 The gun is a weapon,
Isal7 The gun is a gun,
Possess3 John has the gun,
LosPath2 John has a line of sight path to Mary.
Atd John is at Mary.
Ptransl John went to Mary.
Isas Mazry is a location.
Isal0 John is a location.
Isall John is a physical object.
Isal3 John is an animate object.
AtS John was at some place,
Not2 John is not at some place,
Not3 Mary is not at John.
Ptrans2 Mary went from John into the car.
Believel Mary believes that if Mary does not go from John into the car then John will

shoot Mary with the gun.
Mtransl John told Mary that if Mary did not go from John into the car then John would

shoot Mary with the gun.

Figure B.4: Kidnap Example -- Specific Explanation (Threaten)

176

At24

Isad — Isals
Isa2 —> Isa25 —> Isa23

Possessd Isad7
AL20 Isa39
A9 Drivel
Inl. .
Atls
Isa34 — Isadl

Captivel Mary was John's captive.

|

Ptrans3 Pirans5 —> At26

Atl6 Isad9 Believe2

At17 .

Not7 Isa48 Confinel Captivel
Notl3

Not8 In3
Not9

In3 In the room is in the room.
Isad8 The room is a room.

Isad9 In the room is a location.

Isa2 Mary is a person.

Isals John is a character.

Isad John is a person.

Free2 Mary was free.

Notl3 Mary was not free,

Confinel John confined Mary in the room.
At26 Mary is in the room.

Ptrans3 John moved Mary from the hotel into the room.
At23 Mary is at the hotel.

Ptrans3 John moved Mary from the car to the hotel.
Drivel John drove Mary to the hotel in the car.
1sad41 The car is a vehicle,

Isa34 The car is a car.

Atl18 The car was at Mary.

Inl In the car is in the car,

At9 Mary was in the car.

At20 John was in the car.

Possess4 John has the car.

Atlé John is at the hotel,

Atl7 The car is at the hotel,

Not7 John is not in the car,

Not8 Mary was not in the car,

Not9 The car is not at Maxry.

Isa39 The hotel is a location,

Isad? The car is a location,

Isa2l Mary is a physical object.

Isa23 Mary is an animate object.

Isa25 Mary is a character.

Isal3 John is an animate object,

At24 Mary was at the car.

Notl2 Mary is not at the car,

Believe2 John believed that Mary was John's captive.

Figure B.5: Kidnap Example — Specific Explanation (Capture)

177
Amountl
Possessl Notl5
Isa3 Not1é
Fatherl — Parentl \ LessThanl Noti?
Free2 PositivelPT1 — Gaanorlty3 B 1 Possess
Isa2 Not13 Captivel argain Not18 ThemeGoal Met2
Is249 ot
Isad8 Believes Free3
In3 Telephonel GoalPriority4
‘Isad’ K‘“’“’z{s; —s> Isa54 Isa66
‘Isa54 Fred is a character, Isal Fred is a person.
Isal5 John is a character. Isad John is a person.
Isa2 Mary is a person, Isa3 Millions of doliars is money.
Isa66 The $250000 is a valuable, IsaS8 The $250000 is money.
Isad8 The room is a room:. Isa49 In the room is a location,
"ThemeGoalMet2 John is happy that John has the $250000.
Possess7 John has the $250000.
Bargainl John and Fred carried out & bargain in which John released Mary and
Fred gave John the $250000 at Trenos.
GoalPriority4 John wants to have the $250000 more than he wants Mary to be John's captive.
BelieveS Fred believed that Mary was John's captive,
Communicate2 John contacted Fred and told him that Mary was John’s captive,
Telephonel John called Fred and told him that Mary was John's captive,
Know2 John knows that Fred has phone number something.
Believe2 John believed that Mary was John's captive.
Capturel John captured Mary and locked her in the room.
In3 In the room is in the room,
Free2 Mary was free.
Captivel Mary was John's captive,
Notl3 Mary was not free.
GoalPriority3 Fred wants Mary to be free more than he wants to have the $250000.
PositivelPT1 Fred has a positive relationship with Mary.
Parentl Fred is Mary’s parent,
Fatherl Fred is Mary’s father.
Possess8 Fred had the $250000.
LessThan1 250000 is less than order-millions.
Amount? The $250000 is 250000 dollars of money.
Possess] Fred has millions of dollars,
Amount] Millions of dollars is order-millions dollars of money,
Free3 _ Mary is free.
Noti5 Fred does not have the $250000.
Not16 Mary is not John’s captive,
Notl7 Fred does not believe that Mary is John’s captive.
Notld John does not believe that Mary is John's captive.
Figure B.6: Kidnap Example — Specific Explanation (Highest-Level)

178

Mtrans6 —>=> Believe9

Fatherl ——> Parentl —=> PositivelPT1 —> GoalPriority3
Amountl
Possess1

PossessT
GoalPriority4
GoalPriority3
PositivelPT1
Parentl
Fatherl
Possess8
IessThan1
Isa3
Isa58
Amount2
Possess1
Amountl
Captivel
Free3
Release2
Believel0

Notl16
Notls
Atrans?
Believe9

Mtransé

BelievelQ Release2 Y Free3
Captivel / 5 Notlé
GoalPriority4 Notls
Atrans2
Possess?

Amount2
Isa58

Isa3
LessThanl

Possess8

John has the $250000.

John wants to have the $250000 more than he wants Mary to be John's captive.
Fred wants Mary to be free more than he wants to have the $250000.
Fred has a positive relationship with Mary.

Fred is Mary’s parent.

Fred is Mary's father.

Fred had the $250000.

250000 ig less than order-millions.

Millions of dollars is money.

The $250000 is money.

The $250000 is 250000 dollars of money.

Fred has millions of dollars.

Millions of dollars is order-millions dollars of money.

Mary was John's captive.

Mary is free.

John released Mary. :

John believes that if John released Mary then Fred will give John the
$250000 at Trenos.

Mary is not John's captive.

Fred does not have the $250000.

Fred gave John the $250000 at Trenos.

Fred believes that if Fred gave John the $250000 at Trenos then John
will release Mary.

John told Fred that if Fred gave John the $250000 at Trenos then John
would release Mary.

Figure B.7: Kidnap Example -- Specific Explanation {(Bargain)

179

Residencel Colorl At10 Namel Name4 Genderl
Residence2 Attirel At27 Name2 Isa59 Gender2
Isa33 Isa35 Isa38 Name3 Isa60 Gender3

Isa33 The jeans are jeans.

Isa35 In the car is a location.

Isa38 The hotel is a hotel.

Isa59 Trenos is a restaurant.

Isa60 Trenos is a location.

Gender1 Fred is male.

Gender2 Mary is female.

Gender3 John is male.

Namel Fred's name is Fred.

Name2 Mary’'s name is Mary.

Name3 John's name is John.

Named Trenos's name is Trenos.

At10 The hotel is at the car.

Ar27 Trenos is at some place.

Colorl The jeans are blue.

Attirel Mary is wearing the jeans.

Residencel John lives in the hotel.
Residence?2 John lives in the room.

Figure B.8: Unconnected Facts in the Kidnap Example

other actions. For exainple, if a particular instance of a Bargain involves actor X doing action A in
exchange for actor Y doing action B, then the effects and preconditions of the overall Bargain
include the effects and preconditions, respectively, of actions A and B. In addition, in order for the
Bargain to be motivated, X should value the facts added by action B over those deleted by action A,
and Y should value the facts added by A over those deleted by B. For further information, the
interested readef is referred to the complete definitions of Bargain and Threaten given in section 1

of appendix C.

B.1.3. Learning CaptureBargain

After the Bargain schema is determined in the kidnapping narrative, the system detects that
John has achieved a thematic goal of possessing a valuable item. Since this goal is achieved by
novel combination of volitional actions by the main character, the system proceeds to learn a new

schema from its explanation of how the goal was achieved. Prior to generalization, the GENESIS

180

pruning algorithm removes a number of units from the explanation shown in Figure B.6. In addi-
tion to pruning a few Isa inferences, a number of interesting generalizations are made. The fact
that Telephone was the particular specialization of Communicate used in the explanation is
- removed since all of its effects that support the goal are inherited from Communicate. Also, the
abstraction inferences from Father to Parent and from Parent to PositivelPT are also removed since
the Father and Parent relationships only support the goal through the more abstract PositivelPT

relationship. The final generalized explanation EGGS produces is shown in Figure B.9.

The packaging of this generalized explanation into a schema does not detect any protection
violations and results in the final definition shown in Figure B.10. The English summary the para-
phraser produces for this schema was presented in chapter 2. English translations of the sugges-
tions used to index this new schema were alsc given in the trace in chapter 2. The formal versions

of these suggestions are given below:

((Capture 7x55 709 7c4 7r5) ~~> (CaptureBargain ?x55 ?a34 7b9 %c4 ?15 ?y5 2111))
((Communicate 7x55 ?a34 (Captive 709 7x55 %4 715)) ~~>
(CaptureBargain ?x55 7a34 709 7c4 7c5 ?y5 ?111))
((Bargain 7x55 7a34 (Release 7x55 709 7c4 7r5) (Atrans 7a34 ?7y5 7x55 7M11))) ~~>
(CaptureBargain ?x55 7234 709 ?c4 7r5 ?y5 7111))

B.1.4. Processing the Test Narrative After Learning

When GENESIS processes the test kidnapping narrative after learning the CaptureBargain
schema, the Capture schema determined from Bob's locking Alice in his basement suggests that the
new schema may be useful in understanding the narrative. Bob's acquisition of $75,00 and Alice’s
restored freedom confirms all of the positive effects of CaptureBargain and the schema is deter~
mined. The resulting explanation for Bob's possession of the money is shown in Figure B.11. This
explanation allows the system to answer the guestions it could not answer previously and the Cap-

tureBargain schema provides a reasonable paraphrase of the text.

Other previously incomprehensible narratives can also be understood using the new schema.
An interesting variation of the test narrative that results in the same final explanation is the even

sketchier account shown below:

Ted is Alice’s husband. He won a $100000 in the lottery. Someone imprisoned Alice in a base-

ment. Bob got $75000. Someone released Alice.

181

Possess6 Notls
Freel PositivelPT2 -—» GoalPriority3 Notl16
Isa51 { Not17

LR Cuptivel
ieve Communicatel —~ Beli

GoalPriority2

- [sa52
Isa53

Capturel Bargainl

Possess7

Notig ThemeGoalMet2
Free3
Isa68

I5270
Ind
ThemeGoalMet2 ?x55 is happy that 7x55 has ?y5.
Isab8 7vS is a valuable.
Possess7 7x55 has 7y5.
Bargainl 7x55 and 7a34 carried out a bargain in which ?7x55 released 7b9 and
7234 gave 7x55 7y5 at 7111.
GoalPriority2 ?x55 wants to have ?y5 more than he/she wants 7b9 to be 7x55's captive.
Isa69 ?a34 iz a character.
Isa70 7x55 is a character.
Believe5 7a34 believed that 7b9 was 7x55°s captive.
Communicatel ?x55 contacted 7a34 and told him/her that 7b9 was 7x55’s captive.
Believe2 7x55 believed that 7b9 was 7x55’s captive.
Capturel 7x55 captured 7b9 and locked him/her in 7r5.
In4 ?c4 is in 7r5. :
Isa53 ?r5 is a room.
Isa52 ?c4 is a location.
Isa51 769 is a person.
Freel 709 was free.
Captivel 769 was 7x55’s captive.
Not13 7b9 was not free.
GoalPriority3 ?a34 wants 7b9 to be free more than he/she wants to have ?y5.
PositivelPT2 7a34 has a positive relationship with 7b9.
Possessb 7a34 had 7yS5.
Free3 709 is free.
Not15 7a34 does not have 7y35.
Notle 709 is not 7x55's captive.
Notl7 7234 does not believe that 709 is 7x55’s captive.
Notl8 7x55 does not believe that 7b9 is 7x55's captive.

Figure B.9: Kidnap Example -- Generalized Explanation

182

((CaptureBargain 7x55 7234 709 ?c4 7r5 ?y5 7111) "?x55 kidnapped ?7b9."
{Constraint (Isa 769 Person) (Isa 7c4 Location) (Isa ?v5 Room) (In 7¢4 7r5)
(Isa 7x55 Character) (Isa ?a34 Character) (Isa ?y5 Valuable))
(Precondition (Possess 7a34 ?y5) (PositivelPT ?a34 7b9) (Free 7b9))
(Motivation (GoalPriority ?x55 (Possess 7x55 ?y5) (Captive 709 ?x55 7%c4 ?7:5)))
(Effect (Not (Believe 7x55 (Captive 709 7x55 ?c4 715)))
(Not (Believe ?7a34 (Captive 709 7x55 7c4 7r5))) (Not (Captive ?b9 7x55 74 7r5))
{Not (Possess ?a34 7y5)) (Free 7b9) (Possess 7x55 ?y5))
_(Subaction (Capture ?x55 709 ?c4 ?r5) (Communicate ?x55 7a34 (Captive ?b9 ?x55 %4 7r5))
(Bargain ?x55 ?a34 (Release 7x55 709 7c4 7r5) (Atrans 7a34 7y5 ?x55 7111)))
- (Internal (Not (Free 7b9)) (Captive 7b9 ?x55 7c4 7r5)
(GoalPriority 7a34 (Free 709) (Possess 7a34 ?7y5))
(Believe 7a34 (Captive 709 7x55 %c4 7r5)) (Believe 7x55 (Captive 709 7x55 7c4 7r5)))
- (Links (Antecedent (Internal 3) (Precondition 2)) (Precondition (Subaction 1) (Precondition 3))
(Constraint (Subaction 1)} (Constraint 4)) (Constraint (Subaction 1) (Constraint 3))
(Constraint (Subaction 1) (Constraint 2)) (Constraint (Subaction 1) (Constraint 1))
(Constraint (Subaction 1) (Constraint 5)) (Effect {Subaction 1) (Internal 5))
(Effect (Subaction 1) (Internal 1)) (Effect (Subaction 1) (Internal 2))
(Precondition {Subaction 2) (Internal 5)) (Constraint (Subaction 2) (Constraint 6))
(Constraint (Subaction 2) (Constraint 5)) (Effect {Subaction 2) (Internal 4))
(Precondition (Subaction 3) (Internal 4)) (Precondition (Subaction 3) (Internal 3))
(Precondition {Subaction 3) (Precondition 1)) (Precondition (Subaction 3) (Internal 2))
(Motivation (Subaction 3) (Motivation 1)) (Constraint (Subaction 3) (Constraint 6))
(Constraint (Subaction 3) (Constraint 5)) (Effect (Subaction 3) (Effect 1))
(Effect (Subaction 3) (Effect 2)) (Effect (Subaction 3) (Effect 3))
(Effect (Subaction 3) (Effect 4)) (Effect (Subaction 3) (Effect 5))
(Effect (Subaction 3) (Effect 6)))

Figure B.10: CaptureBargain Schema Definition

183
Believel Communicatel ~» Believe3
Husbandl -> Spoysel —= PgsitivelPT1 —= GoalPriority2
Isal2 —p Isal0 . Amountl Not3
/ Isad | > Isa inl— Possess2 Not4
Isa3 A Possess8
Freel ald LessThan1 Not5
Isa?2 Notb
Isal9 R
n1 Contivel Bargainl Pmsesss) ThemeGoalMet3
Free3
‘IsalB /4 GoalPriority3
Isal7 1sa34 Isa35
Isa35 The $75000 is a valuable., Isa34 The $75000 is money,
Isal Ted is a person, Isai4 Ted is a character,
isal7 Bob is a person, Isa20 Bob is a character,
Isa22 The basement is a room, Isal8 The basement is a2 basement,
Isal9 In the basement is a location. Isa2 Alice is a person,
Isa8 The lottery is a game. Isad The lottery is a lottery.
Isa3 The $100000 is money. Isal0 The $100000 is an inanimate object.
Isal2 The $100000 is a valuable.
ThemeGoalMet3 Bob is happy that Bob has the $75000,
PossessS Bob has the $75000.
Bargainl Bob and Ted carried out a bargain in which Bob released Alice and
Ted gave Bob the $75000,
GoalPriority3 ~ Bob wants to have the $75000 more than he wants Alice to be Bob's captive.
Captivel Alice was Bob’s captive. _
Capturel Bob captured Alice and locked her in the basement,
Inl In the basement is in the basement.
Freel Alice is free,
Notl Alice was not free,
Believel Bob believed that Alice was Bob’s captive.
Possess§ Ted had the $75000,
LessThanl 75000 is less than 100000,
Amount2 The $75000 is 75000 doliars of money.
Possess2 Ted has the $100000,
Winl Ted won the $100000 in the Jottery.
Amountl The $100000 is 100000 dollars of money.
GoalPriority2 Ted wants Alice to be free more than he wants to have the $75000.
PositiveIPT1 Ted has a positive relationship with Alice.
Spousel Ted is Alice’s spouse,
Husbandl Ted is Alice’s husband.
Believe3 Ted believed that Alice was Bob’s captive,
Communicatel Bob contacted Ted and told him that Alice was Bob’s captive.
Not3 Bob does not believe that Alice is Bob's captive.
Notd Ted does not believe that Alice is Bob’s captive,
NotS Alice is not Bob’s captive,
Noté Ted does not have the $75000.
Free3 Alice is free.
Figure B.11: Kidnap Test Example After Learning — Specific Explanation

184

. 'The processing of this narrative using CaptureBargain is basically the same as the processing of the
test narrative except for the fact that Bob being the one who got the money identifies him as the
kidnapper. Consequently, if after processing this narrative GENESIS is asked: "Who captured

Alice?" it replies: "Bob captured Alice and locked her in the basement."

