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Dialog as a Vehicle for Lifelong Learning of

Grounded Language Understanding Systems

Aishwarya Padmakumar, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Raymond J. Mooney

Natural language interfaces have the potential to make various forms of

technology, including mobile phones and computers as well as robots or other ma-

chines such as ATMs and self-checkout counters, more accessible and less intimi-

dating to users who are unfamiliar or uncomfortable with other types of interfaces.

In particular, natural language understanding systems on physical robots face a

number of challenges, including the need to ground language in perception, the

ability to adapt to changes in the environment and novel uses of language, and to

deal with uncertainty in understanding. To effectively handle these challenges, such

systems need to perform lifelong learning - continually updating the scope and pre-

dictions of the model with user interactions. In this thesis, we discuss ways in which

dialog interaction with users can be used to improve grounded natural language un-

derstanding systems, motivated by service robot applications.

We focus on two types of queries that can be used in such dialog systems –

active learning queries to elicit knowledge about the environment that can be used

to improve perceptual models, and clarification questions that confirm the system’s

hypotheses, or elicit specific information required to complete a task. Our goal is

to build a system that can learn how to interact with users balancing a quick com-

pletion of tasks desired by the user with asking additional active learning questions
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to improve the underlying grounded language understanding components.

We present work on jointly improving semantic parsers from and learning a

dialog policy for clarification dialogs, that improve a robot’s ability to understand

natural language commands. We introduce the framework of opportunistic active

learning, where a robot introduces opportunistic queries, that may not be immedi-

ately relevant, into an interaction in the hope of improving performance in future

interactions. We demonstrate the usefulness of this framework in learning to ground

natural language descriptions of objects, and learn a dialog policy for such interac-

tions. We also learn dialog policies that balance task completion, opportunistic

active learning, and attribute-based clarification questions. Finally, we attempt to

expand this framework to different types of underlying models of grounded lan-

guage understanding.
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Chapter 1

Introduction

Natural language interfaces have the potential to make various forms of tech-

nology, including mobile phones and computers, as well as robots or other machines

such as ATMs and self-checkout counters, more accessible and less intimidating to

users who are unfamiliar or uncomfortable with other interfaces such as command

shells, button based interfaces or changing screens. Interaction in natural language

is particularly desirable with versatile devices such as service robots intended to be

used in environments such as homes, offices and hospitals. Such environments typ-

ically contain a variety of objects that are difficult to catalog, and service robots in

such environments would need to perform a variety of functions and interact with

a number of people. It is difficult to capture this rich set of possible interactions in

more structured interfaces such as a panel of buttons or a list on a touch screen, thus

making a natural language interface preferable.

In many of these applications, the minimal level of useful interaction would

be for the system to understand high level natural language commands, and detect

and indicate when it has failed to understand what a user requires. Further, it would

be desirable if it could engage in a dialog with the user, clarifying their intentions in

case of uncertainty. For service robots expected to be used in a variety of domains,

the robot would need to expand the coverage of its models to adapt to domain

specific language use such as nicknames used for people, and special objects such
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as a stethoscope in a hospital or a printer in an office. Robots can acquire the

training data for such domain adaptation by interacting with users in their operating

environment.

In recent years, voice assistants have become a common part of mobile

phones and home devices. They are also increasingly being used in a variety of

customer service applications. These can perform a large number of functions, but

they typically assume the existence of a list of pre-defined commands that a user

may want to give. They also often depend on specific language for requesting many

of the tasks. However, it would be preferable if such systems could learn different

ways in which people may refer to the same command, or use follow-up questions

to clarify ambiguous or incomplete instructions. It would also be desirable for such

systems to identify frequently requested entities that are not currently listed in the

system, or desirable tasks outside its current scope. In some cases, it may be appro-

priate for the system to automatically learn to incorporate these, and in others, this

information can provide a guideline for the system designer to expand the scope of

the system.

This sort of adaptation is the goal of lifelong learning systems. In this

paradigm, machine learning systems are designed such that they can expand the

range of concepts or tasks they can perform, beyond what is defined initially (Chen

and Liu, 2018). Most of this work assumes that the systems involved obtain addi-

tional training data as the tasks or domains of operation change, but do not discuss

how such training data is to be collected. Dialog systems are in a unique posi-

tion to perform lifelong learning, because by their very nature, they are continually
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interacting with users during operation.

Most research on dialog systems assumes access to training dialogs of the

type the system is expected to perform, and aims to build a dialog system that can

then engage in similar interactions. However, it is often difficult to obtain labelled

data during training that adequately covers all scenarios that the agent is likely to

encounter during operation. When the system is unable to adapt to these differ-

ences, it often has to resort to frustrating back-off methods such as providing the

user a list of commands it can understand. Instead, it would be beneficial to lever-

age interactions with humans during operation to obtain additional labelled data to

adapt to possible changes in domains or tasks.

Natural language understanding systems on physical robots have additional

requirements. For example, consider the following command that a service robot

in an office environment may need to understand – “Bring the blue mug from Al-

ice’s office”. Understanding such commands requires many types of capabilities.

The robot would need to understand compositionality - how meanings of individ-

ual words combine to give meanings of phrases. Here, it would need to know that

“Alice’s office” means an office that is owned by Alice, and that “the blue mug” is

something which is both a mug and is blue.

The robot must also be able to ground such meanings to entities in its en-

vironment. Here, it would need to know that “Alice’s office” refers to a physical

location. It would also need to be able to identify mugs and blue objects. In con-

trast, most existing voice assistants such as those on mobile phones, only need to

maintain a list of actions with corresponding APIs, and valid arguments for these.
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Some types of knowledge, such as which office belongs to whom, can be

hard coded as facts. Existing voice assistant systems often assume that all required

knowledge can be encoded in this manner. However, environments such as homes

and offices typically contain a large number of smaller objects such as mugs, whose

existence and properties would be tedious to catalog. Thus, a robot operating in

such an environment would need to be able to identify such objects through per-

ception, perhaps using a camera or by manipulating it with an arm. The ability to

ground natural language in vision can also be useful for other computer applica-

tions such as interactive online shopping or image search. Perceptual grounding

is the process of associating words such as “blue” and “mug” with specific sen-

sory information. For example, a visual classifier that uses an image of an object

to determine whether it is “blue” or a “mug” can be used to ground meanings of

words and phrases that reference visual properties. Most of our work is focused on

enabling lifelong learning in systems that perform perceptual grounding of natural

language.

In most commercial voice assistants, if the system does not understand a

user’s request, it often either asks the user to repeat the command, or provides a list

of examples it is capable of understanding. However, a more desirable behaviour

for a robot that only partially understands a command given to it, would be to ask

clarification questions, such as “What do you want me to bring?”, to obtain the

missing information and avoid making mistakes. There is a lot of research in the

area of task oriented dialog systems that is aimed at learning dialog policies that

help a system choose between such clarification questions (Young et al., 2013).
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However, most of this work assumes a fairly limited set of clarification questions,

based on a fixed set of “slots” that the system needs to fill to interpret a request. Such

questions are typically insufficient in situations where the dialog system needs to

perform perceptual grounding. In our work, we design better clarification questions

for applications that require perceptual grounding.

Dialog interactions can provide implicit cues about when words or phrases

share the same meaning, which can also be used by the system to improve its ability

to understand future interactions. Also, if a robot does not know the meaning of a

word such as “mug”, it could ask the user to show examples of mugs nearby so

that it knows what to look for. It could also opportunistically ask the user to show

examples of other things, such as a “book”, so that it is better prepared to help a

different user that may need a book to be fetched. We would like the robot to be

able to learn both when to ask such questions, and which questions to ask, through

interactions with users.

In this work, our goal is to use dialog interactions to enable lifelong learning

in dialog systems that require grounded natural language understanding, motivated

by applications in service robotics. Following a discussion of related work (chapter

2), we present work on jointly learning a dialog policy that enables a robot to ask

clarifications when it does not fully understand natural language commands, while

simultaneously using the dialogs to improve the underlying semantic parser for

future commands (chapter 3). The continual improvement of the semantic parser

allows the system to learn different ways people use language to refer to a set of

pre-defined tasks, and the improvement of the dialog policy enables the system

5



to avoid unnecessary clarification questions as its language understanding capacity

improves.

We then present the framework of opportunistic active learning in the con-

text of understanding natural language descriptions of objects. Opportunistic active

learning is a framework for intergrating active learning queries into dialog interac-

tions during operation. In chapter 4, we introduce the framework and demonstrate

its effectiveness in learning new perceptual concepts for improving a system’s abil-

ity to understand natural language descriptions of objects. We expand this in chap-

ter 5 by learning a dialog policy that learns to choose opportunistic active learning

queries for model improvement, and learns to decide between further improving

the model by asking additional active learning queries and completing the task with

shorter dialogs.

Subsequently, in chapter 6, we combine opportunistic active learning with

attribute-based clarifications and learn a hierarchical dialog policy that learns to

choose opportunistic active learning queries that are most likely to improve the un-

derlying grounding model, and attribute-based clarification queries that are most

likely to help the system successfully understand the user’s request, and decide

between quickly completing the current interaction using only clarification, and

further improving the model through opportunistic active learning to increase the

chances of succeeding in future interactions. We also attempt to extend this clar-

ification mechanism to more general models of perceptual grounding (chapter 8).

Finally, we summarize our contributions (chapter 10) and discuss directions for

future work (chapter 9).
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Chapter 2

Background and Related Work

In this chapter, we discuss some background concepts used in our research,

as well as prior and contemporary work on some related topics. We begin with

a discussion of prior work on giving various types of natural language commands

to robots (section 2.1), with a focus on work that tries to improve the language

understanding system from interaction. This is followed by a discussion of dia-

log systems (section 2.2), including a standard dialog system pipeline, research on

improving various components of this pipeline, and applications for which dialog

systems have been developed. We then review the concept of lifelong learning (sec-

tion 2.3) and examine the extent to which existing dialog systems perform or enable

lifelong learning (section 2.4), of which a special category is work on human-robot

dialog for teaching perceptual concepts to robots (section 2.5). We then summarize

some relevant background concepts - semantic parsing (section 2.6), reinforcement

learning (section 2.7), active learning (section 2.8), and perceptual grounding (sec-

tion 2.9). We finally dig deeper into two types of perceptual grounding applications

closely related to our work – visually grounded dialog (section 2.10) and interactive

image retrieval (section 2.11).
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2.1 Natural language commands to Robots

Communicating with robots in natural language has been an area of interest

for a long time. Theobalt et al. (2002) is an early attempt at developing a dialog

system interface over low level navigation. Users could query the robot about it’s

position and command it to navigate to a specific location using rich language in-

cluding landmarks. Semantic parsing with hand-coded rules was used for language

understanding. Another early work is that of Lauria et al. (2002) which proposes a

learning from demonstration framework that uses natural language to instruct robots

at a symbolic level. These used pre-programmed language understanding, percep-

tual grounding and dialog policies. They also do not evaluate the performance of

the system.

However, over time, there has been an increasing focus on using machine

learning to improve such natural language interfaces. For example, Matuszek et al.

(2013) learn a semantic parser from paired sentences and annotated semantic forms

to map natural language commands to high level goals that are more independent

of the environment. A related work is Chen and Mooney (2011), who learn a

semantic parser to translate natural language route instructions to logical plans for

a simulated environment. Other works use fixed components for parsing natural

language but learn models for grounding to symbols in the robot’s knowledge base.

Tellex et al. (2014) develop a graphical model for grounding that makes use of a

pretrained parser. The model can also be used for generating clarification questions.

Arumugam et al. (2018) learn a probabilistic model for grounding to symbolic goals
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that act as rewards in a hierarchical state and action MDP space to handle commands

of varying levels of abstraction. Also related is Bastianelli et al. (2016), who use

symbolic grounding to resolve ambiguities from semantic parsing.

Other works focus on learning dialog policies for effective human-robot

communication. Zhang and Stone (2015) develop a system that learns a dialog

policy by modeling dialog as a POMDP (section 2.7.2). They also incorporate log-

ical reasoning, and common sense knowledge with the result of pretrained natural

language understanding components. Whitney et al. (2017) learn a policy for clar-

ification dialogs that can incorporate both natural language responses and gestures

made by users.

Dialog systems have also been used to enable robots to perform lifelong

learning in different ways. One mechanism is to use dialog to teach new instruc-

tions – She et al. (2014) build a dialog system for instructing robots to combine

simple instructions in a blocks world to complex ones. They use fixed components

for semantic parsing, perceptual grounding and the dialog policy, but report success

rates for teaching different types of instructions. Some systems include explicit

queries in the dialog to gather information about the environment. Kollar et al.

(2013b) use a static dialog policy to add new concepts to a knowledge base that is

then used in a probabilistic language grounding model. The structure of the dia-

log can also provide implicit clues to improve the natural language understanding

system used by the robot. Thomason et al. (2015) develop a system that learns a

semantic parser for understanding natural language commands. They use a static

policy to ask clarification questions, but also use responses from clarifications as
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weak supervision to improve the parser. We extend this in our work (chapter 3)

by learning a dialog policy for clarifications while simultaneously improving the

semantic parser from clarification responses.

More recently, there has been interest in learning end-to-end neural networks

to map natural language instructions and observations directly to action sequences.

Earlier work in this space was either on tasks that require only grounding to a

knowledge base, such as mapping to formal queries (Suhr et al., 2018), or used

simulated datasets that did not require real perception (Mei et al., 2016; Misra et

al., 2017a).

Recently, large scale simulated datasets (Chang et al., 2017; Yan et al., 2018)

have enabled the development of end to end neural networks that use complex vi-

sual observations to map natural language commands to actions for tasks such as

following route instructions (Anderson et al., 2018), embodied question answer-

ing (Das et al., 2018), navigation combined with object manipulation (Misra et al.,

2017a; Shridhar et al., 2020), and continuous control of a quadcopter drone (Blukis

et al., 2018). The first end-to-end models for these tasks used simple recurrent net-

works to encode the instruction, convolutional neural networks to encode visual

observations, and recurrent networks to decode action sequences.

More recently, many attempts have been made to introduce structure in dif-

ferent ways into these networks to increase interpretability, and to imbue them with

some of the benefits of more classical pipelined approaches. Misra et al. (2017a)

modify a fully convolutional network designed for image segmentation to explicitly

predict a goal location given a natural language instruction and egocentric observa-
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tions. This is then used to plan low level actions. Ma et al. (2019) include a module

that estimates the progress made towards completing the instruction to ensure that

the agent attends to the correct part of the instruction for predicting the next ac-

tion. Paxton et al. (2019) explicitly predict the next observation, and interpretable

subgoals in combination with associated low-level actions. Predicted subgoals and

observations can be used to better analyze failure cases. Zhu et al. (2020) break up

long instructions into smaller steps and learn to predict action sequences for these,

leading to better generalization. Other works incorporate clarification actions that

allow the agent to obtain the next navigation step using an oracle (Chi et al., 2020;

Nguyen and III, 2019).

Other recent developments include the creation of more complex simulated

datasets for instruction following. Thomason et al. (2020) create an interactive in-

struction following task, where the robot must learn to ask follow up questions to

clarify ambiguous instructions. Chen et al. (2019a) combine multi-step naviga-

tional instructions with an object segmentation task at the end. This dataset also

uses complex outdoor scenes. Shridhar et al. (2020) create a dataset of multi-step

instructions that combine navigation, object segmentation, and categorical articula-

tion actions simulating tasks in a kitchen. Another recent development is the use of

pretraining by allowing agents to explore the action space using only visual obser-

vations, to improve generalization to unseen natural language instructions (Tan et

al., 2019; Lynch and Sermanet, 2020).
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2.2 Dialog Systems

Spoken Dialog Systems allow users to interact with information systems

with speech as the primary form of communication (Young et al., 2013). They

were originally deployed for call center operations such as airline ticket reserva-

tion (Hemphill et al., 1990), and restaurant recommendation (Wen et al., 2017).

More recently, dialog systems have become popular for issuing simple commands

on mobile phones through virtual assistants such as Apple’s Siri, Google Voice and

Amazon’s Alexa.

Spoken dialog systems typically follow a pipeline similar to that in figure

2.1. The user utterance is first processed by a speech recognition module, which

produces a text transcript. This is followed by a language understanding module

that extracts the information provided by the user in the utterance. This is used

by the dialog state tracking module to update the system’s belief of what the user

wishes to accomplish from the interaction. Following this, the dialog management

module uses the system’s dialog policy to decide which dialog action to take next,

for example ask for more information. The response generation module converts

this abstract dialog act into a natural language response, which is rendered into

speech by the speech synthesis module.

Figure 2.1: Spoken Dialog System Pipeline

There has been considerable research in goal directed dialog systems tar-
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geted at performing call-center type tasks (Young et al., 2013). These systems

model dialog as a POMDP and focus on either the problem of tracking belief state

accurately over the large state spaces (Young et al., 2010; Thomson and Young,

2010; Mrkšić et al., 2015) or that of efficiently learning a dialog policy over such

state spaces (Gašić and Young, 2014; Pietquin et al., 2011). These systems typi-

cally assume that the other components of the pipeline are fixed. Some of our work

(chapter 3) combines this research with research on learning semantic parsers from

weak supervision provided by clarification dialogs.

More recently, there has been work on modeling various components of a di-

alog system using neural networks (Mrkšić et al., 2015; Wen et al., 2015a). There

have also been some end-to-end neural network systems that simultaneously learn

dialog policy and language comprehension (Wen et al., 2017; Williams and Zweig,

2016; Bordes and Weston, 2016). A major challenge in these systems is to find

database entries satisfying certain constraints, and ensuring that all relevant infor-

mation is included in the system’s responses. Some systems assume that these

functions are performed by deterministic APIs (Bordes and Weston, 2016). Others

attempt to design neural networks to perform these functions (Wen et al., 2015b;

Kiddon et al., 2016).

Some other tasks for which dialog systems have been developed are open do-

main conversations (Serban et al., 2016), playing 20 questions games about famous

people (Hu et al., 2018a), and converting natural language to code snippets (Chaura-

sia and Mooney, 2017).
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2.3 Lifelong Learning

Lifelong learning research aims to develop machine learning systems that

can make use of knowledge from previous tasks to improve the performance and

sample efficiency of future tasks. More specifically, Chen and Liu (2018), use the

following three characteristics to identify lifelong learning systems:

• The system performs continuous learning.

• The system accumulates knowledge from previous tasks and stores them in

some sort of reusable knowledge base.

• The system uses knowledge from past tasks to improve performance in fu-

ture tasks.

Early work in lifelong learning was motivated by control problems in robotics

(Thrun and Mitchell, 1995) in order to overcome the difficulties of acquiring accu-

rate knowledge of the world (knowledge bottleneck), hand-coding this knowledge

into a robot-accessible form (engineering bottleneck), computational intractability

of optimally solving control problems in realistic settings (tractability bottleneck),

and possible differences between the real world and the model of it used for plan-

ning (precision bottleneck). Many of these issues are still faced when developing

and deploying AI systems for a variety of applications.

Another early work is by Banko and Etzioni (2007) where an agent must

build a theory of a domain and and choose which of multiple learnable tasks to

learn next. Ruvolo and Eaton (2013) focus on lifelong multi-task learning which
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alternates the training phase of each new task with testing phases for all previous

tasks. They learn a library of latent model components that become a shared basis

for all tasks which can be grouped or overlapped as needed. All of these assume the

existence of a global latent task structure shared by multiple learnable tasks. This

structure is exploited to transfer knowledge to future tasks.

These works are closely related to work in multi-task learning where systems

learn multiple related tasks simultaneously, with the goal of improving performance

of all tasks through the use of shared relevant knowledge (Caruana, 1997). A survey

of multi-task learning can be found in Zhang and Yang (2017). The order in which

tasks are learned may also affect the performance of the system in learning different

tasks (Chen and Liu, 2018). Curriculum learning is an area of research focused on

learning to order the possible tasks an agent may engage in, in order to maximally

improve training speed or performance on a desired set of final tasks. A recent

survey of curriculum learning can be found in Narvekar et al. (2020).

Lifelong supervised learning is a continuous supervised learning process

where the learner performs a sequence of supervised learning tasks, and lever-

ages knowledge from previous supervised learning tasks to improve performance

in future ones. A special case is cumulative learning – where each task is the in-

troduction of a new class (Fei et al., 2016). Fei et al. (2016) develop a system that

incrementally detects the presence of new classes, and incrementally adds them to

the existing model without retraining it from scratch. Our work on opportunistic

active learning (chapters 4, 5, 6) falls under this paradigm, although our focus is on

using dialog interactions to acquire the data necessary to perform lifelong learning,
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rather than the actual learning algorithms involved.

Other lifelong learning systems aim to learn more general knowledge that

is expected to be useful for a variety of tasks. Carlson et al. (2010) aim to use

some initial annotated resources to a system that alternates between extracting facts

for a knowledge base by machine reading on un-annotated documents, and using

extracted facts to improve machine reading. Chen et al. (2013) use Google Image

Search to obtain data for training classifiers for objects, scenes and attributes, which

is then used to learn visual relationships between objects, attributes and scenes.

Yuyin Sun and Fox (2016) propose an extension of the above which learns a hierar-

chy of object names using a combination of Bayesian modelling and crowdsourced

annotations to more effectively learn classifiers for an open vocabulary of objects.

Of these, only Yuyin Sun and Fox (2016) explicitly address some of the difficulties

around acquiring additional labels to continue learning. Research in lifelong learn-

ing assumes that the systems have access to additional training data as the domains

and tasks change. In practice, since many systems require labeled data, some form

of interaction is required to obtain these labels. Our work is focused on using di-

alog interactions as the mechanism to obtain such data needed to perform lifelong

learning. We believe there are many open problems in this area that are particu-

larly relevant to physically situated dialog, and discuss these in Padmakumar and

Mooney (2020a).
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2.4 Lifelong Learning Using Dialog Systems

Open-domain dialog systems consisting of learnable components that can

be improved from dialogs can be considered a form of lifelong learning, since they

can in principle learn to adapt to a variety of situations. However, these systems

are typically designed with the objective of keeping a user engaged in conversa-

tion (Cervone et al., 2017), as opposed to expanding the range of topics the system

can converse about. There is some work on extracting information such as user

attributes from open ended dialogs (Wu et al., 2019) with potential applications in

personalized recommendation, but the use of extracted information in such appli-

cations is yet to be tested empirically. Also related is the generation of curiosity-

driven questions – questions that would enrich the system’s knowledge (Scialom

and Staiano, 2019). However, for practical lifelong learning, it would be addition-

ally desirable to test that such question asking enables the system to perform better

at some downstream task, for example question answering.

