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The recent growth of online information available in the form of natural language docu-

ments creates a greater need for computing systems with the ability to process those documents

to simplify access to the information. One type of processing appropriate for many tasks is infor-

mation extraction, a type of text skimming that retrieves speci�c types of information from text.

Although information extraction systems have existed for two decades, these systems have gener-

ally been built by hand and contain domain speci�c information, making them di�cult to port to

other domains. A few researchers have begun to apply machine learning to information extraction

tasks, but most of this work has involved applying learning to pieces of a much larger system. This

dissertation presents a novel rule representation speci�c to natural language and a relational learn-

ing system, Rapier, which learns information extraction rules. Rapier takes pairs of documents

and �lled templates indicating the information to be extracted and learns pattern-matching rules

to extract �llers for the slots in the template. The system is tested on several domains, showing

its ability to learn rules for di�erent tasks. Rapier's performance is compared to a propositional

learning system for information extraction, demonstrating the superiority of relational learning for

some information extraction tasks.

Because one di�culty in using machine learning to develop natural language processing sys-

tems is the necessity of providing annotated examples to supervised learning systems, this disserta-

tion also describes an attempt to reduce the number of examples Rapier requires by employing a

form of active learning. Experimental results show that the number of examples required to achieve

a given level of performance can be signi�cantly reduced by this method.
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Chapter 1

Introduction

There has been an explosive growth in the amount of information available on networked computers

around the world, much of it in the form of natural language documents. An increasing variety

of search engines exist for retrieving such documents using keywords; however, answering many

questions about available information requires a deeper \understanding" of natural language. One

way of providing more \understanding" is with information extraction. Information extraction is

the task of locating speci�c pieces of data from a natural language document, and has been the

focus of DARPA's MUC program (Lehnert & Sundheim, 1991). The extracted information can

then be stored in a database which could then be queried using either standard database query

languages or a natural language database interface. An example of the information extraction task

which was the focus of MUC-3 and MUC-4 appears in Figures 1.1 and 1.2. The goal was to extract

information about Latin American terrorist incidents from news reports.

Information extraction systems seem to be a promising way to deal with certain types of text

documents. However, a di�culty with information extraction systems is that they are di�cult and

time-consuming to build, and they generally contain highly domain-speci�c components, making

porting to new domains also time-consuming. Thus, more e�cient means for developing information

extraction systems are desirable.

Recent research in computational linguistics indicates that empirical or corpus-based meth-

ods are currently the most promising approach to developing robust, e�cient natural language

processing (NLP) systems (Church & Mercer, 1993; Charniak, 1993; Brill & Church, 1996). These

methods automate the acquisition of much of the complex knowledge required for NLP by train-

ing on suitably annotated natural language corpora, e.g. treebanks of parsed sentences (Marcus,

Santorini, & Marcinkiewicz, 1993).

Most of these empirical NLP methods employ statistical techniques such as n-gram models,

hidden Markov models (HMMs), and probabilistic context free grammars (PCFGs). There has

also been signi�cant research applying neural-network methods to language processing (Reilly &

Sharkey, 1992; Miikkulainen, 1993). However, there has been relatively little recent language

research using symbolic learning, although some recent systems have successfully employed decision

trees (Magerman, 1995; Aone & Bennett, 1995), transformation rules (Brill, 1993, 1995), and other

symbolic methods (Wermter, Rilo�, & Scheler, 1996).

Given the successes of empirical NLP methods, researchers have recently begun to apply

learning methods to the construction of information extraction systems (McCarthy & Lehnert,

1



Newswire text

DEV-MUC3-0011 (NOSC)

LIMA, 9 JAN 90 (EFE) -- [TEXT] AUTHORITIES HAVE REPORTED

THAT FORMER PERUVIAN DEFENSE MINISTER GENERAL ENRIQUE LOPEZ

ALBUJAR DIED TODAY IN LIMA AS A CONSEQUENCE OF A TERRORIST

ATTACK.

LOPEZ ALBUJAR, FORMER ARMY COMMANDER GENERAL AND DEFENSE

MINISTER UNTIL MAY 1989, WAS RIDDLED WITH BULLETS BY THREE

YOUNG INDIVIDUALS AS HE WAS GETTING OUT OF HIS CAR IN AN

OPEN PARKING LOT IN A COMMERCIAL CENTER IN THE RESIDENTIAL

NEIGHBORHOOD OF SAN ISIDRO.

LOPEZ ALBUJAR, 63, WAS DRIVING HIS OWN CAR WITHOUT AN

ESCORT. HE WAS SHOT EIGHT TIMES IN THE CHEST. THE FORMER

MINISTER WAS RUSHED TO THE AIR FORCE HOSPITAL WHERE HE DIED.

Figure 1.1: A sample message from the Latin American terrorism domain used in MUC-3 and
MUC-4.

1995; Soderland, Fisher, Aseltine, & Lehnert, 1995, 1996; Rilo�, 1993, 1996; Kim & Moldovan,

1995; Hu�man, 1996). Several di�erent symbolic and statistical methods have been employed,

but most of them are used to generate one part of a larger information extraction system. Our

system Rapier (Robust Automated Production of Information Extraction Rules) learns rules for

the complete information extraction task, rules producing the desired information pieces directly

from the documents without prior parsing or any post-processing. We do this by using a structured

(relational) symbolic representation, rather than learning classi�ers.

Using only a corpus of documents paired with �lled templates, Rapier learns Eliza-like

patterns (Weizenbaum, 1966) that make use of limited syntactic and semantic information, using

freely available, robust knowledge sources such as a part-of-speech tagger or a lexicon. The rules

built from these patterns can consider an unbounded context, giving them an advantage over

more limited representations which consider only a �xed number of words. This relatively rich

representation requires a learning algorithm capable of dealing with its complexities. Therefore,

Rapier employs a relational learning algorithm which uses techniques from several Inductive Logic

Programming (ILP) systems (Lavra�c & D�zeroski, 1994). These techniques are appropriate because

they were developed to work on a rich, relational representation (�rst-order logic clauses). Our

algorithm incorporates ideas from several ILP systems, and consists primarily of a speci�c to general

(bottom-up) search. We show that learning can be used to build useful information extraction rules,

and that relational learning is more e�ective than learning using only simple features and a �xed

context.

Experiments using Rapier were performed in three di�erent domains of varying di�culty.

In a task of extracting information about computer-related jobs from netnews postings, Rapier

performed quite well, achieving recall of 63% and precision of 89%. Rapier was compared to a

Naive Bayes-based system which looks only at a �xed window before and after the �ller (by default,

2



Filled Template

0. MESSAGE: ID DEV-MUC3-0011 (NCCOSC)

1. MESSAGE: TEMPLATE 1

2. INCIDENT: DATE 09 JAN 90

3. INCIDENT: LOCATION PERU: LIMA (CITY): SAN ISIDRO

(NEIGHBORHOOD)

4. INCIDENT: TYPE ATTACK

5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED

6. INCIDENT: INSTRUMENT ID -

7. INCIDENT: INSTRUMENT TYPE GUN: ``-''

8. PERP: INCIDENT CATEGORY -

9. PERP: INDIVIDUAL ID ``THREE YOUNG INDIVIDUALS''

10. PERP: ORGANIZATION ID -

11. PERP: ORGANIZATION CONFIDENCE -

12. PHYS TGT: ID -

13. PHYS TGT: TYPE -

14. PHYS TGT: NUMBER -

15. PHYS TGT: FOREIGN NATION -

16. PHYS TGT: EFFECT OF INCIDENT -

17. PHYS TGT: TOTAL NUMBER -

18. HUM TGT: NAME ``ENRIQUE LOPEZ ALBUJAR''

19. HUM TGT: DESCRIPTION ``FORMER ARMY COMMANDER GENERAL AND

DEFENSE MINISTER'': ``ENRIQUE

LOPEZ ALBUJAR''

20. HUM TGT: TYPE FORMER GOVERNMENT OFFICIAL / FORMER

ACTIVE MILITARY: ``ENRIQUE LOPEZ

ALBUJAR''

21. HUM TGT: NUMBER 1: ``ENRIQUE LOPEZ ALBUJAR''

22. HUM TGT: FOREIGN NATION -

23. HUM TGT: EFFECT OF INCIDENT DEATH: ``ENRIQUE LOPEZ ALBUJAR''

24. HUM TGT: TOTAL NUMBER -

Figure 1.2: The �lled template corresponding to the message shown in Figure 1.1. The slot �llers
include both strings found in the documents and other types of values.