B.2. The Arson Example

In the Arson example, GENESIS learns a schema for an individual burning his own property
in order to collect the insurance money. A version of this example was first used in the original
GENESIS system [Mooney85b]. Before processing the narratives for the Arson example, GENESIS
has schemata for burning, insuring objects, and being indemnified for the loss of property: how-

ever, it does not have a schema for arson-for-insurance.

- B.2.1. Processing the Test Narrative Before Learning

In order to demonstrate the system's initial ignorance of arson-for-insurance, GENESIS is

given the following test narrative:

Input: John owned a barn. He burned it. He got 40000 dollars.
Ready for questions:

>Summarize

John burned a barn.

>How did John get the money?

Cannot find sufficient cause.

>Why did John burn the barn?

Cannot find sufficient reason.

>Who owned the barn?
John has the barn.

The parsed version of this narrative is shown in Figure B.12 and the complete causal model the sys-

tem builds for this narrative is shown in Figure B.13. Without a schema for this situation or any

185

(Isa Person25 Person) (Gender Person25 male) (Name Person25 John)
(Isa Barnl Barn) (Possess Person25 Barn1) (Burn Person25 Barn1)
(Isa Money5 Money) (Amount Money5 40000 dollar) (Possess Person25 Money5)

Figure B.12: Parsed Version of the Arson Test Narrative

Flammable2 Believe2
] N0112 Burnl <
Isa Burnt2

Isa2 —= Isa7 —= Isa5

Isa9 Namel Possess2
Genderl Possess1 Amountl
Burnt2 The barn is burnt.
Burni John burned the barn.
Isa5 The barn is an inanimate object.
Isa7 The barn is a building.
Isa2 The barn is a barn.
Isal John is a person.
Not2 The barn was not burnt.
Flammable2 The barn is iammable.
Believe2 John believes that the barn is burnt.
Isa9 The $40000 is money.
Gender1l John is male.
Namel John's name is John.
Possess1 John has the barn.
Possess2 John has the $40000.

Amountl The $40000 is 40000 dollars of money.

Figure B.13: Causal Model for Arson Test Example Before Learning

mention of insurance or indemnity in the text. the system is unable to construct a satisfactory
causal model; and John's possession of the money is left unconnected to his act of burning his barn.

Consequently, the system is unable to answer the questions presented in the trace.

B.2.2. Processing the Learning Narrative

Next, the system is given a more detailed narrative about arson-for-insurance, which it can

explain and generalize into a schema.

186

Input: Stan owned a warehouse. He insured it against fire for 100000 dollars. Stan burned the
warehouse. He called Prudential and told them it was burnt. Prudential paid him 100000 dol-

lars.

Thematic goal achieved: Stan is happy that Stan is insured with the insurance company for the

$100000 if the warehouse is burnt.

Thematic goal achieved: Stan is happy that Stan has the $100000.
Explanation suitable for generalization. Pruning...Generalizing...Packaging...

Creating New Schema: (InsureObjectBurnIndemnify ?a3 702 73 ?7v3 714)

7a3 is a person. 702 is an inanimate object. ?c3 is an insurance company. ?v3 is money. 702 is
not burnt. 7a3 has ?02. a3 insures 702 with 7¢3 for 7v3 in case it is burnt. 702 is flammable.
7a3 burns 702. 7a3 contacts 7c3 and tells it that 702 is burnt. ?c3 indemnifies 7a3 7v3 for the

loss of 702.

Having: 723 insured 702 with ?¢3 for 7v3 in case it is burnt. suggest InsureObjectBurnIndemnify
i
Having: 7a3 burned 702. suggest InsureObjectBurnIndemnify

Having: 7a3 contacted 7c3 and told it that 702 was burnt. suggest InsureObjectBurnIndemnify
‘Ready for questions:

>Summarize

A warehouse was not burnt. Stan had the warehouse. Stan insured the warehouse with Pru-
dential for $100000 in case it is burnt. The warehouse was flammable. Stan burned the ware-
house. Stan contacted Prudential and told them that the warchouse was burnt. Prudential

indemnified Stan the $100000 for the loss of the warehouse.

>Why did Stan insure the warehouse?
So Prudential would indemnify Stan the $100000 for the loss of the warehouse.

>Why did Stan burn the wharehouse?
=WAREHOUSE!

187

So Stan could call Prudential and could tell them that the warehouse was burnt.

> Why did Stan tell Prudential the warehouse was burnt?
So Prudential would indemnify Stan the $100000 for the loss of the warehouse.

>Why did Prudential pay Stan the money?
Because Prudential believed that the warehouse was burnt and because Stan was insured with

Prudential for the $100000 if the warehouse was burnt.

>Why did Prudential believe the warehouse was burnt?

Because Stan called Prudential and told them that the warehouse was burnt.

The parsed version of this narrative is shown in Figure B.14 and the explanation the system con-
structs for why Stan has the money is shown in Figure B.15. This explanation can be summarized
as follows. Stan insuring the warehouse has the effect of making it insured and Stan burning the
barn has the effect of making it burnt. When Stan calls Prudential it suggests a Telephone schema,
which is determined when Stan tells them that the barn is burnt. Prudential’s action of giving Stan
$100,000 is recognized as an instance of the Indemnify schema. Since Indemnify is a specialization
of Atrans (see the GENESIS Action hierarchy in chapter 9) and since the actor of an Indemnify is
constrained to be an insurance company (which Prudential is known to be). the Atrans is special-

ized to an Indemnify. This transformation makes use of one of Lytinen's [Lytinen84] parsing rules,

(Isa Person26 Person) (Gender Person26 male) (Name Person26 Stan) (Isa Warehousel Warehouse)
" (Possess Person26 Warebousel) (Isa Money6 Money) (Amount Money6 100000 dollar)
(InsureObject Person26 (Burnt Warehousel) Money6 7COMPANY2) (Burn Person26 Warehousel)
(Isa InsuranceCol InsuranceCo) {Name InsuranceCol Prudential)

(DialTelephone Person26 InsuranceCol ?NUMBER135)

(Mtrans Person26 (Burnt Warehousel) InsuranceCol)

- (Atrans InsuranceCol Money6 Person26 ?AT85)

Figure B.14: Parsed Version of the Arson Learning Narrative

1The INTERLISP spelling corrector [Teitelman83] is used to correct such typos.

188

Flammable2

Possess7
Burnl Believe2 Isa3l
ommmunicate2 —> Believed

Burnt2

ZNOtG
] Atransl Possess6

ThemeGoalMet2

Indemnifyl
Isa32

A Possessl
Isall Isa3 Isa34
Gender1 Namel Name2 Amount]
ThemeGoalMet2 Stan is happy that Stan has the $100000,
Isa34 The $100000 is a valuable.
Isa3 The $100000 is money.
Possesst Stan has the $100000.
Atransl Prudential gave Stan the $100000,
Indemnifyl Prudential indemnified Stan the $100000 for the loss of the warehouse.
Insured2 Stan is insured with Prudential for the $100000 if the warehouse is burnt,
InsureObjectl Stan insured the warehouse with Prudential for the $100000 in case it is burnt,
Isal7 Prudential is an insurance company.
Isa9 The warehouse is an inanimate object.
Isall The warehouse is a building.
Isa2 The warehouse is a warehouse.
1sal3 Stan is a character.
Isal Stan is a person.
Not2 The warehouse was not burnt.
Possess] Stan has the warehouse.
Believed Prudential believes that the warehouse is burnt.
Communicate2 Stan contacted Prudential and told them that the warehouse was burnt.
Telephonel Stan called Prudential and told them that the warehouse was burnt,
Know2 Stan knows that Prudential has phone number something,
Isalg Prudential is a character.
Isa20 Prudential is a company.
Believe2 Stan believes that the warehouse is burnt.
Burnil Stan burned the warehouse,
Flammable2 The warehouse is lammable,
Burnt2 The warehouse is burnt,
Isa31 Some place is a location.
Isa32 The $100000 is an inanimate object,
Possess7 Prudential had the $100000.
Noté Prudential does not have the $100000.
Genderl - Stan is male.
Namel Stan’s name is Stan.
Name?2 Prudential’s name is Prudential,
Amountl The $100000 is 100000 dollars of money,

Figure B.15: Arson Example -- Specific Explanation

189

 the original definition of which is given below:

SLOT-FILLER-SPECIALIZATION RULE: If a slot of concept A is filled by concept B, and B is
the prototypical filler for that slot of concept C; and concept C ISA-A concept A, then change

the representation of concept A to concept C (p.224).

In the example, A is the Atrans, B is InsuranceCo. and C is Indemnify. The preconditions and
motivations of the Indemnify include that Prudential believe that the warehouse is burnt (which
matches an effect of Stan's Telephone action) and that the warehouse is insured against fire for
$100,000 (which matches an effect of Stan's InsureObject action). The resulting explanation as
shown in Figure B.15 allows GENESIS to answer the questions about this narrative presented in the

trace.

B.2.3. Learning InsureObjectBurnIndemnify

After the effects of the Indemnify action are added, GENESIS detects that Stan has achieved

" the thematic goal of possessing a valuable item in a novel way. The only action not volitionally
performed by Stan (the main character) is Prudential’s Indemnify action and this action is

motivated by the fact that they believe the warehouse is burnt. which is in turn supported by

Stan’s Burn and Communicate actions. Consequently the explanation satisfies all of the learning

criteria and the system proceeds to learn a new schema from its explanation for how Stan’s goal

was achieved. Prior to generalization, several units are pruned from the explanation shown in Fig-

ure B.15. In addition to pruning the fact that the burned item is a warehouse, the specialization of

Communicate to Telephone is also pruned as it was in the kidnapping example. The final general-

ized explanation EGGS produces for this example is shown in Figure B.16.

The packaging of this generalized explanation into a schema detects an interesting protection
violation and imposes an additional ordering constraint to prevent it. The system detects that the
Burn action can potentially clobber a precondition of the InsureObject action, namely that the item
being insured cannot already be in the state that it is being insured against (being burnt in this
case). As is clear from the graph in Figure B.16, the structure of the explanation itself does not
impose a temporal ordering on these two actions. To avoid the violation, the system adds the fol-

lowing constraint to the new schema:
InsureObjectl should proceed Burnl when T or else Burnt2 will clobber Not7.

The final definition for the schema learned from this example is given in Figure B.17.

190

Burnit2

_ThemeGoalMet2

1sa34

Isa37
Possess6
Atransl
Indemnifyl
Insured2
InsureObjectl
Isa3s

Isa40

Isal3

Isa39

Not7
Possess2
Believesd
Communicatel
Isal8

Isa20
Believe2
Burnil
Flammablel
Burnt2

Isa30

Isa32
Possessd
Not6

Communicatel - Believe4
1

PossessS
Isa30

Noté
Atransl Possesst

7a3 is happy that ?a3 has 7v3.

3 is a valuable.

?v3 is money.
?a3 has 7v3.

7c3 gave 7a3 7v3 at 714.
?¢3 indemnified ?a3 ?v3 for the loss of 702.
7a3 is insured with 7¢3 for ?v3 if 702 is burnt.

7a3 insured 702 with 7¢3 for ?v3 in case it is burnt.
?c3 is an insurance company.

702 is an inanimate object.

7a3 is a character.

7a3 is a person.

702 is not burnt.

7a3 has 702.

7c3 believes that 702 is burnt.
7a3 contacted 7c3 and told them that 702 was burnt.

7c3isa character.
7c3 is a company.

7a3 believes that 72 is burnt.

7a3 burned ?02.

702 is flammable.

702 is burnt.
714 is a location.

?v3 is an inanimate object.

?¢3 had 7v3.

1c3 does not have 7v3.

Figure B.16: Arson Example — Generalized Explanation

ThemeGoalMet2

191

((InsureObjectBurnIndemnify 7a3 %02 7c3 7v3 714) "?a3 did something to 702."

(Constraint (Isa 714 Location) (Isa ?a3 Person) (Isa 702 Inanimate)

(Isa 7c3 InsuranceCo) (Isa ?v3 Money))
{Precondition (Possess 7¢3 ?v3) (Flammable 702) (Possess 7a3 702) (Not (Burnt 702)))
(Effect (Insured (Burnt ?02) 7a3 ?v3 ?¢3) (Believe a3 (Burnt ?02)) (Burnt 702}
, (Believe 7c3 (Burnt ?02)) (Not (Possess 7¢3 ?v3)) (Possess ?a3 7v3))
-(Subaction (InsureObject ?a3 (Burnt ?02) ?v3 7¢3) (Burn %a3 702)
(Communicate 7a3 ?¢3 (Burnt 702)) (Indemnify 7¢3 7v3 ?a3 (Burnt 202))
(Atrans 7%¢3 7v3 7a3 714))
(Internal (Iea ?v3 Inanimate) (Isa ?c3 Character) (Isa 7c3 Company) (Isa 7a3 Character)
(Isa ?v3 Valuable))

(Links (Antecedent (Internal 1) (Internal 5)) (Antecedent (Internal 2) (Internal 3))
(Antecedent (Internal 3) (Constraint 4)) (Antecedent (Internal 4) (Constraint 2))
(Antecedent (Internal 5) (Constraint 5)) (Precondition (Subaction 1) (Precondition 4))
(Precondition (Subaction 1) (Precondition 3)) (Constraint (Subaction 1) (Constraint 4))
(Constraint (Subaction 1) (Constraint 5)) (Constraint (Subaction 1) (Constraint 3))
(Constraint (Subaction 1) (Internal 4)) (Effect (Subaction 1) (Effect 1))
(Precondition (Subaction 2) (Precondition 4)) (Precondition (Subaction 2) (Precondition 2))
(Constraint (Subaction 2) (Constraint 3)) (Constraint (Subaction 2) (Constraint 2))
(Effect (Subaction 2) (Effect 2)) (Effect (Subaction 2) (Effect 3))
(Precondition (Subaction 3) (Effect 2)) (Constraint (Subaction 3) (Internal 2))
(Constraint (Subaction 3) (Internal 4)) (Effect (Subaction 3) (Effect 4))
(Motivation (Subaction 4) (Effect 1)) (Motivation (Subaction 4) (Effect 4))
(Constraint (Subaction 4) (Constraint 3)) (Constraint (Subaction 4) (Constraint 5))
(Constraint (Subaction 4) (Constraint 4)) (Antecedent (Subaction 5) (Subaction 4))
(Precondition (Subaction 5) {(Precondition 1)) (Constraint (Subaction 5) (Constraint 1))
(Constraint (Subaction 5) (Internal 4)) (Constraint (Subaction 5) (Internal 1))
(Constraint (Subaction 5) (Internal 2)) (Effect (Subaction 5) (Effect 5))
(Effect (Subaction 5) (Effect 6)))

(Ordering ((Before (Subaction 1) (Subaction 2)) T))

Figure B.17: InsureObjectBurnIlndemnify Schema Definition

B.2.4. Processing the Test Narrative After Learning
Below is the trace produced by GENESIS when processing the Arson test narrative for the

second time:
Input: John owned a barn. He burned it.. He got 40000 dollars.
Thematic goal achieved: John is happy that John is insured with the insurance company for the

$40000 if the barn is burnt.
Thematic goal achieved: John is happy that John has the $40000.

192

Ready for questions:

>Summarize

A barn was not burnt. John had the barn. John insured the barn with an insurance company
for §40000 in case it is burnt. The barn was flammable. John burned the barn. John contacted
the ingurance company and told them that the barn was burnt. The insurance company

indemnified John the $40000 for the loss of the barn.

->How did John get the money?
The insurance company indemnified John the $40000 for the logs of the barn.

>Why did the company pay John the money?
Because John was insured with the insurance company for the $40000 if the barn was burnt

and because the insurance company believed that the barn was burnt.

> Why did John burn the barn?

So John could contact the insurance company and could tell them that the barn was burnt.

> Why did John insure the barn

So the insurance company would indemnify John the $40000 for the loss of the barn.

> Why did the company believe the barn was burnt?

Because John contacted the insurance company and told them that the barn was burnt.