Although task-oriented dialogs are typically more restricted, the information-

gathering style questions used in these dialogs can be used for lifelong learning. For

example, Kollar et al. (2013b) use such queries to explicitly learn a knowledge base

of referring expressions for people, locations and actions. More recently, She and

Chai (2017) combine standard slot-value style clarification queries along with ex-

plicit knowledge seeking queries to build a knowledge base of the physical effects

of actions on real world objects, while simultaneously using this to plan for and

accomplish goals specified by the user.
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Information from task-oriented dialogs can also be used to improve natural

language understanding. Thomason et al. (2015) use the structure of task oriented

dialogs, particularly the answers to clarification questions, to obtain weakly su-

pervised training examples to improve a semantic parser. This can adapt to some

changes in language use over time, as can end-to-end dialog systems (Wen et al.,

2017), and those whose language understanding components can be updated over

time in other ways from new dialogs (Mesnil et al., 2013). Other work has also

shown that the use of clarifications can improve the future performance of an agent

at following route instructions in simulated home environments (Chi et al., 2020).

There are also some dialog tasks that are designed solely for teaching spe-

cific language understanding capabilities to a system. We discuss these separately

in section 2.5.

In chapter 4, we introduce the framework of Opportunistic Active Learn-

ing, which is a dialog framework intended to explicitly try to combine learning of

new concepts with using them in an end task, as would be required by an agent

performing lifelong learning.

2.5 Human-robot Dialog for Teaching Perceptual Concepts

A first step towards teaching robots perceptual concepts through dialog is

Kollar et al. (2013a), who develop a system that uses semantic parsing for language

understanding, and grounds meanings of words using SVM-based perceptual clas-

sifiers. This is trained using pairs of images and corresponding language descrip-

tions, and can generate descriptions of objects, but these not evaluated as a complete
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interactive system.

Other works combine these capabilities to perform clarifications to better

ground descriptions at test time (Dindo and Zambuto, 2010; Parde et al., 2015).

Vogel et al. (2010) learn to ground simple perceptual concepts using only a 20-

questions style game, where there is no initial description, but learning is entirely

driven by the robot’s queries of whether a concept applies to an object. Kulick et al.

(2013) use active learning to enable a robot to learn spatial relations by manipulat-

ing objects into specific positions and querying an oracle about whether a relation

holds. However they receive ground truth positions of objects and do not perform

perception.

Thomason et al. (2016) demonstrate that multimodal perceptual concepts,

with richer visual features, as well as auditory and haptic features, can be learned

from an I Spy game, by pairing descriptions with correct guesses by the robot.

Some works also try to learn a dialog policy for learning new ways to refer

to known perceptual concepts (Yu et al., 2017a). The perceptual concepts are ba-

sic, and dialogue policy is learned through reinforcement learning from a dataset

of human-human conversations. Yu et al. (2016) demonstrate the importance of

taking initiative, processing and expressing perceptual concepts, and understanding

ellipsis for the same task.

More generally, natural language can be used to aid learning from demon-

stration. She and Chai (2017) learn a system that uses a hierarchical knowledge base

over actions to compose simple action primitives into complex ones. This is learned

from human demonstrations paired augmented by language descriptions, where the
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robot learns a dialog policy to ask clarifications for noun phrase grounding, effects

of an action, states of objects and whether actions are necessary to achieve a goal.

In our completed work (chapter 4), we introduce the setting of opportunistic

active learning – a framework for interactive tasks that involve learning of super-

vised models. This framework allows a robot to ask more diverse queries across

interactions, and requires the robot to trade-off between task completion and knowl-

edge acquisition for future tasks.

2.6 Semantic Parsing

Semantic parsing maps a natural language sentence such as ”Go to Alice’s

office” to a machine understandable meaning representation. In our work, we use

λ-calculus logical forms such as:

navigate(the(λx.office(x) ∧ possess(alice, x) ∧ person(alice)))

This represents that the robot should navigate to a place x which is an office, and

owned by a person alice.

This formalism reduces the number of lexical entries the system needs to

learn by exploiting compositional reasoning over language. For example, if it learns

that “Alice Ashcraft” also refers to the entity alice, it does not need to learn

another lexical entry for “Alice Ashcraft’s office”.

There has been considerable work in semantic parsing using direct supervi-

sion in the form of annotated meaning representations (Wong and Mooney, 2007;
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Kwiatkowski et al., 2013; Berant et al., 2013). More recent works use indirect sig-

nals from downstream tasks. Artzi and Zettlemoyer (2011) use clarification dialogs

to train semantic parsers for an airline reservation system without explicit annota-

tion of meaning representations. Thomason et al. (2015), incorporate this general

approach into a system for instructing a mobile robot using a basic dialog state and

fixed hand-coded policy.

In our work (chapter 3), semantic parsing is performed using probabilis-

tic CKY-parsing with a Combinatory Categorial Grammar (CCG) (Steedman and

Baldridge, 2011) and meanings associated with lexical entries (Zettlemoyer and

Collins, 2005). Perceptron-style updates to parameter values are used during train-

ing to weight parses to speed search and give confidence scores in parse hypotheses.

2.7 Reinforcement Learning

Reinforcement learning is a computational process of learning to map situ-

ations to actions to maximize a numerical reward signal (Sutton et al., 1998). In a

reinforcement learning problem, an agent interacts with its environment to achieve

a goal. The agent can sense the state of the environment, take actions that affect

the state, and have one or more goals related to this state. It typically needs to take

a sequence of actions to achieve its goal and may receive only delayed numerical

feedback (reward) to indicate whether progress has been made.

Reinforcement learning faces the challenge of trading off exploration and

exploitation. The agent has to exploit actions known to be effective, to obtain re-

ward, but must explore new actions to find out those that are the most effective.
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We now discuss two common formulations of reinforcement learning prob-

lems (sections 2.7.1 and 2.7.2), and three algorithms used for policy learning (sec-

tions 2.7.3, 2.7.4 and 2.7.6).

2.7.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a tuple 〈S,A,T,R, γ〉, S is a set of

states, A is a set of actions, T is a transition function, R is a reward function and

γ is a discount factor. At any instant of time t, the agent is in a state st ∈ S. It

chooses to take an action at ∈ A according to a policy π, commonly represented

as a probability distribution over actions where π(at|st) is the probability of taking

action at when the agent is in state st. On taking action at, the agent is given a

real-valued reward rt and transitions to a state st+1.

State transitions occur according to the probability distribution P (st+1|st, at) =

T(st, at, st+1), and rewards obtained follow the distribution P (rt|st, at) = R(st, at, st+1).

The objective is to identify a policy π that is optimal in the sense that it

maximizes the expected long term discounted reward, called return, given by

g = Eπ

[
∞∑
t=1

γtrt

]

2.7.2 Partially Observable Markov Decision Process (POMDP)

A Partially Observable Markov Decision Process (POMDP) is an extension

of MDPs where the agent does not know what state it is in, but only receives a noisy

observation indicative of the state.
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Formally, a POMDP is a tuple (S,A,T,R,O,Z, γ, b0), where S is a set of

states, A is a set of actions, T is a transition function, R is a reward function, O is a

set of observations, Z is an observation function, γ is a discount factor and b0 is an

initial belief state (Kaelbling et al., 1998).

These are defined as in MDPs, but the the state st is hidden from the agent

and only a noisy observation ot ∈ O of st is available to it. The agent maintains a

belief state bt which is a distribution over all possible states it could be in at time t.

bt(si) gives the probability of being in state si at time t. The agent chooses actions

at ∈ A based on bt, according to a policy π. On taking action at, the agent is given

a real-valued reward rt, transitions to a state st+1, and receives a noisy observation

ot+1 of st+1, which is used to update its belief bt+1.

State transitions occur according to the probability distribution P (st+1|st, at) =

T(st, at, st+1), observations are related to the states by the probability distribu-

tion P (ot|st, at−1) = Z(ot, st, at−1) and rewards obtained follow the distribution

P (rt|st, at) = R(st, at, st+1).

The objective, again, is to identify a policy π that is optimal in the sense that

it maximizes return.

2.7.3 REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) is a simple policy gradient

algorithm used to learn a policy in an MDP. The agent learns a policy π(a|s; θ),

parameterized with weights θ that computes the probability of taking action a in

state s. An example is a policy based on a feature representation f(s, a) for a state-
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action pair (s, a):

π(a|s; θ) =
eθ

T f(s,a)∑
a′ e

θT f(s,a′)

where the denominator is a sum over all actions possible in state s.

The weights are updated using a stochastic gradient ascent rule:

θ ← θ + α∇θJ(θ)

where J(θ) is the expected return from the policy according to the distribution over

trajectories induced by the policy.

2.7.4 Q-Learning

The quality of a policy π can be estimated using the action value function

Qπ(s, a) = Eπ

[
∞∑
t=1

γtrt | s0 = s, a0 = a

]

The optimal policy satisfies the Bellman equation,

Q∗(s, a) = Es′ [R(s, a, s′) + γmaxa′∈AQ
∗(s′, a′)]

For a POMDP, the above equations would be in terms of belief states b.

Q-learning is a temporal difference method used for policy learning. The

algorithm starts off with possibly arbitrary estimates for Q(s, a) and attempts to

update them towardsQ∗(s, a) through experience. This experience can be collected

using any policy, and hence, the algorithm is an off-policy algorithm. The following
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update is performed when the agent takes action at in state st, receiving reward rt,

and transitioning to st+1.

Q(st, at)← Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′))

Given the final estimates Q̂(s, a), the corresponding learned policy would be to take

the action of highest estimated value at each state. That is,

π(a|s) = max
a
Q(s, a)

2.7.5 Asynchronous Advantage Actor Critic

Actor-Critic algorithms use a combination of an actor policy πθ(a|s) trained

using policy gradient methods, with a critic that estimates the value of each state,

V (s), using value-iteration which can then be used to compute an advantage func-

tion A(s, a) = Q(s, a) − V (s), which is used to reduce the variance in the policy

gradient update.

Then, given a trajectory where the agent takes action at in state st at time

step t, receiving reward rt, and transitioning to st+1, the policy gradient estimate

used is

∇θJ(θ) =
∑
t

∇θ log πθ(at|st)A(st, at)

where A(st, at) is estimated using the critic as

A(st, at) = rt + γV (st+1)− V (st)
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The actor can then be updated using policy gradient:

θ ← θ + α∇θJ(θ)

and then the critic is updated using value iteration:

V (st) = rt + γV (st+1)

In Asynchronous Advantage Actor Critic (Mnih et al., 2016), the actor and

critic are parameterized using neural networks that share all layers except the last.

The final layer for the actor predicts next-action probabilities and that of the critic

predicts values. Further, the same set of parameters is used by a number of agents

in parallel to collect trajectories, and updates from these are used to asynchronously

update the shared model.

2.7.6 KTD-Q Learning

When the state space is very large or continuous,Qπ cannot be computed for

each state (or belief state) individually and is hence assumed to be a function with

parameters θ over some features that represent the state. When the transition or re-

ward dynamics are not constant (non-stationary problem), a suitable approximation

is the Kalman Temporal Differences framework (Geist and Pietquin, 2010). This

casts the function approximation as a filtering problem and solves it using Kalman

filtering. The specialization for learning the optimal action value function is called

the KTD-Q algorithm.
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Filtering problems estimate hidden quantities X from related observations

Y, modeling X and Y as random variables. When estimating action values, X corre-

sponds to the function parameters, θ and the observations are the estimated returns,

rt + γmaxa Q̂θt(st+1, a), and a random noise is added to both of these to allow

for parameters to change over time. The update rules are derived from Kalman

Filtering Theory and details can be found in Geist and Pietquin (2010).

2.8 Active Learning

In machine learning tasks where obtaining labeled examples is expensive,

active learning is used to lower the cost of annotation without sacrificing model

performance. Active learning allows a learner to iteratively query for labels of

unlabeled data points that are expected to maximally improve the existing model.

Research in active learning attempts to identify examples that are likely to be the

most useful in improving a supervised model. A number of metrics have been

proposed to evaluate examples, including uncertainty sampling (Lewis and Gale,

1994), density-weighted methods (Settles and Craven, 2008), expected error reduc-

tion (Roy and McCallum, 2001), query by committee (Seung et al., 1992), and the

presence of conflicting evidence (Sharma and Bilgic, 2016); as surveyed by Settles

(2010).

Multilabel active learning is the application of active learning in scenarios

where multiple labels, that are not necessarily mutually exclusive, are associated

with a data point (Brinker, 2006). These setups often suffer from sparsity, both

in the number of labels that are positive for a data point, and in the number of

27



positive data points per label. Standard active learning metrics are often extended

to the multilabel setting, by assuming that one-vs-all classifiers are learned for each

label, and that all the learned classifiers are comparable (Brinker, 2006; Singh et al.,

2009; Li et al., 2004). Label statistics have also been incorporated into heuristics

for selecting instances to be queried (Yang et al., 2009; Li and Guo, 2013). There

have also been Bayesian approaches that select both an instance and label to be

queried (Qi et al., 2009; Vasisht et al., 2014).

The most commonly used framework for active learning is pool-based ac-

tive learning, where the learner has access to the entire pool of unlabeled data at

once, and can iteratively query for examples. In contrast, sequential active learn-

ing is a framework in which unlabeled examples are presented to the learner in a

stream (Lewis and Gale, 1994). For every example, the learner can decide whether

to query for its label or not. This results in an additional challenge – since the learner

cannot compare all unlabeled data points before choosing queries, each query must

be chosen based on local information only. We introduce the framework of Op-

portunistic Active Learning (chapter 4) that extends sequential active learning to an

interactive multi-label task.

Recently, there has been interest in using reinforcement learning to learn

a policy for active learning. Fang et al. (2017) use deep Q-learning to acquire a

policy that sequentially examines unlabeled examples and decides whether or not

to query for their labels; using it to improve named entity recognition in low re-

source languages. Also, Bachman et al. (2017) use meta-learning to jointly learn

a data selection heuristic, data representation and prediction function for a distri-
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bution of related tasks. They apply this to one shot recognition of characters from

different languages, and in recommender systems. Woodward and Finn (2017) use

reinforcement learning with a recurrent-neural-network-based Q-function in a se-

quential one-shot learning task to decide between predicting a label and acquiring

the true label at a cost. We follow in this line of work to learn a policy for op-

portunistic active learning in a task of grounding natural language descriptions of

objects (chapter 5).

2.9 Grounding Language in Perception

When humans interact with robots in natural language, they typically refer to

entities in the real world, and expect robots to be able to identify these referents. For

many types of entities, such as physical household objects, people typically describe

them in terms of attributes such as object category, color and weight (Guadarrama et

al., 2016; Thomason et al., 2016). Robots need to be able to perceive properties that

humans refer to, and use these to map referring expressions to referents in the real

world. This task is an instance of the symbol grounding problem (Harnad, 1990).

There has been considerable work on extending word representations to in-

corporate visual context. These are found to be useful for predicting lexical simi-

larity (Silberer and Lapata, 2012, 2014; Lazaridou et al., 2015), verifying common

sense assertions (Kottur et al., 2016), verifying visual paraphrasing (Kottur et al.,

2016), image categorization (Silberer and Lapata, 2014; Lazaridou et al., 2015) in-

cluding in the zero shot setting (Lazaridou et al., 2014), and retrieval of related

images (Kottur et al., 2016). However, these do not attempt to retrieve images or
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objects based on free-form natural language descriptions – as desired in robotics

applications.

Guadarrama et al. (2016) assemble a dataset for retrieval of objects based

on open vocabulary natural language descriptions, and compare the performance

of image categorization and instance recognition methods, as well as ensembles

of these on this task. Misra et al. (2017b) learn a network to more intelligently

compose classifiers learned for adjectives and nouns. Hu et al. (2016) propose a

neural network model that uses a vector representation of a region crop, the entire

image, and relative bounding box coordinates to score regions in an image to iden-

tify the one referred to by a natural language expression. Other works either align

vector representations of images and descriptions/ captions using methods such as

CCA (Feng et al., 2015), or learn a joint embedding of the modalities (Wang et

al., 2016) to perform image-to-caption and caption-to-image retrieval. Xiao et al.

(2017) learn to ground descriptions in images by learning mappings from phrases

to attention vectors over the image, and combining attended regions using linguistic

constraints. Hu et al. (2018b) use composable neural network modules paired with a

differentiable stack memory to convert referring expressions into differentiable ex-

ecutable programs, that can be used to ground more complex visual relationships in

referring expressions. Burns et al. (2019) demonstrate that using pooling methods

based on Fisher vectors, and injecting knowledge into word embeddings results in

a better language representation for many language grounding tasks than pretrained

context-sensitive sentence representations. Some other models for such language

grounding include language guided graph attention (Wang et al., 2019) and multi-
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modal transformers (Ye et al., 2019). The performance of multi-modal transformers

can be further improved by pretraining on large datasets of paired language and im-

ages (Lu et al., 2019; Tan and Bansal, 2019).

There are also works that focus on learning other aspects of grounding in-

cluding spatial relations (Bisk et al., 2016; Yang and Narasimham, 2020), rela-

tive properties such as size, weight and rigidity of object pairs (Forbes and Choi,

2017), subject-relation-object triples (Hu et al., 2017), meanings of verbs modeled

as state changes (Gao et al., 2016; Liu et al., 2016a; Gao et al., 2018), and semantic

roles of a verb in videos (Yang et al., 2016). Grounding of object descriptions can

also be improved by incorporating information such as temporal context and ges-

ture (Williams et al., 2017). There have also been attempts to learn unsupervised

alignments between words in speech and objects in images (Harwath et al., 2018).

While most work on grounded language learning focuses on understand-

ing, there is also work on generating referring expressions of objects for effective

human-robot communication (Fang et al., 2013, 2014).

2.10 Visually Grounded Dialog

Recently, a few new dialog tasks and datasets have been introduced that

require grounding of language in images. The VisDial dataset was collected to teach

a robot to coherently answer a sequence of questions about a single image (Das

et al., 2017a). This has also been used to train a pair of agents, one of which

asks questions about an unseen image, and another that answers them using the

image (Das et al., 2017b), with the goal of the questioning agent attempting to learn
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a representation of what the image looks like. They find that the answering agent

does provide answers similar to humans, and only pretraining constrains the agents

to retain the semantics of English as used by humans. Zhang et al. (2018a) create

a 20-questions game using this dataset and learn a hierarchical dialog policy where

the top level decided between asking questions and guessing, while a lower level

policy chooses the exact question to be asked.

Another related work is the GuessWhat?! dataset (De Vries et al., 2017)

of humans playing a 20 questions game to identify an object in images of rich

scenes. This is used to train a questioner that tries to identify the target object by

asking yes/no questions, and the oracle that learns to answer them. It is difficult to

evaluate the success of either agent, as ground truth for both agents is unlikely to

be present in the training set. Further, if they are trained jointly, the challenge of

retaining human semantics again arises. Another work that learns to ask questions

that can discriminate between images is Li et al. (2017).

We learn a system that can learn clarification questions that can refine on

an initial description (chapter 6) – which is not present in the above tasks. Fur-

ther, we wish to do this in a setting where we can provide ground truth answers

to questions of the system during training. Hence we use binary questions about

the presence of visual attributes such as colors, object categories, and other domain

specific attributes, to perform clarification.

Some related recent tasks are interactive versions of visual navigation us-

ing natural language route instructions. Some examples include adding an extra

“clarification” action that allows the agent to obtain the next navigation step using
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an oracle (Chi et al., 2020; Nguyen and III, 2019). While these setups do allow for

providing ground-truth answers to clarification questions, they simulate a somewhat

awkward interaction as a user would not typically reason at the level of low-level

navigation steps. Thomason et al. (2020) create a more realistic interactive instruc-

tion following task, where the robot must learn to ask follow up questions to clarify

ambiguous route instructions. However, since the clarification questions are uncon-

strained, it is difficult to ensure that correct answers are provided to the agent during

training in simulation.

2.11 Interactive Image Retrieval

Early work on interactive image retrieval requires initial images to be se-

lected to start a search from a sample of images, and users are allowed to refine

results by iteratively identifying relevant and irrelevant results (Nastar et al., 1998;

Tieu and Viola, 2004). In these cases, retrieval was directed solely using the initial

selections, not using natural language search queries.

Over time, there has been a large body of work in retrieving images us-

ing natural language queries (Guadarrama et al., 2014). Caption-to-image retrieval

on image captioning datasets has also been used as a testbed for many language

grounding models (Wang et al., 2016).

Other works attempt to augment such an initial retrieval with further inter-

action, often motivated by applications in online shopping. Robotics applications

have long used visual attributes as a means of asking clarification questions for

refining natural language object retrieval. Early systems either assume access to
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oracle predictions of visual attributes (Liu et al., 2013) or use handcrafted features

for classifying visual attributes (Dindo and Zambuto, 2010; Parde et al., 2015). In

shopping applications, more focus has been placed on allowing users to provide

relative feedback – allowing users to specify how they would like the retrieval re-

sults to differ from the current results. Kovashka et al. (2012) allow users to refine

results indicating relative feedback along specific attributes, for examples request-

ing for “more formal” shoes. More recently, the task of relative captioning (Guo

et al., 2018; Bhattacharya et al., 2019) allows users to provide such feedback us-

ing unconstrained natural language. Saha et al. (2018) extend this to incorporate

providing additional information and answering questions about products. Recent

works use convolutional neural networks to perform visual attribute prediction (Liu

et al., 2016b; Guo et al., 2019). A complementary direction is for the system to take

an initiative using similar visual attributes to narrow down the search space for the

user, which we explore in our work on attribute based clarifications (chapters 6 and

8).