4 words), and does not take into account the order of the words, but only their presence or absence.

Tests of this Naive Bayes-based system on the jobs task produced much worse results: 32% recall at

14% precision. These results demonstrate the value, in some information extraction tasks, at least,

of a richer, relational representation, capable of focusing on a single previous word, if appropriate,

or of considering six or more context words when needed, and also capable of taking into account

the order of the tokens in both the �ller and the context. On an easier task of extracting information

from seminar announcements, Rapier also performed well, achieving 92% precision and 71% recall

overall, although the Naive Bayes system was more competitive in this domain. Rapier did not

perform as well on the third task, which is extracting information about corporate acquisitions

from newswire articles. This probably indicates that more syntactic knowledge than Rapier has

available is required to successfully handle this type of domain and may also indicate a need for

domain-speci�c semantic information. In all three domains, Rapier is competitive with other

state-of-the-art learning systems for information extraction which have been tested on the tasks.

3



The one di�culty of using machine learning to build systems is the necessity of providing

examples to the learning system. In the case of learning information extraction rules, this requires

that a human perform the information extraction task on a number of documents. While this

is signi�cantly less labor intensive than producing an information extraction system by hand, it

is clearly desirable to limit the number of examples required as much as possibly. Therefore, we

have experimented with the application of active learning, speci�cally selective sampling, to limit

the number of examples required to achieve a given level of performance. Selective sampling is a

method for allowing a learning system to select examples to be annotated and used for training

from a pool of unannotated examples. The method attempts to select the most useful examples in

order to reduce the number of annotated example required. Experiments with selective sampling in

the computer-related jobs domain show that it is possible to greatly reduce the number of examples

required to reach the level of performance achieved with the full set of 270 random examples.

This research has focused on two primary goals. First, we show that learning, and, in par-

ticular, relational learning, can be used to build practical information extraction systems. Second,

we show that selective sampling can be e�ectively applied to learning for information extraction to

reduce the human e�ort required to annotate examples for building such systems.

1.1 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents background knowledge on

information extraction, relational learning, and the natural language processing tools which the

Rapier system can use. Chapter 3 describes the representation used by Rapier and presents the

learning algorithm. Chapter 4 discusses the experimental evaluation of Rapier on several domains

and presents the results of this evaluation. Chapter 5 describes the application of active learning

to Rapier and the extensions required to the algorithm to allow for active learning and discusses

the experimental evaluation of Rapier using active learning. Chapter 6 describes related work in

the area of learning rules for information extraction. Finally, Chapter 7 suggests ideas for future

research directions, and Chapter 8 reviews the ideas and results presented in this dissertation and

discusses relevant conclusions.
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Chapter 2

Background

The �rst part of this chapter discusses the information extraction task and characteristics of tra-

ditional information extraction systems. The second section discusses relational learning and some

the design choices involved in developing a relational rule learning system. That section also de-

scribes several previous relational rule learning systems, all of them inductive logic programming

systems, including the three systems that directly inuenced the development of Rapier. The

�nal section of the chapter briey describes the natural language processing resources used in this

research.

2.1 Information Extraction

Information extraction is a shallow form of natural language understanding useful for certain types

of document processing, which has been the focus of ARPA's Message Understanding Conferences

(MUC) (Lehnert & Sundheim, 1991; DARPA, 1992, 1993). It is useful in situations where a set

of text documents exist containing information which could be more easily used by a human or

computer if the information were available in a uniform database format. Thus, an information

extraction system is given the set of documents and a template of slots to be �lled with information

from the document. Information extraction systems locate and in some way identify the speci�c

pieces of data needed from each document.

Two di�erent types of data may be extracted from a document: more commonly, the system

is to identify a string taken directly from the document, but in some cases the system selects one

from a set of values which are possible �llers for a slot. The latter type of slot-�ller may be items

like dates, which are most useful in a consistent format, or they may simply be a set of terms to

provide consistent values for information which is present in the document, but not necessarily

in a consistently useful way. An example of this is in the Latin American terrorism domain used

in MUC-3 and MUC-4 (see Figures 1.1 and 1.2), where an incident may be \THREATENED,"

\ATTEMPTED" or \ACCOMPLISHED."

The data to be extracted may be speci�ed in either of two ways. The system may �ll a

template with the values from the document, or, in the case where all slots are �lled by strings

directly from the document, the system may annotate the document directly.

Information extraction can be useful in a variety of domains. The various MUC's have

focused on tasks such as the Latin American terrorism domain mentioned above, joint ventures,

5



Posting from Newsgroup

Subject: US-TN-SOFTWARE PROGRAMMER

Date: 17 Nov 1996 17:37:29 GMT

Organization: Reference.Com Posting Service

Message-ID: <56nigp$mrs@bilbo.reference.com>

SOFTWARE PROGRAMMER

Position available for Software Programmer experienced

in generating software for PC-Based Voice Mail systems.

Experienced in C Programming. Must be familiar with

communicating with and controlling voice cards; preferable

Dialogic, however, experience with others such as Rhetorix

and Natural Microsystems is okay. Prefer 5 years or more

experience with PC Based Voice Mail, but will consider as

little as 2 years. Need to find a Senior level person who

can come on board and pick up code with very little training.

Present Operating System is DOS. May go to OS-2 or UNIX

in future.

Please reply to:

Kim Anderson

AdNET

(901) 458-2888 fax

kimander@memphisonline.com

Figure 2.1: A sample job posting from a newsgroup.

microelectronics, and company management changes. Others have used information extraction to

track medical patient records (Soderland et al., 1995) and to track company mergers (Hu�man,

1996). More recently, researchers have applied information extraction to less formal text genres

such as rental ads (Soderland, 1998) and web pages (Freitag, 1998a; Hsu & Dung, 1998; Muslea,

Minton, & Knoblock, 1998).

Another domain which seems appropriate, particularly in the light of dealing with the wealth

of online information, is to extract information from text documents in order to create easily

searchable databases from the information, thus making the wealth of text online more easily

accessible. For instance, information extracted from job postings in USENET newsgroups such as

misc.jobs.offered can be used to create an easily searchable database of jobs. Such databases

would be particularly useful as part of a complete NLP system which supported natural language

querying of the system. The work on information extraction reported in this dissertation is part

of an ongoing project to develop such a system. The initial system handles computer-related jobs

only. An example of the information extraction task for the system appears in Figures 2.1 and 2.2.

The architecture of the complete system is shown in �gure 2.3. In addition to the information

extraction rules learned by Rapier, the system requires a query parser and a semantic lexicon for

the query parse. The query parser is being developed using Chill (Zelle & Mooney, 1996), a system

which learns parsers from example sentences paired with their parses, and the semantic lexicon is

6



Filled Template

computer_science_job

id: 56nigp$mrs@bilbo.reference.com

title: SOFTWARE PROGRAMMER

salary:

company:

recruiter:

state: TN

city:

country: US

language: C

platform: PC \ DOS \ OS-2 \ UNIX

application:

area: Voice Mail

req_years_experience: 2

desired_years_experience: 5

req_degree:

desired_degree:

post_date: 17 Nov 1996

Figure 2.2: The �lled template corresponding to the message shown in Figure 2.1. All of the slot-
�llers are strings taken directly from the document. Not all of the slots are �lled, and some have
more than one �ller.

being produced using Wolfie (Thompson, 1995; Thompson & Mooney, 1989), a system which

learns a lexicon from sentences paired with their semantic representations.