This time, John's action of burning his barn suggests the InsureObjectBurnIndemnify schema.
which is determined when its effect that John acquires money is confirmed. The explanation con-
structed for why John has the money is shown in Figure B.18. This explanation allows it to
angwer questions it was previously unable to answer and the new schema provides a reasonable

paraphrase of the narrative;

It is also interesting to look at some variations of the test narrative that either do or do not
invoke the InsureObjectBurnindemnify schema. For example, the following narrative does not

invoke the new schema:

193

Possess1
Isa3

Indemnifyl

A
—» Believe3

Posse

z Not2
y Atransl Possess4

ThemeGoalMet2

ThemeGoalMet2

Isalé

I1sal?7

Possess4

Atransl

Isal3

Isatd

Isal8

Isal2

Isals

Isal

Isal9

Possess6
"Indemnifvl
-Believe3
‘Communicatel

Believe2

Burnl

Isa3

Isas

Isa2

Flammable2
‘Not3

Burnt2

Insuredl

InsureQbjectl

Possess]

Not2

Isalé

John is happy that John has the $40000.

The $40000 is a valuable,

The $40000 is money.

John has the $40000.

The insurance company gave John the $40000,

The insurance company is a character.

The insurance company is a company.

The insurance company is an insurance company.

The $40000 is an inanimate object.

John is a character.

John is a person.

Some place is a location.

The insurance company had the $40000,

The insurance company indemnified John the $40000 for the loss of the barn,
The insurance company believes that the barn is burnt,
John contacted the insurance company and told them that the barn was burnt,
John believes that the barn is burnt,

John burned the barn.

The barn is an inanimate object.

The barn is a building.

The barn is a barn,

“The barn is flammable,

The barn was not burnt.

The barn is burnt,

John is insured with the insurance company for the $40000 if the barn is burnt.
John insured the barn with the insurance company for the $40000 in case it is burnt.
John has the barn.

The insurance company does not have the $40000,

Figure B.18: Arson Test Example After Learning — Specific Explanation

194

Input: John owned a barn. He insured it against fire for 100000 dollars. The barn is burnt. All~
state gave John 100000 dollars.

Thematic goal achieved: John is happy that John is insured with the insurance company for the
$100000 if the barn is burnt.
Thematic goal achieved: John is happy that John has the $100000.

Ready for questions:

>Why is the barn burnt?

Cannot find sufficient reason.

>Who burned the barn?

Question refers to unknown event, person, place, or thing.

>Summarize
John insured a barn with Allstate for $100000 in case it is burnt.
Allstate indemnified John the $100000 for the loss of the barn.

Although the action of insuring an item against fire was made to suggest the new schema, the act of

insuring an item already achieves a known thematic goal of wanting security against the loss of

..,one’s valuable items. Consequently, since actions that are already explained by a thematic goal are

" not used to suggest schemata (see section 10.2), InsureObjectBurnindemnify is not suggested in this

situation.

The following variation of the test narrative; however, does invoke the new schema:
Gene owned a restaurant. Someone burned the restaurant. Allstate gave Gene 100000 dollars.

If after processing this narrative GENESIS is asked: “Who burned the restaurant?” it replies:
“Gene burned the restaurant.” This time, the fact that someone intentionally burned the restau-
rant does suggest the new arson-for-insurance schema since the system has no other explanation for
this action. The fact that Gene got the money identifies him as the agent and determines the

schema. Of course, since understanding is a subjective process, this conclusion could be wrong.

195

B.3. The Solicit Example
Since all of the other schemata GENESIS has learned involve illegal means of acquiring
- wealth, it only seemed fair to also give the system the opportunity to learn a schema for upholding
the law. The system was therefore given an example from which it could learn a schema for a
police-officer impersonating a prostitute in order to arrest potential customers. Before processing
the narratives in this example, the system has schemata for prostitution customers solicting sexual
favors and for police-officers arresting law-breakers; however, it does not have a schema for *“soli-

citation entrapment.’

B.3.1. Processing the Test Narrative Before Learning
First the system is presented with the following test narrative:

Input: Alice was a policewoman. Stan told Alice if she had sex with him then he would give

her §75. Stan went to jail.
Ready for questions:

>Summarize

Stan solicited Alice’s sexual favors for $75. Stan was put in a jail.

>Why did Stan tell Alice if she had sex with him then he would give her money?

Because Stan believed that Alice was a prostitute and because Stan was horny.

>Why did Stan go to jail?

Because Stan was under arrest for something.

>Why was Stan under arrest?

Cannot find sufficient reason.

‘The parsed version of this narrative is presented in Figure B.19 and the causal model constructed
for the narrative is shown in Figure B.20. The fact that Stan asked Alice to have sex with him for
money suggests and determines a Solicit schema! and the fact that Stan went to jail suggests and

determines an Incarcerate schema. However. without a schema for the overall situation or any

196

(Isa Person34 Person) (Name Person34 Alice) (Gender Person34 female)
(Occupation Person34 police-officer) (Isa Person35 Person) (Gender Person35 male)
" {(Name Person35 Stan) (Isa Money10 Money) (Amount Money10 75 dollar)
(Mtrans Person35 (Implies (Coitus Person34 Person35)
(Atrans Person35 Money10 Person34 ?AT110)) Person34)
(Isa Jaill Jail) (Isa Location7 Location) (At Jaill Location7)
(Pirans Person35 Person35 7FROM1179 Location7)

Figure B.19: Parsed Version of the Solicit Test Example

explicit mention of the arrest, the system is unable to connect Stan's incarceration with his solicita-
tion. The system is therefore unable to appropriately answer some of the questions shown in the

trace.

B.3.2. Processing the Learning Narrative

‘Next the system is given the following learning narrative:

Input: Jane is a policewomén. She dressed in a short red skirt and went to a corner. Bob
approached the corner and told her if she had sex with him then he would give her $50. Jane

arrested Bob for soliciting. Bob is Mary's husband and he told her that Jane entrapped him.

Thematic goal achieved: Jane is happy that Bob is under arrest for soliciting Jane's sexual
favors for the $50.
Explanation suitable for generalization. Pruning...Generalizing...Packaging...

Creating New Schema: (DressSolicitArrest 769 7c2 7s2 7s4 714 729 7¢3)

769 is not equal to 7a9. 7b9 is a person. ?c2 is an apparel. ?b9 has ?c2. ?b9 putson ?c2. 752 is
2 location. ?14 is a corner. ?b9 is at 7s2. 7b9 goes from ?s2 to 714. ?a9 is a person. 7s4 is a
location. 7a9 is at 7s4. 7a9 goes from 7s4 to 4. %3 is money: 7a9 is horny. 27¢2 is sexy. 7a9
solicits 769's sexual favors for %¢3. ?b9 is a police-officer. 7b9 arrests 7a9 for soliciting 7b9’s

sexual favors for 7c3.

The Soleit schema represents a customer offering money for sexual favors as opposed 1o the more common English in-
terpretation of the word “solicit” referring 1o a prostitute offering her services for money.

197

At4
Incarceratel
Arrested2
Atl

Isal4

Isal3

Isa2

Ptransl
Believe2
Solicitl
NeedSex2
Believed
Isa3

Isal
CommPath?
Mtransl

Namel
Name2
Genderl
Gender2
Occupationl
Amountl

Believed Mtransl Believe2
NeedSex2
CommPath2 Solicitl
Isal
Isa3 Piransl
Isa2
Isal3
A4
Isald Incarceratel
Arrested? Genderl Occupation! Namel
Al Gender2 Amountl Name2

Stan is at the jail.

Stan was put in the jail.

Stan is under arrest for something.

The jail is at Stan.

The jail is a location.

The jail is a jail.

Stan is a person.

Stan went to the jail,

Alice believes that Stan solicited Alice’s sexual favors for the $75.
Stan solicited Alice’s sexual favors for the $75.
Stan is horny.

Stan believes that Alice is a prostitute.

"The 875 is money.

Alice is a person.

Stan has a communication path to Alice.

Stan told Alice that if Alice had sex with Stan then Stan would give
Alice the $75.

Alice’s name is Alice.

Stan's name is Stan.

- Alice is female.

Stan is male.
Alice is a police-officer.
The $75 is 75 dollars of money.

Figure B.20: Causal Model for Solcit Test Example Before Learning

198

Having: 7b9 put on 7c2. suggest DressSolicitArrest
Having: 7a9 solicited 7b9’s sexual favors for 7c3. suggest DressSolicitArrest

Having: 769 arrested 7a9 for soliciting 709’s sexual favors for 7c3. suggest DressSolicitArrest
Unknown word "7b9 entrap 7a9" refers to DressSolicitArrest
Ready for questions:

>Summarize

Jane had a skirt. Jane put on the skirt. Jane was at some place. Jane went to a corner. Bob
was at some place. Bob went to the corner. Bob was horny. The skirt was sexy. Bob solicited
Jane's sexual favors for $50. Jane was a police-officer. Jane arrested Bob for soliciting Jane's

sexual favors for the $50.

>Why did Jane put on the short skirt?

So Bob would solicit Jane's sexual favors for the $50.

>Why did Jane g0 1o the corner?
So Bob would solicit Jane's sexual favors for the $50.

>Why did Bob go to the corner?

So Bob could solicit Jane's sexual favors for the $50.

- > Why did Bob solicit Jane's sexual favors?

Because Bob believed that Jane was a prostitute and because Bob was horny.

>Why did Bob believe Jane was a prostitute?
Because Bob went to the corner, because Jane went 1o the corner. because the skirt was short

and because Jane put on the skirt.

>Why did Jane arrest Bob?
Because Jane believed that Bob selicited Jane's sexual favors for the $50 and because Jane was a

police-officer.

199

> Why did Jane believe that Bob solicited her sexual favors?

Because Bob solicited Jane's sexual favors for the $50.

- The parsed version of this narrative is shown in Figure B.21 and the explanation constructed for
why Bob is under arrest is shown in Figure B.22. This explanation can be summarized as follows.
Jane’s actions of ‘putting on a short skirt and going to the corner has the effect of her being on the
corner dressed in a short skirt. Bob’s action of going to the corner results in a communication path
between Bob and Jane and enables him to tell her that he would give her money if she had sex with
him. The latter action is recognized as a Solicit schema, which in order to be motivated requires
that Bob believe that Jane is a prostitute. This belief is inferred from the fact that she is wearing a
short skirt and standing on a corner. Jane's act of arresting Bob requires several motivations. She
must believe that Bob committed an illegal act (which matches an effect of the Solicit since solicit.—
ing is known to be illegal) and she must be a police-officer (which matches an input fact). The
resulting explanation as shown in Figure B.22 allows GENESIS to answer the questions about this

narrative presented in the trace.

B.3.3. Learning DressSolicitArrest

After the effects of the Arrest action are added, GENESIS detects that a police-officer has
achieved her thematic goal of having someone under arrest. The only action not volitionally exe-
cuted by Alice {the main character) is Bob’s Solicit action and this action is motivated by the fact

" that he believes Alice is a prostitute, which in turn is supported by Alice’s actions of putting on a

(Isa Person38 Person) (Name Person38 Jane) (Gender Person3$ female)
(Occupation Person38 police-officer) (Length Skirt1 short) (Color Skirtl red)
(Isa Skirt1 Skirt) (Dress Person38 Skirt1) (Isa Cornerl Corner)
(Ptrans Person38 Person38 ?FROM1182 Cornerl) (Isa Person39 Person)
(Gender Person39 male) (Name Person39 Bob) (Ptrans Person39 Person39 ?FROM1208 Cornerl)
(Isa Money11 Money) (Amount Money11 50 dollar)
(Mtrans Person39 (Implies (Coitus Person38 Person39)
(Atrans Person39 Money11 Person38 ?AT134)) Person38)
(Arrest Person38 Person39 (Solicit Person39 ?SUBJECT97 7FOR3)) (Isa Person43 Person)
(Name Person43 Mary) (Gender Person43 female) (I{usband Person39 Persond3)
(Mtrans Person39 (?Action2 Person38 Person39) Person43)

Figure B.21: Parsed Version of the Solicit Narrative

200

Namel
Genderl
Colorl
Isas
Isals
IsalQ
Isa27
Isa3l

_ ThemeGoalMetl
Occupationl
Arrested2
Axrestl
Believel
Solicitl
NeedSex2
Believed
Attire2
Dressl
Possess2
Seductivel
Lengthl
At3
Ptransl
Isal2
Isa7
Isald
At4
Not2
At7
Ptrans2
Isa26
At8
Not4
Isa33
CommPath2
Illegal2
Notl0

Notl0
Niegal2

At8
—__@Ptrmsz At7
Isa3l Isa2é
— ‘

Solicitl —» Believe2
Occupationl

=i Arrestl —= Arrested2

ThemeGoalMetl

Namel Genderl Colorl
Name2 Gender2 Amountl
Jane's name is Jane. Name2 Bob’s name is Bob,
Jane is female. Gender2 Bob is male.
The skirt is red. Amountl The $50 is 50 dollars of money.
The skirt is an apparel. Isal The skirt is a skirt.
Jane is a physical object. Isal? Jane is an animate object.
Jane is a character. Isal Jane is a person.
Bob is a physical object, Isa29 Bob is an animate object.
Bob is a character. Isa2l Bob is a person.

Jane is happy that Bob is under arrest for soliciting Jane’s sexual favors for the $50.

Jane is a police-officer.

Bob is under arrest for soliciting Jane’s sexual favors for the $50.
Jane arrested Bob for soliciting Jane’s sexual favors for the $50.
Jane believes that Bob solicited Jane’s sexual favors for the $50.

Bob solicited Jane’s sexual favors for the $50.
Bob is horny.

Bob believes that Jane is a prostitute.
Jane is wearing the skirt,

Jane put on the skirt.

Jane has the skirt,

The skirt is sexy,

The skirt is short,

Jane is at the corner,

Jane went to the corner.

The corner is a location.

The corner is a corner.

Jane is a location.

Jane was at some place.

Jane is not at some place.

Bob is at the corner.

Bob went to the corner,

Bob is a location.

Bob was at some place,

Bob is not at some place,

The $50 is money.

Bob has a communication path to Jane.
It is illegal for Bob to solicit Jane's sexual favors for the $50.
Jane is not equal to Bob,

Figure B.22: Solicit Example — Specific Explanation

201

short skirt and going to a corner. Since all of the learning criteria are met, the system proceeds to
learn a new schema from its explanation of how Alice's goal was achieved. Prior to generalization,
the only pruning that is performed is the removal of the facts requiring that the police-officer’s
seductive clothing be a short skirt. These facts are removed since the system knows other ways of
inferring that an apparel is seductive (e.g tight jeans). The generalized explanation for this example
is given in Figure B.23 and the final definition for the learned schema is given in Figure B.24. The
observant reader will notice that the police-officer is not constrained to be female. This is because
the rule for inferring that someone believes that a person is a prostitute does not require that per-
son to be female. If this additional antecedent were added to the rule, the resulting schema would

be sexist and require a female police-officer.

In addition to learning a new schema from this narrative, GENESIS also learns the meaning
of a new word. The last sentence of the narrative causes it to associate the unknown word
“entrap” with the newly learned schema. This word is learned in a manner directly analogous to

the learning of the word "kidnap" as discussed in chapter .

B.3.4. Processing the Test Narrative After Learning

Below is the trace produced by GENESIS when processing the test narrative after having

learned the new schema:

Input: Alice was a policewoman. Stan told Alice if she had sex with him then he would give

her $75. Stan went to jail-

Thematic goal achieved: Alice is happy that Stan is under arrest for soliciting Alice’s sexual

favors for the $75.
‘Ready for questions:

>Summarize

* Alice had an apparel. Alice put on the apparel. Alice was at some place. Alice went to a
corner. Stan was at some place. Stan went to the corner. Stan was horny. The apparel was
sexy. Stan solicited Alice’s sexual favors for $75. Alice was a police-officer. Alice arrested

Stan for soliciting Alice’s sexual favors for the §75.

202

A t] —= ted2
erestl Asres ThemeGoalMetl

Ao
Isa29 Pirans2 At7 Not9
" i,3/1"' Isa24 Notd CommPach\ Hlegal2
/f At p NOt !Sd.a{)

Isadb
Isal9

A Isad5

Isad44

§ Sclicitl —= Believe2

Occupationd

Seductivel

NeedSexl

Dressl -» Attire2

Tsad

ThemeGoalMetl 759 is happy that 7a9 is under arrest for soliciting 769’s sexual favors for 7c3.

Occupationd 769 is a police-officer,
Arrested2 7a9 is under arrest for soliciting 7b9’s sexual favors for 7c3.
Arrestl 709 arrested 7a9 for seliciting 7b9’s sexual favors for 7¢3.
Believe2 7b9 believes that 7a9 solicited 7b9’s sexual favors for ?¢3.
Solicitl ?a9 solicited 7b9’s sexual favors for 7c3.
NeedSex1 7a9 is horny,
Believed 7a9 believes that 7b9 is a prostitute.
Attire2 709 is wearing Tc2,
Dressi 709 put on 7c2,
Isad 7c2 is an apparel.
Isad4 709 is a person,
Possess] 759 has 2.
- Seductivel 7c2 is sexy.