34



Chapter 3

Integrated Learning of Dialog Strategies and

Semantic Parsing

Robots need to be able to understand high-level natural language commands

to be accessible to a variety of users. Since the types of commands, and language

usage vary across domains, it is desirable that a robot should be able to improve

through interaction with users in its operating environment. For an interactive di-

alog system, prior work had demonstrated different methods to independently im-

prove either the natural language understanding component or the dialog strategy.

In this chapter, We discuss an approach to integrate the learning of both a dialog

strategy using reinforcement learning, and a semantic parser for robust natural lan-

guage understanding, using only natural dialog interaction for supervision. The

main challenge involved is choosing an appropriate reinforcement learning algo-

rithm, and training procedure, as the simultaneous training of the semantic parser

violates the assumption of a non-stationary environment, made by most reinforce-

ment learning algorithms.

3.1 Contributions

This work was originally presented in Padmakumar et al. (2017). My contri-

bution to this work included designing and implementing the joint learning frame-
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work, experimenting with reinforcement learning algorithms for policy learning,

and implementing and conducting the final experiments. Jesse Thomason provided

the implementation of the semantic parser and a template for the web interface used

in the final experiments, and assisted with other issues that arose during implemen-

tation. Prof Raymond Mooney proposed the project and provided guidance in the

choice of algorithms and experimental conditions considered.

3.2 Motivation

Prior research in dialog systems was primarily focused on the problems

of accurate dialog state tracking (Young et al., 2010; Thomson and Young, 2010;

Mrkšić et al., 2015; El Asri et al., 2016) and learning a policy for the dialog system

to respond appropriately in various scenarios (Gašić and Young, 2014; Pietquin

et al., 2011; Png et al., 2012). Dialogs are typically modeled using Partially Ob-

servable Markov Decision Processes (POMDPs), and various reinforcement learn-

ing algorithms have been proposed and evaluated for the task of learning optimal

policies over these representations to accomplish user goals effectively and effi-

ciently (Gašić and Young, 2014; Pietquin et al., 2011; Young et al., 2013). How-

ever, such systems typically assumed a fixed language understanding component

that is available a priori.

Semantic parsing is the task of mapping natural language to a formal mean-

ing representation. It has the potential to allow for more robust mapping of free-

form natural language to a representation that can be used to interpret user inten-

tions and track dialog state. It leverages the compositionality of meaning inherent
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in language to perform more robust language understanding. There has been con-

siderable work in semantic parsing that use both direct supervision in the form of

annotated meaning representations (Wong and Mooney, 2007; Kwiatkowski et al.,

2013; Berant et al., 2013) and indirect signals from downstream tasks (Artzi and

Zettlemoyer, 2011, 2013; Thomason et al., 2015). In particular, Thomason et al.

(2015) show that a semantic parser, incrementally updated from conversations, is

helpful in dialogs for communicating commands to a mobile robot. In this chap-

ter, we show that incremental learning of a POMDP-based dialog policy allows for

further improvement in dialog success.

A major challenge with this setup is that ongoing parser learning results in a

violation of a common assumption of a stationary environment made by reinforce-

ment learning (RL) algorithms. For example, the improved semantic parser may

be able to extract more information from a response to a question, which the old

parser could not parse. So the RL algorithm may have assumed that asking that

question is not useful, but that is not the case with the new parser. Our results show

that this effect can be mitigated if we break the allowed budget of training dialogs

into batches, updating both parser and policy after each batch. As the next training

batch gets collected using the updated parser, the policy can be updated using this

experience to adapt better to it. We demonstrate, using crowd-sourced results with a

simulated robot, that by integrating learning of both a dialog manager and a seman-

tic parser in this manner, task success is improved over cases where the components

are trained individually.

We also use a reinforcement learning algorithm that is explicitly designed to
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model the non-stationary environment by using techniques from Kalman Filtering

theory to model how the transition and reward functions change over time (Geist

and Pietquin, 2010). Some alternative methods to model non-stationary RL envi-

ronments include the use of Gaussian processes (Engel et al., 2005) and Bayes-

Adaptive POMDPs (Ross et al., 2008). Another alternative is to use RL algorithms

such as Double Q-learning that do not explicitly model the non-stationary environ-

ment but use batching techniques similar to our proposed method to avoid overesti-

mation of Q-values (Hasselt, 2010). We leave the comparison of these different RL

algorithms in this setting to future work.

Since the original publication of this work, there has been more interest in

end-to-end trained dialog systems (Wen et al., 2017; Serban et al., 2016). The train-

ing procedure of such systems is automatically incorporates the ideas we demon-

strate in this chapter – that it is helpful to update all components of a dialog system

with information from dialogs, and this is more effective when training is done in

multiple batches so that changes in components can be made visible to other com-

ponents.

3.3 Task and System Setup

Our goal is to develop a dialog system that enables a robot to translate high

level commands such as “go to Alice’s office” to a command represented as an

action with associated semantic roles. The user can command the system to perform

two actions: navigation and delivery. Navigation has a single parameter for the

destination. For example go to Alice’s office would be a possible way to command
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Figure 3.1: A sample dialog in our interface on Amazon Mechanical Turk.

the robot to perform a mavigation command whose location is a room that is the

office of a person alice. Delivery has two parameters: the item to be delivered

and the person to receive it. For example, bring Alice a hamburger would be a

possible way to specify a delivery command whose patient is an item hamburger

and recipient is a person alice.

Our system initiates the dialog by requesting the user for a command. The

robot makes an initial guess of the desired action from the user’s response, and then

may ask clarification questions in case of insufficient understanding. At each step,

it can respond with one of four dialog acts: asking the user to repeat their command,

confirming a command or an argument value, requesting a specific argument of a

command, and executing an action (thereby ending the dialog). A sample dialog is

shown in figure 3.1.

Given a user response, a semantic parser is used to convert utterances to

logical forms (section 2.6) which are then grounded to actions and semantic roles
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using world knowledge (e.g. resolving the representation of “Alice’s office” to a

particular room). The robot maintains a belief state that represents the probability

that a particular combination of action and semantic roles is the command intended

by the user. This is updated based on the grounded response, and is then used

by the dialog policy to choose the next action to be taken by the robot. Once the

conversation is complete, the parser and policy can be updated from the dialog

(sections 3.4 and 3.5 respectively).

The dialog is considered a success if the final action taken is correct and a

failure otherwise. The user also has the ability to prematurely end the dialog, and

any conversation terminated in this manner is also considered a failure.

3.4 Semantic Parser Learning

The semantic parser is trained using paired sentences and logical forms. A

small supervised training set is used to initialize the parser. Training continues using

pairs obtained through weak supervision collected from user dialogs (Thomason et

al., 2015).

Figure 3.2 shows an example of the training pairs induced from the example

dialog. To obtain these, we obtain multiple semantic parses for these responses,

and parses are syntactically valid, and that ground to the action finally taken by the

robot or its arguments, are paired with the response to training pairs. These paired

responses and semantic forms can then be used to retrain the parser between con-

versations. While this weak supervision may be noisy, the syntactic and grounding

constraints remove most spurious examples. For example, if we receive “Go to
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Figure 3.2: Training pairs induced from the clarification dialog, by selecting parses
that ground to the final action and its arguments. The response in red is discarded
because no such parse is found.

Bob’s office” as a response when we expect an argument value, since the response

is an imperative sentence, not a noun phrase such as “Bob’s office”, no training ex-

ample would be generated from it. Also, if we knew from a successful dialog that

the desired goal location is Bob’s office, we would ignore intermediate responses

that appear to parse to other locations.

3.5 Dialog Policy Learning

We use a POMDP to model dialog and learn a policy (section 2.2), adapt-

ing the Hidden Information State model (HIS) (Young et al., 2010) to track the

belief state as the dialog progresses. The key idea behind this approach is to group

states into equivalence classes called partitions, and maintain a probability for each

partition instead of each state. States within a partition are those that are indistin-
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guishable to the system given the current dialog.

More concretely, our belief state can be factored into two main components

- the goal intended by the user g and their most recent utterance u. A partition p is

a set of possible goals which are equally probable given the conversation so far.

After every user response, a beam of possible choices for u can be obtained

by grounding the beam of top-ranked parses from the semantic parser. Grounding is

performed by looking up a knowledge base of entities such as people, and relations

such as who owns an office. Given the previous system action m, The belief b(p,u)

is calculated as in the HIS model as follows

b(p,u) = k ∗ P (u) ∗ T (m,u) ∗M(u,m, p) ∗ b(p)

Here, P (u) is the probability of the utterance hypothesis u given the user response,

which is obtained from the semantic parser. T (m,u) is a 0-1 value indicating

whether the response is relevant given the previous system question, determined

from the semantic type of the response. M(u,m, p) is a 0-1 value indicating

whether goals in partition p are relevant to the response and previous system ques-

tion. b(p) is the belief of partition p before the update, obtained by marginalizing

out u from b(p,u). k is a normalization constant that allows the expression to be-

come a valid probability distribution.

We extract features from the belief state to form a summary space over which

a dialog policy is learned as in prior work (Young et al., 2010; Gašić and Young,

2014). Table 3.1 contains the features used to learn the policy.

The choice of policy learning algorithm is important because learning POMDP
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Table 3.1: Features used in summary space

Probability of top hypothesis
Probability of second hypothesis
Number of goals allowed by the partition in the
top hypothesis
Number of parameters of the partition in the top
hypothesis, required by its action, that are uncer-
tain (set to the maximum value if there is more
than one possible action)
Number of dialog turns used so far
Do the top and second hypothesis use the same
partition (0-1)
Type of last user utterance
Action of the partition in the top hypothesis, or
null if this is not unique

policies is challenging and dialog applications exhibit properties not often encoun-

tered in other reinforcement learning applications (Daubigney et al., 2012). We use

Kalman Temporal Difference Q-learning (Geist and Pietquin, 2010), or KTD-Q,

to learn the dialog policy as it was designed to satisfy some of these properties and

tested in a dialog system with simulated users (Pietquin et al., 2011). The properties

we wished to be satisfied by the algorithm were the following:

• Low sample complexity in order to learn from limited user interaction.

• An off-policy algorithm to enable the use of existing dialog corpora to boot-

strap the system, and crowdsourcing platforms such as Amazon Mechanical

Turk during training and evaluation.

• A model-free rather than a model-based algorithm because it is difficult to

design a good transition and observation model for this problem (Daubigney

et al., 2012).
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• Robustness to non-stationarity because the underlying language understand-

ing component changes with time (Section 3.4), which is likely to change

state transitions.

To learn the policy, we provided a high positive reward for correct completion of

the task and a high negative reward when the robot chose to execute an incorrect

action, or if the user terminated the dialog before the robot was confident about

taking an action. The system was also given a per-turn reward of −1 to encourage

shorter dialogs.

3.6 Experimental Setup

The semantic parser was initialized using a small seed lexicon and trained on

a small set of supervised examples constructed using templates. The dialog policy

was initialized with an approximation of a good static policy.

3.6.1 Task Interface

Our experiments were done through Mechanical Turk as in previous work

(Thomason et al., 2015; Wen et al., 2017). The setup is shown in figure 3.1. During

the training phase, each user interacted with one of four dialog agents (described in

section 3.6.2), selected uniformly at random. Users were not told of the presence of

multiple agents and were not aware of which agent they were interacting with. They

were given a prompt for either a navigation or delivery task and were asked to have

a conversation with the agent to accomplish the given task. No restrictions were
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placed on the language they could employ. We use visual prompts for the tasks to

avoid linguistic priming (e.g. a picture of a hamburger instead of the word “ham-

burger”). Training dialogs were acquired in 4 batches of 50 dialogs each across all

agents. After each batch, agents were updated as described in section 3.6.2.

A final set of 100 test conversations were then conducted between Mechan-

ical Turk users and the trained agents. These test tasks were novel in comparison

to the training data in that although they used the same set of possible actions and

argument values, the same combination of action and argument values had not been

seen at training time. For example, if one of the test tasks involved delivery of a

hamburger to alice, then there may have been tasks in the training set to de-

liver a hamburger to other people and there may have been tasks to deliver other

items to alice, but there was no task that involved delivery of a hamburger to

alice specifically.

3.6.2 Dialog agents

We compared four dialog agents. The first agent performed only parser

learning (described in Section 3.4). Its dialog policy was always kept the static pol-

icy used to initialize the KTD-Q algorithm. Its parser was incrementally updated

after each training batch. This agent is similar to the system used by Thomason et

al. (2015) except that it uses the same state space as our other agents, and multiple

hypotheses from the parser, for fairer comparison.

The second agent performed only dialog policy learning. Its parser was

always kept to be the initial parser that all agents started out with. Its policy was
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incrementally updated after each training batch using the KTD-Q algorithm. The

third agent performed both parser and dialog learning; but instead of incrementally

updating the parser and policy after each batch, they were trained at the end of the

training phase using dialogs across all batches. This would not allow the dialog

manager to see updated versions of the parser in batches after the first and adapt the

policy towards the improving parser. We refer to this as full learning of parser and

dialog policy. The fourth agent also performed both parser and dialog learning. Its

parser and policy were updated incrementally after each training batch. Thus for

the next training batch, the changes due to the improvement in the parser from the

previous batch could, in theory, be demonstrated in the dialogs and hence contribute

towards updating the policy in a manner consistent with it. We refer to this as

batchwise learning of parser and dialog policy.

3.6.3 Experiment hypothesis

We hypothesized that the agent performing batchwise parser and policy learn-

ing would outperform the agents performing only parser or only dialog learning as

we expect that improving both components is more beneficial. However, we did

not necessarily expect the same result from full parser and dialog learning because

it did not provide any chance to allow updates to propagate even indirectly from one

component to another, exposing the RL algorithm to a more non-stationary envi-

ronment. Hence, we also expected batchwise learning to outperform full learning.
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3.7 Results and Discussion

The agents were evaluated on the test set using the following objective per-

formance metrics: the fraction of successful dialogs and the length of successful

dialogs. We also included a survey at the end of the task asking users to rate on a

1–5 scale whether the robot understood them, and whether they felt the robot asked

sensible questions.

Table 3.2 gives the agents’ performance on these metrics. All differences in

dialog success and the subjective metrics are statistically significant according to an

unpaired t-test with p < 0.05. In dialog length, the improvement of the batchwise

learning agent over the agents performing only parser or only dialog learning are

statistically significant.

Table 3.2: Performance metrics for dialog agents tested. Differences in dialog suc-
cess and subjective metrics are statistically significant according to an unpaired
t-test with p < 0.05.

Learning involved
%

successful
dialogs

Average
dialog
length

Robot
understood

Sensible
questions

Parser 75 12.43 2.93 2.79
Dialog 59 11.73 2.55 2.91
Parser & Dialog - full 72 12.76 2.79 3.28
Parser & Dialog - batchwise 78 10.61 3.30 3.17

As expected, the agent performing batchwise parser and dialog learning out-

performs the agents performing only parser or only dialog learning, in the latter case

by a large margin. We believe the agent performing only parser learning performs

much better than the agent performing only dialog learning due to the relatively

high sample complexity of reinforcement learning algorithms in general, especially
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in the partially observable setting. In contrast, the parser changes considerably even

from a small number of examples. Also, we observe that full learning of both com-

ponents does not in fact outperform only parser learning. We believe this is because

the distribution of hypotheses obtained using the initial parser at training time is

substantially different from that obtained using the updated parser at test time. We

believe that batchwise training mitigates this problem because the distribution of

hypotheses changes after each batch of training and the policy when updated at

these points can adapt to some of these changes. The optimal size of the batch is

a question for further experimentation. Using a larger batch is less likely to overfit

updates to a single example but breaking the total budget of training dialogs into

more batches allows the RL algorithm to see less drastic changes in the distribution

of hypotheses from the parser.

With dialog policy learning, a qualitative change observed is that the system

tends to confirm or act upon lower probability hypotheses than is recommended by

the initial hand-coded policy. This is possibly because as the parser improves, its

top hypotheses are more likely to be correct.

We also observe quantitative improvements in parser accuracy for agents

whose parsers were trained. To attempt to quantify the improvement in accuracy of

the parsers after training from dialog, we manually annotated semantic forms for

commands from the test set. We evaluated the final parser used for testing in each

of the conditions in terms of Recall@1, which is the fraction of times the correct

parse is the top parse predicted by the parser, and Recall@10, which is the fraction

of times the correct parse occurs in the top 10 parses predicted by the parser. The
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results are included in table 3.3.

Table 3.3: Comparison of performance of initial parser and parsers after updating
various components, on paired commands and semantic forms. ∗ indicates that the
difference in performance between this and the Initial parser on the same metric is
statistically significant according to a paired t-test with p < 0.05 and ˆ indicates that
the difference is trending significance (p < 0.1)

Learning involved Recall@1 Recall@10
None 0.564 0.611
Only parser 0.588 0.671*
Only dialog 0.564 0.623
Parser and dialog - full 0.588 0.647 ˆ
Parser and dialog - batchwise 0.576 0.670*

As expected, we observe that the initial parser (no learning) and the parser

from the system performing only dialog learning, perform worse than the others, as

the other systems update the parser used by these. The parser of the system per-

forming only dialog learning is in fact a copy of the initial parser and was included

only for completeness. Any difference in their performance is due to randomness.

The parsers updated from dialogs improve in accuracy but the differences are found

to be statistically significant only on Recall@10. The modest improvement is un-

surprising given that the supervision provided is both noisy and weak. However,

even this modest improvement is sufficient to improve overall dialog success.

We also attempted to evaluate the benefit of using a state representation that

takes into account a beam of top-n parses from the semantic parser. We expect that

this is beneficial in cases where that the correct hypothesis is not the top ranked but

present in this beam. To perform this ablation, we trained an agent that used the

same parser and policy as in the batchwise condition, but only the top ranked parse

from the parser to update its state, as opposed to a beam of parses when updating
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its state. These two systems differed in no other components, and were otherwise

trained using similar interactions on Amazon Mechanical Turk. The results of this

ablation are included in Table 3.4.

Table 3.4: Comparison of an agent using only the top hypothesis from the semantic
parser and another using the top 10 parses. All differences are statistically signifi-
cant according to an unpaired t-test with p < 0.05.

Number of parses
considered % successful dialogs Dialog length

1 0.59 9.17
10 0.64 12.18

As expected, the agent using multiple parses performs the correct action a

significantly higher fraction of times. The system using a single hypothesis has a

shorter average length among its successful dialogs because it rarely succeeds in

more complicated dialogs where the system needs repeated clarification or answers

to multiple specific questions.

3.8 Summary

In this work, we have demonstrated that continuous dialog strategy learning

and semantic parser learning can be successfully combined in a dialog system to

enable an agent to better understand commands provided in natural language. Both

the semantic parser and the dialog strategy can be automatically improved simul-

taneously using weak feedback provided during interaction with users rather than

manually-labeled or artificially constructed training data. Ongoing parser learning

could have confused the RL dialog learner by altering the underlying language un-
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derstanding system while it was searching for an effective dialog policy. However,

our results show that by using an appropriate RL algorithm and batchwise training

regimen, this potential difficulty can be avoided, and both language understanding

and dialog management can be improved simultaneously.
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Chapter 4

Opportunistic Active Learning for Grounding

Natural Language Descriptions

An important skill required by robots in a home or office setting is retrieving

objects based on natural language descriptions. We find a number of objects such

as books, mugs and bottles in such environments, that users typically refer to using

a descriptive phrase invoking attributes of the object (eg: “the blue mug”), rather

than having a unique name for each object. The set of such objects in these envi-

ronments keeps changing, and sometimes even their properties might (eg: a water

bottle becomes lighter as it gets emptied). This makes it near impossible to catalog

the objects present, and their attributes, requiring robots to use perception to ground

such descriptions of objects. Further, it is impossible to determine beforehand the

attributes that people are likely to use such objects, and collect annotations for them.

Thus to learn perceptual models for objects and attributes, a robot needs to be able

to acquire labeled examples during interactions with users. In this work, we in-

troduce the framework of opportunistic active learning, where a robot queries for

labeled examples that are not immediately required, in anticipation of using them

for future interactions.
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4.1 Contributions

This work was originally presented in Thomason et al. (2017), and involved

an equal contribution from Jesse Thomason and myself. It is also included in his

thesis (Thomason, 2018). My contribution to this work was designing the frame-

work of opportunistic active learning, and the task setup, as well as assisting with

its implementation. Jesse Thomason was also involved in the implementation of

the system, and he conducted the experiments presented. Jivko Sinapov and Justin

Hart assisted in the setup of the infrastructure on the physical robot necessary for

the experiment, and professors Peter Stone and Raymond Mooney helped shape the

experimental design.

4.2 Motivation

In machine learning tasks where obtaining labeled examples is expensive,

active learning is used to lower the cost of annotation without sacrificing model

performance. Active learning allows a learner to iteratively query for labels of

unlabeled data points that are expected to maximally improve the existing model.

One of the challenges with developing learned systems on physical robots is that

collecting labeled data with a physical robot is time consuming – making active

learning an attractive option to reduce the amount of labeled data needed.

The most commonly used framework for active learning is pool-based ac-

tive learning, where the learner has access to the entire pool of unlabeled data at

once, and can iteratively query for examples. In contrast, sequential active learn-
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ing is a framework in which unlabeled examples are presented to the learner in a

stream (Lewis and Gale, 1994). For every example, the learner can decide whether

to query for its label or not. This results in an additional challenge – since the learner

cannot compare all unlabeled data points before choosing queries, each query must

be chosen based on local information only. When a robot has to collect labels from

users, the process is typically sequential. Even if the robot has an inventory of ob-

jects in its environment, it cannot predict where user interactions will occur, and

hence, what objects are likely to be present in the context of the interaction.