Information extraction systems are generally complex, with several modules, some of which

are very domain speci�c (DARPA, 1992, 1993, 1995). They usually incorporate parsers, specialized

lexicons, and discourse processing modules to handle issues such as coreference. Most information

extraction systems are built entirely by hand, though a few have incorporated learning in some

modules(Fisher, Soderland, McCarthy, Feng, & Lehnert, 1995; Lehnert, McCarthy, Soderland,

Rilo�, Cardie, Peterson, Feng, Dolan, & Goldman, 1993).

information
extraction

     NL
messages semantic

 lexicon

database

logical
 query

   query
processor

query
parser

  NL
query

answer

Figure 2.3: Complete System Architecture
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2.2 Symbolic Relational Learning

Since much empirical work in natural language processing has employed statistical techniques

(Charniak, 1993; Miller, Stallard, Bobrow, & Schwartz, 1996; Smadja, McKeown, & Hatzivas-

siloglou, 1996; Wermter et al., 1996), this section discusses the potential advantages of symbolic

relational learning. In order to accurately estimate probabilities from limited data, most statisti-

cal techniques base their decisions on a very limited context, such as bigrams or trigrams (2 or 3

word contexts). However, NLP decisions must frequently be based on much larger contexts that

include a variety of syntactic, semantic, and pragmatic cues. Consequently, researchers have begun

to employ learning techniques that can handle larger contexts, such as decision trees (Magerman,

1995; Miller et al., 1996; Aone & Bennett, 1995), exemplar (case-based) methods (Cardie, 1993;

Ng & Lee, 1996), and a maximum entropy modeling method (Ratnaparkhi, 1997). However, these

techniques still require the system developer to specify a manageable, �nite set of features for use in

making decisions. Developing this set of features can require signi�cant representation engineering

and may still exclude important contextual information.

In contrast, relational learning methods (Birnbaum & Collins, 1991) allow induction over

structured examples that can include �rst-order logical predicates and functions and unbounded

data structures such as lists and trees. In particular, inductive logic programming (ILP) (Lavra�c

& D�zeroski, 1994; Muggleton, 1992) studies the induction of rules in �rst-order logic (Prolog pro-

grams). ILP systems have induced a variety of basic Prolog programs (e.g. append, reverse,

sort) as well as potentially useful rule bases for important biological problems (Muggleton, King,

& Sternberg, 1992; Srinivasan, Muggleton, Sternberg, & King, 1996). Detailed experimental com-

parisons of ILP and feature-based induction have demonstrated the advantages of relational rep-

resentations in two language related tasks, text categorization (Cohen, 1995) and generating the

past tense of an English verb (Mooney & Cali�, 1995). Recent research has also demonstrated the

usefulness of relational learning in classifying web pages (Slattery & Craven, 1998).

Two other advantages of ILP-based techniques are comprehensibility and the ability to use

background knowledge. The comprehensibility of symbolic rules makes it easier for the system de-

veloper to understand and verify the resulting system and perhaps even edit the learned knowledge

(Cohen, 1996). With respect to background knowledge, ILP systems are given Prolog de�nitions

for a set of predicates that can be used in the body of learned rules. This allows the system to

make use of the concepts embodied in the background predicates which are relevant to the concept

being learned.

WhileRapier is not an ILP system, it is a relational learning algorithm learning a structured

rule representation, and its algorithm was inspired by ideas from ILP systems. The ILP-based

ideas are appropriate because they were designed to learn using rich, unbounded representations.

Therefore, the following sections discuss some general design issues in developing ILP and other

rule learning systems and then describe several ILP systems that inuenced Rapier's learning

algorithm, including the three which most directly inspired it: Golem, Chillin, and Progol.

2.2.1 General Algorithm Design Issues

One of the design issues in rule learning systems is the overall structure of the algorithm. There are

two primary forms for this outer loop: compression and covering. Systems that use compression
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begin by creating an initial set of highly speci�c rules, typically one for each example. At each

iteration a more general rule is constructed, which replaces the rules it subsumes, thus compressing

the rule set. At each iteration, all positive examples are under consideration to some extent, and the

metric for evaluating new rules is biased toward greater compression of the rule set. Rule learning

ends when no new rules to compress the rule set are found. Systems that use compression include

Duce, a propositional rule learning system using inverse resolution (Muggleton, 1987), Cigol, an

ILP system using inverse resolution (Muggleton & Buntine, 1988), and Chillin (Zelle & Mooney,

1994).

Systems that use covering begin with a set of positive examples. Then, as each rule is learned,

all positive examples the new rule covers are removed from consideration for the creation of future

rules. Rule learning ends when all positive examples have been covered. This is probably the more

common way to structure a rule learning system. Examples include Foil (Quinlan, 1990), Golem

(Muggleton & Feng, 1992), Progol (Muggleton, 1995), Claudien (De Raedt & Bruynooghe,

1993), and various systems based on Foil such as Focl (Pazzani, Brunk, & Silverstein, 1992),

mFoil (Lavra�c & D�zeroski, 1994), and Foidl(Mooney & Cali�, 1995).

There are trade-o�s between these two designs. The primary di�erence is the trade-o�

between a more e�cient search or a more thorough search. The covering systems tend to be

somewhat more e�cient, since they do not seek to learn rules for examples that have already

been covered. However, their search is less thorough than that of compression systems, since they

may not prefer rules which both cover remaining examples and subsume existing rules. Thus, the

covering systems may end up with a set of fairly speci�c rules in cases where a more thorough

search might have discovered a more general rule covering the same set of examples.

A second major design decision is the direction of search used to construct individual rules.

Systems typically work in one of two directions: bottom-up (speci�c to general) systems create

very speci�c rules and then generalize those to cover additional positive examples, and top-down

(general to speci�c) systems start with very general rules{ typically rules which cover all of the

examples, positive and negative, and then specialize those rules, attempting to uncover the negative

examples while continuing to cover many of the positive examples. Of the systems above, Duce,

Cigol, and Golem and pure bottom-up systems, while Foil and the systems based on it are pure

top-down systems. Chillin and Progol both combine bottom-up and top-down methods.

Clearly, the choice of search direction also creates tradeo�s. Top-down systems are often

better at �nding general rules covering large numbers of examples, since they start with a most

general rule and specialize it only enough to avoid the negative examples. Bottom-up systems may

create overly-specialized rules that don't perform well on unseen data because they may fail to

generalize the initial rules su�ciently. Given a fairly small search space of background relations

and constants, top-down search may also be more e�cient. However, when the branching factor

for a top-down search is very high (as it is when there are many ways to specialize a rule), bottom-

up search will usually be more e�cient, since it constrains the constants to be considered in the

construction of a rule to those in the example(s) that the rule is based on. The systems that

combine bottom-up and top-down techniques seek to take advantage of the e�ciencies of each.

The following sections briey describe Foil and the three systems which most directly

inuenced Rapier's algorithm.

9



Initialization

De�nition := null
Remaining := all positive examples

While Remaining is not empty

Find a clause, C, that covers some examples in Remaining,

but no negative examples.

Remove examples covered by C from Remaining.

Add C to De�nition.

Figure 2.4: Basic Foil Covering Algorithm

2.2.2 Foil

Foil is a prototypical example of a top-down ILP algorithm which uses covering for its outer loop.

It learns a function-free, �rst-order, Horn-clause de�nition of a target predicate in terms of itself

and other background predicates. The input consists of extensional de�nitions of these predicates

as tuples of constants of speci�ed types. For example, input appropriate for learning a de�nition

of list membership would be:

member(Elt, Lst): { <a, [a]>, <a, [a, b]>, <b, [a, b]>,

<a, [a, b, c]>, ...}

components(Lst, Elt, Lst): { <[a], a, []>, <[a, b], a, [b]>,

<[a, b, c], a, [b, c]> ...}

where Elt is a type denoting possible elements which includes a,b,c, and d; Lst is a type de�ned

as consisting of at lists containing up to three of these elements; and components(A,B,C) is

a background predicate which is true i� A is a list whose �rst element is B and whose rest is

the list C (this must be provided in place of a function for list construction). Foil also requires

negative examples of the target concept, which can be supplied directly or computed using a closed-

world assumption. For the example, the closed-world assumption would produce all pairs of the

form <Elt,Lst> that are not explicitly provided as positive examples (e.g., <b,[a]>). Given this

input, Foil learns a program one clause at a time using a greedy covering algorithm that can be

summarized as shown in Figure 2.4.