CAt3 709 is at 714,
Ptransl 709 went from 7s2 to 714.
Isal2 714 is a location.
Isa4s 714 is a corner,
IsalC 7s2 is a location,
Isals 769 is a physical object.
Isal7 769 is an animate object.
Isal9 709 is a character.
A2 Tb9 was at 752,
Noi2 7b9 is not at 752,
At7 7a9 is at 714,
Ptrans2 7a9 went from 7s4 to ?14.
Isa24 _ ?s4 is a location.
Isa27 ?a9 is a physical object.
15229 7a9 is an animate object.
Isa3l 7a9 is a character.
Isad6 ?a9 is a person.
At6 7a9 was at 7s4.
Not4 ?a9 is not at 7s4.
Isa36 2¢3 is money.
CommPath2 7a9 has a communication path to 769,
Illegal2 It is illegal for 7a9 to solicit 7b9’s sexual favors for 7¢3.
Notg 709 is not equal to 7a9.

Figure B.23: Solicit Example -~ Generalized Explanation

203

(DressSolicitArrest 769 7c2 ?s2 7s4 714 7a9 7%¢3) "?b9 entrapped 7a9."
(Constraint (Not (EQUAL ?b9 7a9)) (Isa ?c¢3 Money) (Isa ?a9 Person) (Isa 7s4 Location)
(Isa 7s2 Location) (Isa 714 Corner) (Isa 7b9 Person) (Isa 7c2 Apparel))

(Precondition (At 7a9 ?s4) (At 7b9 7s2) (Seductive 7c2) (Possess 709 ?¢2) (NeedSex ?7a%))

(Motivation (Occupation 709 police-officer))

(Effect (Attire 709 7c2) (Not (At 7b9 ?52)) (At 769 714) (Not (At 7a9 ?s4)) (At 729 714)

(Believe 709 (Solicit 729 7b9 ?c3)) (Arrested 729 (Solicit 7a9 7b9 ?¢3) ?7b9))

(Subaction (Dress 709 2¢2) (Ptrans 769 709 752 714) {(Ptrans 7a9 7a9 7s4 714)

(Solicit 7a9 ?b9 7c¢3) (Arrest ?7b9 ?a9 (Solicit 7a9 769 2¢3)))
(Internal (Illegal (Solicit 729 b9 ?¢3)) (CommPath 7a9 7b9)

(Believe 7a9 (Occupation ?b9 prostitute)) (Isa ?a9 PhysicalObject)

(Isa 729 Animate) (Isa 7a9 Character) (Isa 769 PhysicalObject)

(Isa 709 Animate) (Isa 7b9 Character) (Isa 714 Location))

(Links (Antecedent (Internal 2) (Effect 5)) (Antecedent (Internal 2) (Effect 3))
(Antecedent (Internal 3) (Effect 1)) (Antecedent (Internal 3) (Precondition 3))
(Antecedent (Internal 3) (Effect 3)) (Antecedent {Internal 3) (Effect 5))
(Antecedent (Internal 3) (Constraint 6)) (Antecedent (Internal 4) (Internal 5))
(Antecedent (Internal 5) (Internal 6)) (Antecedent (Internal 6) {(Constraint 3))
(Antecedent (Internal 7) (Internal 8)) (Antecedent (Internal 8) (Internal 9))
(Antecedent (Internal 9) (Constraint 7)) (Antecedent (Internal 10) (Constraint 6))
(Precondition (Subaction 1) (Precondition 4)) (Constraint (Subaction 1) (Constraint 8))
(Constraint (Subaction 1) (Constraint 7)) (Effect (Subaction 1) (Effect 1))
(Precondition (Subaction 2) (Precondition 2)) (Constraint (Subaction 2) (Internal 10))
(Constraint (Subaction 2) (Constraint 5)) (Constraint {Subaction 2) (Internal 7))
(Constraint (Subaction 2) (Internal 8)) (Effect (Subaction 2) (Effect 2))

(Effect (Subaction 2) (Effect 3)) (Precondition (Subaction 3) (Precondition 1))
(Constraint (Subaction 3) (Internal 10)) (Constraint (Subaction 3) (Constraint 4))
(Constraint (Subaction 3) (Internal 4)) (Constraint (Subaction 3) (Internal 5))
(Effect (Subaction 3) (Effect 4)) (Effect (Subaction 3) (Effect 5))
(Precondition (Subaction 4) (Internal 2)) (Motivation (Subaction 4) (Precondition 5))
(Motivation (Subaction 4) (Internal 3)) (Constraint (Subaction 4) (Constraint 2))
(Constraint (Subaction 4) (Constraint 7)) (Constraint (Subaction 4) (Constraint 3))
(Effect (Subaction 4) (Effect 6)) (Precondition (Subaction 5) (Effect 3))
(Precondition (Subaction 5) (Effect 5)) (Motivation (Subaction 5) (Motivation 1))
(Motivation (Subaction 5) (Effect 6)) (Constraint (Subaction 5) (Internal 1))
(Constraint (Subaction 5) (Constraint 1)) (Constraint (Subaction 5) (Internal 6))
(Constraint (Subaction 5) (Internal 9)) (Effect (Subaction 5) (Effect 7)))

Figure B.24: DressSolicitArrest Schema Definition

204

>Why did Stan go to jail?

Because Stan was under arrest for soliciting Alice's sexual favors for the $75.

>Why was Stan under arrest?

Because Alice entrapped Stan.

> Who arrested Stan?

Alice arrested Stan for soliciting Alice’s sexual favors for the $75.

>Why did Alice arregt Stan?
Because Alice was a police-officer and because Alice believed that Stan solicited Alice's sexual

favors for the $75.

>Why did Stan tell Alice if she had sex with him then he would give her money?

Because Stan believed that Alice was a prostitute and because Stan was horny.

>Why did Stan believe that Alice was g prostitute?

Because Alice entrapped Stan and because the apparel was sexy.

This time, Stan’s action of soliciting Alice suggests the new DressSolicitArrest schema. This schema
is determined when its effect of Stan being under arrest for solicitation matches a fact added as a
precondition of his incarceration. The system’s explanation for why Stan is under arrest is shown

in Figure B.235.

. The fact that the test narrative mentions that Alice is a police-officer is not crucial to the

understanding of this narrative. For example, the following narrative is also understood using the

"~ learned schema:

Alice was at a corner wearing tight blue jeans. Stan told Alice if she had sex with him then he

would give her $75. Stan went to jail.

If after processing this narrative GENESIS is asked: “Who arrested Stan?,” it replies: ““Alice
arrested Stan for soliciting Alice’s sexual favors for the $75.” Because the schema suggestion and
determination procedures are based primarily on confirming that certain actions have occurred, the

presence of precondition facts in the narrative, such as the fact that Alice is a police-officer, does

205

Dressl —» Attirel

' Possess4
Isa23 A1

Illegall
Notl

Seductive2 \\ /,,rCommPaﬂﬂ\

Isalg

SalLE 3
o
Isa34
Prran
Isal7 transl At3

Occupationt

Isa3 \\ Arrestl —= Arrestedl

4

Solicitl — Believe2

Arrestedl
Arrestl
Believe2
Solicitl
NeedSex1
Believe$S
Isa33
A4
Ptrans2
Isals
Isa2l
Isa2
Isald
Isa35
Isa20
At13

" Not4

At3

Ptransl
Isal8

Isa23

Isal

{sal7

Isa34

Atl2

Not3
Seductive2
Attirel
Dressl
Isa32
Possessd
Isa3
CommPath2
Occupationl
Notl
Iilegall

- —

BelicveS

NeedSex1

Stan is under arrest for soliciting Alice’s sexual favors for the $75.
Alice arrested Stan for soliciting Alice’s sexual favors for the $75.
Alice believes that Stan solicited Alice's sexual favors for the $75.
Stan solicited Alice’s sexual favors for the $75.

Stan is horny.

Stan believes that Alice is a prostitute,

The corner is a corner.

Stan is at the corner.

Stan went to the corner,

Stan is an animate object.

Stan is a character.

Stan is a person.

Stan is a physical object,

Stan is a location,

The corner is a location.

Stan was at some place.

Stan is not at some place,

Alice is at the corner,

Alice went to the corner,

Alice is an animate object,

Alice is a character,

Alice is a person,

Alice is a physical object.

Alice is a location.

Alice was at some place.

Alice is not at some place,

The apparel is sexy.

Alice is wearing the apparel.

Alice put on the apparel,

The apparel is an apparel,

Alice has the apparel,

The $75 is money.

Stan has a communication path to Alice.

Alice is a police-officer.

Alice is not equal to Stan.

It is illegal for Stan to solicit Alice’s sexual favors for the $75,

Figure B.25: Solicit Test Example After Learning - Specific Explanation

206

not effect these processes. Of course, a better understanding system would probably consider the
number of a schema’s preconditions that are known to be satisfied and use this information to help

choose between competing interpretations of the text.

GENESIS can also use its conjectured meaning for the word “entrap” to help understand nar-
ratives that it would otherwise find incomprehensible. For example, in the following narrative, the

presence of the word “entrap” is the only thing that suggests the DressSolicit Arrest schema.

Input: Jan entrapped Mike. Mike went to jail.

Thematic goal achieved: Jan is happy that Mike is under arrest for soliciting Jan's sexual

favors for the money.

Ready for questions:

>Summarize

Jan had an apparel. Jan put on the apparel. Jan was at some place. Jan went to a corner.
Mike was at some place. Mike went to the corner. Mike was horny. The apparel was sexy.
Mike solicited Jan's sexual favors for money. Jan was a police-officer. Jan arrested Mike for

soliciting Jan’s sexual favors for the money.

Of course, the English word “entrap” does not actually refer specifically to “solicitation-
entrapment;”’ however, given the system’s current experience with this word, its interpretation of

this narrative is reasonable.

207

APPENDIX C

INITIAL GENESIS KNOWLEDGE

C.1. Action Schema Definitions

((Die 7a) "?a died."
(Constraint (Isa 7a Person))
(Effect (Dead 7a)))

({Inherit ?7a 70 ?7d) "?a inherited ?7d’s 70."

(Constraint (Isa ?a Character) (Isa ?d Person) (Isa ?0 Inanimate))
(Precondition (Heir 7a 7d) (Possess 7d 7o) (Dead 7d))

. {Effect (Possess 7a ?0) (Not (Possess 7d 70))))

((Win?a %) "?a won %o in 7c."
(Constraint (Isa ?a Character) (Isa 70 Inanimate) (Isa 7c Game))
(Effect (Possess 7a 70)))

((Aim 72 70 ?s) "?7a aimed 70 at 7s."

(Constraint (Isa ?a Person) (Isa ?0 PhysicalObject) (Isa ?s PhysicalObject))
(Precondition (LosPath ?a ?s) (Possess 7a 70))

(Effect (PointingAt ?a 7o 75)))

((Arrest 7a 7b (7d ?b . ?7r)) "?a arrested 7b for (?d 7b . 7r)."

(Constraint (Isa 7a Character) (Isa ?b Character) (Not (EQUAL 7a 7b)) (Tllegal (?7d 76 . 7))
(Precondition (At 7b 71} (At 7a 7))

(Motivation (Believe ?a (?d ?b . 7r)) (Occupation 7a police-officer))

(Effect (Arrested 7b (?d 7b . ?r) 72)))

((Atrans 7a 70 7t 71) "?a gave 7t 70 at 71."

{Constraint (Isa ?a Character) (Isa 7o Inanimate) (Isa 7t Character) (Isa ?1 Location))
{Precondition (Possess ?a 70))

(Effect (Possess 7t 20) (Not (Possess 7a 70)))

(Suggest ((Atrans ?a 70 7t 71) ~~> (Poison 7a 7t 70))))

((Indemnify 7a 70 7t (?s 71)) "?a indemnified 7t 7o for the loss of ?i."
(Constraint (Isa ?a InsuranceCo) (Isa ?0 Money) (Isa ?i Inanimate))
(Motivation (Believe ?a (?s 7)) (Insured (7s 7i) 7t %0 7a)))

((Bargain 7a 7o (7p 7a . 7r) (?2d 7b . 71))

"?a and 7b carried out a bargain in which (?p 72 . ?r) and (?d 7b . 71)."

(Constraint (Isa ?a Character) (Isa 7o Character)}

(Precondition (*Pointer® (?p 7a . 7r) Precondition) (*Pointer* (?d ?b . 71) Precondition)
(GoalPriority 7b (*Pointer* (?p %a . 7r) PosEffect) (*Pointer* (?d 7b ?1) NegEffect))
{Believe ?b (*Pointer* (?p 7a . ?r) Precondition)))

(Motivation (GoalPriority ?a (*Pointer* (?d ?b . 1) PosEffect) (*Pointer* (?p ?a . 7r) NegEffect)))

208

(Effect (*Pointer* (7d 7b . 71) PosEffect) (*Pointer* (?p ?a . 7r) PosEffect)
(Not (*Pointer* (?d ?b . 71) NegEffect)) (Not (*Pointer* (7p 7a . 7r) NegEffect))
(Not (Believe ?b (*Pointer* (?p ?a . ?r) NegEffect)))
(Not (Believe 7a (*Pointer* (?p 7a . 7r) NegEffect))))
" (Subaction (Mtrans ?a (Implies (?d 7b . 71) (?p ?a . 7r)) 70) (?d 76 . 71) (?p 72 . 7r))
(Internal (Believe ?b (Implies (?d 7b . 71) (?p 7a . 7r))) (Believe ?a (Implies (?p ?a . 7r) (?d 7o . 21))))
(Links (Effect (Subaction 2) (Effect 1)) (Effect (Subaction 3} (Effect 2))
(Effect (Subaction 2) (Effect 3)) (Effect (Subaction 3) (Effect 4))
(Precondition (Subaction 2) (Precondition 2)) (Effect (Subaction 1) (Internal 1))
(Precondition (Subaction 3) (Precondition 1)) (Motivation (Subaction 2) (Internal 1))
(Motivation (Subaction 2) (Precondition 3)) (Motivation (Subaction 3) (Motwauon 1))
{(Motivation (Subaction 3) (Internal 2))))

((Burn 7a ?0) "?a burned ?0."

(Constraint (Isa ?a Person) (Isa 70 Inanimate))
(Precondition (Flammable 70) (Not (Burnt 70)))
(Effect (Burnt ?0) (Believe 7a (Burnt 70))))

((Capture 72 7o %c 7r) "?a captured ?b and locked it in ?r."

(Constraint (Isa 7a Character) (Isa ?b Person) (Isa 7¢c Location) (Isa ?r Room) (In 2% 7r))
(Precondition (Free 7b))

(Effect (Captive 7b ?a 7c 7r) (Not (Free 70)) (Believe ?a (Captive 7b 7a 7¢ 7r)))
(Subaction (Ptrans 7a 7b 7d 7¢) (Ptrans 7a 7b 7s 7d) (Confine 7a 7b 7¢ 7r))

(Internal (At 7b 7d) (At 7b 7))

(Links {Constraint (Subaction 3) (Constraint 4)) (Constraint (Subaction 3) (Constraint 5))
(Constraint (Subaction 3) (Constraint 1)) (Constraint (Subaction 1) (Constraint 1))
{Constraint (Subaction 1) (Constraint 3)) (Constraint (Subaction 2) (Constraint 1))
(Effect (Subaction 2) (Internal 1)) (Precondition (Subaction 1) (Internal 1))

(Effect (Subaction 1) (Internal 2)) (Precondition (Subaction 3) (Internal 2))
(Precondition (Subaction 3) (Precondition 1)} (Effect (Subaction 3) (Effect 1))
(Effect (Subaction 3) (Effect 2)) (Effect (Subaction 3) (Effect 3))))

((Communicate ?a 70 ?7i) "?a contacted 7o and told it that 7i."

(Constraint (Isa 7a Character) (Isa o0 Character))

(Precondition (Believe ?a 7i))

(Effect (Believe 70 1))

(Subaction (Mtrans 7a ?i 70))

(Links (Precondition (Subaction 1) (Precondition 1)) (Effect (Subaction 1) (Effect 1))
(Constraint (Subaction 1) (Constraint 1)) (Constraint (Subaction 1) (Constraint 200

((Telephone 7a 70 %) "?a called ?o and told it that 7i."