Multilabel active learning is the application of active learning in scenarios

where multiple labels, that are not necessarily mutually exclusive, are associated

with a data point (Brinker, 2006). These setups often suffer from sparsity, both in

the number of labels that are positive for a data point, and in the number of positive

data points per label. Object descriptions require multilabel learning because ob-

jects can typically be described by a variety of properties including category, color,

weight or typical use.

We propose the framework of Opportunistic Active Learning, which incor-

porates multilabel sequential active learning into an interactive task. Instead of

having a separate training phase where labels are collected using active learning,

and a testing phase where the learned models are used, we consider a setup where

a robot is engaged in a sequence of interactions. In each of these, the robot must

learn to trade off acquiring additional labels using active learning, with completing

the task for which the user initiated the interaction. This is closer to the real-world

scenario where the robot must integrate continuous learning into the regular tasks it

54



is expected to perform.

In opportunistic active learning, an agent is engaged in a series of sequential

decision-making tasks. The agent uses one or more supervised models to complete

each task. Each task involves some sampled examples from a given feature space,

and the agent is allowed to query for labels of these examples to improve its mod-

els for current and future tasks. Queries in this setting have a higher cost than in

traditional active learning as the agent may choose to query for labels that are not

relevant for the current task, but expected to be of use for future tasks. Such oppor-

tunistic queries enable an agent to learn from a greater number of interactions, by

allowing it to ask queries that would aid future tasks when it is sufficiently confi-

dent of completing the current task. They also allow an agent to focus on concepts

that could have more impact than those relevant to the current task – for example

by choosing a frequently used concept as opposed to a rare one. Further, identify-

ing which queries are optimal for model improvement is more difficult as the agent

does not have access to the entire pool of unlabeled examples at any given time,

similar to sequential active learning settings.

Another sample application of opportunistic active learning could be in a

task oriented dialog system providing restaurant recommendations to a user. In

this case, a possible opportunistic query would be to ask the user for a Chinese

restaurant they liked, when the user is searching for an Italian one. The query is

not relevant to the immediate task of recommending an Italian restaurant but would

improve the underlying recommendation system.
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4.3 Opportunistic Active Learning

Active learning identifies data points from a pool of unlabeled examples

whose labels, if made available, are most likely to improve the predictions of a su-

pervised model. Opportunistic Active Learning (OAL) is a setting that incorporates

active learning queries into interactive tasks. Let O = {o1, o2, . . . on} be a set of

examples, and M = {m1,m2, . . .mk} be supervised models trained for different

concepts, using these examples. For the problem of understanding natural-language

object descriptions, O corresponds to the set of objects, M corresponds to the set

of possible concepts that can be used to describe the objects, for example their

categories (such as ball or bottle) or perceptual properties (such as red or tall).

In each interaction, an agent is presented with some subset OA ⊆ O, and

must make a decision based on some subset of the models MA ⊆ M . Given a

set of candidate objects OA and a natural language description l, MA would be the

set of classifiers corresponding to perceptual predicates present in l. The decision

made by the agent is a guess about which object is being described by l. The agent

receives a score or reward based on this decision, and needs to maximize expected

reward across a series of such interactions. Ideally, the reward function over inter-

actions is set up to capture the relative importance of completing an interaction in a

manner satisfactory to the user, while also minimizing any frustration they may face

due to the system asking active learning queries. As with most dialog systems, a

common proxy for this is to use a combination task success rate and dialog length.

It is assumed that a user is more likely to be satisfied if the agent is successful
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at completing the task for which the interaction was initiated, and if the dialog is

shorter. This is often captured by providing a large positive reward at the end of a

successful interaction, a large negative reward at the end of a failed interaction, and

a small negative reward for each additional dialog turn taken by the system. In this

work, our goal is to evaluate whether off-topic questions improve a system’s ability

to perform object retrieval. As a result, we only compare dialog policies of fixed

dialog length and only evaluate the agents on their average guess success rate.

During the interaction, the agent may also query for the label of any of the

examples present in the interaction o ∈ OA, for any model m ∈ M . Note that

the agent cannot ask queries about objects o /∈ OA as these are not assumed to be

present in the context of the interaction. We call these queries opportunistic since

the agent is limited to the objects present in the context of the current interaction,

and hence cannot ask, or often even identify, a “globally optimal” query. The agent

is said to be on-topic when it chooses to query for a label m ∈ MA and off-topic

when it chooses to query for a label m /∈ MA. Labels from off-topic queries will

not affect the decision made in the current interaction, and can only help with future

interactions. For example, given a description “the red box”, asking whether an

object is red, could help the agent make a better guess, but asking whether an object

is round, would be an off-topic query and can only help with future interactions.

Queries have a cost, and hence the agent needs to trade-off the number of queries

with the success at guessing across interactions.

The agent participates in a sequence of such interactions, and the models

improve from labels acquired over multiple interactions. Thus the agent’s expected
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reward per interaction is expected to improve as more interactions are completed.

This setting differs from the traditional application of active learning in the follow-

ing key ways:

• The agent cannot query for the label of any example from the unlabeled

pool. It is restricted to the set of objects available in the current interaction,

OA.

• The agent is evaluated on the reward per interaction, rather than the final

accuracy of the models in M .

• The agent may make opportunistic queries (for models m /∈ MA) that are

not relevant to the current task.

Due to these differences, this setting provides challenges not seen in most active

learning scenarios:

• Since the agent never sees the entire pool of unlabeled examples, it can

neither choose queries that are globally optimal, nor use variance reduction

strategies that still use near-optimal queries (such as sampling from a beam

of near globally optimal queries).

• Since the agent is evaluated on task completion, it must learn to trade-off

finishing the task with querying to improve the models.

• The agent needs to estimate the usefulness of a model across multiple inter-

actions, to identify good opportunistic queries.
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4.4 Object Retrieval Task

To test the effectiveness of opportunistic active learning, we created an ob-

ject identification task using a real robot. Figure 4.1 shows the physical setup of our

task.

Robot

Active Test Set

Active Training Set

Table 3 Table 2 Table 1

Figure 4.1: Participants described an object on Table 2 from the active test set to
the robot in natural language, then answered the robot’s questions about the objects
in its active training set on the side Tables 1 and 3 before the robot guessed the
described target object.

We split the set of objects in the current interactionOA into an active training

set Otr
A , and an active test set Ote

A . The target object being described is in the active

test set and the robot can query objects present in the active training set. This

ensures that the robot needs to learn generalizable perceptual classifiers. It also

simulates the situation where the target object is in a different room, and the robot

needs to query about local objects (active training set) to learn classifiers that can

be used later to identify the target.

The human participant and robot both started facing Table 2, which held the
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active test set. The tables on the sides (Tables 1 and 3) contained objects in the

active training set.

Figure 4.2: A sample interaction in our experiment.

A sample interaction is shown in Figure 4.2. The experiment starts with the

robot asking the participant to choose an object from the active test set and describe

it using a noun phrase, and the robot needs to identify the object described. Before

guessing, it is allowed to ask queries of the following two types:

• Label queries - A yes/no question about whether a predicate can be used to

describe one of the objects in the active training set, e.g. “Would you use the

word “red” to describe this object?”. The robot asks these queries pointing
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to the object being referenced.

• Example queries - Asking for an object, in the available training set, that

can be described by a particular predicate, e.g. “Can you show me an object

that you would describe as “yellow”?”. This is used for acquiring positive

examples since most predicates tend to be sparse.

The referenced objects in label queries, and the objects used to answer example

queries must belong to the active training set, that is they must be on the side tables

1 and 3 (Figure 4.1). In Figure 4.2, the label query is off-topic as it references

the concept “red” that is not present in the current description, “Yellow bottle with

water filled in it”. The example query is on-topic as it uses the concept “yellow”

which is part of the description.

Participants could physically handle the objects before the start of the in-

teraction and were encouraged to use attributes instead of categories to describe

objects. They were also told that the robot had previously looked at and interacted

with the objects physically using its arm. A video of a complete sample interaction

can be seen at https://youtu.be/f-CnIF92_wo.

Natural Language Grounding.

We assume that the description provided is a conjunction of one-word pred-

icates. Given a description, the agent tokenizes it and removes stopwords. Each

remaining word is treated as a perceptual predicate. For each perceptual predicate,

the robot trained an SVM classifier based on multimodal features. These were orig-

inally collected for a different study, Sinapov et al. (2016), which contains further
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details of the features extracted. We did not restrict the choice of words that partic-

ipants were allowed to use to describe objects, so our system learned from an open

vocabulary. For every predicate p ∈ P for P the set of predicates known to the

agent and object o ∈ OA, a decision d(p, o) ∈ {−1, 1} and a confidence 1 κ(p, o) in

that decision are calculated.

Active Learning Dialog Policy.

After the participant described a chosen target object in natural language,

the robot asked a fixed number of questions about objects in its active training set

before guessing a target object. We chose each type of query – label or example –

with a fixed probability.

In a label query, to select the predicate p and object o ∈ Otr
A to ask about, we

first find the objects in Otr
A with the lowest confidence κ per predicate (ties broken

randomly).

omin(p) = argmino∈Otr
A

(κ(p, o)).

and sample predicates inversely proportional to their confidence in their least con-

fident labels.

prob(p) =
1− κ(p, omin(p))∑

q∈P\{p} 1− κ(q, omin(q))
. (4.1)

For example queries, a predicate p was selected uniformly at random from

those with insufficient data to fit a classifier.

The robot updated relevant perceptual classifiers with each answer, and after

1Cohen’s kappa estimated from cross-validation performance on available examples.
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all questions, identified the best guess o∗ ∈ Ote
A , using classifiers of predicates

PA ⊆ P present in the description as follows,

o∗ = argmaxo∈Ote
A

(∑
p∈PA

d(p, o)κ(p, o)

)
. (4.2)

If the robot guessed incorrectly, the human pointed out the correct object.

The target object was then considered a positive example for predicates PA.

4.5 Experimental Setup

Figure 4.3 shows the set of objects used in our experiments. These had

originally been chosen for a previous study, Sinapov et al. (2016), during which the

objects were explored to obtain the visual, audio and haptic features. We divided

the dataset into 4 folds, {0, 1, 2, 3}, of 8 objects each.

Figure 4.3: The objects used in our experiments, from fold 0 on the far left to fold
3 on the far right.

We compared two possible static dialog policies that the robot could use -

• baseline - This agent remained on-topic and was only allowed to ask ques-

tions mentioned in the description provided in the current interaction.
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• inquisitive - This agent accumulated words across descriptions, and could

ask queries using any word previously used in an interaction with it.

For example, if a person described a target object as “a pink cylinder”, the baseline

agent could only ask queries about the predicates “pink” and “cylinder”, but the

inquisitive query about other predicates such as “heavy”. Both agents asked a fixed

number of questions per interaction before guessing, but the inquisitive agent was

set to ask two extra questions per interaction, thus making it both more talkative and

less task-oriented. At test time, both agents asked the same number of questions

so that any differences would be due to differences in knowledge acquired from

previous rounds.

We conducted three rounds of interaction, updating the classifiers of both

agents between rounds. In round 1, the active train set consisted of fold 1 and the

active test set consisted of fold 0. In round 2, the active train set consisted of fold 2

and the active test set consisted of fold 1. In round 3, the active train set consisted

of fold 3 and the active test set consisted of fold 2. Round 3 was the test round in

which both agents were set to ask the same number of questions. However, in all

rounds, the active test set consisted of objects that had not been used to train the

classifiers.

We hypothesized that:

1. The inquisitive agent would have a higher success rate at guessing objects.

2. Users would not qualitatively dislike the inquisitive agent for asking too

many questions and being off-topic.
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Table 4.1: Fraction of successful guesses made in each condition per round

Round Baseline Inquisitive
1 0.175 0.35
2 0.225 0.325
3 0.175 0.325

4.6 Results and Discussion

In each round, we had five participants conduct two interactions in each

dialog setting. Each participant filled an exit survey for every interaction they com-

pleted.

We present the success rate in the two conditions in Table 4.1. The inquis-

itive agent is consistently more successful than the baseline agent at identifying

the correct object. Its opportunistic strategy allows it to leverage the overlap of

predicates across rounds.

The inquisitive agent was also perceived as asking too many questions only

in round 2, although it asked more questions than the baseline even in round 1,

and asked off-topic questions even in round 3. However, participants also rated it as

being more fun, and more likely to be usable. This is likely due to its higher success

rate at guessing objects correctly.

4.7 Summary

In this chapter, we propose the framework of opportunistic active learning to

integrate active learning questions at test time to enable a robot to perform lifelong

learning. Our framework allows a robot to identify new perceptual concepts and
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build classifiers for them only using labels obtained during test time interactions.

We demonstrate that a robot performing opportunistic active learning is more suc-

cessful than a baseline agent at using knowledge obtained from test-time queries at

improving its ability to retrieve objects based on natural language descriptions, and

that people find such a robot more fun and usable.
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Chapter 5

Learning a Policy for

Opportunistic Active Learning

In chapter 4, we demonstrated that an interactive robot following an oppor-

tunistic active learning policy is better able to ground natural language descriptions

of objects across interactions. However, in that work, we compared two static di-

alog policies that the robot could use for the task. In this work, we learn a dialog

policy from interactions using reinforcement learning, that effectively trades off

task completion with model improvement that would benefit future tasks.

5.1 Contributions

This work was originally presented in Padmakumar et al. (2018). My con-

tribution to this work included designing and implementing the all components of

the dialog system and the user simulator, as well as designing and conducting the

experiments. Professors Raymond Mooney and Peter Stone provided feedback that

shaped the choice of algorithms and experimental design.

5.2 Motivation

In chapter 4, we demonstrated that a robot engaged in an interactive object

retrieval task learns to perform better at identifying objects correctly over time if it
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follows an opportunistic dialog policy that queries for labels not necessarily rele-

vant to the current interaction. However, in that work, we compared two of many

possible static dialog policies. The design of those static policies ensured that all

dialogs have the same length. However, in practice, it may be more useful to ask

for queries in some interactions than others. For example, the objects in context

of some interactions may overall be more informative than in others. We may also

want the robot to learn to decide whether the likelihood of correctly completing the

task the user wants should influence the number of active queries being included

in the interaction. To enable the robot to adapt to such changes, we would like the

robot to be able to learn a dialog policy using reinforcement learning to trade off

asking active queries and completing the tasks for which the users initiated interac-

tions.

Also, in chapter 4, we used uncertainty sampling (Lewis and Gale, 1994) to

choose which label query to ask for a given predicate. However, there are many

possible metrics that could be used for choosing active learning queries, includ-

ing density-weighted methods (Settles and Craven, 2008), expected error reduc-

tion (Roy and McCallum, 2001), query by committee (Seung et al., 1992), and the

presence of conflicting evidence (Sharma and Bilgic, 2016). A survey can be found

in Settles (2010). However, most of these are assumed for a setting where a single

binary classifier is being learned. The most common way to extend this to the mul-

tilabel setting is to assume that one-vs-all classifiers are learned for each label, and

that all the learned classifiers are comparable (Brinker, 2006; Singh et al., 2009; Li

et al., 2004). This was the procedure we used in chapter 4. Since it may be difficult
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to decide ahead of time which metric is most likely to be useful, it would be desir-

able to evaluate many such metrics and learn to choose between them. We also may

want the robot to use other information in this decision, such as how frequently a

predicate is used to describe objects. Thus we would also like our dialog policy to

learn to choose between different possible queries.

Recently, there has been interest in using reinforcement learning to learn

a policy for active learning. Fang et al. (2017) use deep Q-learning to acquire a

policy that sequentially examines unlabeled examples and decides whether or not to

query for their labels; using it to improve named entity recognition in low resource

languages. Also, Bachman et al. (2017) use meta-learning to jointly learn a data

selection heuristic, data representation and prediction function for a distribution of

related tasks. They apply this to one shot recognition of characters from different

languages, and in recommender systems. In contrast to these works, we learn a

policy for a task that contains both possible actions that are active learning queries,

and actions that complete the current task, thus resulting in a greater exploration-

exploitation trade-off.

More similar to our setup is that of Woodward and Finn (2017) which uses

reinforcement learning with a recurrent-neural-network-based Q-function in a se-

quential one-shot learning task to decide between predicting a label and acquiring

the true label at a cost. This setup also has a higher cost than standard active learn-

ing where the test set is separated out. This is a continuous task without clearly

separated interactions or episodes. In our setting, each episode or interaction al-

lows for querying and requires completion of an interaction, which further increases
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the trade-off between model improvement and exploitation. Further, we consider a

multilabel setting, which increases the number of actions at each decision step.

5.3 Task Setup

We consider the same general task as in chapter 4 (section 4.4). However, we

set it up in simulation using the Visual Genome dataset (Krishna et al., 2017) as we

need a large number of dialogs to learn a dialog policy. The Visual Genome dataset

contains images with regions (crops) annotated with natural-language descriptions.

Bounding boxes of objects present in the image are also annotated, along with at-

tributes of objects. Region descriptions, objects and attributes are annotated using

unrestricted natural language, which leads to a diverse set of predicates. Using the

annotations, we can associate a list of objects and attributes relevant to each image

region, and use these to answer queries from the agent.

A sample interaction is seen in figure 5.1. For each interaction, we uniformly

sample 4 regions to form the active test set, and 8 regions to form the active training

set. 1 One region is then uniformly sampled from the active test set to be the target

object. Its description, from annotations, is provided to the agent to be grounded,

that is, the agent must identify the image in the active test set that best fits the de-

scription. In Figure 5.1, this is the description “A white umbrella”. Following this,

the agent can ask label and example queries on the active training set, before guess-

ing which object was being described. In Figure 5.1, the agent first asks whether

1The regions in the dataset are divided into separate pools from which the active training and
active test sets are sampled (described as classifier-training and classifier-test sets in section 5.5.1),
to ensure that the agent needs to learn classifiers that generalize across objects.
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Figure 5.1: A sample interaction – Perceptual predicates are marked in bold.

the label “yellow” applies to a specific image. This query is also off-topic as the

word “yellow” is not present in the current description - “A white umbrella”. The

annotated objects and attributes associated with active training regions are used to

answer queries. A predicate is labeled as being applicable to a region if it is present

in the list of objects and attributes associated with the region. In Figure 5.1, the

simulator provides a binary label 0 as the label “yellow” is not present in the list
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of annotated objects and attributes associated with the queried image. The second

query in Figure 5.1 is an example query where the agent asks for an example for

the predicate “white”. This is an on-topic query as this is a word present in the

current description. The simulator answers the query by finding an image which

has “white” included in its list of annotated attributes. If there was no such image

present in the active train set, it would be able to answer None of these. Fi-

nally the agent makes a guess and obtains a binary indicator of success from the

simulator based on whether the guessed image is the target.

5.4 Methodology

We assume that the description provided is a conjunction of one-word pred-

icates. Given a description, the agent tokenizes it and removes stopwords. Each

remaining word is stemmed and treated as a perceptual predicate. This method

allows the agent to learn an open vocabulary of predicates, but unable to handle

multi-word predicates or non-compositional phrases. The agent learns a separate

binary SVM for each predicate, trained over deep features extracted from images.

These are obtained from the penultimate layer of the VGG network (Simonyan and

Zisserman, 2014) pretrained on ImageNet (Russakovsky et al., 2015). The agent

has no initial classifiers for any predicate, and learns these classifiers purely from

labels acquired during interactions.

72



5.4.1 Grounding Descriptions

Grounding is performed similar to previous work (section 4.4). Given pred-

icates PA ⊆ P present in the target description l, a decision d(p, o) ∈ {−1, 1}

from the classifier for predicate p for object o, and the confidence of the classifier

C(p) (estimated F1 from cross-validation on acquired labels), the best guess o∗ is

computed as,

o∗ = argmaxo∈Ote
A

∑
p∈PA

d(p, o) ∗ C(p)

5.4.2 MDP Formulation

We model interactions as episodes in a Markov Decision Process (MDP)

(section 2.7.1). At any point, the agent is in a state consisting of the VGG features

of the regions in the current interaction, the predicates in the current description,

and the agent’s classifiers. The agent can choose from the set of actions which

includes an action for guessing, and an action for each possible query the agent

can currently make, including both label and example queries. The guess action

always terminates the episode, and query actions transition the agent to a new state

as one of the classifiers gets updated. The agent gets a reward for each action taken.

Query actions have a small negative reward, and guessing results is a large positive

reward when the guess is correct, and a large negative reward when the guess is

incorrect. In our experiments, we treat the reward values as hyperparameters that

can be tuned. We fixed an arbitrary dialog length representing what we expected

would be the maximum number of questions a user would be willing to answer, and
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selected hyperparameters that results in the maximum dialog success rate within

this dialog length on validation data. The best results were obtained with a reward

of 200 for a correct guess, -100 for an incorrect guess and -1 for each query. Our

final reward function does not answer the question of how to optimally balance the

two metrics of dialog success rate and dialog length. We believe that this balance

is likely to be domain dependent and would need to be chosen by a user study that

measures how many questions people are typically willing to tolerate and to what

extent this varies with dialog success rate. It is difficult to conduct such a study

on a crowdsourced platform since crowdworkers are not sufficiently invested in the

success of the dialog interactions.

5.4.3 Identifying Candidate Queries

In any interaction, the agent can make label or example queries. In a label

query, the agent can ask for the label of any object for a specific predicate. If OA

is the set of objects present in the active training set of the current interaction, and

P is the set of predicates that have been seen by the agent in all interactions so far,

then the set of possible label queries is P ×OA. Once the agent chooses a predicate

p and object o to be queried, it obtains the corresponding label and can update its

classifier for p. In an example query, the agent asks for a positive example for any

predicate p ∈ P . The agent will either receive a positive label for p for some object

o ∈ OA or learn that the label is negative ∀ o ∈ OA, and can appropriately update

the classifier for p.