For example, a clause that might be learned for member during one iteration of this loop is:

member(A,B) :- components(B,A,C).

since it covers all positive examples where the element is the �rst one in the list but does not cover

any negatives. A clause that could be learned to cover the remaining examples is:

member(A,B) :- components(B,C,D), member(A,D).

Together these two clauses constitute a correct program for member.

The \�nd a clause" step is implemented by a general-to-speci�c hill-climbing search that

adds antecedents to the developing clause one at a time. At each step, it evaluates possible literals

that might be added and selects one that maximizes an information-gain heuristic. The algorithm
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Initialize C to R(V1; V2; :::; Vk) :-. where R is the target predicate with arity k.
Initialize T to contain the positive tuples in positives-to-cover and all the

negative tuples.

While T contains negative tuples

Find the best literal L to add to the clause.

Form a new training set T 0 containing for each tuple t in T that satis�es L,
all tuples of the form t � b (t and b concatenated) where b is a set of

bindings for the new variables introduced by L such that the literal is

satis�ed (i.e., matches a tuple in the extensional de�nition of its

predicate).

Replace T by T 0.

Figure 2.5: The \�nd-a-clause" step in the Foil algorithm.

maintains a set of tuples that satisfy the current clause and includes bindings for any new variables

introduced in the body. The pseudocode is Figure 2.5 summarizes the procedure.

Foil considers adding literals for all possible variablizations of each predicate as long as

type restrictions are satis�ed and at least one of the arguments is an existing variable bound by

the head or a previous literal in the body. Literals are evaluated based on the number of positive

and negative tuples covered, preferring literals that cover many positives and few negatives. Let

T+ denote the number of positive tuples in the set T ; then the informativity of a clause is de�ned

as:

I(T ) = � log2(T+=jT j): (2.1)

The chosen literal is then the one that maximizes:

gain(L) = s � (I(T )� I(T 0)); (2.2)

where s is the number of tuples in T that have extensions in T 0 (i.e., the number of current positive

tuples covered by L). This search for a good literal to add to a clause blows up when the number

of background predicates is large, the arity of the predicates is large, or there the number of theory

constants (constants that may appear in clauses) is very large.

Foil also includes many additional features such as: heuristics for pruning the space of

literals searched, methods for including equality, negation as failure, and useful literals that do not

immediately provide gain (determinate literals), pre-pruning and post-pruning of clauses to prevent

over-�tting, and methods for ensuring that induced programs will terminate. More information on

Foil can be found in (Quinlan, 1990; Quinlan & Cameron-Jones, 1993).

2.2.3 Golem

As mentioned above, Golem (Muggleton & Feng, 1992) also uses a greedy covering algorithm very

similar to Foil's outer loop. However, the individual clause construction is bottom-up, based on

the construction of least-general generalizations (LGGs) of more speci�c clauses (Plotkin, 1970). A

clause G subsumes a clause C if there is a substitution for the variables in G that make the literals

in G a subset of the literals in C. Informally, we could turn C into G by dropping some conditions
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uncle(john,deb) :-

sibling(john,ron), sibling(john,dave),

parent(ron,deb), parent(ron,ben),

male(john), male(dave), female(deb).

uncle(bill,jay):-

siblingbill,bruce)

parent(bruce,jay), parent(bruce,rach),

male(bill), male(jay).

Figure 2.6: Two speci�c instances of uncle relationships

uncle(A,B):-

sibling(A,C), sibling(A,D),

parent(C,B), parent(C,E), parent(C,F), parent(C,E)

male(A), male(G), male(H), male(I).

Figure 2.7: The LGG of the clauses in Figure 2.6

and changing some constants to variables. If G subsumes C, anything that can be proved from C

could also be proved from G, since G imposes fewer conditions. Hence G is said to be more general

than C (assuming C does not also subsume G, in which case the clauses must be equivalent except

for renaming of variables).

The LGG of clauses C1 and C2 is de�ned as the least general clause that subsumes both C1

and C2. An LGG is easily computed by \matching" compatible literals of the clauses; wherever the

literals have di�ering structure, the LGG contains a variable. When identical pairings of di�ering

structures occurs, the same variable is used for the pair in all locations.

For example, consider the clauses in Figure 2.6. These two speci�c clauses describe the

concept uncle in the context of some known familial relationships. The rather complex LGG of

these clauses is shown in Figure 2.7. Here A replaces the pair hjohn,billi, B replaces hdeb,jayi,

C replaces hron,brucei, etc. Note that the result contains four parent literals (two of which are

duplicates) corresponding to the four ways of matching the pairs of parent literals from the original

clauses. Similarly, there are four literals for male. In the worst case, the result of an LGG operation

may contain n2 literals for two input clauses of length n. The example LGG contains no female

literal since the second clause does not contain a compatible literal. Straightforward simpli�cation

of the result by removing redundant literals yields the clause in Figure 2.8. This is one of the two

clauses de�ning the general concept, uncle/2.

The construction of the LGG of two clauses is in some sense \context free." The resulting

generalization is determined strictly on the form of the input clauses, there is no consideration

of potential background knowledge. In order to take background knowledge into account Golem

produces candidate clauses by considering Relative LGGs (RLGGS) of positive examples with re-

spect to the background knowledge. The idea is to start with the assumption that any and all

background information might be relevant to determining that a particular instance is a positive
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uncle(A,B):-

sibling(A,C) parent(C,B), male(A).

Figure 2.8: The result of simplifying the clause from Figure 2.7 by removing redundant clauses

Let Pairs = random sampling of pairs of positive examples
Let RLggs = fC :he; e0i 2Pairs and C = RLGG(e; e0) and C consistentg
Let S be set of the pair e; e0 with best cover RLgg in RLggs

Do

Let Examples be a random sampling of positive examples

Let RLggs = fC: e0 2 Examples and C = RLGG(S
S
e0)) and C consistentg

Find e0 = which produces greatest cover in RLggs

Let S = S
S
e0

Let Examples = Examples � cover(RLGG(S))
While increasing-cover

Figure 2.9: Golem's clause construction algorithm

example. Thus, each positive example is represented by a clause of the form: E :- hevery ground

facti where hevery ground facti is a conjunction of all true ground literals that can be de-

rived from the background relations. In the case of member/2, this would include facts such as

components([1],1,[]), components([1,2],1,[2]), components([2],2,[]), etc. An RLGG of

two examples is simply the LGG of the examples' representative clauses. The LGG process serves

to generalize away the irrelevant conditions.

One di�culty of this approach is that interesting background relations will give rise to an

in�nite number of ground facts. For example, there can be no �nite set of facts that completely

describes the components/3 relation, since lists may be inde�nitely long. Golem builds initial

representative clauses for examples by considering a �nite subset corresponding to the facts that

can be derived from the background predicates through a �xed number of binary resolutions.

Figure 2.9 shows Golem's clause construction algorithm.

2.2.4 Chillin

Chillin (Zelle & Mooney, 1994) is an example of an ILP algorithm that uses compression for its

outer loop. It combines elements of both top-down and bottom-up induction techniques including

a mechanism for demand-driven predicate invention. The basic compaction algorithm appears in

Figure 2.10.

Chillin starts with a most speci�c de�nition (the set of positive examples) and introduces

generalizations which make the de�nition more compact (as measured by a Cigol-like size met-

ric (Muggleton & Buntine, 1988)). The search for more general de�nitions is carried out in a

hill-climbing fashion. At each step, a number of possible generalizations are considered; the one

producing the greatest compaction of the theory is implemented, and the process repeats. To de-

termine which clauses in the current theory a new clause should replace, Chillin uses a notion of
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DEF := fE :- true j E 2 Positivesg
Repeat

PAIRS := a sampling of pairs of clauses from DEF
GENS := fG j G = build gen(Ci,Cj ,DEF,Positives,Negatives) for hCi; Cji 2 PAIRSg
G := Clause in GENS yielding most compaction
DEF := (DEF�(Clauses subsumed by G)) [ G

Until no further compaction

Figure 2.10: Chillin's compaction algorithm

empirical subsumption. If a clause A covers all of the examples covered by clause B along with one

or more additional examples, then A empirically subsumes B.