(Precondition (Know 7a (HasPhoneNumber 70 7n)))

(Subaction (DialTelephone 7a 70 Tn) (AnswerTelephone 7o 7a) (Talk ?a 7i 70))

(Internat {PhoneRinging %o ?a) (CommPath ?a 70))

(Links (Precondition (Subaction 1) (Precondition 1)) (Effect (Subaction 1) (Internal 1))
(Precondition (Subaction 2) (Internal 1)) (Effect (Subaction 2) (Internal 2))
(Precondition (Subaction 3) (Internal 2)))

(Abstractions ((Subaction 3) Communicate (Subaction 1))))

((Confine 72 7b 7¢ ?r) "?a confined b 2¢."
(Suggest ((Confine ?a ?b 2c ?r) ~~> (Capture 7a ?b 7c ?1))))

209

((DialTelephone ?a %0 ?7n) "?a called ?0."
(Suggest ((DialTelephone ?a 20 7n) ~~> (Telephone ?a 7o 71))))))

((Dress 7a 7¢) "?a put on ?c."

(Constraint (Isa 7a Person) (Isa 7c Apparel))
(Precondition (Possess 7a 7))

‘(Effect (Attire 7a 7))

((Incarcerate ?a 70 7 ?2d) "?0 was put in 7j."

(Constraint (Isa 7o Person) (Isa ?j Jail) (Isa ?d Location) (At ?j 7d))

(Motivation {Arrested %0 ?v 7p))

(Effect (At 70 7d))

(Subaction (Ptrans 70 70 7s 7d))

(Links (Constraint (Subaction 1) (Constraint 1)) {Constraint (Subaction 1) (Constramt 2))
(Constraint (Subaction 1) (Constraint 3)) (Motivation (Subaction 1)- (Motlvat:on 1))
(Effect (Subaction 1) (Effect 1))))

((InsureObject ?a (?s 70) ?v %) "?a insured 7o with 7c for ?v in case (7s ?0)."
(Constraint (Isa 7a Character) (Isa ?0 Inanimate) (Isa 7v Money) (Isa %c InsuranceCo))
(Precondition (Possess ?a 7o) (Not (?s 70)))

(Effect (Insured (?s 70) ?a v 7%¢)))

((Mtrans ?a 7i 70) "7a told ?o that %i."

(Suggest ((Mtrans ?a (Implies (Coitus ?b ?a) (Atrans 7a 70 7b 1)) 7b) ~~ > (Solicit ?a 7b 20))
((Mtrans ?a (Implies (?p ?b . ?r) (?d ?a . 71)) 7b) ~~> (Bargain 7a 7b (?d ?a . ?1) (?p 76 . 7r)))
((Mtrans 7a (Implies (Not (?p ?b . 7r)) (?d 72 . 71)) 76) ~~>

(Threaten 7a 7b (?d ?7a . 71) (?p 7b . 7r)))))

((Murder ?a ?7v) "?a murdered ?v."

(Constraint (Isa 7a Character) (Isa ?v Person))

(Effect (Dead 7v))

(Subaction (GenesisAction 7a) (Die 7v))

{Internal (State ?v) (State ?0) (BadHealth 7v))

(Links (Effect (Subaction 1) (Internal 1)) (Antecedent (Internal 3) (Internal 1))
(Antecedent (Internal 3) (Internal 2)) (Precondition (Subaction 2) (Internal 3))
(Effect (Subaction 2) (Effect 1))))

((Poison 7a ?v 7p) "?7a poisoned ?v with 7p."

(Constraint (Poisonous ?p) (Isa 7p Food))

(Precondition (Possess ?a ?p) (NeedSustenance 7v))

(Effect (Inside ?p ?v) (Not (Possess 7a 7p)) (Not (Possess ?v 7p)))

(Subaction (Atrans ?a 7p ?v 71) (Ingest ?v 7p) (Die 7v))

(Internal (Possess ?v ?p) (BadHealth ?v))

(Links (Precondition (Subaction 1) (Precondition 1)) (Effect (Subaction 1) (Internal 1))
(Effect (Subaction 1) (Effect 2)) (Constraint (Subaction 2) (Constraint 2))
(Precondition (Subaction 2) (Internal 1)) (Motivation (Subaction 2) (Precondition 2))
(Effect (Subaction 2) (Effect 1)) (Effect (Subaction 2) (Effect 3))

(Antecedent (Internal 2) (Constraint 1)) (Antecedent (Internal 2) (Effect 1))
(Precondition (Subaction 3) (Internal 2)))
{Abstractions ((Internal 2) Murder (Internal 3)) {(Internal 1) Murder (Internal 1))
((Effect 1) Murder (Internal 2))} ((Subaction 3) Murder (Subaction 2))
((Subaction 1) Murder (Subaction 1))))

((ShootToKill 7a ?v 7g) "?a shot ?v and killed it."
(Constraint (Isa 7g Gun))
(Precondition (Possess 7a 7g))
(Effect (Shot ?7v))
(Subaction (Shoot ?a ?v 7g) (Die 7v))
(Internal (BadHealth 7v))
(Iinks (Precondition (Subaction 1) (Precondition 1)) (Effect (Subaction 1) {Effect 1))
(Antecedent (Internal 1) (Effect 1)) (Precondition (Subaction 2) (Internal 1)))
(Abstractions ((Effect 1) Murder (Internal 1)) ((Effect 1) Murder (Internal 2))
((Internal 1) Murder (Internal 3)) {(Subaction 2) Murder (Subaction 2))
((Subaction 1) Murder (Subaction 1))))

((Ptrans 7a 70 7s 7d) "?a moved o from 7s to 7d."

(Constraint (Isa 7a Animate) (Isa 7o PhysicalObject) (Isa 7s Location) (Jsa ?d Location))
(Precondition (At 70 ?s))

(Effect (At 70 ?7d) (Not (At 20 75)))

{Suggest (((Ptrans 7a 70 ?s 2d) (Isa ?j Jail) (At ?j 7d)) ~~> (Incarcerate ?p 70 7 7d))))

((Drive 7a 70 7s ?d 7%¢) "?a drove ?o from ?s to ?d in 7¢."

(Constraint (Isa 7c Vehicle))

(Precondition (Possess 7a 7¢) (At 72 71) (At 70 7i) (In 71 %) (At ?¢ 7s)) _
(Effect (At ?a 7d) (At 7c 2d) (Not (At 7a 1)) (Not (At %0 7i)) (Not (At 2¢ 25))))

((Release 7a 7b 7c 7r) "?a released 7b."
(Precondition (Captive ?b 7a 7¢ 7r))
(Effect (Free 7b) (Not (Captive 7b 7a ¢ ?r))))

((Shoot 7a v 7g} “7a shot ?v with ?g."

(Constraint (Isa 7g Gun) (Isa 7a Person))

(Precondition (Possess 7a 7g)(PointingAt %a g 7v))

(Effect (Shot 7v))

(Suggest ((Shoot 7a ?v 7g) ~~ > (ShootToKill ?a ?v 7g))))

((Solicit ?a 7o 70) "7a solicited ?b's sexual favors for 70."
(Constraint (Isa ?a Person) (Isa ?b Person) (Isa 70 Money))
(Precondition (CommPath ?a 7b))
(Motivation (Believe ?a (Occupation ?b prostitute)) (NeedSex 7a))
(Effect (Believe b (Solicit ?a 7b 70)))
(Subaction (Mtrans ?a (Implies (Coitus ?b ?7a) (Atrans ?a 70 ?b 71)) 7b))
(Links (Motivation (Subaction 1) (Motivation 1)) (Motivation (Subaction 1) (Motivation 2))
(Precondition (Subaction 1) (Precondition 1)) (Effect (Subaction 1) (Effect 1))))

((Threaten 7a 7o (?p ?a . 7r) (7d ?b . 71)) "?a threatened (?p 7a . 7r) unless (?d 7b . 71)."

(Constraint (Isa 7a Character) (Isa ?b Character))

(Precondition (*Pointer* (7p ?a . ?r) Precondition) (*Pointer* (?d ?b . 71) Precondition)
(Goal ?b (Not (*Pointer* (?p 7a . 7r) Effect))))

(Effect (*Pointer* (7d ?b . ?1) Effect) (Not (*Pointer* (?d ?b . 71) NegEffect)))

(Subaction (Mirans 7a (Implies (Not (7d ?b . 71)) (?p ?a . 7r)) 7b) (?d 7b . 1))

(Internal (Believe 7b (Implies (Not (?d ?b . 7)) (?p %a . 7r))))

210

(Links (Precondition (Subaction 2) (Precondition 2)) (Motivation (Subaction2) (Precondition 3))

(Motivation (Subaction 2) (Internal 1)) (Effect (Subaction 1) (Internal 1))
(Effect (Subaction 2) (Effect 1)) (Effect (Subaction 2) (Effect 2))))

211

C.2. Inference Rules

((Seductive 7x) "?x was sexy."
(Brules ({Seductive 7x) <== (Isa 7x Skirt) (Length ?x short))
((Seductive 7x) <== (Isa ?x Jeans) (Fit ?x tight))))

((CommPath ?a 7b) "7a had a communication path to 7b."
(Brules ((CommPath %a ?7b) <== (At 7b 71) (At 7a 71))))

 ((Heir 7x ?7y) "7 was ?y’s heir."
(Brules ((Heir 7x ?y) <==(Spouse ?x 7y))
((Heir ?x 7y) <== (Parent ?y 7x))))

((Illegal 7a) "It was illegal for 7a."
(Brules ((Illegal (Solicit 7a 7b 7¢)) <==)))

((LosPath 7a ?b) "?a had a line of sight path to ?b."
(Brules ((LosPath 7a 7b) <== (At ?a ?1) (At 7b 7D)))

((Believe 7x 7p) "7x believed that 7p."
(Brules ((Believe 7x (Occupation ?y prostitute)) <== (Isa 71 Corner)(At 7x 71) (At 7y 71)
(Seductive 7c) (Attire 7y 7c))))

{(GoalPriority ?a ?d 7f) "?a wanted ?d more than it wanted 7f."
* (Brules ((GoalPriority 7a (Free 7b) (Possess 7a 70)) <== (PositivelPT 7a ?b))))

((Spouse 7a 7o} "?a was 7b’s spouse.”
(Brules ((Spouse 7a 7b) <== (Spouse 7b 7a))
((Spouse 7a 7b) <== (Married ?a ?b))))

{(Possess 7a 7x) "?a had ?x."
{(Brules ({(Possess ?a 7x) <==(Amount ?y ?g 7u) (Possess ?a ?y) (Amount ?x ?1 7u)
(Isa 7x 7t) (Isa 7y 7t) (LessThan ?1 7g))
((Possess 7a 7x) <== (Holding ?a 7x))))

((ThemeGoalMet ?x ?7g) "?x was happy that ?g."
~(Brules ((ThemeGoalMet ?x (Possess ?x ?y)) <== (Possess 7x ?y) (Isa ?y Valuable))
' ((ThemeGoalMet 7a (Insured 7s ?a ?v 7c)) <== (Insured ?s 7a 7v 7c))
((ThemeGoalMet ?a (Arrested 7b 7d 7a)) <== (Arrested 7b 7d 7a)
(Occupation ?a police~officer))))

APPENDIX D

DETAILED GENESIS TRACE FOR THE MURDER EXAMPLE

10_{ProcessStory MURDER-T)
Input: (Martha is Gene's mother and is a millionaire)

Input: (Isa Personl Person)
Add state: Isal

Input: (Gender Personl female)
Add state: Genderl

Input: {Name Personl Martha)
Add state: Namel

Input: (Isa Person2 Person)
Add state: Isa2

““Input: (Gender Person2 male)
Add state: Gender2

Input: (Name Person2 Gene)
Add state: Name2

Input: (Isa Money1l Money)
Add state: Isa3

Input: (Amount Moneyl order-millions doljiar)
Add state: Amountl

Input: {Mother Personl Person2)
Add state: Motherl
Inferring Parentl: (Parent Personl Person2)
Inferring PositivelPT1: (PositivelPT Personl Person2)

Input: (Possess Personl Moneyl)
Add state: Possessl

Input: (He shot her and she died)

Inpﬁt: (Shoot Person2 Personl 7INSTR6)

Suggesting: ShootToKilll:{ShootToKill Person2 Personl 7INSTR6)
Suggesting: Murderl:(Murder Person2 Personl)

Found suggested Shoot2:(Shost Person2 Personl 7INSTR6)
matches Shootl:(Shoot Person2 Personl ?7INSTR6)
Assuming suggested: Possess2:(Possess Person2 7INSTR6)
Assuming suggested: Shot2:(Shot Personl)
Assuming suggested: BadHealth1:(BadHealth Personl)
Assuming suggested: BadHealth2:(BadHealth Personl)
Assuming suggested: State2:(State 701)
Assuming suggested: Statel:(State Personl)

212

Assuming suggested: GenesisActionl:(GenesisAction Person2)
Input: (Die Personl)

Found suggested Die2:(Die Personl)
matches Die3:(Die Personl)
Assuming suggested: Dead1:(Dead Personl)
Assuming suggested: Diel:(Die Personl)
Determining: ShootToKilll: (ShootToKill Person2 Personl 7INSTR6)

Locking for Precondition:(Possess Person2 7INSTR6)
Unable to infer (Possess Person2 7INSTRE)
Precondition not found,

Assuming Possess3: (Possess Person2 7INSTR6)

Looking for Constraint:(Isa 2INSTR6 Gun)
Constraint not found,
Assuming Isa7: (Isa 7INSTR6 Gun)

Effects:
Shot2: (Shot Personl)
Murder2: {Murder Person2 Personl)inferrred from:
ShootToKilll: (ShootToXKill Person2 Personl 7INSTRE)

Determining: Murderl: (Murder Person2 Personl)

Loocking for Constraint:(Isa Personl Person)
Found Isal:(Isa Personl Person)

Looking for Constraint:(Isa Person2 Character)
Isa8: (Isa Person2 Character)inferrred from:
Isa2: (Isa Person2 Person)

Eﬂ‘ects:
Deadl: (Dead Personl)

GenesisAction2: (GenesisAction Person2 . 7x9)inferrred from:

Shoot2: (Shoot Person2 Personl 7INSTR6)
State3: (State Personl)inferrred from:
Shot2: (Shot Personl)
Stated: (State Personl)inferrred from:
Shot2: (Shot Personl)

Input: (Gene got $1000000)

Input: (Isa Money2 Money)
Add state: IsalQ

“Input: (Amount Money2 1000000 doliar)
Add state: Amount2

Input: (Possess Person2 Money2)
Add state: Possessd
Unable to infer (Isa Money2 Gun)

Ready for guestions:

-
11_ (ProcessStory MURDER)

213

Input: (Claudius was Agrippina’s husband and owned an estate)

Input: (Isa Personl Person)
Add state: Isal

Input: (Gender Personl male)
Add state: Genderl

Input: (Name Personl Claudius)
Add state: Namel

Input: (Isa Person2 Person)
Add state: Isa2

Input: (Gender Person2 female)
Add state: Gender2

Input: (Name Person2 Agrippina)
Add state: Name2

Input: (Isa Estatel Estate)
Add state: Isa3

Input: (Husband Personl Person2)
Add state: Husbandl
Inferring Spousel: (Spouse Personl Person2)
Inferring PositiveIPT1: (PositiveIPT Personl Person2)

Input: (Possess Personl Estatel)
Add state: Possessl

Input: (Agrippina gave him a poisonous mushroom and he died)

Input; (Poisonous Mushrooml)
Add state: Poisonousl

Input: {Isa Mushroom1 Mushroom)
Add state: Isad

Input: (Atrans Person2 Mushrooml Personl 7AT6)
Found Poisonousl: (Poisonous Mushroom1)
IsaS: (Isa Mushrooml Food)inferrred from:

Isad4: (Isa Mushroom1 Mushroom)

Suggesting: Poisonl:(Poison Person2 Personl Mushroom!)