Ideally, we would like the agent to learn a policy over all possible queries.
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However, since |P | grows across interactions as the agent encounters more predi-

cates in descriptions, the number of candidate actions in a state increases over time,

so searching the entire space of possible queries can become intractable. Hence we

sample a few promising queries and learn a policy to choose between them. In our

previous work, predicates were sampled according to a distribution that weighted

them inversely proportional to the confidence in their current classifiers. However,

if the space of possible predicates is large, then this results in no classifier obtaining

a reasonable number of training examples. In this scenario, it is desirable to focus

on a small number of predicates, possibly stopping the improvement on a predicate

once the classifier for it has been sufficiently improved. We sample queries from a

distribution designed to capture this intuition. The probability assigned to a pred-

icate by this distribution increases linearly, for confidence below a threshold, and

decreases linearly thereafter.

Let w(pi) be the weight for predicate pi with estimated F1 k(pi). Weights

start at wmin for k = 0.0 and increase linearly to wmax at some kmax ∈ (0, 1).

For k > kmax, weights again linearly decrease to wmin for k = 1.0. That is, for

k <= kmax,

w(pi) =
k(pi)

kmax
(wmax − wmin)

For k > kmax,

w(pi) =
1.0− k(pi)

1.0− kmax
(wmax − wmin)

The weights are then normalized to obtain a probability distribution. A beam of

label queries can then be sampled from this.
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5.4.4 Baseline Static Policy

As a baseline, we use a static policy similar to that used in chapter 4. At

each state, a single label query and example query are sampled. The agent asks

a fixed number of queries before guessing. In chapter 4, we use thresholds that

prevent queries from being asked when there are no predicates whose classifiers

have sufficiently low estimated accuracy. Since we used a dataset with a much

larger number of predicates, these thresholds were always crossed if the agent had

even one candidate query.

5.4.5 Policy Learning

We experimented with multiple policy learning algorithms to learn a dialog

policy for the MDP, including Q-learning (section 2.7.4), KTD Q-learning (sec-

tion 2.7.6), REINFORCE (section 2.7.3), Actor-Critic and A3C (section 2.7.5). In

general policy gradient based methods performed better than the Q-learning based

methods, but there was no statistically significant difference between individual

policy gradient algorithms. We report results using REINFORCE as that had the

highest mean dialog success rate.

The agent learns a policy π(a|s; θ), parameterized with weights θ that com-

putes the probability of taking action a in state s. Given a feature representation

f(s, a) for a state-action pair (s, a), the policy is of the form:

π(a|s; θ) =
eθ

T f(s,a)∑
a′ e

θT f(s,a′)
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where the denominator is a sum over all actions possible in state s. The weights are

updated using a stochastic gradient ascent rule:

θ ← θ + α∇θJ(θ)

where J(θ) is the expected return from the policy according to the distribution over

trajectories induced by the policy.

The state consists of the predicates in the current description, the candidate

objects, and the current classifiers. Since both the number of candidate objects

and classifiers varies, and the latter is quite large, it is necessary to identify useful

features for the task to obtain a vector representation needed by most learning al-

gorithms. In our problem setting, the number of candidate actions available to the

agent in a given state is variable. Hence we need to create features for state-action

pairs, rather than just states.

5.4.6 Features for Policy Learning

The object retrieval task consists of two parts – identifying useful queries to

improve classifiers, and correctly guessing the image being referred to by a given

description. The current dialog length is also provided to influence the trade-off

between guessing and querying.

Guess-success features

Let PA = {p1, p2, . . . pk} be the predicates extracted from the current de-

scription. For each predicate p ∈ PA, we have the estimated F1 of the classifier
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C(p), and for each object o in the active test set, we have a decision d(p, o) ∈

{−1, 1} from the classifier. We refer to s(p, o) = d(p, o) ∗ C(p) as the score of the

classifier of p for object o. The following features are used to predict whether the

current best guess is likely to be correct:

• Lowest, highest, second highest, and average estimated F1 among classifiers

of predicates in PA – learned thresholds on these values can be useful to

decide whether to trust the guess.

• Highest score among regions in the active test set, and the differences be-

tween this and the second highest, and average scores respectively – a good

guess is expected to have a high score to indicate relevance to the description,

and substantial differences would indicate that the guess is discriminative.

Similar features are also formed using the unweighted sum of decisions.

• An indicator of whether the two most confident classifiers agree on the de-

cision of the top scoring region, which increases the likelihood of its being

correct.

We compared directly using these features to training a regressor that uses

them to predict the probability of a successful guess, and then using this as a higher-

level policy feature. We found no difference between the two methods and the re-

sults reported directly use these features in the vector provided to the policy learner.
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Query-evaluation features

The following features are expected to be useful in predicting whether it is useful

to query for the label of a particular predicate:

• Indicator of whether the predicate is new or already has a classifier – this

allows the policy to decide between strengthening existing classifiers or cre-

ating classifiers for novel predicates.

• Current estimated F1 of the classifier for the predicate – as there is more to

be gained from improving a poor classifier.

• Fraction of previous dialogs in which the predicate has been used, and the

agent’s success rate in these – as there is more to be gained from improving a

frequently used predicate but less if the agent already makes enough correct

guesses for it.

• Is the query off-topic – as these will not help the current guess.

Label queries also have an image region specified, and for these we have

additional features that use the VGG feature space in which the region is represented

for classification:

• Margin of the image region from the hyperplane of the classifier of the pred-

icate – motivated by uncertainty sampling.

• Average cosine distance of the image region to others in the dataset – moti-

vated by density weighting to avoid outliers.

• Fraction of the k-nearest neighbors of the region that are unlabeled for this
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predicate – motivated by density weighting to identify a data point that can

influence many labels.

5.5 Experiments

5.5.1 Dataset

The Visual Genome dataset contains a total of 108,077 images with 5,406,592

annotated regions. Since objects and attributes are annotated with free-form text

rather than from a fixed, pre-defined vocabulary, there is considerable diversity in

the language used for annotation. There are 80,908 unique objects annotated and

44,235 attributes. We assume that any objects that partially overlap with a region

are present in it, as these are usually used in descriptions.

Using the annotations, we can associate a list of objects and attributes rele-

vant to each image region. We lower-case all annotations, remove special characters

and perform stemming to help normalize terms. Note that the labels obtained from

this list may be noisy, since not all objects and attributes may be annotated, and we

assume that any word not present in this list is not applicable to the target image.

However, we expect that a certain amount of noise is also likely to be present in live

human interactions.

Sampling Dialogs

We want the agent to learn a policy that generalizes to novel predicates avail-

able at test time. In order to be able to evaluate this, we divide the set of possible
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regions in the Visual Genome dataset into policy training and policy test regions

as follows. We select all objects and attributes present in at least 1,000 regions.

Half of these were randomly assigned to the policy test set. All regions that contain

one of these objects or attributes are assigned to the policy test set, and the rest to

the policy training set. Thus regions seen at test time may contain predicates seen

during training, but will definitely contain at least one novel predicate. Further, the

policy training and policy test sets are respectively partitioned into a classifier train-

ing and classifier test set using a uniform 60-40 split. The final policy training split

has 1,417,967 regions and the final policy test split has 490,655 regions.

During policy training, for each dialog, 8 regions are sampled from the

classifier-training subset of the policy-training regions to form the active training

set, and 4 regions are sampled from the classifier-test subset of the policy-training

set to form the active test set. During policy testing, the active training set of each

dialog is sampled from the classifier training subset of the policy test regions, and

the active test set of the dialog is sampled from the classifier test subset of the policy

test set.

5.5.2 Experiment phases

Our baseline is a static policy similar to that used in previous work (4.4).

For efficiency, we run dialogs in batches, and perform classifier and policy

updates at the end of each batch. We use batches of 100 dialogs each. Our experi-

ment runs in 3 phases:

• Initialization – Since learning starting with a random policy can be difficult,
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Table 5.1: Results on dialogs sampled from the policy test set after 10 batches of
classifier training. –Guess and –Query are conditions with the guess and query
features, respectively, ablated. Boldface indicates that the difference in that metric
with respect to the Static policy is statistically significant according to an unpaired
Welch t-test with p < 0.05.

Policy Success rate Average Dialog Length
Learned 0.44 12.95
–Guess 0.37 6.12
–Query 0.35 6.16
Static 0.29 16.00

we first run batches of dialogs on the policy training set using the static policy,

and update the RL policy from these episodes. This “supervised” learning

phase is used to initialize the RL policy.

• Training – We run batches of dialogs on the policy training set using the RL

policy, starting it without any classifiers. In this phase, the policy is updated

using its own experience.

• Testing – We fix the parameters of the RL policy, and run batches of dialogs

on the policy test set. During this phase, the agent is again reset to start with

no classifiers. We do this to ensure that performance improvements seen at

test time are purely from learning a strategy for opportunistic active learning,

not from acquiring useful classifiers in the process of learning the policy.

5.6 Experimental Results and Analysis

We initialize the policy with 10 batches of dialogs, and then train on another

10 batches of dialogs, both sampled from the policy training set. Following this, the

policy weights are fixed, the agent is reset to start with no classifiers, and we test
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on 10 batches of dialogs from the policy test set. Table 5.1 compares the average

success rate (fraction of successful dialogs in which the correct object is identified),

and average dialog length (average number of system turns) of the best learned

policy, and the baseline static policy on the final batch of testing. We also compare

the effect of ablating the two main groups of features. The learned agent guesses

correctly in a significantly higher fraction of dialogs compared to the static agent,

using a significantly lower number of questions per dialog.

When either the group of guess or query features is ablated, the success rate

clearly decreases. While the mean success rate still remains above the baseline, the

difference is no longer statistically significant. Further, at the end of the initializa-

tion phase, the average dialog length in all three conditions is about the same. In

the two ablated conditions, the dialog length does not increase to become close to

that of the static policy, which suggests that the agent does not learn that asking

more queries improves dialog success. This is expected because the agent is ei-

ther not able to evaluate the usefulness of queries, or the likelihood of success of a

guess. However, in the learned policy with all features, the agent is able to identify

a benefit in asking queries, and utilizes them to improve its success rate.

It is important to note that it is non-trivial to decide how to trade-off dialog

success with dialog length. This should be decided for any given application by

comparing the cost of an error with that of the user time involved in answering

queries, and the reward function should be set appropriately based on this. Ideally,

we would like to see an increase in dialog success rate and a decrease in dialog

length, as is the case when comparing the learned and static policies. However,
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depending on the application, it may also be beneficial to see a smaller increase in

success rate with a larger decrease in dialog length, as is the case in the ablated

conditions.

We also explored ablating individual features. The results are presented in

Table 5.2. We use the notation pbest to represent the classifier relevant to the current

interaction with maximum F1, that is, the classifier for pbest = argmaxp∈PA
C(p).

The second best classifier is psec = argmaxp∈PA−pbestC(p).

Table 5.2: Results of individual feature ablation. Boldface indicates that the differ-
ence in success rate with respect to Static is statistically significant according to an
unpaired Welch t-test with p < 0.05.

Feature Ablated
Success

rate

Average

Dialog

Length

None 0.44 12.95

Number of system turns used - normalized 0.41 3.8

Density of object in label query 0.4 12.89

Fraction of previous dialogs using predicate in query

that have succeeded
0.39 5.46

Score (normalized) of top region 0.39 6.3

Fraction of k nearest neighbours of the object in label

query, which are unlabeled
0.39 10.41

Indicator for guess action 0.38 7.21

Minimum value of C(p) for p ∈ PA 0.37 6.37

Continued on next page
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Table 5.2: Results of individual feature ablation. Boldface indicates that the differ-
ence in success rate with respect to Static is statistically significant according to an
unpaired Welch t-test with p < 0.05.

Feature Ablated
Success

rate

Average

Dialog

Length

Decision of psec for object with highest score 0.37 11.21

Difference between decision of pbest for object with

highest score, and the average of its decisions for

objects in the active test set

0.36 2.78

Indicator of whether the question is on-topic 0.36 5.25

Is decision of pbest same for objects with top two

scores
0.36 5.32

Indicate of whether the predicate in the query has a

classifier
0.36 13.97

Frequency of use of the predicate in query -

normalized
0.35 4.48

Indicator for the action of asking a positive example 0.35 5.36

Second highest value of C(p) for p ∈ PA 0.35 5.9

Current estimated F1 for classifier of the predicate in

query
0.35 6.53

Decision of pbest for object with highest score 0.34 3.85

Indicator for the action of asking a label 0.34 7.05

Continued on next page
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Table 5.2: Results of individual feature ablation. Boldface indicates that the differ-
ence in success rate with respect to Static is statistically significant according to an
unpaired Welch t-test with p < 0.05.

Feature Ablated
Success

rate

Average

Dialog

Length

Average value of C(p) for p ∈ PA 0.34 7.63

Margin of object in label query 0.34 8.08

Maximum value of C(p) for p ∈ PA 0.33 6.31

Difference between decision of psec for object with

highest score, and the average of its decisions for

objects in the active test set

0.33 8.84

Difference between top two scores in the active test

set
0.32 8.05

Is decision of pbest same for objects with top two

scores
0.32 10.01

Difference between top score and average score in

the active test set
0.31 7.18

Baseline 0.29 16

We found that the effect of ablating most single features is similar to that

of ablating a group of features. The mean success rate decreases compared to the

full policy with all features. It remains better than that of the static policy, but in

most cases the difference stops being statistically significant. Among features for
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evaluating the guess, the removal of the difference between the two highest scores

in the active test set has a fairly large effect, compared with the value of the highest

score. This is expected because for retrieval it is sufficient if an object is simply

scored higher than the other candidates. Further, since classifiers improve over

time, the score threshold that indicates a good guess changes, and hence would be

difficult to learn. Among query evaluation features, we find, unsurprisingly, that

removal of the feature providing the margin of the object in a label query affects

performance much more than removal of features such as density and fraction of

labeled neighbors, which merely indicate whether the object is an outlier.

Qualitatively, we found that the dialog success rate was higher for both short,

and very long dialogs, with a decrease for dialogs of intermediate length. We also

found that most active learning queries were off-topic. This suggests that longer

dialogs are used to accumulate labels via opportunistic off-topic questions, as op-

posed to on-topic questions. The learned policy still suffers from high variance in

dialog length suggesting that trading off task completion against model improve-

ment is a difficult decision to learn. We find that the labels collected by the learned

policy are more equitably distributed across predicates than the static policy, result-

ing in a tendency to have fewer classifiers of low estimated F1. There is relatively

little difference in the number of predicates for which classifiers are learned. This

suggests that the policy learns to focus on a few predicates, as the baseline does, but

learn all of these equally well, in contrast to the baseline which has much higher

variance in the number of labels collected per predicate.
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5.7 Summary

In this chapter, we showed how to formulate an opportunistic active learning

problem as a reinforcement learning problem, and learn a policy that can effectively

trade-off opportunistic active learning queries against task completion. We evalu-

ated this approach on the task of grounded object retrieval from natural language

descriptions and learn a policy that retrieves the correct object in a larger fraction

of dialogs than a previously proposed static baseline, while also lowering average

dialog length.
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Chapter 6

Dialog Policy Learning for Joint Clarification and

Active Learning Queries

Robots and other intelligent systems need to be able to recover from mis-

takes, resolve uncertainty, and adapt to novel concepts not seen during training. In

chapter 5 we demonstrate how a dialog agent can learn to incorporate queries into

existing user interactions, that allow it to obtain labeled examples to improve its

models and adapt to the domain of operation. In this chapter we demonstrate how

this can be combined with prior work on using clarifications questions in dialog for

correction and resolving uncertainty (section 2.2). We train a hierarchical dialog

policy to jointly perform both clarification and active learning in the context of an

interactive language-based image retrieval task, and demonstrate that jointly learn-

ing dialog policies for clarification and active learning is more effective than the use

of static dialog policies for one or both of these functions.

In this chapter, we use a different application, motivated by online shopping,

to demonstrate the use of our dialog policy. A sample interaction is shown in Figure

6.1. We consider an application where a dialog system is combined with a retrieval

system to help a customer find an article of clothing. Instead of showing a large

number of results obtained from the retrieval system, the dialog system attempts to

use clarifications to refine the search query, and active learning questions to obtain

labelled examples for concepts it has not been trained on. We chose to work with
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this application so that we could use a dataset where all images were annotated both

with natural language descriptions, as well as binary labels for a consistent set of

attributes (Guo et al., 2019). This allows us to simulate dialogs in a manner similar

to chapter 5 but with less noise in the responses provided by the dialog system.

Figure 6.1: A stylized sample interaction. In this work, we use simulated dialog
acts but the natural language glosses represent how such a dialog could look in an
end application.

6.1 Contributions

This work was originally presented in Padmakumar and Mooney (2020b).

My contribution to this work included designing and implementing the all compo-

nents of the dialog system and the user simulator, as well as designing and conduct-

ing the experiments. Professors Raymond Mooney provided feedback that shaped

the choice of algorithms and experimental design.
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6.2 Motivation

Despite the high levels of accuracy that can be obtained in a variety of natural

language interaction tasks, in natural language assistants that are a part of applica-

tions made available to users, it is important for the system to detect cases when it

is likely to have misunderstood the user’s intent, as well as cases where the user is

ambiguous or has not provided all relevant information. Also, even if the system

has been trained well, the specific environment in which a system is deployed may

also contain domain specific vocabulary or concepts that were not encountered dur-

ing training. For example, a dialog system in a shopping domain may need to be

updated with the introduction of new clothing styles. A dialog system on an office

robot may need to be updated as new types of office equipment become available

and are brought into the office. Hence it is desirable for a natural language interac-

tion to be conducted as part of a dialog where the system can ask both clarification

questions to ensure that it has correctly understood the user’s intent, as well as active

learning questions to keep its underlying models up to date.

However, prior work on dialog and user interaction typically focuses ei-

ther exclusively on clarification/information-seeking settings (Young et al., 2013;

Padmakumar et al., 2017), or building/improving models through active learning

(Woodward and Finn, 2017; Padmakumar et al., 2018). In this work, we attempt

to combine these functions by learning a hierarchical dialog policy that can jointly

perform both clarification and active learning to improve performance on an inter-

active language-based image retrieval task. We demonstrate that the use of active
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learning queries improves the effectiveness of clarification questions for objects that

contain novel attributes, and that it is possible to trade off model improvement via

active learning with both task completion and other dialog acts such as clarification.

Most task-oriented dialog tasks require the system to identify one or more

goals specified by a user, using a slot-filling model (Young et al., 2013). These

can be considered as learning to choose between a set of clarification questions

that can confirm or obtain the value of various slots. However, for tasks such as

natural language image retrieval, it is non-trivial to extend the slot-filling paradigm

to perform clarification, as there is no standard set of slots that natural language

descriptions of images can be divided into. Also, learned models are needed to

identify components such as objects or attributes, and it is difficult to enumerate all

expected types of these.

Some tasks such as GuessWhat?! (De Vries et al., 2017) or discriminative

question generation (Li et al., 2017) allow the system to ask unconstrained natu-

ral language clarification questions. However in these settings, specially designed

models are still needed to ensure that learned questions actually decrease the size

of the search space (Lee et al., 2018; Zhang et al., 2018b). Such open ended ques-

tions are also difficult to answer in simulation, which is often necessary for learning

good dialog policies. Hence, in these tasks, the system often learns to ask “easy”

questions that can be reliably answered by a learned answering module (Zhu et al.,

2017).

In this work, we explore a middle-ground approach with a form of attribute-

based clarification (Farhadi et al., 2009). We use the term “attribute” to refer to a
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mix of concepts including categories such as “shirt” or “dress”, more conventional

attributes such as colors, and domain specific attributes such as “sleeveless” and

“V-neck”. Although we work with a dataset that contains a fixed set of attributes

annotated for each image, we simulate the setting where novel visual attributes are

encountered at test time. There exist some previous works that use visual attributes

for clarification (Dindo and Zambuto, 2010; Parde et al., 2015) but these do not use

this information for improving the underlying language understanding model.

Also related to this work is the area of interactive image retrieval such as

allowing a user to mark relevant and irrelevant results (Nastar et al., 1998; Tieu

and Viola, 2004), which acts as a form of clarification. Recent works allow users

to provide additional feedback using language to refine search results (Guo et al.,

2018; Bhattacharya et al., 2019; Saha et al., 2018). However, in these systems, the

system does not take the initiative to help users narrow down their search space or

explicitly learn new concepts. These directions are complementary to our work and

can potentially be combined with it in the future.

6.3 Task Setup

We consider an interactive task of retrieving an image of a product based

on a natural-language description. Given a set of candidate images and a natural-

language description, the goal of the system is to identify the image being referred

to. Before trying to identify the target image, the system can ask the user a combi-

nation of both clarification and active learning questions.

Similar to our prior work (chapters 4 and 5), in each interaction we present
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the system with two sets of images:

• An active test set Ote
A consisting of the candidate images that the description

could refer to.

• An active training set Otr
A which is the set of images that can be queried for

active learning.

It is also presented with a description of the target image. Before attempting

to identify the target, the system can ask clarification or active learning questions.

We assume the system has access to a set of attributes W that can be used in natural

language descriptions of products. Given these attributes, the types of questions the

system can ask are as follows (see Figure 6.1 for examples of each):

• Clarification query - A yes/no query about whether an attribute w ∈ W is

applicable to the target.

• Label query: A yes/no query about whether an attributew ∈ W is applicable

to a specific image i in the active training set Otr
A .

• Example query: Ask for a positive example in the active training set Otr
A for

an attribute w ∈ W .

The dialog ends when the system makes a guess about the identity of the

target and is considered successful if it this is correct. The goal of the task is to

maximize the number of successful guesses, while also keeping dialogs as short as

possible.
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6.4 Methodology

6.4.1 Visual Attribute Classifier

We train a multilabel classifier for predicting visual attributes given an im-

age. The network structure for the classifier is shown in Figure 6.2. We extract

features φ(i) for the images using the penultimate layer of an Inception-V3 net-

work (Szegedy et al., 2016) pretrained on ImageNet (Russakovsky et al., 2015).