The build gen algorithm attempts to construct a clause which empirically subsumes some

clauses of DEF without covering any of the negative examples. The �rst step is to construct the LGG

of the input clauses. If the LGG does not cover any negative examples, no further re�nement is

necessary. If the clause is too general, an attempt is made to re�ne it using a Foil-like mechanism

which adds literals derivable either from background or previously invented predicates. If the

resulting clause is still too general, it is passed to a routine which invents a new predicate to

discriminate the positive examples from the negatives which are still covered.

2.2.5 Progol

Progol (Muggleton, 1995) also combines bottom-up and top-down search. Like Foil andGolem,

Progol uses a covering algorithm for its outer loop. As in the propositional rule learner AQ

(Michalski, 1983), individual clause construction begins by selecting a random seed example. Us-

ing mode declarations provided for both the background predicates and the predicate being learned,

Progol constructs a most speci�c clause for that random seed example, called the bottom clause.

The mode declarations specify for each argument of each predicate both the argument's type and

whether it should be a constant, a variable bound before the predicate is called, or a variable bound

by the predicate. Given the bottom clause, Progol employs an A*-like search through the set of

clauses containing up to k literals from the bottom clause in order to �nd the simplest consistent

generalization to add to the de�nition. Advantages of Progol are that the constraints on the

search make it fairly e�cient, especially on some types of tasks for which top-down approaches are

particularly ine�cient, and that its search is guaranteed to �nd the simplest consistent generaliza-

tion if such a clause exists with no more than k literals. The primary problems with the system

are its need for the mode declarations and the fact that too small a k may prevent Progol from

learning correct clauses while too large a k may allow the search to explode.

2.3 Natural Language Processing Resources

One issue in any kind of higher level language processing, such as information extraction, is what

kinds of lower level processing are possible and helpful. A number of information extraction systems

use parsers and lexicons (usually at least partially domain speci�c) developed in conjunction with
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the information extraction system. However, dependence upon such parsers or lexicons could limit

the usefulness of a system intended to learn information extraction rules in order to be easily

retargetable to new tasks. Such a system would bene�t most from using language processing

resources which are more general and likely to be of help in a variety of domains.

Two current types of language processing resources which are general enough to apply across

multiple domains are part-of-speech taggers and domain-independent lexicons.

2.3.1 Part-of-speech tagger

A part-of-speech (POS) tagger provides basic syntactic information by taking sentences as input and

labeling each word or symbol in the sentence with a part-of-speech tag (eg. noun, verb, adjective,

preposition). This doesn't provide as much information as a parser, since it doesn't identify phrases

or the relationships between parts of the sentence. However, taggers are typically faster and more

robust than full parsers, particularly in the face of ungrammatical text such as would be commonly

found in newgroup postings and email messages, and to a lesser extent in newswire articles.

The particular tagger used in this research is Eric Brill's tagger as trained on a Wall Street

Journal corpus (Brill, 1994, 1995). This tagger uses 36 di�erent tags excluding punctuation, so

it does make fairly speci�c distinctions in some cases: for example, it identi�es six di�erent verb

forms plus modals; it distinguishes wh-determiners, pronouns, possessive pronouns, and adverbs

from other determiners, pronouns, and adverbs; and it also distinguishes between \to" and other

prepositions. Appendix C contains a list of the part-of-speech tags used, excluding punctuation.

Brill's tagger is also quite accurate on the domain for which it was trained, achieving an accuracy

of 96.6% on the Penn Treebank Wall Street Journal corpus (Brill, 1995). Naturally, its accuracy

on other domains is signi�cantly lower, but it does have the advantage of being trainable. If a

large amount of hand-tagged text happens to exist for a given domain, the tagger can be trained

from scratch. In the absence of such text, several methods exist for tuning the tagger for a speci�c

domain. First, Brill provides methods to incorporate new words and bigrams from a new corpus

into the resources used by the tagger. Second, the lexicon, which is used by the tagger to determine

what parts of speech a word can be and what its most common part of speech is, can be modi�ed to

include new words from the new domain, or to reect the actual distribution of parts of speech in

the new domain. Adding the most frequent novel words to the lexicon seems to be the most e�ective

way of improving tagging quality. Finally, the rules used by the tagger are quite comprehensible,

and new rules can be added by hand to improve the tagging quality. This is a much more di�cult

and time-consuming process, since it requires a good understanding of what the tagger is doing

wrong and how to �x it. Using the �rst two methods for tuning the tagger can typically be done

in two to four hours, depending on the size of the domain.

2.3.2 Lexicon

Lexicons, particularly those with semantic hierarchies, can provide semantic class information. In

this research, the domain-independent lexicon used was WordNet (Miller, Beckwith, Fellbaum,

Gross, & Miller, 1993; Fellbaum, 1998), a lexical database of over 50,000 words which contains a

semantic hierarchy in the form of hypernym links.

The individual items in WordNet are synsets which represent a single meaning, often one
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which is shared by more than one word. For instance, one sense of \man" is shared by \humanity",

"humankind", \world", and \mankind". Each word typically has several synsets to which it belongs.

For example, \man" is a member of ten noun synsets and 2 verb synsets. Within each part of speech

are the various senses of a word: the mappings from word to synset are ordered by frequency. The

synset mentioned above is the �rst sense of \humanity", the second sense of \world", and the

third sense of \man". The synsets in WordNet are related by links of various types, including

antonyms, synonyms, meronyms, holonyms, hyponyms, and hypernyms. The semantic hierarchy

is implemented in the hyponym and hypernym links. Hyponym links point to semantic subclasses

while hypernym links point to semantic superclasses. The semantic hierarchy described by these

links is a forest rather than a single tree, even for each part of speech. For example, the top of the

hierarchy for the �rst sense of \man" (adult male) is \entity", while the top of the hierarchy for

the third sense of \man" (humanity) is \grouping". Thus, two arbitrary synsets in the same part

of speech do not necessarily share a semantic class.
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Chapter 3

The Rapier System

Rapier learns rules for information extraction from training examples consisting of documents

paired with �lled templates such as those in Figures 2.1 and 2.2. The next two sections describe

Rapier's rule representation and learning algorithm.

3.1 Rule Representation

Rapier's rule representation uses Eliza-like patterns (Weizenbaum, 1966) that can make use of

limited syntactic and semantic information. The extraction rules are indexed by template name

and slot name and consist of three parts: 1) a pre-�ller pattern that matches text immediately

preceding the �ller, 2) a pattern that must match the actual slot �ller, and 3) a post-�ller pattern

that must match the text immediately following the �ller. Each pattern is a sequence (possibly

of length zero in the case of pre- and post-�ller patterns) of pattern elements. Rapier makes use

of two types of pattern elements: pattern items and pattern lists. A pattern item matches exactly

one word or symbol from the document that meets the item's constraints. A pattern list speci�es

a maximum length N and matches 0 to N words or symbols from the document (a limited form

of Kleene closure), each of which must match the list's constraints. Rapier uses three kinds of

constraints on pattern elements: constraints on the words the element can match, on the part-of-

speech tags assigned to the words the element can match, and on the semantic class of the words

the element can match. The constraints are disjunctive lists of one or more words, tags, or semantic

classes and document items must match one of those words, tags, or classes to ful�ll the constraint.

Figure 3.1 shows an example of a rule that shows the various types of pattern elements

and constraints. This is a rule constructed by Rapier for extracting the transaction amount from

a newswire concerning a corporate acquisition. This rule extracts the value \undisclosed" from

phrases such as \sold to the bank for an undisclosed amount" or \paid Honeywell an undisclosed

price". The pre-�ller pattern consists of two pattern elements. The �rst is an item with a part-of-

speech constraining the matching word to be tagged as a noun or a proper noun. The second is a

list of maximum length two with no constraints. The �ller pattern is a single item constrained to

be the word \undisclosed" with a POS tag labeling it an adjective. The post-�ller pattern is also

a single pattern item with a semantic constraint of \price".