Suggesting: Murderl:(Murder Person2 Personl)

Found suggested Atrans2:(Atrans Person2 Mushrooml Personl ?12)

matches Atransl:(Atrans Person2 Mushroom! Personl ?AT6E)
Assuming suggested: Possess3:(Possess Person2 Mushroom1)
Assuming suggested: Not2:(Not {Possess Person2 Mushroom1))
Assuming suggested: Possess4:(Possess Personl Mushroom1)
Assuming suggested: Statel:(State Personl)

Assuming suggested: GenesisActionl:(GenesisAction Person2)

Input: (Die Personl)

214

Found suggested Die2:(Die Personl)
matches Die3:(Die Personl)
Assuming suggested: BadHealth2:(BadHealth Personl)
Assuming suggested: State2:(State 702)
Assuming suggested: Insidel:(Inside Mushrooml Personl)
Assuming suggested: Ingestl:(Ingest Personl Mushrooml)
Assuming suggested: NeedSustenancel:{NeedSustenance Personl)
Assuming suggested: Isa7:(Isa Mushroom1 Food)
Assuming suggested: Not3:(Not (Possess Personl Mushroom1))
Assuming suggested: BadHealth1:(BadHealth Personl)
Assuming suggested: Poisonous2:(Poisonous Mushroom1)
Assuming suggested: Dead1:(Dead Personl)
Assuming suggested: Diel:(Die Personl)

Determining: Poison1: (Poison Person2 Personl Mushroom1)

Looking for Constraint:(Isa Mushrooml Food)
Found Isa5:(Jsa Mushrooml Food)

1.ooking for Constraint:(Poisonous Mushroom1)
Found Poisonousl:(Poisonous Mushroom1}

Looking for Precondition:(NeedSustenance Personl)
Unable to infer (NeedSustenance Personl)
Precondition not found,
Assuming NeedSustenance2: (NeedSustenance Personl)

Looking for Precondition:(Possess Person2 Mushroom1)
Unable to infer (Possess Person2 Mushroom1)
- Precondition not found,
Assuming Possess5: (Possess Person2 Mushroom1)

Effects:
Insidel: (Inside Mushroom1 Personl)
Not2: (Not (Possess Person2 Mushrooml))
Not2 deletes PossessS: (Possess Person2 Mushroom1)
Not3: (Not (Possess Personl Mushroom1))
Not3 deletes Possess4: (Possess Personl Mushrooml)
Murder2: (Murder Person2 Personl)inferrred from:
Poisonl: (Poison Person2 Personl Mushroomi)

Determining: Murderl: (Murder Person2 Personl)

Looking for Constraint:(Isa Personl Person)
Found Isal:(Isa Personl Person)

Looking for Constraint:(Isa Person2 Character)
Isal10: (Isa Person2 Characterlinferrred from:
Isa2: (Isa Person2 Person)

Effects:
Deadl: (Dead Personi)

GenesisAction2: (GenesisAction Person2 . 7x13)inferrred from:

Atrans2: (Atrans Person2 Mushrooml Personl 712}
State3: (State Personl)inferrred from:

Possess4: (Possess Personl Mushroom1)
Stated: (State Mushrooml)inferrred from:

Insidel: (Inside Mushrooml Personl)

Input: (She inherited the estate)

215

Input: (Inherit Person2 Estatel 7FROM3)
Create action: Inheritl
Found Isal: (Isa Personl Person)

Looking for Precondition:(Dead 7FROM3)
Found Deadl:(Dead Personl)

Looking for Precondition:(Possess Personl Estatel)
Found Possess1:(Possess Personl Estatel)

Looking for Constraint:(Isa Personl Person)
Found Isal:(Isa Personl Person)

Looking for Constraint:(Isa Person2 Character)
Found Isal0:(Jsa Person2 Character)

Looking for Precondition:{Heir Person2 Personl)
Heir2: (Heir Person2 Personl)inferrred from:

Spoused: (Spouse Person2 Personl)inferrred from:

Spousel: (Spouse Personl Person2)

Inferring PositivelPT2: {PositiveIPT Person2 Personl)

Looking for Constraint:(Isa Estatel Inanimate)
Isal5: (Isa Estatel Inanimate)inferrred from:
Isal7: (Isa Estatel Valuable)inferrred from:
Isa3: (Isa Estatel Estate)

Effects:
Possess9: (Possess Person2 Estatel)
Not6: (Not (Possess Personl Estatel))
Not6 deletes Possessl: {Possess Personl Estatel)

ThemeGoalMetl: (ThemeGoalMet Person2 (Possess Person? Estatel)) inferrred from:

Isal7: (Isa Estatel Valuable)
Possess9; (Possess Person2 Estatel)

Thematic goal achieved: ThemeGoalMet1:(ThemeGoalMet Person2 (Possess Person2 Estatel))

Explanation suitable for generalization.

Pruning.,
Prumng unit:lsal7 ((Isa Estatel Valuable)
< ==
(Isa Estatel Estate))
Pruning unit:1sa10 ((Isa Person2 Character)
(Isa Person2 Person)}
Pruning unit:Isa5 ((Isa Mushrooml Food)
(Isa Mushroem1 Mushroom))

Pruning unit:Murder2 ((Murder Person2 Personl)

o

(Poison Person2 Personl Mushroom1))
Pruning unit:Spousel {(Spouse Personl Person2)

(Husband Personl Person2))
Pruning unit:Spoused ((Spouse Person2 Personl)

{Spouse Personl Person2))
Pruning unit:Heir2 ((Heir Person2 Personl)

216

{Spouse Person2 Personl))
Generalizing,..
Packaging...

In general Not6 deletes Possess8 when T
Creating New Schema: (MurderInherit 7a5 704 7d1)

Schema summary:(MurderInherit 7a5 7To4 ?d1)
?a5 is a character. :
7d1 is a person,

725 murders 7d1.

7?04 is a valuable.

?d1 has o4,

7a5 is 7d1’s heir.

7a5 inherits 7d1’s 704.

Having: (Murder 7a5 7d1) suggest MurderInherit
Ready for questions:

>
12_ (ProcessStory MURDER-T)

Input: {Martha is Gene’'s mother and is a millionaire)

Input: (Isa Personl Person)
Add state: Isal

Input: (Gender Personl female)
Add state: Genderl

Input: (Name Personl Martha)
Add state: Namel

Input: (Isa Person2 Person)
Add state: Isa2

Input: (Gender Person2 male)
Add state; Gender2

Input: (Name Person2 Gene)
Add state: Name2

Input: (Isa Moneyl Money)
Add state: Isa3

Input: (Amount Moneyl order-millions dollar)
Add state: Amountl

Input: {Mother Personl Person2)
Add state: Motherl
Inferring Parentl: (Parent Personl Person2)
Inferring PositiveIPT1: (PositiveIPT Personl Person2)

Input: (Possess Personl Moneyl)
Add state: Possessl

Input: (He shot her and she died)

217

Input: (Shoot Person2 Personl 7INSTR6)
Suggesting: ShootToKill1:(ShootToKill Person2 Personl TINSTR6)
Suggesting: Murderl:(Murder Person2 Personl)

Found suggested Shoot2:(Shoot Person2 Personl 7INSTRé)
matches Shootl:(Shoot Person2 Personl TINSTR6)
Assuming suggested: Possess2:(Possess Person2 7INSTR6)
Assuming suggested: Shot2:(Shot Personl)
Assuming suggested: BadHealthl:(BadHealth Personl)
Assuming suggested: BadHealth2:(BadHealth Personl)
Assuming suggested: State2:(State 70l1)
Assuming suggested: Statel:(State Personl)
Assuming suggested: GenesisActionl:(GenesisAction Person2)

Input: (Die Personl)

Found suggested Die2:(Die Personl)
" matches Die3:(Die Personl)
Assuming suggested: Dead1:(Dead Personl)
Assuming suggested: Diel:(Die Personl)

Determining: ShootToKilll: (ShootToKill Person2 Personl ?INSTR6)

Looking for Precondition:(Possess Person2 ?INSTR6)
Unable to infer (Possess Person2 7INSTRE)
Precondition not found,

Assuming Possess3: (Possess Person2 ?INSTR6)

Looking for Constraint:(Isa 7INSTRE Gun)
Constraint not found,
Assuming Isa7: (Isa 7INSTR6 Gun)

Effects:
Shot2: (Shot Personl)
Murder2: (Murder Person2 Personl)inferrred from:
ShootToKilll: (ShootToKill Person2 Personl 2INSTRS)

Determining: Murderl: {(Murder Person2 Personl)
Isa8: (Isa Person2 Character}inferrred from:

Isa2: (Isa Person2 Person)

Found Isal: {Isa Personl Person)

_ Suggesting: MurderInheritl:(MurderInherit Person2 ?04-2 Personl)

Found suggested Murder3:(Murder Person2 Personl)
matches Murder2:(Murder Person2 Personl)
Assuming suggested: Isal0:(Isa Person2 Character)
Assuming suggested: Isal1:(Isa Personl Person)
Assuming suggested: Dead3:{Dead Personl)

GenesisAction2: {(GenesisAction Person2 . 7x8)inferrred from:

Shoot2: (Shoot Person2 Personl 7INSTR6)
State3: (State Personl)inferrred from:
Shot2: {Shot Personl)
Stated: (State Personl Yinferrred from:
Shat2: {(Shot Personl) :

Input: (Gene got $1000000)

218

Input: (Isa Money2 Money)
Add state: Isald

Input: (Amount Money2 1000000 dollar)
Add state: Amount2

Input: (Possess Person2 Money2)
© Add state: Possess6
Unable to infer (Isa Money2 Gun)
Isals: (Isa Money2 Valuabledinferrred from:
Isal4: (Isa Money2 Money)

Found suggested Possess5:(Possess Person2 704-2)
matches Pogsess6:(Possess Person2 Money2)
Assuming suggested: Inheritl:(Inherit Person2 Money2 Personl)
Assuming suggested: Heirl:(Heir Person2 Personl)
Assuming sugpested: Possess4:{Possess Personl Money2)
Assuming suggested: Isal3:(Isa Money2 Inanimate)
. -Assuming suggested: Isal2:(Isa Money2 Valuable)
" Assuming suggested: Not1:(Not (Possess Personl Money2))
Determining: MurderInheritl: (MurderInherit Person2 Money2 Personl)

‘Looking for Constraint:(Isa Money2 Valuable)
Found Isal5:(Isa Money2 Valuable)

Looking for Constraint:(Isa Personl Person)
Found Isal:(Isa Personl Person)

Looking for Constraint:(Isa Person2 Character)
Found Isa8:(Isa Person2 Character)

Looking for Precondition:(Possess Personl Money2)
Add state: LessThanl
Possess8: (Possess Personl Money2)inferrred from:

LessThanl: (LessThan 1000000 order-millions)
Isa3: (Isa Moneyl Money)
Isal4: (Isa Money2 Money)
Amount2: (Amount Money2 1000000 dollar}
Possess]: (Possess Personl Moneyl)
Amountl: (Amount Moneyl order-millions dollar}

ThemeGoalMetl: (ThemeGoalMet Personl (Possess Personl Money2)) inferrred from:

Isal5: (Isa Money2 Valuable)
Possess8: (Possess Personl Money2)

Looking for Precondition:(Heir Person2 Personl)
Heir2: (Heir Person2 Personl)inferrred from:
Parentl: (Parent Personl Person?)

Effects:
Deadl: (Dead Personl)
Notl: (Not (Possess Personl Money2))
Notl deletes Possess8: (Possess Personl Money2)
Possess5: (Possess Person2 Money2)

ThemeGoalMet2: (ThemeGoalMet Person2 (Possess Person2 Money2)) inferrred from:

Isal3: (Isa Money2 Valuable)
PossessS: (Possess Person2 Money2)

Thematic goal achieved: ThemeGoalMet2:(ThemeGoalMet Person2 (Possess Person2 Money2))

219

[Ahn87a]

[Ahn87b]

[Anderson79]

[Anderson82]

[Anderson83al

[Anderson83b]

[Anderson86]

[Anderson87a]

[Anderson87bl]

[Bain86]

[Bennett86]

[Bennett87]

[Berwick83]

[Bowerman80]

220
REFERENCES

W. Ahn, R. J. Mooney, W. F. Brewer and G. F. DeJong. "Schema Acquisition
from One Example: Psychological Evidence for Explanation-Based Learning,’
Proceedings of the Ninth Annual Conference of the Cognitive Science Society,
Seattle, WA, July 1987. (Also appears as Technical Report UILU-ENG-87-
2231, Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign)

W. Ahn, "Schema Acquisition from a Single Example," M.A. Thesis, Department
of Psychology, University of Illinois, Urbana, IL, October 1987.

J. R. Anderson, P. J. Kline and C. M. Beasley, "A General Learning Theory and
its Application to Schema Abstraction,” in The Psychology of Learning and
Motivation, G. H. Bower (ed.), Academic Press, New York, NY, 1979, pp. 227-
318.

J. R. Anderson, "Acquisition of Cognitive Skill," Psychological Review 89, 4
(1982), pp. 369-406.

J. R. Anderson, "Acquisition of Proof Skills in Geometry," in Machine Learning:
An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell, T. M.
Mitchell (ed.), Tioga Publishing Company, Palo Alto, CA , 1983, pp. 191-221.

J. R. Anderson, The Architecture of Cognition, Harvard University Press,
Cambridge, MA, 1983.

J. R. Anderson, "Knowledge Compilation: The General Learning Mechanism," in
Machine Learning: An Artificial Intelligence Approach, Vol. 11, R. 8. Michalski,
J. G. Carbonell and T. M. Mitchell (ed.), Morgan Kaufman, 1986, pp. 289-309.

J. R. Anderson, "Causal Analysis and Inductive Learning," Proceedings of the
1987 International Machine Learning Workshop, Irvine, CA, June 1987, pp.
288-299.

J. R. Anderson and R. Thompson, "Use of Analogy in a Production System
Architecture,” in Similarity and Analogical Reasoning, S. Vosniadou and A.
Ortony (ed.), Cambridge University Press. Cambridge, England, 1987.

W. M. Bain, "A Case-Based Reasoning System for Subjective Assessment."
Proceedings of the National Conference on Artificial Intelligence, Philadelphia,
PA, August 1986, pp. 523-527.

S. W. Bennett, "Strategy-Based Understanding of Solutions to Mathematical
Equations." Working Paper 78, Al Research Group, Coordinated Science
Laboratory, University of Ilinois, Urbana, IL, March 1986.

S. W. Bennett, "Approximation in Mathematical Domains," Proceedings of the
Tenth International Joint Conference on Artificial Intelligence, Milan, Italy,
August 1987, pp. 239-241.

R. C. Berwick, "Learning Word Meanings from Examples," Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany, August 1983, pp. 459-461.

M. Bowerman, "The Structure and Origin of Semantic Categories in the
Language Learning Child." in Symbols as Sense: New Approaches to the Analysis
of Meaning, M. L. Foster & S. H. Brandes {ed.), Academic Press, New York,
1980, pp. 277-299.

[Buchanan77]

[Bundy83]
{Chapman87]

[Charniak77]

[Charniak78]
[Charniak80] -

[Charniak82]

[Charniak85]

[Charniak86]
[Cheng86]

[Chien87a]

[Chien87b]

[Clocksin84]

- [Collins80]
[Cullingford 78}

[Danyluk87]

221

B. G. Buchanan, T. M. Mitchell, R. G. Smith and C. R. Johnson, "Models of
Learning Systems,” in Encyclopedia of Computer Science and Technology, Vol. 11,
J. Belzer, A. G. Holzman, & A. Kent (ed.), Marcel Dekker, New York, NY, 1977,
pp. 24-51.

A. Bundy, The Computer Modelling of Mathematical Reasoning, Academic Press,
New York, NY, 1983.

D. Chapman, "Pla.nning for Conjunctive Goals," Artificial Intelligence 32, 3
(1987), pp. 333-378.

E. Charniak, "MS. MALAPROP, A Language Comprehension System,”
Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
Cambridge, MA, August 1977.

E. Charniak, "With a Spoon in Hand this Must be the Eating Frame," Theoretical
Issues in Natural Language Processing 2, Urbana, IL, 1978, pp. 187-193.

E. Charniak, C. Riesbeck and D. McDermott, Artificial Intelligence
" Programming, Lawrence Erlbaum and Associates, Hillsdale, NJ, 1980.

E. Charniak, "Context Recognition in Language Comprehension,” in Strategies for

Natural Language Processing, W. G. Lehnert and M. H. Ringle (ed.), Lawrence
Erlbaum and Associates, Hillsdale, NJ , 1982, pp. 435-454.

E. Charniak and D. McDermott, Introduction to Artificial Intelligence, Addison-
Wesley, Reading, MA, 1985.

E. Charniak, "A Neat Theory of Marker Passing," Proceedings of the National
Conference on Artificial Intelligence, Philadelphia, PA, August 1986, pp. 584-
588.

P. Cheng and J. G. Carbonell, "The FERMI System: Inducing Iterative Macro-
operators from Experience,” Proceedings of the National Conference on Artificial
Intelligence, Philadelphia, PA, August 1986, pp. 490-495.

S. A. Chien, "Simplifications in Temporal Persistence: An Approach to the
Intractable Domain Theory Problem in Explanation-Based Learning," M.S.
Thesis, Department of Computer Science, University of Illinois, Urbana, IL,
August 1987. (Also appears as UILU-ENG-87-2255, AI Research Group.
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.)

S. A. Chien, "Extending Explanation-Based Learning: Failure-Driven Schema
Refinement," Proceedings of the Third IEEE Conference on Artificial Intelligence
Applications, Orlando, Florida, February 1987. (Also appears as Technical
Report UILU-ENG-87-2203, Al Research Group. Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign.)

W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer Verlag,
Berlin, 1984.

A. Collins, J. 8. Brown and K. M. Larkin, "Inference in Text Understanding," in
Theoretical Issues in Reading Comprehension, R. Spiro, B. Bruce, W. Brewer
(ed.). Lawrence Erlbaum and Associates, Hillsdale, NJ, 1980, pp. 386-410.