These are passed through two separate fully connected (FC) layers with ReLU ac-

tivations, that are summed to produce the final representation f(i) used for classifi-

cation. This is converted into per-class probabilities p(i) using a sigmoid layer with

temperature correction (Guo et al., 2017). We obtain another set of per-class prob-

abilities p′(i) by passing the one of the intermediate representations ψ′(i) through a

sigmoid layer with temperature correction. Mathematically, given features φ(i) for

image i, we have,

ψ(i) = ReLU(wTφ(i) + b)

ψ′(i) = ReLU(w′Tφ(i) + b′)

f(i) = ψ(i) + ψ′(i)

p(i) = σ(f(i)� 1

τ
)

p′(i) = σ(ψ′(i)� 1

τ ′
)

where w, w′, τ and τ ′ are learned vectors and b and b′ are learned biases.

We train the network using a loss function that combines cross-entropy loss

on p(i) over all examples with the cross entropy loss over p′(i) only for positive
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Figure 6.2: Visual Attribute Classifier

labels. That is,

L = (1− λ)
∑
i

yi log p(i) + (1− yi) log(1− p(i)) + λ
∑
i

yi log p′(i)

where yi is the label vector for image i. This forces part of the network to focus

on positive examples for each class. This is required because we use a heavily

imbalanced dataset where most classes have very few positive examples. We find

this more effective than a standard weighted cross entropy loss, and the results in

this paper use λ = 0.9. We also maintain a validation set of images labeled with

attributes, that can be extended using active learning queries. Using this, we can

estimate per-attribute precision, recall and F1. These metrics are used for tuning

classifier hyperparameters and for dialog policy learning.

We initially experimented with alternate classifier designs such as binary

SVMs using features extracted from Inception-V3 and fine-tuning Inception-V3

after altering the number of classes. We also experimented with alternate loss

functions for fine-tuning Inception-V3 such as weighted cross entropy, and a rank-

ing loss that maximizes the difference between the predicted probabilities of pos-

itive and negative attributes. Additionally, we compared fine-tuning all layers of

Inception-V3 with training/fine-tuning only the extra/final layers. We used Inception-
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V3 as the backbone network due to the results reported in the original paper (Guo

et al., 2019).

However in contrast to the original paper, we found that our particular net-

work design and loss function were required for obtaining reasonable classifier per-

formance. Additionally, we found that it was required to initialize Inception-V3

with weights pretrained on ImageNet and train only the new layers on the iMateri-

alist dataset. These differences could be due to the differences in the data split. Our

choice of data split results in many attributes always having a negative label during

the training phase.

We also found that it was sometimes possible to obtain increases in the mul-

tilabel F1 metric proposed in the original paper (Guo et al., 2019) without any im-

provement on per attribute F1. For example, it is possible to obtain a multilabel F1

of 36.0 on the original validation set by identifying the 13 attributes with the largest

number of positive examples, always predicting 1 for these, and always predicting

0 for the other attributes. Hence, we used the average per-attribute F1 to choose the

design and hyperparameters of the classifier.

To initialize the classifier, we train for 100 epochs with a batch size of 8,192

and using RMSProp (Tieleman and Hinton, 2012) for optimization. We start with

a learning rate of 0.1 which is decayed exponentially with a decay rate of 0.9 every

400 steps. For updating the classifier in between dialog batches, we use a batch size

of 128 and perform a single epoch over images for which the label of at least one

attribute has been updated. The optimizer and hyperparameters were tuned using

grid search.
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6.4.2 Grounding Model

We assume that a description is a conjunction of attributes, and use heuristics

based on string matching to determine the set of attributes referenced by the natural

language description. Let the subset of attributes referenced in the description be

Wd ⊆ W .

Given an image i, we obtain the probability vector p(i) as in section 6.4.1.

We represent the probability of attribute w in this vector as pw(i). Then for each

image i in the active test Ote
A , assuming independence of attributes, the probability

that i is the target image, b(i) is

b(i) =
∏
w∈Wd

pw(i) (6.1)

Suppose we additionally obtain from clarifications stating that attributes Wp ⊆ W

apply to the target image, and attributes Wn ⊆ W do not apply, this can be updated

to

b(i) =
∏
w∈Wd

pw(i)
∏
w∈Wp

pw(i)
∏
w∈Wn

(1− pw(i)) (6.2)

Then, at any stage, the best guess the system can make is the image with

max belief, that is

iguess = argmaxi∈Ote
A
b(i) (6.3)

6.4.3 Initial Retrieval

We wish to simulate dialogs as refinements of an initial retrieval based on the

product description. At the start of each batch of interactions, for each description
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corresponding to an image in the current classifier test subset, we rank all images

in this subset according to a variant of the score in Equation 6.1. Instead of directly

using classifier probabilities, we threshold the probabilities pw(i) to obtain deci-

sions dw(i). The threshold for each attribute is chosen to maximize the F1 score for

that attribute on the current set of validation images and labels. This is initially the

classifier test subset of the policy pretrain set, and gets expanded with a fraction

of the labels obtained using active learning queries. This F1 score is also used in

the baseline static policy (section 6.4.9) and features for the learned dialog policies

(sections 6.4.6, 6.4.7 and 6.4.8).

Also, while the initial belief in the dialogs (Equation 6.1) only assumes that

attributes mentioned in the description are positive for the target image, in the re-

trieval phase, we additionally assume that attributes not mentioned in the descrip-

tion are negative. Then,

b(i) =
∏
w∈Wd

pw(i)
∏
w/∈Wd

(1− pw(i)) ≈
∏

w:dw(i)=1

c1
∏

w:dw(i)=0

c2

s(i) = log b(i) = c1|{w : dw(i) = 1}|+ c2|{w : dw(i) = 0}|

We use the score s(i) to rank images, where c1 and c2 are hyperparameters tuned on

the classifier test subset of the policy pretrain set. Our reported results use c1 = 0.9

and c2 = 0.1.
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6.4.4 MDP Formulation

We model each interaction as an episode in a Markov Decision Process

(MDP) where the state consists of the images in the active training and test sets, the

attributes mentioned in the target description, the current parameters of the classi-

fier, and the set of queries asked and their responses. At each state, the agent has

the following available actions:

• A special action ag for guessing – the image is chosen using Equation 6.3.

• A set of clarification actions AC – one for each attribute w ∈ W .

• A set of actions AL corresponding to possible active learning queries – one

example query per attribute and one label query corresponding to each pair

(w, i) for w ∈ W , i ∈ Otr
A .

We do not allow actions to be repeated. We learn a hierarchical dialog policy

composed of 3 parts –

• A clarification policy πC to choose the best possible clarification action a∗C ∈

AC in the current state, using features φC(s, aC) (section 6.4.6) for action aC

in state s.

• An active learning policy πAL to choose the best possible active learning

query a∗AL ∈ AAL in the current state, using features φAL(s, aAL) (section

6.4.7) for action aAL in state s. We reduce the action space of the active

learning policy to one example query action per attribute, and one label query

action per attribute corresponding to the image with probability closest to 0.5
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for that attribute (argmini∈Otr
A
|pw(i)− 0.5|).

• A decision policy πD that chooses between ag, a∗C and a∗AL, using features

φD(s, a) (section 6.4.8) for action a in state s.

An episode ends either when the guess action is chosen, or when a dialog

length limit is reached, at which point the system is forced to make a guess. If the

episode ends with a correct guess, the agent gets a large positive reward. Otherwise

the agent gets a large negative reward at the end of the episode. Additionally, the

agent gets a small negative reward for each query to encourage shorter dialogs. In

our experiments, we treat these rewards as tunable hyperparameters. We fixed an

arbitrary dialog length representing what we expected would be the maximum num-

ber of questions a user would be willing to answer, and selected hyperparameters

that results in the maximum dialog success rate within this dialog length on valida-

tion data. We do not attempt to answer the question of how to optimally balance the

two metrics of dialog success rate and dialog length. We believe that this balance

is likely to be domain dependent and would need to be chosen by a user study that

measures how many questions people are typically willing to tolerate and to what

extent this varies with dialog success rate. It is difficult to conduct such a study

on a crowdsourced platform since crowdworkers are not sufficiently invested in the

success of the dialog interactions.

6.4.5 Policy Learning

We experiment with using both Q-learning and A3C (Mnih et al., 2016) for

policy learning. We use the same model structure for all three policies but no shared
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parameters. In the following discussion about the model structure for the policy, we

will refer to state-action features φ(s, a) and policy π(s, a), which is intended to

represent the appropriate input and output for each policy.

For Q-learning we use a single-layer neural network with hidden layer size

100, whose input is the feature vector π(s, a), and output is the Q-value Qπ(s, a) of

action a in state s under policy π. Suppose action a is taken in state s resulting in

reward r and next state s′, we update the network with new targets:

Qπ(s, a) = r + γ ∗max
a′

Qπ(s′, a′)

In the policy training phase, we choose ε-greedy actions with ε = 0.1 and in the

policy validation and testing phases, we choose actions greedily. We use γ = 1.0.

For A3C, as a critic, we use a network similar to Q-learning, predicting

Qπ(s, a). The actor uses a policy representation:

πθ(s, a) =
eθ

Tφ(s,a)∑
a′ e

θTφ(s,a′)

where θ is a learned parameter vector. Suppose action a is taken in state s resulting

in reward r and next state s′, the critic network is updated similar to Q-learning and

the actor weights are updated as:

θ ← θ + α∇θlog πθ(s, a)Aπ(s, a)

where Aπ(s, a) = r + γ ∗ Vπ(s′)− Vπ(s)

where Vπ(s) =
∑
a

πθ(s, a)Qπ(s, a)
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where Qπ(s, a) is the estimate from the critic network. We use γ = 1.0 and α =

0.01.

6.4.6 Clarification policy features

For the clarification policy πC , we need to extract features of a state-action

pair, that is, features describing a candidate clarification given the current state. The

features should provide information that could be used to identify useful clarifica-

tions. We use the following features -

• Metrics about the current beliefs {b(i) : i ∈ Ote
A} and what they would be

for each possible answer, if the question were asked:

– Entropy: A higher entropy suggests that the agent is more uncertain.

A decrease in entropy could indicate a good clarification.

– Top two highest beliefs and their difference: A high value of the max-

imum belief, or a high difference between the top two beliefs could

indicate that the agent is more confident about its guess. An increase in

these could indicate a good clarification.

– Difference between the maximum and average beliefs: A large dif-

ference suggests that the agent is more confident about its guess. An

increase in these could indicate a good clarification.

• Information gain of the query as calculated in section 6.4.2.

• Current F1 of the attribute associated with the query: The system is likely

to make better clarifications using attributes with high predictive accuracy.
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6.4.7 Active learning policy features

For the active learning policy πAL, we need to extract features describing

a candidate label or example query given the current state. We use the following

features:

• Current F1 of the attribute associated with the query, since the system is

likely to benefit more from improving an attribute whose current predictive

accuracy is not high.

• Fraction of previous dialogs in which the attribute has been used, since it is

beneficial to focus on frequently used attributes that will likely benefit future

dialogs.

• Fraction of previous dialogs using the attribute that have been successful,

since this suggests that the attribute may be modelled well enough already.

• Whether the query is off-topic (i.e. opportunistic), since this would not ben-

efit the current dialog.

Additionally in label queries,

• For query (w, i), |pw(i)− 0.5| as a measure of (un)certainty.

• Average cosine distance of the image to others in the dataset; this is moti-

vated by density weighting to avoid selecting outliers.

• Fraction of k-nearest neighbors of the image that are unlabelled for this at-

tribute, since a higher value suggests that the query could benefit multiple

images.
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6.4.8 Decision policy features

For the decision policy πD, we need features of the current state that allow

the system to trade-off between clarification, active learning, and guessing.

• Features of the current belief as in section 6.4.6. These can be used to deter-

mine whether a guess is likely to be successful.

• Information gain of the best clarification action – to decide the utility of the

clarification.

• Margin from the best active learning query if it is a label query – to decide

the utility of the label query.

• F1 of attributes in clarification and active learning queries. High F1 is desir-

able for clarification and low F1 for active learning.

• Mean F1 of attributes in the description. A high value suggests that the

belief is more reliable.

• Number of dialog turns completed.

6.4.9 Baseline static policy

As a baseline, we use an intuitive manually-designed static policy that is also

hierarchical and was tailored to perform well in preliminary experiments.

The static clarification policy chooses the query (among those with F1 > 0)

with maximum information gain. Ties are broken using F1 of the attribute in the

query. This is based on prior work in goal-oriented dialog that attempts to estimate

the information gain of a clarification question (Lee et al., 2018). In this setting, the
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agent asking questions needs to identify a target object among a set of candidate

objects, and can ask clarification questions to help identify the target. Let C, Qt

and At be random variables corresponding to the target object, question in turn

t and answer in turn t respectively, and c, qt and at represent specific values of

these variables. Then the information gain from asking question qt, given previous

questions q1:t−1 and their answers a1:t−1 is

I[C,At; qt, a1:t−1, q1:t−1]

=
∑
at

∑
c

p(c|a1:t−1, q1:t−1)p(at|c, qt, a1:t−1, q1:t−1) ln
p(at|c, qt, a1:t−1, q1:t−1)
p(at|qt, a1:t−1, q1:t−1)

where p(at|qt, a1:t−1, q1:t−1) =
∑
c

p(c|a1:t−1, q1:t−1)p(at|c, qt, a1:t−1, q1:t−1)

In our case, possible targets c correspond to possible images i. As in prior

work (Lee et al., 2018), p(c|a1:t−1, q1:t−1) corresponds to the estimated likelihood

of target c given the conversation history, which in our case is b(i). We also make

an additional assumption that the answer to question qt depends only on the target

image and not on prior questions and answers. Hence:

p(at|c, qt, a1:t−1, q1:t−1) = p(at|c, qt)

which in our case is P (at|qt, i). Since our questions qt are attributes and the attribute

classifier is expected to provide the probability that attribute q is true for image

i, we get P (1|q, i) = pq(i) and P (0|q, i) = 1 − pq(i). In practice, we observe

that the classifier does not produce well-calibrated probabilities despite the use of
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temperature correction (Guo et al., 2017), and we believe that this contributes to the

poor performance of the static clarification policy.

Substituting these, we get information gain for question q, which we repre-

sent using J(q), as:

J(q) =
∑
i∈Ote

A

∑
a∈{0,1}

b(i)P (a|q, i) ln

(
P (a|q, i)∑
i b(i)P (a|q, i)

)

Since we observe in experiments that the static clarification policy does not

perform well, we also use a special oracle clarification phase when collecting di-

alogs using the static policy to train the learned policy. The oracle policy simulates

all possibel clarifications and selects the one that maximally increases the belief of

the correct target image.

The static active learning policy has a fixed probability of choosing label

queries and example queries. Uncertainty sampling is used to select the label query

(w, i) with minimum |pw(i) − 0.5|. An example query is chosen uniformly at ran-

dom from the candidates. The decision policy initially chooses clarification if the

information gain is above a minimum threshold, and the highest belief is below a

confidence threshold. After a maximum number of clarifications, it chooses active

learning until another threshold on the dialog length before guessing.
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6.5 Experimental Setup

6.5.1 Dataset

To address a potential shopping application, we simulate dialogs using the

iMaterialist Fashion Attribute dataset (Guo et al., 2019), consisting of images from

the shopping website Wish1 each annotated for a set of 228 attributes. We scraped

product descriptions for the images in the train and validation splits of the dataset

for which attribute annotations are publicly available. After removing products

whose images or descriptions were unavailable, we had 648,288 images with asso-

ciated product descriptions and annotations for the 228 attributes.

We create a new data split (as in chapter 5) to ensure that the learned dialog

policy generalizes to attributes not seen during policy training. We divide the set of

attributes into 4 subsets – policy pretrain, policy train, policy val and policy test.

Using these, we divide the images into 4 subsets as follows:

• All images having a positive label for any of the attributes in policy test

subset form the policy test set of images.

• Of the remaining images, the images with a positive label for any attribute

in the policy val form the policy val set of images.

• Of the remaining images, the images with a positive label for any attribute

in the policy train form the policy train set of images.

• The remaining images form the set of policy pretrain images.

1https://www.wish.com/
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This iterative procedure ensures that images in each of the policy train, policy val

and policy test result in the introduction of new attributes for which the classifier is

not already trained. Each of these is then split into subsets classifier training and

classifier test by a uniform 60-40 split.

The policy pretrain data is used to pretrain the multi-class attribute classifier.

We use its classifier training subset of images for training and its classifier test

subset to tune hyperparameters. The policy train data is then used to learn the

dialog policy. The policy val data is used to tune hyperparameters as well as choose

between RL algorithms. Results are reported for policy test data.

We wish to simulate dialogs as refinements of an initial retrieval based on the

product description. For the description of each image in the current classifier test

subset, we rank all other images in this subset according to a simplified version of

the score in equation 6.1 (details in Appendix 6.4.3). From the images which get

ranked within the top 1000 for their corresponding description, we sample target

images for each interaction. The active test set for the interaction consists of the

top 1000 images as ranked for that description. We randomly sample 1000 images

from the appropriate classifier training subset to form the active training set.

In each interaction, the description of the target image is provided to the

agent to start the interaction. The annotated attributes are used to answer queries

from the system. This simulation procedure is similar to that used in chapter 5

but the answers to questions are less noisy in our simulation as all attributes are

annotated as positive or negative for all images.
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6.5.2 Experiment Phases

We run dialogs in batches of 100 and update the classifier and policies at the

end of each batch. This is followed by repeating the retrieval step for all descrip-

tions in the classifier test subset before choosing target images for the next batch of

dialogs. The experiment has the following phases:

• Classifier pretraining: We pretrain the classifier using annotated attribute

labels for images in the classifier training subset of the policy pretrain set.

This ensures that we have some reasonable clarifications at the start of dialog

policy learning.

• Policy initialization: We initialize the dialog policy using experience col-

lected using the baseline static policies (section 6.4.9) for the decision and

active learning policies, and an oracle 2 to choose clarifications. This is done

to speed up policy learning. The dialogs for this phase are sampled from the

set of policy train images.

• Policy training: This phase consists of training the policy using on-policy

experience, with dialogs again sampled from the set of policy train images.

• Policy testing: We reset the classifier to the state at the end of pretraining.

This is done to ensure that any performance improvement seen during testing

are due to queries made in the testing phase. This is needed both for fair

comparison with the baseline and to confirm that the system can generalize to

novel attributes not seen during any stage of training. Dialogs are sampled for

2The oracle tries each candidate clarification and returns the one that maximally increases the
belief of the target image.
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this from the policy val set for hyperparameter tuning and from the policy test

set for reported results.

6.6 Results and Discussion

We initialize the policy with 4 batches of dialogs, followed by 4 batches of

dialogs for the training phase, and 5 batches of dialogs in the testing phase. We

compare the fully learned policy with hierarchical policies that consist of keeping

one or more of the components static. We also compare the choice of Q-Learning

or A3C (Mnih et al., 2016) as the policy learning algorithm for each learned pol-

icy. The results are presented in table 6.1. We evaluate policies on the fraction of

successful episodes in the final test batch, and the average dialog length.

Ideally we would like the system to have a high dialog success rate while

having as low a dialog length as possible. We observe that the using a learned

policy for all three functions results in a significantly more successful dialog system

(according to an unpaired Welch t-test with p< 0.05) than most conditions in which

one or more of the policies are static. The exception is the case when the decision

policy is static and the clarification and active learning policies are learned, in which

case the difference is not statistically significant. Note that the mean success rate of

the fully learned policy is still considerably higher, but due to the relatively small

size of our batches (100 dialogs) and the variance in RL policies across test runs, we

believe that it is more desirable to rely on measures of statistical significance such as

the p-values from a T-test. The fully learned policy also uses significantly shorter

dialogs than all conditions with a static decision policy. Some other conditions
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Table 6.1: Results from the final batch of the test phase. ∗ indicates the conditions
whose performance is comparable to the best condition (in bold).

Decision Pol-
icy Type

Clarification
Policy Type

Active Learn-
ing Policy
Type

Fraction of
Successful

Dialogs

Average
Dialog
Length

Q-Learning Q-Learning Q-Learning 0.12 15.45
Q-Learning Q-Learning A3C 0.18 16.96
Q-Learning Q-Learning Static 0.14 11.83
Q-Learning A3C Q-Learning 0.06 1.0
Q-Learning A3C A3C 0.33 9.4
Q-Learning A3C Static 0.15 14.16
Q-Learning Static Q-Learning 0.17 13.96
Q-Learning Static A3C 0.09 1.0
Q-Learning Static Static 0.17 3.81
A3C Q-Learning Q-Learning 0.09 20.0
A3C Q-Learning A3C 0.19 20.0
A3C Q-Learning Static 0.17 20.0
A3C A3C Q-Learning 0.13 20.0
A3C A3C A3C 0.09 20.0
A3C A3C Static 0.15 20.0
A3C Static Q-Learning 0.12 20.0
A3C Static A3C 0.13 20.0
A3C Static Static 0.16 20.0
Static Q-Learning Q-Learning ∗0.29 20.0
Static Q-Learning A3C ∗0.24 20.0
Static Q-Learning Static 0.1 20.0
Static A3C Q-Learning ∗0.24 20.0
Static A3C A3C ∗0.27 20.0
Static A3C Static 0.14 20.0
Static Static Q-Learning 0.15 20.0
Static Static A3C 0.16 20.0
Static Static Static 0.17 20.0

result in shorter dialogs, but these are unable to exploit the clarification and active

learning actions enough to result in a success rate comparable to the fully learned
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policy.

Figure 6.3 plots the success rate across test batches, and the expected success

rate if the system was forced to guess without clarification, for the fully learned,

and fully static policies. We can evaluate the utility of clarifications by comparing

these two success rates in each test batch. We can also examine the effect of active

learning with or without clarification by examining the difference in the relevant

metric between the first test batch where the classifier has not yet been improved

with labels from any active learning queries, and the final test batch where the

classifier has been improved using the labels acquired during previous test batches.

We find that in the case of the fully static policy, there is no statistically significant

improvement, either in the expected initial success rate without clarifications, or in

the final success rate, between the first and last test batch. This suggests that neither

the static active learning policy, nor its combination with the static clarification

policy are capable of improving the system’s performance.