In using these patterns to extract information, we apply all of the rules for a given slot to a

document and take all of the extracted strings to be slot-�llers, eliminating duplicates. Rules may
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Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) syntactic: fnn,nnpg 1) word: undisclosed 1) semantic: price
2) list: length 2 syntactic: jj

Figure 3.1: A rule for extracting the transaction amount from a newswire concerning a corporate
acquisition. \nn" and \nnp" are the part of speech tags for noun and proper noun, respectively;
\jj" is the part of speech tag for an adjective.

also apply more than once. In many cases, multiple slot �llers are possible, and the system seldom

proposes multiple �llers for slots where only one �ller should occur.

3.2 Learning Algorithm

Rapier, as noted above, is inspired by ILP methods, particularly by Golem, Chillin, and Pro-

gol. It is compression-based and primarily consists of a speci�c to general (bottom-up) search.

The choice of a bottom-up approach was made for two reasons. The �rst reason is the very large

branching factor of the search space, particularly in �nding word and semantic constraints. Learn-

ing systems that operate on natural language typically must have some mechanism for handling

the search imposed by the large vocabulary of any signi�cant amount of text (or speech). Many

systems handle this problem by imposing limits on the vocabulary considered{using only the n

most frequent words, or considering only words that appear at least k times in the training cor-

pus (Yang & Pederson, 1997). While this type of limitation may be e�ective, using a bottom-up

approach reduces the consideration of constants in the creation of any rule to those appearing in

the example(s) from which the rule is being generalized, thus limiting the search without imposing

arti�cial hard limits on the constants to be considered.

The second reason for selecting a bottom-up approach is that we decided to prefer overly

speci�c rules to overly general ones. In information extraction, as well as other natural language

processing task, there is typically a trade-o� between high precision (avoiding false positives) and

high recall (identifying most of the true positives). For the task of building a database of jobs

which partially motivated this work, we wished to emphasize precision. After all, the information

in such a database could be found by performing a keyword search on the original documents,

giving maximal recall (given that we extract only strings taken directly from the document), but

relatively low precision. A bottom-up approach will tend to produce speci�c rules, which also tend

to be precise rules.

Given the choice of a bottom-up approach, the compression outer loop is a good �t. A

bottom-up approach has a strong tendency toward producing speci�c, precise rules. Using com-

pression for the outer loop may partially counteract this tendency with its tendency toward a more

thorough search for general rules. So, like Chillin (Zelle & Mooney, 1994), Rapier begins with a

most speci�c de�nition and then attempts to compact that de�nition by replacing rules with more

general rules. Since in Rapier's rule representation rules for the di�erent slots are independent of

one another, the system actually creates the most speci�c de�nition and then compacts it separately

for each slot in the template.
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3.2.1 Creation of the Initial Rulebase

Thus, the �rst step for each slot is the creation of the most-speci�c rulebase for that slot. For each

document, rules are created for each occurrence of each slot-�ller in that document's template. The

�ller pattern of the rule is a list of pattern items, one for each word or symbol in the �ller, with

a word constraint which is the word or symbol and a tag constraint which is the part-of-speech

tag from the document. The semantic class is left unconstrained because a single word often has

multiple possible semantic classes because of the homonymy and polysemy of language. If semantic

constraints were immediately created, Rapier would have to either use a disjunction of all of the

possible classes at the lowest level of generality (in the case of WordNet{ the synsets that the word

for which the item is created belongs to) or choose a semantic class. The �rst choice is somewhat

problematic because the resulting constraint is quite likely to be too general to be of much use. The

second choice is the best, if and only if the correct semantic class for the word in context is known,

a di�cult problem in and of itself. Selecting the most frequent choice from WordNet might work

for some cases, but certainly not in all cases, and there is the issue of domain speci�city. The most

frequent meaning of a word in all contexts may not be the most frequent meaning of that word in the

particular domain in question. And, of course, even within a single domain words will have multiple

meanings so even determining the most frequent meaning of a word in a speci�c domain may often

be a wrong choice. Rapier avoids the issue altogether by waiting to create semantic constraints

until generalization. Thus, it implicitly allows the disjunction of classes, selecting a speci�c class

only when the item is generalized against one containing a di�erent word. By postponing the choice

of a semantic class until there are multiple items required to �t the semantic constraint, Rapier

narrows the number of possible choices for the semantic class to classes that cover two or more

words. Details concerning the creation of semantic constraints are discussed in Section 3.2.4.

The creation of the pre-�ller and post-�ller patterns proceeds in the same fashion as the �ller

pattern. The pre-�ller pattern is a list of of pattern items for all of the document tokens preceding

the �ller in the document, and the post-�ller pattern consists of items for all of the document

tokens after the �ller. Thus, each rule covers only the one slot-�ller for which it was created, and

it provides full information (within the limits of the rule representation) about one occurrence of

that �ller and its context.

3.2.2 Compression of the Rulebase

Once it has created the most-speci�c de�nition for a slot, Rapier attempts to compact the rulebase

by replacing speci�c rules with more general ones. The more general rules are created by taking

several random pairs of rules from the rulebase, �nding generalizations of those rule pairs, and,

if the generalizations result in one or more acceptable rules, selecting the best rule to add to the

rulebase. When the new rule is added to the rulebase, Rapier removes the old rules which it

empirically subsumes, i.e. the ones which cover a subset of the examples covered by the new rule.

As indicated in Chapter 2, inspiration for the decision to create new rules by generalizing

pairs of rules came from Golem (Muggleton & Feng, 1992). However, Rapier di�ers from Golem

signi�cantly in its use of this basic concept. First, Golem always selects random pairs of examples,

and Rapier selects random pairs of rules. When the rules selected by Rapier are the most-speci�c

rules covering a single example, there is no real di�erence between these two, since an example in
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Inductive Logic Programming is essentially a most-speci�c rule. However, Rapier may select rules

that resulted from an earlier generalization and generalize them further. This points to a second

di�erence between the two learning algorithms: the di�erence in the way they repeat generalization

to achieve rules as general as possible. While Golem takes the rule resulting from generalizing a

pair of examples and attempts to generalize it further to cover new, randomly selected examples,

Rapier simply adds the rule to the rulebase where it may be later selected for generalization with

another rule. These di�erences stem primarily from the di�ering approaches of the two algorithms

at the outer level. Since Golem takes a covering approach, it must fully generalize a given rule

initially, since the examples the rule covers will be removed from further consideration. Rapier's

compression approach leads it to do less generalization at each loop.

The most unique aspect of Rapier's learning algorithm is the way in which it actually

creates a new rule from a random pair of rules. The straightforward method of generalizing two

rules together would be �nd the least general generalization (LGG) of the two pre-�ller patterns

and use that as the pre-�ller pattern of the new rule, make the �ller pattern of the new rule be

the LGG of the two �ller patterns, and then do the same for the post-�ller pattern. There are,

however, two serious problems with this obvious approach.

The �rst problems is the expense of computing the LGGs of the pre-�ller and post-�ller

patterns. These patterns may be very long, and the pre-�ller or post-�ller patterns of two rules

may be of di�erent lengths. As is further discussed in Section 3.2.4, generalizing patterns of di�erent

lengths is computationally expensive because each individual pattern element in the shorter pattern

may be generalized against one or more elements of the longer pattern, and it is not known ahead

of time how elements should be combined to produce the LGG. Thus, the computation of the

LGG of the pre-�ller and post-�ller patterns in their entirety may be prohibitively computationally

expensive.

The second problem is not a matter of computational complexity, but rather a problem

caused by the power of the rule representation. Because Rapier's rule representation allows for

unlimited disjunction, the LGG of two constraints is always their union. When the two constraints

di�er, the resulting disjunct may be the desirable generalization, but often a better generalization

results from simply removing the constraint instead of creating the disjunction. Therefore, when

generalizing pattern elements, rather than simply taking the LGG of the constraints, it is useful to

consider multiple generalizations if the constraints on the pattern elements di�er, and this is the

approach the Rapier takes { considering for each pair of di�ering constraints the generalization

created by dropping the constraint as well as the generalization which is the union of the constraints.