R. E. Cullingford, "Script Application: Computer Understanding of Newspaper
Stories." Technical Report 116, Department of Computer Science. Yale
University, New Haven, CT. January 1978.

A. P. Danyluk, "The Use of Explanations for Similarity-Based Learning."
FProceedings of the Tenth International Joint Conference on Artificial
Intelligence, Milan, Italy, August 1987, pp. 274-276.

[DeJong79]

[DeJong81]

[DeJong82a]

[DeJong82b]

[DeJong83)
[DeJong84]

[DeJong86a)

[DeJong86b)
[de Kleer86]

[Dietterich82]
[Dietterich83]

[Dietterich86]

[Dijkstra76]
[Doyle79]

[Doyle86]

[Dyer83]

222

G. F. DeJong, "Skimming Stories in Real Time: An Experiment in Integrated
Understanding," Technical Report 158, Ph.D. Thesis, Department of Computer
Science, Yale University, New Haven, CT, 1979.

G. F. Delong, "Generalizations Based on Explanations," Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, Vancouver,
B.C., Canada, August 1981, pp. 67-70. (Also appears as Working Paper 30, Al
Research Group, Coordinated Science Laboratory, University of Illinois at

. Urbana-Champaign.)

G. F. DelJong, "Automatic Schema Acquisition in a Natural Language
Environment," Proceedings of the National Conference on Artificial Intelligence,
Pittsburgh, PA, August 1982, pp. 410-413. (Also appears as Working Paper 34,
Al Research Group, Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign.)

G. F. Delong, "An Overview of the FRUMP System," in Strategies for Natural
Language Processing, W. G. Lehnert and M. H. Ringle (ed.), Lawrence Erlbaum
and Associates, Hillsdale, NJ , 1982.

G. F. DeJong, "An Approach to Learning from Observation," Proceedings of the
1983 International Machine Learning Workshop, Urbana, IL, June 1983. (Also
appears as Working Paper 45, Al Research Group, Coordinated Science
Laboratory, University of [llinois at Urbana-Champaign.)

G. F. Delong, A. M. Segre, A. Ram, R. J. Mooney and M. Edel. "A Natural
Language Processor that Supports Learning,” Working Paper 55, Al Research

Group. Coordinated Science Laboratory, University of Illinois, Urbana, IL,
March 1984.

~ G. F. DeJong, "Explanation Based Learning," in Machine Learning: An Artificial

Intelligence Approach, Vol. II, R. S. Michalski, J. G. Carbonell, T. M. Mitcheil

- {ed.), Morgan Kaufmann, Los Altos, CA, 1986.

G. F. Delong and R. J. Mooney, "Explanation-Based Learning: An Alternative
View." Machine Learning 1.2 (1986), pp. 145-176.

J. deKleer, "An Assumption-Based Truth Maintenance System," Artificial
Intelligence 28, (1986), pp. 127-162.

T. G. Dietterich, B. London, K. Clarkson and G. Dromney, "Learning and
Inductive Inference," in The Handbook of Artificial Intelligence, Vol. III, P. R.
Cohen & E. A. Feigenbaum (ed.), William Kaufman, Inc., Los Altos, CA, 1982,

T. G. Dietterich and R. S. Michalski, "A Comparative Review of Selected
Methods for Learning from Examples," in Machine Learning: An Artificial
Inzelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell (ed.).

~Tioga Publishing Company, Palo Alto, CA, 1983, pp. 41-81.

T. G. Dietterich, "Learning at the Knowledge Level," Machine Learning I, 3
(1986), pp. 287-316.

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

J. Doyle. "A Truth Maintenance System,” Artificial Intelligence 12, 3 (1979), pp.
231-272.

R. Doyle, "Constructing and Refining Causal Explanations from an Inconsistent
Domain Theory." Proceedings of the National Conference on Artificial
Intelligence, Philadelphia, PA, August 1986, pp. 538-544.

M. 1. Dyer, In-Depth Understanding, MIT Press, Cambridge, MA, 1983,

[Ellman87]

[Even79]

[Falkenhainer87]

[Feigenbaum83]

[Fikes72]

[Flann86]
[Gangly87]

[Garey79]

[Gerrold73]
- [Gick83]

[Gopnik86]
[Granger77]
[GrangerSO}

[Gupta87]
[Hal185]

[Hirsh87]

[Hirst87]

[Iba85]

[Jurgenson75]

223

T. Ellman, "Explanation-Based Learning: A Survey of Programs and
Perspectives,” Technical Report, Depariment of Computer Science, Columbia
University, New York, NY, 1987,

S. Bven, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

B. Falkenhainer, K. D. Forbus and D. Gentner, "The Structure Mapping Engine:
Algorithm and Examples," Technical Report UILU-87-1748, Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL,
July 1987.

E. A, Feigenbaum and P. McCorduck, The Fith Generation: Artificial Intelligence
and Japan’s Computer Challenge to the World, Addison-Wesley, Reading, MA,
1983.

R. E. Fikes, P. E. Hart and N. I. Nilsson, "Learning and Executing Generalized
Robot Plans,”" Artificial Intelligence 3, 4 (1972), pp. 251-288.

N. S. Flann and T. G. Dietterich, "Selecting Appropriate Representations for
Learning from Examples," Proceedings of the National Conference on Artificial
Intelligence, Philadelphia, PA, August 1986, pp. 460-466.

B. Gangly, "The Devolving Science of Machine Learning," Proceedings of the
1987 International Machine Learning Workshop, Irvine, CA, June 1987, pp.
398-401.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, 1979.

D. Gerrold, The World of Star Trek, Ballantine, New York, NY, 1973.

M. L. Gick and K. L. Holyoak, "Schema Induction and Analogical Transfer,"
Cognitive Psychology 15, (1983), pp. 1-38.

A. Gopnik and A. N. Meltzoff, "Relations between Semantic and Cognitive
Development in the One-Word Stage: The Specificity Hypothesis.," Child
Development 57, (1986), pp- 1040-1053.

R. H. Granger, "FOUL-UP: A Program that Figures Out Meanings of Words
from Context.," Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, Cambridge, MA, August 1977, pp. 172-178.

R. H. Granger, "Adaptive Understanding: Correcting Erroneous Inferences,"
Technical Report 171, Yale University, Department of Computer Science, New
Haven, Conn., January 1980.

A. Gupta, "Explanation-Based Failure Recovery,' Proceedings of the National
Conference on Artificial Intelligence, Seattle, WA, July 1987, pp. 606-610.

R. P. Hall and D. F. Kibler, "Differing Methodological Perspectives in Artificial
Intelligence Research,” Artificial Intelligence Magazine 6, 3 (1985), pp. 166-178.

H. Hirsh, "Explanation-Based Generalization in a Logic-Programming
Environment," Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, Milan, Italy, August 1987.

G. Hirst, Sernantic Interpretation and the Resolution of Ambiguity, Cambridge
University Press, Cambridge, England, 1987.

G. A. Iba, "Learning by Discovering Macros in Puzzle Solving," Proceedings of
the Ninth International Joint Conference on Artificial Intelligence, Los Angeles,
CA, August 1985, pp. 640-642.

R. C. Jurgenson, A. J. Donnelly, J. E. Majer and G. R. Rising, Geomeiry,
Houghton Mifflin, Boston, 1975.

[Kass86]

[Kautz86]

224

A. Kass, "Modifying Explanations to Understand Stories," Proceedings of the
LEighth Annual Conference of the Cognitive Science Society, Amherst, MA,
August 1986, pp. 691-696.

H. A. Kautz and J. F. Allen, "Generalized Plan Recognition." Proceedings of the
National Conference on Artificial Intelligence, Philadelphia, PA, August 1986,
Pp. 32-37.

[Kedar-Cabelli87a}S. T. Kedar-Cabelli and L. T. McCarty, "Explanation-Based Generalization as

Resolution Theorem Proving," Proceedings of the 1987 International Machine
Learning Workshop, Irvine, CA, June 1987, pp. 383-389.

{Kedar-Cabelli8 7b]S. T. Kedar-Cabelli, "Formulating Concepts According To Purpose." Proceedings

[Keller87a)

[Keller87b)

[Kernighan79]
[Kolodner84]

[Kolodner§7]

[Korf85]
[Kowalski79]

[Kuczajg2]
[Kuhn70]
[Laird84]

{Laird86al

[Laird86b]

[Langley81]

of the National Conference on Artificial Intelligence, Seattle, WA, July 1987, pp.
477-481.

R. M. Keller, "The Role of Explicit Contextual Knowledge in Learning Concepts
to Improve Performance,” Ph.D. Thesis, Department of Computer Science,
Rutgers University, New Brunswick, NJ, January 1987. (Also appears as
Machine Learning Technical Report #7, Laboratory for Computer Science
Research, Rutgers University)

R. M. Keller, "Defining Operationality for Explanation-Based Learning,"
Proceedings of the National Conference on Artificial Intelligence, Seattle, WA,
July 1987, pp. 482-487.

B. W. Kernighan, "PIC — A Graphics Language for Typesetting." in UNIX
Programmer’s Manual, vol. 2, Bell Laboratories, Murray Hill, N.J., 1979.

J. L. Kolodner, Retrieval and Organization Strategies in Conceptual Memory, |
Lawrence Erlbaum and Associates, Hillsdale, NJ, 1984.

J. L. Kolodner, "Extending Problem Solver Capabilities Through Case-Based
Inference," Proceedings of the 1987 International Machine Learning Workshop,
Irvine, CA, June 1987, pp. 167-178.

R. E. Korf, "Macro-Operators: A Weak Method for Learning," Artificial
Intelligence 26, (1985), pp. 35-77.

R. Kowalski, Logic for Problem Solving, Elsevier North Holland, New York, NY,
1979.

S. A. Kuczaj, "Acquisition of Word Meaning in the Context of the Development

- of the Semantic System," in Verbal Processes in Children: Progress in Cognitive

Developmental Research, C. J. Brainerd & M. Pressley (ed.), Springer-Verlag,
New York, 1982, pp. 95-123.

T. 8. Kuhn, The Structure of Scientific Revolutions, 2nd ed. University of
Chicago Press, Chicago. IL, 1970.

J. Laird, P. Rosenbloom and A. Newell, "Towards Chunking as a General
Learning Mechanism," Proceedings of the National Conference on Artificial
Intelligence, Austin, TX, August 1984, pp. 188-192.

J. Laird, P. Rosenbloom and A. Newell, "Chunking in Soar: The Anatomy of a
General Learning Mechanism,” Machine Learning 1,1 (1986), pp. 11-46.

J. E. Laird, P. S. Rosenbloom and A. Newell, Universal Subgoaling and
Chunking: The Automatic Generation and Learning of Goal Hierarchies, Kluwer
Academic Publishers, Norwell, MA, 1986.

P. Langley, "Data-Driven Discovery of Physical Laws," Cognitive Science 5, 1
(1981). pp- 31-54. .

[Langley86]

[Ieake86]
[Lebowitz80]

[Lebowitz86]
[Lehneri78]

[Lehnert82]
1Lehnert84]

[Lesk79]
[Lioyd84]
[Lytinen84]

[Mahadevan85]

[Manna74]
[Marcus74]
[Marcus80]
[McAllester82]

[Medin87a]
[Medin8 7b]

[Meehan76]

[Michalski86]

225

P. Langley. "Editorial: The Terminology of Machine Learning," Machine
Learning 1,2 (1986), pp. 141-144.

D. B. Leake and C. C. Owens, "Organizing Memory for Explanation
Proceedings of the Eighth Annual Conference of the Cogmtwe Science Society,
Amberst, MA, August 1986, pp. 710-715.

M. Lebowitz, "Generalization and Memory in an Integrated Understanding
System," Technical Report 186, Ph.D Thesis, Department of Computer Science,
Yale University, New Haven, CT. 1980,

M. Lebowitz, "Integrated Learning: Controlling Explanation," Cognitive Science
10, 2 (1986), pp. 219-240.

W. Lehnert, The Process of Question Answering, Lawrence Erlbaum and
Associates, Hillsdale, NJ, 1978.

W. G. Lehnert, "Plot Units: A Narrative Summarization Strategy," in Strategies
for Natural Language Processing, W. G. Lehnert and M. H. Ringle (ed.),
Lawrence Erlbaum and Associates, Hillsdale, NJ, 1982, pp. 375-414.

W. G. Lehnert, "Paradigmatic Issues in Cognitive Science,” in Method and Tactics
in Cognitive Science, W. Kintsch, J. R. Miller & P. G. Polson {ed.), Lawrence
Erlbaum and Associates. Hillsdale, NJ, 1984, pp. 21-50.

M. E. Lesk, "TBL -- A Program that Formats Tables," in UNIX Programmer’s
Manual, vol. 2, Bell Laboratories, Murray Hill, N.J., 1979, pp. Section 10..

J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, New York,
NY, 1984.

S. L. Lytinen, "Frame Selection in Parsing," Proceedings of the National
Conference on Artificial Intelligence, Austin, TX, August 1984.

S. Mahadevan, "Verification-Based Learning: A Generalization Strategy for
Inferring Problem-Reduction Methods," Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Los Angeles, CA, August 1985, pp.
616-623,

Z. Manna, Mathematical Theory of Computation, McGraw-Hill, New York, NY,
1974.

M. Marcus, "Wait-and-See Strategies for Parsing Natural Language,” Working
Paper 75, MIT Al Lab, Cambridge, MA, August 1974.

M. P. Marcus, A Theory of Syntactic Recognition for Natural Language, MIT
Press, Cambridge, MA, 1980.

D. A. McAllester, "Reasoning Utility Package User’s Manual, Version One,”
Memo 667, MIT Al Lab, Cambridge, MA, April 1982,

D. L. Medin, W. D. Wattenmaker and S. E. Hampson, "Family Resemblance,
Conceptual Cohesiveness, and Category Construction," Cognitive Psychology 19,
(1987), pp. 242-279.

D. L. Medin, W. D. Watténmaker and R. S. Michalski, "Constraints and
Preferences in Inductive Learning: An Experimental Study of Human and
Machine Performance,” Cognitive Science 11, 3 (1987), pp. 299-239.

J. Meehan, "The Metanovel: Writing Stories by Computer,” Technical Report 74,
Ph.D. Thesis, Yale University, New Haven, CT, 1976.

R. S. Michalski, "Understanding the Nature of Learning: Issues and Research
Directions," in Machine Learning: An Artificial Intelligence Approach, Vol. I, R.
S. Michalski, J. G. Carbonell, & T- M. Mitchell (ed.), Morgan Kaufman Inc., Los

[Minton84]
[Minton85]

[Minton87a]

[Minton87b]

[Mitchell82]

[MitchellS 3]
[Mitchel184]
[Mitchel185]
[Mitchel186]

: ;MogensenS 7]
7 [Mooney85al

[Mooney85b]
[Mooney86al
[Mooney86b]

[Mooney86¢]

226

Altos, CA, 1986, pp. 3-26.

S. N. Minton, "Constraint-Based Generalization: Learning Game-Playing Plans
from Single Examples," Proceedings of the National Conference on Artificial
Intelligence, Austin, TX, August 1984, pp. 251-254.

S. N. Minton, "Selectively Generalizing Plans for Problem-Solving," Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, Los
Angeles, CA, August 1985, pp. 596-599.

S. Minton, J. G. Carbonell, O. Etzioni, C. A. Knoblock and D. R. Kuokka,
"Acquiring Effective Search Control Rules: Explanation-Based Learning in the
PRODIGY System,' Proceedings of the 1987 International Machine Learning
Workshop. Irvine, CA, June 1987, pp. 122-133.

S. Minton and J. G. Carbonell, "Strategies for Learning Search Control Rules: An
Explanation-based Approach," Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, Milan, Italy, August 1987, pp. 228-235.

T. M. Mitchell, "Generalization as Search," Artificial Intelligence 18, 2 (1982),
pp. 203-226.

T. M. Mitchell, "Learning and Problem Solving,' Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany, August 1983, pp. 1139-1151.

T. M. Mitchell, "Toward Combining Empirical and Analytic Methods for
Learning Heuristics,”" in Human and Artificial Intelligence, A. Elithorn & R.
Baneriji (ed.), North-Holland, Amsterdam, 1984.

T. M. Mitchell, S. Mahadevan and L. I. Steinberg, "LEAP: A Learning Apprentice
for VLSI Design," Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, CA, August 1985, pp. 573-580.

T. M. Mitchell, R. Keller and S. Kedar-Cabelli, "Explanation-Based
Generalization: A Unifying View," Machine Learning I, 1 (January 1986), pp.
47-80.

B. N. Mogensen, "Goal-Oriented Conceptual Clustering: The Classifying

‘Attribute Approach,” M.S. Thesis, Department of Electrical and Computer

Engineering, University of Illinois, Urbana, IL, 1987.

R. J. Mooney and G. F. Delong, "Learning Schemata for Natural Language
Processing." Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, Los Angeles, CA, August 1985, pp. 681-687.