However, in the case of the fully learned policy, we observe a statistically

significant improvement in the final success rate, but not the initial success rate

without clarifications. This suggests that while a learned active learning policy

by itself is not sufficient to improve the system’s success rate, the combination of

learned active learning and clarification policies is sufficient to improve the system’s

success rate. We also observe that while the difference between the initial and final

success rate is initially not significant, it increases across batches, and becomes

significant in the last two batches. This suggests that the clarification policy by itself

is also insufficient for improvement, and the combination of the two is required to
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improve the system’s success rate.

(a) (b)

Figure 6.3: Comparison of guess success rate with, and without clarifications across
test batches

We believe that the reason for the relatively poor performance of the static

clarification and active learning policies is that the classifier is not sufficiently accu-

rate, and does not produce well calibrated probabilities, due to the heavy imbalance

in the dataset. We also believe that the poor performance of the learned decision

policy is because individual features of the clarification and active learning poli-

cies are insufficient to score the goodness of these queries. On the other hand, the

learned policies are able to learn to properly adjust for this miscalibration. We also

believe that with more training dialogs or a different state-action representation, it

may be possible to also learn a decision policy that outperforms the static decision

policy.

We also examine the statics of different dialog acts taken by the best learned

policy to qualitatively assess how it differs from the static policy. The results are

shown in Figure 6.4. We observe that the average number of clarification questions
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Figure 6.4: Dialog turns of each type taken by the best learned policy in the test
phase

remains relatively stable across test batches, whereas active learning questions are

concentrated into the first test batch, with far fewer queries in later test batches.

6.7 Summary

We demonstrate how a combination of RL learned policies for choosing

attribute-based clarification and active learning queries can be used to improve an

interactive system that needs to retrieve images based on a natural language descrip-

tion, while encountering novel attributes at test time not seen during training. We

demonstrate that in a challenging dataset where it is difficult to obtain an accurate

attribute classifier, learned policies for choosing clarification and active learning

queries outperform strong static baselines. We further show that in this challenging

setup, a combination of learned clarification and active learning policies is neces-

sary to obtain improvement over directly performing retrieval without interaction.

In the future, we would like to evaluate whether our learned policy generalizes to
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other datasets which may have a different set of classifiers, and possibly different

underlying classifiers. Since our policy representation depends on features based on

evaluating classifiers, the general method is still applicable if the underlying classi-

fiers change. However, further empirical work is needed to determine whether such

generalization is effective in practice.
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Chapter 7

Human Evaluation of Dialog Policy Learning for

Joint Clarification and Active Learning Queries

In chapter 6, we trained a hierarchical dialog policy to jointly perform both

clarification and active learning in the context of an interactive language-based im-

age retrieval task. We demonstrated that jointly learning a dialog policy to perform

both these functions improved an interactive system that needs to retrieve images

based on a natural language description, while encountering novel attributes at test

time not seen during training.

However, in chapter 6, we only evaluated the learned dialog policy using

simulated dialogs. An important possibility to consider when training dialog sys-

tems in simulation is that the system may exploit imperfections in the simulation to

achieve high performance that is not replicable in real interactions with humans.

In this chapter, we discuss a human evaluation we conducted using Amazon

Mechanical Turk to compare our best learned policy with the static baseline.

7.1 Models

We use the same grounding model (section 6.4.2), baseline static policy (sec-

tion 6.4.9), and learned policy (sections 6.4.4 – 6.4.8) from chapter 6. However, all

experiments in this chapter use only the best combination of RL algorithms from the
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results in chapter 6 – A3C for choosing clarification and active learning queries, and

Q-Learning for deciding between clarification, active learning and guessing. We

retained most hyperparameters from chapter 6 but had to re-optimize the rewards

using grid search due to changes in the experimental setup that will be discussed in

section 7.3.

7.2 Experimental Design Changes

We had to make two important changes to the experimental setup when mov-

ing from a simulated environment to conducting interactions with real users on

Amazon Mechanical Turk:

• Sensitive content – We found that the iMaterialist dataset contained many

images (for example, images of undergarments and lingerie items) that may

not be appropriate for use in experiments with human users without content

warnings. We manually identified a list of 24 attribute labels that may be

indicative of such images, and removed images have a positive value for any

of these labels from the policy train, policy val and policy test data splits (see

section 6.5.1 for details of how the data splits were created).

• Shorter Descriptions – We found using pilot studies that workers on Ama-

zon Mechanical Turk typically mentioned fewer of our annotated attributes

than what is common in product descriptions. In this condition, both the

original static and learned policies had very low success rates. Hence we

switched to a simpler task setup described in section 7.3.
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7.3 Modified Task Setup

We observed from pilot studies that user descriptions typically contained

1-3 attributes that were annotated in our dataset, and hence could be recognized

by our classifier. This was very different from product descriptions that typically

had more attributes specified. With this change, we observed that both the baseline

static policy, and the learned policy from chapter 6 were rarely able to successfully

retrieve the correct target images.

We first experimented with modifying the simulation setup from chapter 6,

by randomly sampling one attribute from each product description to start the dia-

log, instead of providing all extracted attributes, to mimic the conditions on Amazon

Mechanical Turk. In this modified simulation setup, we found that as we observed

on Amazon Mechanical Turk, both the static and learned policies were rarely able

to successfully retrieve the correct target images. We also tried learning a new pol-

icy in this setup, as in chapter 6, but the success rate of the learned policy was still

too low to be useful for human evaluation.

Hence, we experimented with simpler task setups, and finally settled on the

following setup. The active test set was created by randomly sampling 100 images

from the relevant classifier test subset of images, and only of these was randomly

selected to be the target region. The active training set was created by randomly

sampling 100 images from the relevant classifier train subset of images. For train-

ing in simulation, we randomly sampled one attribute from those extracted from

the product description of the target image (see section 6.5.1 for details of how we
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extracted attributes from product descriptions), and provided this as the initial de-

scription. In the new setup, we tuned with the reward structure to maximize the

dialog success rate. We obtained best results when providing a reward of +25 for

every correct guess, -25 for every incorrect guess, and -1 for all clarification and

active learning queries.

We trained a new policy with 10 batches of initialization, 10 batches of train-

ing and 5 batches of testing in simulation (see section 6.5.2 for details about exper-

iment phases). We then used the final policy, and classifiers at the end of the test

phase in interactions with users on Amazon Mechanical Turk to evaluate how well

the learned system transfers.

7.4 User Interface Challenges

We originally wanted to create an interface for workers that looked like a

chat, but also enabled them to easily understand the task. As a result, we created

a qualification task as shown in Figure 7.1. We provided an initial image and an

example description to prime users to focus on the types of attributes our system

used. Users had to copy the description, following which they would get the clar-

ification query shown, and later the active learning query shown. After answering

the active learning query, they would get a completion code that could be provided

on Amazon Mechanical Turk to obtain payment. Our goal was to choose relatively

unambiguous clarification and active learning queries for the qualification task, and

only allow users to provided the answers we expected to both queries to participate

in our main experiment.
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Figure 7.1: Initial Qualification Task Interface on Amazon Mechanical Turk
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(a) Step 1: Copy an example description

(b) Step 2: Clarification Question

Continued on next page
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(c) Step 3: Active Learning Question

Figure 7.2: Final qualification interface for Amazon Mechanical Turk

We provided manually chosen example images for each attribute because

while some attributes such as colors may be known to all workers, other such as

“Argyle” or “Herringbone” may not be familiar to the average worker, but we be-

lieve can be identified given examples.

We required workers to have completed at least 1000 HITs and have at least a

95% approval rate on their previous HITs. However, in a pilot study of 40 workers,

we found that even with these qualifications, only 3 workers correctly copied the

description and answered the questions as we expected. 16 out of 40 workers did

not even follow the instruction to copy the description. However, all 40 workers
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correctly copied their completion codes.

Hence, we changed the interface to provide one question per page, and al-

low the worker to move to the next page only after they had provided an answer to

the question on the current page. Hence, the above task was divided into 3 pages

as shown in Figure 7.2. We then found using another pilot study of 20 workers

with the same qualifications that this time, all 20 workers completed all verification

tasks correctly. Hence, we decided to use a similar interface for our main dialog

experiments as well – providing each question in a new page with question specific

instructions. While this does not allow us to study whether workers view this in-

teraction as a natural conversation, we wished to study whether we could at least

replicate our results about dialog success. Further work is needed to develop an

appropriate user interface for this task that allows workers to interact in a more

dialog-like fashion, while also not getting confused by the amount of information

provided.

For the final experiment, we added a page at the start that showed the target

image and asked users to describe the target image (Figure 7.3). This was followed

by pages similar to figures 7.2b and 7.2c as relevant, based on the dialog system’s

responses. Finally when the dialog system made a guess, we provided users with

their original description, and asked them whether the image matched this descrip-

tion. We also asked users to fill out an exit survey rating the questions on a Likert

scale of 0-4.
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Figure 7.3: Final dialog task on Amazon Mechanical Turk – description page

7.5 Results and Discussion

We obtained a new learned policy with the new experimental setup with 10

batches of initialization, 10 batches of training and 5 batches of testing in simu-

lation. We then used the final policy, and classifiers at the end of the test phase

in interactions with users on Amazon Mechanical Turk to evaluate how well the

learned system transfers to human users. We present the results in table 7.1. We

report the fraction of successful dialogs (in which the system guesses the correct

target image), and average dialog length.

Firstly, we observe that in this condition, the improvement in the learned

policy is considerably higher than the static policy. However, its average dialog

length does not decrease. Qualitatively, we observe that in the test phase, the learned

policy initially has a low rate of clarification, and high rate of active learning, which

is reversed as the dialogs progress. We also observe that clarification is significantly
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Table 7.1: Results of the static and new learned policies at the end of the test phase
in simulation and in interactions on Amazon Mechanical Turk. Bold indicates a
statistically significant improvement over the baseline (p< 0.05) and italic indicates
trending significance (p <= 0.1) according to an unpaired Welch t-test

Policy

Simulation –
Fraction of
Successful

Dialogs

Simulation
– Average

Dialog
Length

AMT – Fraction
of Successful

Dialogs

AMT –
Average
Dialog
Length

Static 0.23 20.0 0.06 19.16
Learned 0.65 20.0 0.16 18.86

more beneficial in this setting compared to that used in chapter 6.

We also observe a considerable drop in success rate for both the static and

learned policy, in human interactions. However, the learned policy remains more

successful than the static policy, trending towards significance (p<= 0.1) according

to an unpaired Welch t-test.

We speculate that the drop in performance may be because of differences

between the labels in the original dataset, and those provided by workers, making

our classifiers less effective. This may be due to a couple of reasons:

• The labelling of clothing attributes may be somewhat subjective, or may be

affected by the display settings used by workers. For example, although we

expected workers to describe the image in figure 7.3 as “red”, a surprisingly

high fraction of workers described it as “orange”.

• The dataset includes attributes about clothing material such as “satin” and

“velvet” that may be harder for workers to label using only images.
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We had expected fewer such differences since the original attributes of the

dataset were also labeled by crowdworkers. However, those workers were also

provided the product description in addition to the image to perform the labeling,

which may have enabled them to label more difficult attributes that are less easily

recognizable for human users with just images. In future, we can experiment with

simulations that introduce noise into the annotated labels when answering clarifica-

tion labels to attempt to train a dialog system that generalizes better to real world

conditions. However, we speculate that this is likely to require more accurate clas-

sifiers than those used in our current experiments, so that a correct prediction on a

single consistently labeled attribute can counteract the effects of variance in labels

of other attributes.

A sample interaction is included in table 7.2. While the agent is eventually

successful, we can see that the interaction is fairly long. In practical applications,

we would need to provide a mechanism to end the dialog earlier if necessary. We

also observe that some of the questions can appear strange to human users due

to category violations – for example asking whether the properties “Heels” and

“Sneakers” apply to a T-shirt. In an embodied system, facial feedback can poten-

tially be used to identify such incongruous questions and provide a negative reward

for them, so that the dialog policy can learn to avoid such questions.

7.6 Summary

In this chapter we discuss many challenges that we faced when trying to test

our dialog policy from chapter 6, that was trained in simulation, on interactions
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with human users on Amazon Mechanical Turk. We found that workers found the

system confusing when it was presented as a dialog system, and instead had to be

presented with individual questions on separate web pages. We also had to simplify

the experimental setup to adapt to the differences between descriptions provided by

workers, and product descriptions from the original dataset. Despite these simplifi-

cations, we observed a significant drop in performance of dialog policies in human

evaluation, compared to simulation. However, we found that our fully learned dia-

log policy transferred modestly better to human evaluation than the static baseline.

Table 7.2: A sample interaction from Amazon Mechanical Turk

Agent What can I help you find?

User Black Off-the-Shoulder Dress

Agent Here are some examples of the property ”Female”

Agent Does the property ”Female” apply to the product you want?

User Yes

Agent Here are some examples of the property ”Round Neck”

Agent Does the property ”Round Neck” apply to the product you want?

User No

Agent Here are some examples of the property ”Lace”

Agent Does the property ”Lace” apply to the product you want?

Continued on next page
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Table 7.2: A sample interaction from Amazon Mechanical Turk

User No

Agent Here are some examples of the property ”Teal”

Agent Does the property ”Teal” apply to the product you want?

User No

Agent Here are some examples of the property ”Paisley”

Agent Does the property ”Paisley” apply to the product you want?

User No

Agent Here are some examples of the property ”Long Sleeved”

Agent Does the property ”Long Sleeved” apply to the product you want?

User No

Agent Here are some examples of the property ”Quilted”

Agent Does the property ”Quilted” apply to the product you want?

User No

Agent Here are some examples of the property ”Spaghetti Straps”

Agent Does the property ”Spaghetti Straps” apply to the product you want?

Continued on next page
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Table 7.2: A sample interaction from Amazon Mechanical Turk

User No

Agent Here are some examples of the property ”Tunic”

Agent Does the property ”Tunic” apply to the product you want?

User No

Agent Here are some examples of the property ”Pin Stripes”

Agent Does the property ”Pin Stripes” apply to the image below?

User No

Agent Here are some examples of the property ”Pink”

Agent Does the property ”Pink” apply to the image below?

User No

Agent Here are some examples of the property ”Organza”

Agent Does the property ”Organza” apply to the image below?

User No

Continued on next page
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Table 7.2: A sample interaction from Amazon Mechanical Turk

Agent Here are some examples of the property ”Heels”

Agent Does the property ”Heels” apply to the image below?

User No

Agent Here are some examples of the property ”Sneakers”

Agent Does the property ”Sneakers” apply to the image below?

User No

Agent Here are some examples of the property ”Galaxy”

Agent Does the property ”Galaxy” apply to the image below?

User No

Agent Here are some examples of the property ”Checkered”

Agent Does the property ”Checkered” apply to the product you want?

User No

Continued on next page
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Table 7.2: A sample interaction from Amazon Mechanical Turk

Agent Here are some examples of the property ”Printed”

Agent Does the property ”Printed” apply to the product you want?

User No

Agent Here are some examples of the property ”Shoe Accessories”

Agent Does the property ”Shoe Accessories” apply to the image below?

User No

Agent Here are some examples of the property ”Satin”

Agent Does the property ”Satin” apply to the image below?

User No

Agent Is this the image you were looking for?

User Yes
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Chapter 8

Clarification in Language Grounding Models

Based on Joint Embeddings

Our prior work in chapters 4, 5 and 6 is motivated by enabling robots to

robustly understand natural language descriptions of objects, and use clarifications

and opportunistic active learning to improve or augment this ability. In those works,

we have used binary or multiclass classifiers for perceptual concepts to perform

grounding. However, if a system is performing lifelong learning, it can potentially

be exposed to a very large number of concepts. In this situation, it is challenging

to identify when different words should be grouped into a single concept, and it be-

comes computationally difficult to maintain classifiers for all concepts. In this chap-

ter, we attempt to extend our prior work on clarifications (chapter 6) to a grounding

model based on joint embeddings of language and images.

8.1 Motivation

For many grounded language understanding tasks such as understanding nat-

ural language descriptions of objects, a robot would need to be able to perceptually

ground a large number of words used to denote properties of objects. When we

require such a system to perform lifelong learning, we would ideally not want to

fix the set of perceptual concepts to be learned ahead of time. We would prefer the
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system to identify these from interactions.

In our work so far, we have used binary or multiclass classifiers to percep-

tually ground such words. However, as the number of perceptual predicates to

be learned increases, there are significant memory requirements for storing binary

classifiers, or for performing operations in a sufficiently large multiclass classifier.

Also, while the use of a multiclass classifier in chapter 6 allows the model to learn

correlations between labels, it requires the set of labels, or at least its size, to be

pre-defined. Further, both binary and multiclass classifiers need hard boundaries

between different categories, to decide what constitues each class. When these

are used as part of a grounding system, the system needs a mechanism to decide

whether two different words, for example “red” and “scarlet”, are to be treated as

two separate concepts or a single one.

Also, there may be many correlations between such concepts. For example,

“red” and “scarlet” are very similar colors, “red” and “blue” are both colors but

less similar in meaning otherwise, “red” and “apple” are not similar in meaning but

many apples are red. While the use of a multiclass classifier in chapter 6 allows

the model to learn such correlations between labels, it still requires the model to

make a decision about whether to treat “red” and “scarlet” as referring to the same

or different classes. In our prior work, we have either used a fixed set of perceptual

concepts to be learned (chapter 6) or used simple heuristics such as stemming to

decide whether two words correspond to the same perceptual concept (chapter 5).

In this chapter, we attempt to extend our prior work on clarifications (chap-

ter 6) to a grounding model based on joint embeddings of language and images.
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Word embeddings have been shown to capture many useful similarity and relat-

edness properties (Mikolov et al., 2013), which provide an alternative method to

capture label correlations. These are shown to be enhanced by training multimodal

vectors (Lazaridou et al., 2015). There are also works on learning networks to score

how well a natural language description or caption applies to an image (Hu et al.,

2016; Xiao et al., 2017; Wang et al., 2016), some of which test the effectiveness of

these methods for retrieving images based on captions. Such a model is also often

used in downstream tasks where such grounding is implicitly required (Zhang et

al., 2018a)

Further, once a joint embedding space is learned, a number of fast nearest

neighbour algorithms (Johnson et al., 2019) can be used to efficiently find words

that describe images, or vice versa, even as the number of words and images in

question becomes large. This efficiency is desirable in systems that need to interact

in real time with users.

Our original goal was to replicate the results in chapter 6 with a language

grounding model that is more capable of adapting to an open ended vocabulary.

However, we find that estimated information gain, as well as other statistics from

the grounding model are not informative about whether a clarification query is likely

to increase the belief of the correct target object.

8.2 Task Setup

We consider an interactive task for learning to ground natural language de-

scriptions of objects, similar to that of chapter 6. Given a set of candidate images
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and a natural-language description, the goal of the system is to identify the image

being referred to. Before trying to identify the target image, the system can ask

attribute-based clarification questions that can better improve its success at identi-

fying the correct image. In this work, we do not include active learning questions,

although that would be desirable in the future. Also, in contrast to chapter 6, we

do not maintain a fixed set of attributes for which perceptual classifiers are to be

learned. More similar to chapter 5, the system builds a list of perceptual predi-

cates from previous descriptions of images, and any of these can be queried in a

clarification question.

Since we do not have active learning queries, we only have an active test set.

The system is presented with the active test set and a description of the target object.

The system can then optionally ask yes/no clarification questions about whether a

word is applicable to the target object. Clarification questions are typically expected

to use words not present in the description but are somehow related to the images

in the active test set, as they are expected to reduce the search space for guessing.

The interaction ends when the system makes a guess of which object is the

target, and is said to be successful if it correctly guesses the target objects. The goal

of the task is to maximize the number of successful guesses, while also keeping

dialogs as short as possible.

Similar to chapter 5, we simulate dialogs using the Visual Genome dataset (Kr-

ishna et al., 2017). More details about the dataset are included in sections 5.3 and

5.5.1. We use annotated descriptions of image regions to provide the target descrip-

tions in simulated dialogs, and use the expanded list of words associated with a
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region (section 5.3) to answer clarification queries.

8.3 Methodology

8.3.1 Grounding Model

We use a grounding model which learns to project the images, and words

from descriptions, represented as vectors, into a joint space in which projected im-

ages are close to projections of words that apply to them and vice versa.

Figure 8.1: Grounding model that projects words and images to a joint space, and
uses Platt scaling to convert the distances in the space to probabilities.

The model is illustrated in Figure 8.1. We extract feature representations for
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images from the penultimate layer of the VGG network (Simonyan and Zisserman,

2014), and encode words using word2vec (Mikolov et al., 2013). The vector repre-

sentation of each modality is then projected using a corresponding fully connected

layer to a common dimensionality.

Consider an image i with the associated description w = (w1, w2, . . . wn).

Let f and g be the learned projection functions for projecting images and words

respectively into the joint space. Given another random word w′, we would like to

ensure that in the learned space, the distance from the projection of image i to that

of the random word w′ is greater than its distance to the projections of the words

in the description, w,∈,w. That is, given an appropriate distance function d in the

learned space, we would like to ensure that:

d(f(i), g(w′)) ≥ d(f(i), g(w)) ∀ w ∈ w (8.1)

Also, we would like to ensure for any word in the description, w,∈,w, the distance

between its projection in the learned space to that of any random image i′ is greater

than the distance to the image i that the words describe. That is,

d(f(i′), g(w)) ≥ d(f(i), g(w)) ∀ w ∈ w (8.2)

In this work, f and g project the words and images to the same dimension

and we use cosine distance as the distance function. We can capture the above
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constraints using a ranking loss (Wang et al., 2016) as follows:

Lr = max(0, d(f(i), g(w))− d(f(i), g(w′)) +m)

+ max(0, d(f(i), g(w))− d(f(i′), g(w)) +m)

+ . . . (8.3)

where m is a margin. We initially train the grounding model using paired im-

ages and descriptions, and using this trained model for interactive retrieval. During

training, given a positive example (i, w), we sample a random image as the nega-

tive example i′ and use constraint 8.1. We also experimented with sampling words

from descriptions of other random images to obtain a negative example that could

be used with 8.2 but found that the final model performed better with only image-

based negative examples.