However, considering multiple generalizations of each pair of pattern elements greatly increases the

computational complexity of generalizing pairs of lengthy patterns such as the most-speci�c pre-

�llers and post-�llers tend to be.

Because of these issues, Rapier does not use a pure bottom-up approach. Instead, like

Progol, it combines the bottom-up approach with a top-down component, using a speci�c rule to

constrain a top-down search for an acceptable general rule. However, instead of using a single seed

or using some type of user-provided information (such as Progol's modes), Rapier uses a pair of

rules to constrain the search, more like Chillin does. This approach, along with the di�erence in

representation, makes Rapier's top-down search very di�erent from Progol's.

Rapier's rule generalization method operates on the principle that the relevant information
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For each slot, S in the template being learned
SlotRules = most speci�c rules for S from example documents
while compression has failed fewer than CompressLim times

initialize RuleList to be an empty priority queue of length k

randomly select M pairs of rules from SlotRules

�nd the set L of generalizations of the �llers of each rule pair
for each pattern P in L

create a rule NewRule with �ller P and empty pre- and
post-�llers

evaluate NewRule and add NewRule to RuleList

let n = 0
loop

increment n
for each rule, CurRule, in RuleList

NewRuleList = SpecializePreFiller (CurRule, n)
evaluate each rule in NewRuleList and add it to RuleList

for each rule, CurRule, in RuleList

NewRuleList = SpecializePostFiller (CurRule, n)
evaluate each rule in NewRuleList and add it to RuleList

until best rule in RuleList produces only valid �llers or
the value of the best rule in RuleList has failed to
improve over the last LimNoImprovements iterations

if best rule in RuleList covers no more than an allowable
percentage of spurious �llers

add it to SlotRules and remove empirically subsumed rules

Figure 3.2: Rapier Algorithm for Inducing Information Extraction Rules

for extracting a slot-�ller will be close to that �ller in the document. Therefore, Rapier begins by

generalizing the two �ller patterns and creates rules with the resulting generalized �ller patterns

and empty pre-�ller and post-�ller patterns. It then specializes those rules by adding pattern

elements to the pre-�ller and post-�ller patterns, working outward from the �ller. The elements

to be added to the patterns are created by generalizing the appropriate portions of the pre-�llers

or post-�llers of the pair of rules from which the new rule is generalized. Working in this way

takes advantage of the locality of language, but does not preclude the possibility of using pattern

elements that are fairly distant from the �ller. Further details of the specialization process appear

below in Section 3.2.5.

Figure 3.2 shows Rapier's basic algorithm. RuleList is a priority queue of length k which

maintains the list of rules still under consideration, where k is a parameter of the algorithm. The

priority of the rule is its value according to Rapier's heuristic metric for determining the quality

of a rule (see Section 3.2.3). Rapier's search is basically a beam-search: a breadth-�rst search

keeping only the best k items at each pass. However, the search does di�er somewhat from a

standard beam-search in that the nodes (or rules) are not fully expanded at each pass (since at

each iteration the specialization algorithms only consider pattern elements out to a distance of n

from the �ller as will be further described in Section 3.2.5), and because of this the old rules are

only thrown out when they fall o� the end of the priority queue.
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3.2.3 Rule Evaluation Metric

One di�culty in designing the Rapier algorithm was in determining an appropriate heuristic

metric for evaluating the rules being learned. The �rst issue is the measurement of negative

examples. Clearly, in a task like information extraction there are a very large number of possible

negative examples { strings which should not be extracted { a number large enough to make explicit

enumeration of the negative examples di�cult, at best. Another issue is the question of precisely

which substrings constitute appropriate negative examples: should all of the strings of any length be

considered negative examples, or only those strings with lengths similar to the positive examples

for a given slot. To avoid these problems, Rapier does not enumerate the negative examples,

but uses a notion of implicit negatives instead (Zelle, Thompson, Cali�, & Mooney, 1995). First,

Rapier makes the assumption that all of the strings which should be extracted for each slot are

speci�ed, so that any strings which a rule extracts that are not speci�ed in the template are assumed

to be spurious extractions and, therefore, negative examples. Whenever a rule is evaluated, it is

applied to each document in the training set. Any �llers that match the �llers for the slot in

the training templates are considered positive examples; all other extracted �llers are considered

negative examples covered by the rule.

Given a method for determining the negative as well as the positive examples covered by

the rule, a rule evaluation metric can be devised. Because Rapier does not use a simple search

technique such as hill-climbing, it cannot use a metric like information gain (Quinlan, 1990) which

measures how much each proposed new rule improves upon the current rule in order to pick the

new rule with the greatest improvement. Rather, each rule needs an inherent value which can be

compared with all other rules. One such value is the informativity of each rule (see Equation 2.1).

However, while informativity measures the degree to which a rule separates positive and negative

examples (in this case, identi�es valid �llers but not spurious �llers), it makes no distinction between

simple and complex rules. The problem with this is that, given two rules which cover the same

number of positives and no negatives but di�erent levels of complexity (one with two constraints and

one with twenty constraints), we would expect the simpler rule to generalize better to new examples,

so we would want that rule to be preferred. Many machine learning algorithms encode such a

preference; all top-down hill-climbing algorithms which stop when a rule covering no negatives is

found have this preference for simple rather than complex rules. Since Rapier's search does not

encode such a preference, but can, because of its consideration of multiple ways of generalizing

constraints, produce many rules of widely varying complexities at any step of generalization or

specialization, the evaluation metric for the rules needs to encode a bias against complex rules.

Finally, we want the evaluation metric to be biased in favor of rules which cover larger number of

positive examples.

One evaluation metric which clearly seems to �t the requirements is theminimum description

length (MDL) (Rissanen, 1978; Quinlan & Rivest, 1989). The idea behind MDL is that the \best"

generalization is one that minimizes the size of the description of the data. Thus, in developing

a theory that describes data, an MDL metric seeks to minimize the size of the theory plus the

corrections to the theory to handle examples not correctly handled by the theory (usually simply

listing the positive examples not yet covered plus correction for negative examples covered). MDL

seems an excellent choice for a system like Rapier. It provides a principled way to measure both

the accuracy and the complexity of the rules covered. It also �ts as easily with a compression outer
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loop as with a covering outer loop.

In actually using MDL, the primary issue is how to measure the size of the theory and

the corrections. The principled way to do this is to compute the minimal number of bits required

to transmit the theory and the corrections. Initial experiments using MDL with this method of

measuring the size of the theory and corrections yielded somewhat disappointing results. The recall

was in the expected range, but the precision was much lower than expected for the task.

One way of adjusting the performance of the MDL metric is to modify the method of

measurement of the theory length and the corrections. Therefore, an alternate size metric was

developed, one which is deliberately designed to reect the speci�city of the various aspects of

the rules. The size of the rule is computed by a simple heuristic as follows: each pattern item

counts 2; each pattern list counts 3; each disjunct in a word constraint counts 2; and each disjunct

in a POS tag constraint or semantic constraint counts 1. Because of the compression style loop,

there is no need to measure positive examples, since they are guaranteed to be covered by the

theory. Each covered negative example counts a �xed size (several di�erent values for this size

were tried). This alternative measurement heuristic did slightly increase the precision over the

principled metric, but still left precision much lower than expected. Although MDL has a strong

theoretical base, it does not necessarily prefer accurate theories and has previously been shown

to perform poorly on certain tasks, although adding penalties and using an alternative encoding

improved performance (Quinlan, 1994, 1995). Like other model selection methods, MDL merely

provides a bias for preferring theories, and it seems not to be the correct bias for this task.

The performance of the MDL metric indicates that it is giving too much weight to the

complexity of the rules and insu�cient weight to the rules' accuracy. One way to solve this problem

is to use a metric which computes accuracy and complexity in di�erent terms which could then

be weighted appropriately to allow each to inuence the evaluation. Putting together all of the

requirements for a desirable evaluation metric described above, an appropriate metric might be to

take the informativity of the rule and weight that by the size of the rule divided by the number of

positives covered. This is the metric that Rapier uses. The informativity is computed using the

Laplace estimate of the probabilities. The size of a rule is computed in the same way as the second

MDL metric described above and then divided by 100 to bring the heuristic size estimate into a

range which allows the informativity and the rule size to inuence each other, with neither value

being overwhelmed by the other. Thus the evaluation metric is computed as:

ruleV al = � log2(
p+ 1

p+ n+ 2
) +

ruleSize

p

where p is the number of correct �llers extracted by the rule and n is the number of spurious �llers

the rule extracts.