R. J. Mooney, "Generalizing Explanations of Narratives into Schemata,’ M.S.
Thesis, Department of Computer Science, University of Illinois, Urbana, IL,
May 1985. (Also appears as Technical Report T-159, AI Research Group.
Coordinated Science Laboratory, University of 1llinois at Urbana-Champaign.)

R. J. Mooney. "Generalizing Explanations of Narratives into Schemata." in
Machine Learning: A Guide To Current Research, T. M. Mitchell, J. G. Carbonell
and R. S. Michalski (ed.), Kluwer Academic Publishers, Hingham, MA, 1986,
pp. 207-212.

R. J. Mooney and S. W. Bennett, "A Domain Independent Explanation-Based
Generalizer," Technical Report UILU-ENG-86-2216, Al Research Group,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
June, 1986.

R. J. Mooney and S. W. Bennett, "A Domain Independent Explanation-Based
Generalizer," Proceedings of the National Conference on Artificial Intelligence,

[Mooney87a]

[Mooney87b]

[Murphy85]

[Newell73]

[Nilsson80]

[NorvigS 3]

[O'Rorke83]

[O'Rorke84]

[O'Rorke87a]

[O'Rorke87b]

[Orejel-Opisso84)

[Paterson78]

[Pazzani87]

227

Philadelphia, PA, August 1986, pp. 551-555. (A longer updated version appears
as Technical Report UILU-ENG-86-2216, Al Research Group, Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign)

R. J. Mooney, "Integrated Learning of Words and their Underlying Concepts."
Proceedings of the Ninth Annual Conference of the Cognitive Science Society,
Seattle, WA, July 1987. (Also appears as Technical Report UILU-ENG-87-
2229, Coordinated Science Laboratory, University of Illinocis at Urbana-
Champaign)

R. J. Mooney and G. F. Delong, "Learning Indices for Conceptual Information
Retrieval," Technical Report UILU-ENG-87-2230, Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, May 1987.

G. L. Murphy and D. L. Medin, "The Role of Theories in Conceptual Coherence,"
Psychological Review 92, 3 (July 1985), pp. 289-316.

A. Newell, "Artificial Intelligence and the Concept of Mind," in Computer Models
of Thought and Language, R. C. Schank & K. M. Colby (ed.), W. H. Freeman
and Company, San Francisco, CA, 1973, pp. 1-60.

N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Company,
Palo Alto, CA, 1980.

P. Norvig, "Frame Activated Inferences in a Story Understanding Program."
Proceedings of the Eighth International Joint Conference on Artijicial
Inzelligence, Karlsruhe, West Germany, August 1983, pp. 624-626.

P. V. O'Rorke, "Reasons for Beliefs in Understanding: Applications of Non-
Monotonic Dependencies to Story Processing." Proceedings of the National
Conference on Artificial Intelligence, Washington, D.C., August 1983. (Also
appears as Working Paper 43, Al Research Group, Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign.)

P. V. O'Rorke, "Generalization for Explanation-based Schema Acquisition,"
FProceedings of the National Conference on Artificial Intelligence, Austin, TX,
August 1984, pp. 260-263.

P. V. O'Rorke, "LT Revisited: Experimental Results of Applying Explanation-
Based Learning to the Logic of Principia Mathematica." Proceedings of the 1987
International Machine Learning Workshop, Irvine, CA, June 1987, pp. 148-159.

P. V. ORorke, "Explanation-Based Learning Via Constraint Posting and
Propagation,” Ph.D. Thesis, Department of Computer Science, University of
Illinois, Urbana, IL, January 1987. (Also appears as UILU-ENG-87-2239, Al
Research Group, Coordinated Science Laboratory, University of IHlinois at
Urbana-Champaign.)

J. Orejel-Opisso. "Story Understanding with WATSON, a Computer Program
Modelling Natural Language Inferences using Non-Monotonic Dependencies,"
M.S. Thesis, Department of Computer Science, University of Illinois, Urbana,
IL, August 1984. (Also appears as Technical Report T-146, Al Research Group,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.)

M. S. Paterson and M. N. Wegman, "Linear Unification," Jowrnal of Computer
and System Sciences 16, (1978), pp. 158-167.

M. J. Pazzani, "Inducing Causal and Social Theories: A Prerequisite for
Explanation-Based Learning," Proceedings of the 1987 International Machine
Learning Workshop, Irvine, CA, June 1987, pp. 230-241.

~ [Porter85]

[Porter86]
[Posner68]

[Prieditis86]

[Prieditis87]

[Rajamoney85]

[Rajamoney87]

[Reingold77]

[Robinson65]

[Rosenbloom86]

[Rumelhart78]

[Russel_lSS]
[Sacerdoti74]
[Sacerdoti77]
[Schank75]

[Schank77]

[Schank81a]

228

B. Porter and D. Kibler, "A Comparison of Analytic and Experimental Goal
Regression for Machine Learning," Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA, August 1985, pp. 555-
559. -

B. W. Porter and D. F. Kibler, "Experimental Goal Regression. A Method for
Learning Problem-solving," Machine Learning 1, 3 (1986), pp. 249-286.

M. J. Posner and S. W. Keele, "On the Genesis of Abstract Ideas," Journal of
Experimental Psychology 77, 3 (July 1968), pp. 353-363.

A. E. Prieditis, "Discovery of Algorithms from Weak Methods,” Proceedings of
the International Meeting on Advances in Learning, Les Arcs, Switzerland,
1986, pp. 37-52.

A. E. Prieditis and J. Mostow, "PROLEARN: Towards a Prolog Interpreter that
Learns," Proceedings of the National Conference on Artificial Intelligence,
Seattle, WA, July 1987, pp. 494-498.

S. Rajamoney, G. F. DeJong and B. Faltings, "Towards a Model of Conceptual
Knowledge Acquisition through Directed Experimentation,” Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, Los Angeles, CA,
August 1985. (Also appears as Working Paper 68, Al Research Group.

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.)

S. Rajamoney and G. DeJong, "The Classification, Detection and Handling of
Imperfect Theory Problems," Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, Milan, Italy, August 1987, pp. 205-207.

E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and
Practice, Prentice-Hall, Englewood Cliffs, NJ, 1977.

J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle,"
Journal of the Association for Computing Machinery 12, 1 (1965), pp. 23-41.

P. Rosenbloom and J. Laird, "Mapping Explanation-Based Generalization into
Soar,” Proceedings of the National Conference on Artificial Intelligence,
Philadelphia, PA, August 1986, pp. 561-567.

D. E. Rumethart and D. A. Norman, "Accretion, Tuning, and Restructuring:
Three Modes of Learning." in Semantic Factors in Cognition. J. W. Cotton & R.
L. Klatzky (ed.), Lawrence Erlbaum and Associates, Hillsdale, NJ, 1978.

S. Russell. "The Compleat Guide to MRS," Technical Report KSL 85-12,
Computer Science Department, Stanford University, June 1985.

E. Sacerdoti, "Planning in a Hierarchy of Abstraction 'Spaces," Artificial
Intelligence 5, (1974), pp. 115-135.

E. Sacerdoti, A Structure for Plans and Behavior, American Elsevier, New York,
1977,

R. C .Schank. Conceptual Information Processing, North-Holland/American
Elsevier, Amsterdam, 1975.

R. C. Schank and R. P. Abelson, Scripts, Plans, Goals and Understanding: An
Inquiry into Human Knowledge Structures, Lawrence Erlbaum and Associates,
Hillsdale, NJ, 1977.

R. C. Schank, J. L. Kolodner and G. F. DeJong, "Conceptual Information
Retrieval," in Information Retrieval Research, R. N. Oddy, S. E. Robertson, C. J.
van Rijsbergen, and P. W. Williams (ed.), Butterworths, London, 1981.

[Schank81b]
_ [Schank82]

[Schank86a]
[Schank86b]

[Schmidt78]

[Sedgewick83]

[Segre85]

[Segre87a)

[Segre87b]

- [Selfridge82]

[Shavlik85]

[Shavl1ik87a]

[Shavlik87b]

- [Shav1ik88]

[Silver83]

[Silver86]

229

R. C. Schank and C. Riesbeck, Inside Computer Understanding, Lawrence
Erlbaum and Associates, Hillsdale, NJ, 1981.

R. C. Schank, Dynamic Memory, Cambridge University Press, Cambridge,
England, 1982.

R. C. Schank, Explanation Patterns: Understanding Mechanically and Creatwely
Lawrence Erlbaum and Associates, Hillsdale, NJ, 1986.

R. C. Schank, G. C. Collins and L. E. Hunter, "Transcending Inductive Category
Formation in Learning," Behavioral and Brain Sciences 9, (1986), pp. 639-686.

C. F. Schmidt, N. S. Sridharan and J. L. Goodson, "The Plan Recognition
Problem: An Intersection of Psychology and Artificial Intelligence," Artificial
Intelligence 11, (1978), pp. 45-83.

R. Sedgewick, Algorithms, Addison-Wesley, Reading, MA, 1983.

A. M. Segre and G. F. DeJong, "Explanation Based Manipulator Learning:
Acquisition of Planning Ability Through Observation," Proceedings of the IEEE
International Conference on Robotics and Automation, St. Louis, MO, March
1985, pp. 555-560. (Also appears as Working Paper 62, Al Research Group,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.)

A. M. Segre, "Explanation-Based Learning of Generalized Robot Assembly
Tasks," Ph.D. Thesis, Department of Electrical and Computer Engineering,
University of Illinois, Urbana, IL, January 1987. (Also appears as UILU-ENG-
87-2208, AI Research Group. Coordinated Science Laboratory, University of
Illincis at Urbana~Champaign.)

A. M. Segre, "On the Operationality/Generality Trade-off in Explanation-Based
Learning.," Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, Milan, Italy, August 1987.

M. Selfridge. "Inference and Learning in 2 Computer Model of the Development
of Langague Comprehension in a Young Child," in Strategies for Natural
Language Processing, W. G. Lehnert and M. H. Ringle (ed.), Lawrence Erlbaum
and Associates, 1982, pp. 299-326.

J. W. Shavlik. "Learning about Momentum Conservation," Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, Los Angeles, CA,
August 1985, pp. 667-669. (Also appears as Working Paper 66, Al Research
Group, Coordinated Science Laboratory. University of Illinois at Urbana-
Champaign.)

J. W. Shavlik and G. F. DeJong, "BAGGER: An EBL System that Extends and
Generalizes Explanations," Proceedings of the National Conference on Artificial
Intelligence, Seattle, WA, July 1987, pp. 516-520.

I. W. Shavlik, G. F. DeJong and B. H. Ross, "Acquiring Special Case Schemata in
Explanation-Based Learning," Proceedings of the Ninth Annual Conference of the
Cognitive Science Society, Seattle, WA, July 1987, pp. 851-860.

J. W. Shavlik, "Generalizing the Structure of Explanations in Explanation-Based
Learning ," Ph.D. Thesis, Department of Computer Science. University of
Illinois, Urbana, IL, January 1988.

B. Silver, "Learning Equation Solving Methods from Worked Examples,"
Proceedings of the 1983 International Machine Learning Workshop, Urbana, IL,
June 1983, pp. 99-104.

B. Silver, "Precondition Analysis: Learning Control Information," in Machine
Learning: An Artificial Intelligence Approach, Vol. II, R. S. Michalski, J. G.

[Simon83]

[Spencer86]
[Stepp86]
[Sussman73]

[Tadepalli86]
[Tate76]

[Teitelman§3]

[Thorndyke79]

[Utgoff86]
[Waldinger77]
[Waltz78]

[Waltz84]

[Whitehead13]"

[Wilensky78]
[Wilensky80]

[WﬂenskySZ]

[Wilensky83]

230

Carbonell and T. M. Mitchell (ed.), Morgan Kaufmann, Los Altos, CA, 1986,
pp. 647-670.

H. A. Simon, "Why Should Machines Learn?," in Machine Learning: An
Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M.
Mitchell (ed.), Tioga Publishing Co., Palo Alto, CA., 1983, pp. 25-37.

R. M. Spencer and R. W. Weisberg, "Context-Dependent Effects on Analogical
Transfer," Memory and Cognition 14, 5 (1986), pp. 442-449.

R. E. Stepp and R. S. Michalski, "Conceptual Clustering of Structured Objects: A
Goal-Oriented Approach," Artificial Intelligence 28, 1 (Feb 1986), pp. 43-69.

G. J. Sussman, "A Computational Model of Skill Acquisition," Technical Report
297, MIT Al Lab, Cambridge, MA, 1973.

P. V. Tadepalli, "Lear'ning in Intractable Domains," in Machine Learning: A
Guide To Currént Research, T. M. Mitchell, J. G. Carbonell and R. 8. Michalski
(ed.). Kluwer Academic Publishers, Hingham, MA, 1986, pp. 337-342.

A. Tate, "Project Planning Using a Hierarchic Nonlinear Planner," Technical

- Report 25, Department of Artificial Intelligence Research, University of

Edinburgh, Edinburgh, Scotland, 1976.
W. Teitelman, Interlisp Reference Manual, Xerox PARC, Palo Alto. CA, 1983,

P. W. Thorndyke and B. Hayes-Roth, "The Use of Schemata in the Acquisition

and Transfer of Knowledge," Cognitive Psychology 11, (1979), pp. 82~106.

P. E. Utgoff, "Shift of Bias for Inductive Concept Learning,” in Machine
Learning: An Artificial Intelligence Approach, Vol. II, R. 8. Michalski, J. G.
Carbonell and T. M. Mitchell (ed.), Morgan Kaufman, 1986, pp. 107-148.

R. Waldinger, "Achieving Several Goals Simultaneously," in Machine
Intelligenge 8, E. Elcock and D. Michie (ed.), Ellis Horwood Limited, London,
1977.

D. L. Waltz, "An English Language Question Answering System for a Large
Relational Data Base,' Communications of the Association for Computing
Machinery 21, 7 (July 1978), pp. 526-539.

D. L. Waltz and J. B. Pollack, "Massively Parallel Parsing: A Strongly
Interactive Model of Natural Language Interpretation," Cognitive Science, 1984.
(A version of this paper appears as Working Paper 48, Al Research Group,

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.)

A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge University
Press, Cambridge, England, 1913.

R. W. Wilensky, "Understanding Goal-Based Stories." Technical Report 140,
Ph.D. Thesis, Department of Computer Science, Yale University, New Haven,
CT, September 1978, '

R. Wilensky and Y. Arens, "PHRAN: A Knowledge-Based Approach to Natural
Language Analysis,” Electronic Research Laboratory Memorandum No.
UCB/ERL/M80/34, University of California, Berkely, CA. 1980.

R. Wilensky, "Points: A Theory of the Structure of Stories in Memory," in
Strategies for Natural Language Processing, W. G. Lehnert and M. H. Ringle

‘(ed.), Lawrence Erlbaum and Associates, Hillsdale, NJ, 1982, pp. 345-73.

R. W. Wilensky, Planning and Understanding: A Computational Approach to
Human Reasoning. Addison-Wesley, Reading, MA, 1983.

 [Wilkins86]

[Wilks75]

[Winston83]

[Xerox86]

231

D. C. Wilkins, W. J. Clancey and B. G. Buchanan, "ODYSSEUS: A Learning
Apprentice," in Machine Learning: A Guide To Current Research, T. M.
Mitchell, J. G. Carbonell and R. S. Michalski (ed.), Kluwer ‘Academic
Publishers, Hingham, MA, 1986, pp. 369-374.

Y. A. Wilks, "Primitives and Words," in Theoretical Issues in Natural Language
Processing, R. C. Schank and B. Nash-Webber (ed.), Association for
Computational Linguistics, Arlington, VA, 1975, pp. 38-41.

P. H. Winston, T. O. Binford, B. Katz and M. Lowry, "Learning Physical
Descriptions from Functional Definitions, Examples, and Precedents,"
Proceedings of the National Conference on Artificial Intellzgence Washington,
D.C., August 1983, pp. 433-439.

Xerox, The Lz..s'p Lzbrary Packages Manual, Xerox Corporatlon Pasedena, CA.,
1986. :

232

VITA

Raymond Joseph Mooney was born on September 27, 1961 in St. Louis, Missouri. He
-attended the University of Illinois at Urbana-Champaign where he i'eceived a B.S. degree in
‘Computer Engineering in 1983. Later that year he entered the graduate program in Computer
Science and subsequently became a research assistant for Professor Gerald Delong in the
Coordinated Science Laboratory. He received the Ph.D. in Computer Science from the University of

Ilinois at Urbana-Champaign in January 1988.

_ His interests include machine learning, natural language understanding, and cognitive science.
He has co-authored an article on explanation-based learning for the Machine Learning journal and
ha_s presented papers at several scientific conferences on artificial intelligence and cognitive science.

"‘He is currently an Assistant Professor in the Department of Computer Sciences at the

University of Texas at Austin.