It would be possible using distances in this joint space to identify the image

that best matches a description, for example by choosing the image with minimum

distance to words in the description. However, for identifying good clarification

questions, it is helpful to calibrate the distances into probabilities. To do this, we

use the following mechanism inspired by Platt scaling (Platt, 1999). Let p(w, i) be

the probability that w is applicable to i, which is estimated as follows:

p(w, i) = σ(−A(w) ∗ d(f(i), g(w)) +B(w))
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where

A(w) = σ(θTAw) (8.4)

B(w) = ReLU(θTBw) (8.5)

To train parameters θA and θB we add an additional log loss term:

Ll =
∑
w

∑
i

−{(y(w, i) log(p(w, i))

+ (1− y(w, i)) log(1− p(w, i)))} (8.6)

where y(w, i) = 1 if word w applies to image i and y(w, i) = 0 if word w does not

apply to image i. The total loss is then a linear combination of the two loss terms:

L = αLl + Lr (8.7)

where the weight α is tuned as a hyperparameter. Our best results used α = 10.

For grounding, given images I = {i1, i2 . . . im}, and a description W =

(w1, w2, . . . wn). Let the clarifications obtained during the dialog be

C = {(q1, a1), (q2, a2) . . . (qk, ak)}

where q1, q2 . . . qk are words and a1, a2, . . . ak ∈ {0, 1}. Then, the set of words

that are known to apply to the target image are W+ = {w1, w2, . . . wn} ∪ {qi :

ai = 1, (qi, ai) ∈ C} and the set of words known not to apply to the image are
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W− = {qi : ai = 0, (qi, ai) ∈ C} Then, for each image, we can calculate the belief

that it is the target as follows:

b(i) =
1

Z
Πw∈W+p(w, i)Πw∈W−(1− p(w, i)) (8.8)

where Z is a normalization factor. When guessing, we choose the image with max-

imum belief b(i).

8.3.2 Identifying and Scoring Clarifications

A clarification can also involve any word from the vocabulary. As candi-

dates, we first identify the set of words closer to at least one candidate image than a

distance threshold. We explore the following ways of fixing the distance threshold:

• Max-in-context threshold – Closest distance between any candidate image

and any word in the current description – This indicates that the word is very

likely to apply more strongly to that image than any word in the description

to the target.

• Average Threshold – Average distance between images and words in their

descriptions, as observed during pretraining of the grounding model. This

gives a rough estimate of how close a word is on average to an image it

applies to.

We then estimate the information gain J of each candidate q as follows,
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similar to chapter 6

J(q) =
∑
i

∑
a∈{0,1}

b(i)P (a|q, i)log
(
P (a|q, i)
P (a|q)

)

where P (1|q, i) = p(q, i) and P (0|q, i) = 1− p(q, i) and P (a|q) =
∑

i b(i)P (q, i).

8.4 Experimental Setup

We simulate dialogs using the Visual Genome dataset (Krishna et al., 2017),

as in chapter 5. More details about the dataset are included in sections 5.3 and

5.5.1. However, we modify the data split because we need a pretrained grounding

model to be able to generate useful clarification questions even in the early stages

of policy learning. From the work in chapter 5, we obtain a list of words relevant

to at least 1000 regions each. We divide these randomly into 4 splits which we call

policy pretrain, policy train, policy val and policy test. Regions containing words

in the policy test set form the set of policy test regions. Of the remaining regions,

those containing words in the policy val set form the set of policy val regions. Of

the remaining regions, those containing words in the policy train set form the set of

policy train regions. The remaining regions form the policy pretrain set of regions.

This iterative procedure ensures that regions in each of the policy train, policy val

and policy test sets contain related words not seen in the previous stages. Each of

these is then split into subsets classifier training and classifier test by a uniform

60-40 split.

The set of policy pretrain regions is used to train the grounding model. We
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use its classifier training subset of regions for training and its classifier test subset

to tune hyperparameters of the grounding model. We intended to use the remaining

splits for dialog policy learning and evaluation.

We train the grounding model using paired regions and descriptions from

regions in the classifier training subset of the policy pretrain set of regions. For

negative examples, we randomly sample other images in the subset. We then eval-

uate the usefulness of clarifications on the policy train set of regions as follows.

We sample 1000 dialog contexts to evaluate the usefulness of clarifications.

We compare two types of dialog setups -

• Random candidate images - Each dialog context has an active test set con-

sisting of 20 regions sampled from the classifier test of the policy train set.

One of these is randomly selected to be the target region.

• Nearest neighbor candidate images - We sample target regions uniformly

at random from the classifier test of the policy train set, and provide as the

active test set the target image with its 19 nearest neighbors.

We provide the system with the annotated caption of the chosen region as

an initial description and obtain an initial belief b1(i), according to equation 8.8,

for each image i in the active test set. Then, for each type of threshold in section

8.3.2, we obtain all words within the threshold, and obtain a new belief b2(i), for all

candidate images, after using this word q as a clarification. For a clarification query

q to be useful, asking the query needs to increase the belief in the correct target

image. For our estimate of information gain, J(q), to be a useful metric to identify
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good clarification questions, a high value of J(q) should correspond to an increase

in the belief of the target image, that is b2(i∗)− b1(i∗) > 0.

To determine whether our metric is useful, we plot the difference in belief of

the target image i∗, b2(i∗)− b1(i∗) on the x-axis, against the information gain of the

query J(q) on the y-axis. We use different colors to separate useful queries q that

increase the belief of the target image, that is, b2(i∗)− b1(i∗) > 0, and those that are

not useful and decrease the belief of the target image, that is, b2(i∗) − b1(i∗) < 0.

Ideally we would like to identify an information gain threshold j∗ such that for

queried words q where J(q) > j∗, the belief of the target image increases, that is

b2(i
∗)− b1(i∗) > 0. That is, we would like to observe a separation between the two

groups of queries along the y-axis. We wish to use the plots to verify whether such

a separation exists.

8.5 Results and Discussion

The results are presented in figure 8.2. Queries that are useful are plotted in

blue, and those that are not useful are plotted in red. We observe that for the most

part, the two groups of queries are not separated along the y-axis. This suggests that

our estimate of information gain is not a good indicator of whether a clarification

query is likely to improve the belief of the correct target image. For the combination

of random candidate images and the average threshold, it does appear that at higher

information gain, there are fewer clarification queries that will decrease the belief

of the correct target image. However, when we compared retrieval success, with

and without clarification queries chosen in this condition to maximize information
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gain, we did not obtain an improvement in overall retrieval success.

(a) Nearest neighbor candidate images
Max-in-context threshold

(b) Nearest neighbor candidate images
Average threshold

(c) Random candidate images
Max-in-context threshold

(d) Random candidate images
Average threshold

Figure 8.2: Information gain vs difference in belief of target image b2(i∗)− b1(i∗).
Words which raise the belief of the target image are plotted in blue and others are
plotted red.

We have a couple of hypotheses about why clarification questions based on

information gain do not necessarily increase the belief of the correct target image -

• We use a list of manually annotated objects and attributes to answer clarifi-

cation queries. We assume that any word not present in an expanded version

of this list is not relevant to the image region. However, it is very possible that

such lists are incomplete, and our heuristics for expanding the list do not cap-
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ture all possible synonyms or other words closely related in meaning. Thus it

is possible that especially when we give an answer of “no” to a clarification

query, it may be wrong.

• Although we treat the values p(i, w) from our grounding model as probabili-

ties for the purposes of calculating information gain, these are not necessarily

calibrated, and model is not constrained to produce values that correspond

to a true probability distribution. It is only constrained to ensure that each

individual value is between 0 and 1. However, we would additionally need∑
i

∑
w p(i, w) to be 1 for this to be a true probability distribution, which is

difficult to implement in models such as joint embeddings as the summation

would be intractable.

8.6 Summary

In this chapter, we attempt to extend the clarification mechanism introduced

in chapter 6 to a joint embedding based grounding model, that can more naturally

adapt to an open vocabulary. This required us to design a method to convert dis-

tances obtained from such a learned space into calibrated probabilities to estimate

information gain. However, we find our estimate of information gain of clarification

queries is not a good indicator of whether these clarification queries can increase the

success rate of retrieving images based on natural language descriptions, and fur-

ther work is needed to find an alternative. We believe that the problem of estimating

information gain for clarifications in models other than those based on classification

is an interesting direction for future work as such models show increasingly better
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performance in language grounding tasks.
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Chapter 9

Future Work

In this thesis, we discuss ways in which dialog interaction with users can

be used to enable lifelong learning in grounded natural language understanding

systems, motivated by service robot applications. In this chapter we discuss future

directions that can help improve such human-robot dialog systems, and to make

lifelong learning in such systems more practically useful. A subset of these have

been presented in our position paper, Padmakumar and Mooney (2020a).

9.1 Better Language Grounding Models

In most of our work (chapters 4, 5, 6), we have used fairly simple models

of natural language understanding that are not designed to handle multi-word ex-

pressions or more complex compositionality such as part-of relations and negation.

In recent years, context sensitive word and sentence embeddings pretrained on very

large amounts of text have been shown to be more effective in a number of tasks in-

cluding question answering, textual entailment, semantic role labeling, coreference

resolution, named entity extraction, and sentiment analysis (Peters et al., 2018; De-

vlin et al., 2019; Liu et al., 2019). There have been shown to be useful for natural

language understanding in dialog systems (Chen et al., 2019b), and can probably

be used to predict object attributes more effectively than the heuristics used in our

work.
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More recently, multimodal transformers pretrained on large datsets of paired

images and captions have been shown to perform well on a number of language and

vision tasks, including retrieving images based on natural language descriptions (Lu

et al., 2019; Tan and Bansal, 2019). The success of these models goes a long way to

make them more practically useful, but can be a challenge when developing active

learning methods because it is difficult to see a performance improvement on them

from a few examples. Further work is needed to extend our work on clarification

and opportunistic active learning to such models.

9.2 Multimodal Language Grounding

Robots can sense the world through modalities other than vision, for exam-

ple sound through a microphone or by manipulating objects with an arm. Prior

work has shown that when people are allowed to handle objects before describing

them, they may use non-visual predicates such as heavy or rattling to describe them.

Using multimodal features has been shown to allow a robot to better ground object

descriptions, and are essential when non-visual predicates are used (Thomason et

al., 2016).

Deep learning has been very effective in visual classification (Simonyan and

Zisserman, 2014), and even some audio classification tasks (Hershey et al., 2017)

using large labelled datasets. However, it is difficult to obtain the same improve-

ments with other types of data that requires physical manipulation of objects. Such

manipulation is time consuming, and requires a lot of robots to parallelize. It is also

difficult to share data between different types of robots due to differences in avail-
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able sensors. Developing ensembling methods to effectively combine deep learning

based visual classifiers with more sample efficient classifiers for other modalities

such as haptic data is likely to improve the performance of grounded language un-

derstanding systems on physical robots.

Another type of multimodality available to dialog systems on embodied

robots is gesture and gaze. Humans often use gesture and gaze to direct attention

and using this information can potentially reduce ambiguity in natural language un-

derstanding (Whitney et al., 2017). Robots can also make use of gaze and gestures

to facilitate turn taking and reduce ambiguity (Kontogiorgos et al., 2019). This can

be used both as an alternative mechanism to ask clarification questions and also to

make the dialog more natural.

9.3 Active Learning in Practice

In our work on opportunistic active learning (chapters 4, 5, 6), we set up our

test phase so that new concepts are presented which require active learning for the

model to adapt to them. However, in real world scenarios, the model is likely to

be trained on a reasonable amount of annotated data, and the system has to trade

off model improvement with a mix of tasks that may or may not require model

improvement. In this scenario, it is more difficult to demonstrate the benefits of

active learning.

Further, our work so far, along with most work on active learning, has been

restricted to binary or multiclass classifiers. However, for language grounding in

particular, and many other applications, other types of models such as joint em-
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beddings or multimodal transformers may be preferable. Further work needs to be

done to identify appropriate active learning queries for such models.

Recent work has also highlighted some other limitations of active learning in

real-world settings – with benefits not generalizing reliably across models and tasks,

changing deployed models, as well as the model size, training data requirements and

stochasticity of deep learning models (Lowell et al., 2019; Koshorek et al., 2019).

This suggests that new types of active learning methods may be required with deep

learning models.

User frustration is another potential concern for frameworks such as oppor-

tunistic active learning. This restricts the number of queries that the system may

ask per dialog session, which may require active learning methods to be combined

with other semi-supervised learning techniques to scale up to the data requirements

of deep learning models. The spread of queries across dialogs in batches can also

be improved using extensions of batch-mode active learning techniques (Brinker,

2003; Guo and Schuurmans, 2008) to deep learning methods (Ash et al., 2020). In

order to reduce user frustration due to active learning questions, another possibil-

ity would be to look into methods to implicitly embed active learning queries into

system responses. For example, an interactive search and retrieval system that al-

lows a user to refine search results can combine a mix of search results known to be

relevant, with one or two results that it is uncertain about. Whether or not the user

selects these can provide a weak, noisy label.

In dialog systems where the user interacts via speech rather than text, ad-

ditional cues can be used to decide when active learning queries are potentially
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inappropriate. For example, prosodic cues can be used to identify whether users are

stressed or frustrated (Devillers et al., 2003), and the dialog policy can be designed

to avoid active learning questions when such reactions are detected. Other sources

of input such as facial expressions (Schuller et al., 2011) or gestures can also be

used to improve such predictions (Busso et al., 2008). Prosody may also be use-

ful for detecting sarcasm (Tepperman et al., 2006; Rakov and Rosenberg, 2013) or

other forms of misuse or intentional wrong answers from users, to avoid corrupting

the collected labelled data.

Depending on the types of active-learning questions involved, the systems

may also need to demonstrate some sort of few-shot learning to keep users inter-

ested in assisting the learning process. For example, children typically can learn

to identify colors or common objects such as fruits with very few examples. For

such tasks, users are likely to expect a similar rate of learning from the system. In

contrast, more error may be tolerated in a system learning something less tangible

such as a person’s food preferences for the purpose of recommending restaurants.

9.4 Sim2Real Issues in Dialog Systems for Lifelong Learning

Simulation is an important component of research in dialog systems (Schatz-

mann et al., 2006; Gür et al., 2018) as well as robotics (Eppner et al., 2019). In par-

ticular when using data hungry methods such as deep learning and reinforcement

learning, it is desirable to train systems in simulation as it is time consuming and

expensive to obtain enough training data in the real world.

Simulation in dialog systems is commonly used for dialog policy learn-
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ing (Gür et al., 2018) but also for training end to end dialog systems (Wen et al.,

2017). Simulations for training end to end dialog systems are typically built us-

ing a corpus of human-human dialogs (Budzianowski et al., 2018; De Vries et al.,

2017; Thomason et al., 2019). It is challenging to extend this for dialogs where

the system needs to perform active learning because if the concepts the system is

trying to learn are well know to human users, it is difficult for humans to ask ques-

tions that would be good active learning questions (Yu et al., 2017b). Some work

solves this problem by replacing the words denoting these concepts with words in

a synthetic language (Yu et al., 2017b). However this idea is not easily adapted

if the active learning queries need to obtain per-example labels for a concept, for

example, asking whether an image contains a person or not. Other works make use

of additional information available in the dataset, such as annotated attributes of

objects in our case (chapters 5, 6 and 8) or a known navigation graph (Chi et al.,

2020; Nguyen and III, 2019) that can potentially provide answers to any queries

the system asks. However, as we observed in chapter 7, these simulations do not

necessarily accurately reflect the behaviour of human users interact with the dialog

system, and hence may not transfer well.

Simulation environments that require extensive extra annotation can also be

expensive to build, especially if these have to be task specific. If the dialog system

has to make use of an existing annotated dataset, this restricts the set of information

gathering actions to those that can be answered by the available annotations.

This challenge becomes more significant for dialog systems that are intended

to be a part of an embodied system. Most current work on dialog for embodied sys-
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tems is done entirely in simulation (Thomason et al., 2019; Nguyen and III, 2019),

particularly if the work involves the learning of dialog policies. This is also true

of our work (chapters 5 and 6). In addition to the difficulty of designing a sim-

ulation environment, further experiments are needed to evaluate whether existing

systems perform comparably when implemented on real robots. In this case, be-

sides differences in interaction, there is also the possibility of increased sensing

errors or improper execution of actions by the robot to be handled. Additionally,

as in chapter 7, further work in human robot interaction may be required to ensure

that the interaction is natural and not confusing to users. It is likely that additional

challenge problems are likely to be identified as more attempts are made to transfer

dialog systems from simulated to real physical environments.

Further, most current lifelong learning systems are specific to the task and

data involved (Chen and Liu, 2018). More work is needed to identify general pur-

pose models or techniques that can be used to enable lifelong learning across tasks

and data types.

9.5 Learning From Demonstration With Dialog

Learning from demonstration is a paradigm in which an agent learns a policy

to perform a task from example trajectories, or demonstrations, instead of through

experience and numerical rewards (Argall et al., 2009). Demonstrations can be ob-

tained in a variety of ways, for example having an expert teleoperate a robot to

perform a task, or having the robot watch a person perform the task, or watch a

video of the task being performed. Learning from demonstration is important for
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general purpose robots as they may need to perform tasks they have not been specif-

ically trained to do, and it is easier even for expert users to provide a demonstration

of the task than to program it.

Most existing work on learning from demonstration is not interactive. How-

ever, some methods assume that an expert is watching the robot as it learns and can

provide expert guidance on what action to take when required, to handle unforeseen

scenarios (Ross et al., 2011). A simple way to augment demonstrations when they

are done in an interactive setup, would be for the human to provide feedback as the

robot performs actions, which can then be used for reinforcement learning (Knox

and Stone, 2008; Warnell et al., 2018).

Another way to augment demonstrations would be with simultaneous natural

language instructions that highlight which parts of a demonstration are salient (Goyal

et al., 2019). For example, when demonstrating how to set a table, the human

demonstrator can say that they are placing a spoon to the right of a plate, so that the

agent knows that this is the salient information, not the distance of the spoon from

the plate. A language interaction accompanying a demonstration can also allow the

agent to ask clarification questions. For example, after the above demonstration,

the robot may ask what to do if there is another object already present to the right

of the plate. Also, a robot may request for a demonstration during an interaction.

For example, if the person asks the robot to set the table, the robot may ask to see a

demonstration of this if it does not know how to perform the task, or may ask for a

demonstration of a specific step such as how to handle a vase which is not normally

present.
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Chapter 10

Conclusions

In this thesis, we present work that is aimed at designing dialog systems that

ground language in perception and leverage interactions with users to perform life-

long learning. This research combines ideas and techniques from natural language

processing, computer vision, robotics, dialog systems, reinforcement learning and

active learning. The following is a brief summary of the individual contributions

included:

• We combine existing work on learning a dialog policy from dialog interac-

tions, and improving a semantic parser using weak supervision obtained by

leveraging the structure of clarification dialogs. We demonstrate that simul-

taneous improvement of the dialog policy and semantic parser is beneficial

compared to improving either component alone, and that updates from the

semantic parser need to be seen by the dialog policy through interactions to

improve overall dialog performance (Chapter 3).

• We propose the framework of opportunistic active learning to integrate ac-

tive learning questions at test time to enable a robot to identify new percep-

tual concepts and build classifiers for them during operation. We demonstrate

that a robot performing opportunistic active learning is more successful than

a baseline agent at using knowledge obtained from test-time queries at im-

proving its ability to retrieve objects based on natural language descriptions,
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and that people find such a robot more fun and usable (Chapter 4).

• We demonstrate how to formulate an opportunistic active learning problem

as a reinforcement learning problem, and learn a policy that can effectively

trade-off opportunistic active learning queries against task completion. We

evaluated this approach on the task of grounded object retrieval from natural

language descriptions and learn a policy that retrieves the correct object in

a larger fraction of dialogs than a previously proposed static baseline, while

also lowering average dialog length (Chapter 5).

• We train a hierarchical dialog policy to jointly perform both clarification and

active learning in the context of an interactive language-based image retrieval

task, and demonstrate that jointly learning dialog policies for clarification and

active learning is more effective than the use of static dialog policies for one

or both of these functions (Chapter 6).

• We compare the learned and static dialog policies from chapter 6 in inter-

actions with human users, and find that the learned policy transfers modestly

better than the static policy. We also uncover issues related to the differences

between simulated and real interactions, as well as the importance of a good

user interface design for dialog systems.

• We attempt to extend the clarification mechanism introduced in chapter 6

to a joint embedding based grounding model, that can more naturally adapt

to an open vocabulary. However, we find our estimate of information gain

of clarification queries is not a good indicator of whether these clarification

queries can increase the success rate of retrieving images based on natural
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language descriptions (Chapter 8).

In our work, we focus on how clarification and active learning questions

can be used to improve natural language understanding and enable a robot to per-

form lifelong learning to improve its ability to understand and ground language in

perception. We believe that lifelong learning has the potential to be extremely ben-

eficial in service robot applications, and dialog systems provide a good mechanism

to obtain labelled training data necessary to perform lifelong learning. However,

considerable improvement is still necessary to realize these benefits. We outline

some possible future directions for such improvement in chapter 9.
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Joakim Gustafson. The Effects of Embodiment and Social Eye-Gaze in Con-
versational Agents. In 41st Annual Meeting of the Cognitive Science (CogSci),
Montreal July 24th–Saturday July 27th, 2019, 2019.

Omri Koshorek, Gabriel Stanovsky, Yichu Zhou, Vivek Srikumar, and Jonathan Be-
rant. On the Limits of Learning to Actively Learn Semantic Representations. In
Proceedings of the 23rd Conference on Computational Natural Language Learn-
ing (CoNLL), 2019.

Satwik Kottur, Ramakrishna Vedantam, José MF Moura, and Devi Parikh. Visual
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