Noise handling

Rapier does allow coverage of some spurious �llers. The primary reason for this is that human

annotators make errors, especially errors of omission. If Rapier rejects a rule covering a large

number of positives because it extracts a few negative examples, it can be prevented from learning

useful patterns by the failure of a human annotator to notice even a single �ller that �ts that pattern

which should, in fact, be extracted. If Rapier's specialization ends due to failure to improve on
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the best rule for too many iterations and the best rule still extracts spurious examples, the best

rule is used if it meets the criteria:

p� n

p+ n
> noiseParam

where p is the number of valid �llers extracted by the rule and n is the number of spurious �llers

extracted. This equation is taken from Ripper (Cohen, 1995), which uses it for pruning rules

measuring p and n using a hold-out set. Because Rapier is usually learning from a relatively small

number of examples, it does not use a hold-out set or internal cross-validation in its evaluation of

rules which cover spurious �llers, but uses a much higher default value of noiseParam (Cohen uses

a default of 0.5; Rapier's default value is 0.9).

Note that Rapier's noise handling does not involve pruning, as noise handling often does.

Pruning is appropriate for top-down approaches, because in noise handling the goal is to avoid

creating rules that are too specialized and over-�t the data and, in pure top-down systems, the

only way to generalize a too-speci�c rule is some sort of pruning. Since Rapier is a primarily

bottom-up compression-based system, it can depend on subsequent iterations of the compression

algorithm to further generalize any rules that may be too speci�c. The noise handling mechanism

need only allow the acceptance of noisy rules when the \best" rule, according to the rule evaluation

metric, covers negative examples.

3.2.4 Computing the Generalizations of Two Patterns

The description of Rapier's algorithm thus far has given the overall structure of the algorithm

and has described its search pattern but has left vague three important steps: the generalization

of a pair of �llers and the two specialization phases: specialization of the pre-�ller pattern and

specialization of the post-�ller pattern. Crucial to an understanding of these three steps is the

understanding of how Rapier generalizes pairs of patterns. Therefore, this section describes how

this is done, starting by describing the generalization of constraints, then the generalization of

pattern elements, and �nally the generalization of patterns.

Constraint Generalization

The generalization of a pair of word or tag constraints is straightforward. The only issue involved

in this generalization is that simply taking the LGG of the constraints will always produce a

disjunction, and it is preferable to consider both the disjunction and the more general option of

simply dropping the constraint. Throughout the following discussion, an empty constraint is used

to describe the result of dropping a constraint.

In three cases, Rapier does simply take the LGG as the only appropriate generalization.

Clearly, if the two constraints are identical, then the new constraint is simply the same as the original

constraints. If either constraint is empty (the word or tag is unconstrained), then the generalized

constraint is also empty. If either constraint is a superset of the other, the new constraint will

be the superset. The reason for only creating the disjunction in this case is that the disjunction

which is the superset must have been one of two generalizations created, so the result of dropping

the constraint either is still under consideration elsewhere or has been rejected in favor of the

disjunction.
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In all other cases, two alternative generalizations are created: one is the union of the two

constraints and one is the empty constraint. Thus, the results of generalizing fnn, nnpg and fadjg

are fnn, nnp, adjg and the empty tag constraint.

The generalization of semantic constraints is more complex for two reasons. First, as men-

tioned above, because a word can be a member of many semantic classes, Rapier does not create

semantic constraints in the initial rules, but instead waits until generalization so that a single se-

mantic class covering at least two di�erent words is chosen, making it more likely that the semantic

class is a useful generalization. The second cause for the greater complexity is the use of a semantic

hierarchy. Rather than simply creating disjunctions of classes, the system seeks to �nd a superclass

covering all of classes in the initial constraints. Given these issues, the generalization of semantic

constraints proceeds as follows:

� If the two constraints are non-empty and identical, the new constraint is the same as the

original constraints.

� If both constraints are empty and either pattern element has an empty word constraint or a

word constraint containing more than one word, the new constraint is empty. In this case,

the constraints in the element with the empty word constraint or the word constraint with

multiple words must be the result of a previous generalization. Since the semantic class is

unconstrained, search for an appropriate semantic constraint must have already failed.

� If both semantic constraints are empty and the pattern elements' word constraints each consist

of a single word and the two word constraints di�er, Rapier attempts to create a semantic

constraint. The system searches the semantic hierarchy for a class which covers both of the

words in the word constraints. The goal is to �nd the least general class which covers a

meaning for each of the words. In WordNet, this means �nding the synsets for the two words

and searching, following the hypernym links, for the synset which is closest to a synset for each

word. If the two words are \man"and \world", the semantic class will be the synset shared

by \humanity", \mankind", \world", \humankind", and \man", which is the second synset

for \world" and the third synset for \man". The words \man" and \woman" would result

in the semantic class \person", while the words \man" and \rock" would result in \entity".

If no match is found, the new semantic constraint will be empty. Rapier avoids creating a

semantic constraint when the two word constraints are identical for the same reason that it

does not create semantic constraints for the initial rules: having a only a single word leaves

the choice of a semantic class insu�ciently constrained. This will not prevent it from creating

a semantic class later, because the word constraint in the rule will still be a single word.

� If one of the semantic constraints is empty and the other is not, there are two cases:

1. If the pattern element with the empty semantic constraint also has an empty word

constraint or a word constraint with multiple words, the generalized constraint will be

empty.

2. Otherwise, the system starts with the semantic class in the semantic constraint and

climbs the semantic hierarchy as necessary to �nd a semantic class which covers the

word in the �rst element's word constraint. That semantic class will be the new semantic

constraint.
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Elements to be generalized
Element A Element B
word: man word: woman
syntactic: nnp syntactic: nn
semantic: semantic:

Resulting Generalizations
word: word: fman, womang
syntactic: fnn, nnpg syntactic: fnn, nnpg
semantic: person semantic: person

word: word: fman, womang
syntactic: syntactic:
semantic: person semantic: person

Figure 3.3: An example of the generalization of two pattern elements. The words \man" and
\woman" form two possible generalizations: their disjunction and dropping the word constraint.
The tags \nn" (noun) and \nnp" (proper noun) also have two possible generalizations. Thus, there
are a total of four generalizations of the two elements.

� Finally, if both semantic constraints are non-empty, the system searches for the lowest class

in the semantic hierarchy which is a superclass of both constraints, and makes that the

new semantic constraint. If no matching superclass is found, the new constraint is empty.

Thus, for semantic classes, Rapier does not actually make use of disjunction in the current

implementation.

It should be noted that the implementation of semantic constraints and their generalization

is very closely tied to WordNet (Miller et al., 1993) since that is the semantic hierarchy used in

this research. However, the code has been carefully modularized in order to make the process of

substituting an alternative source for semantic information or modifying the generalization method

to allow for disjunctions of classes relatively easy.

Generalizing Pattern Elements

Given the rules for generalizing constraints, the generalization of a pair of pattern elements is fairly

simple. First, the generalizations of the word, tag and semantic constraints of the two pattern

elements are computed as described above. From that set of generalizations, Rapier computes

all combinations of a word constraint, a tag constraint, and the semantic constraint and creates

a pattern element with each combination. See Figure 3.3 for an example of this combination. If

both of the original pattern elements are pattern items, the new elements are pattern items as

well. Otherwise, the new elements are pattern lists. The length of these new pattern lists is the

maximum length of the original pattern lists (or the length of the pattern list in the case where a

pattern item and a pattern list are being generalized).
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Patterns to be Generalized
Pattern A Pattern B
1) word: ate 1) word: hit

syntactic: vb syntactic: vb
2) word: the 2) word: the

syntactic: dt syntactic: dt
3) word: pasta 3) word: ball

syntactic: nn syntactic: nn

Resulting Generalizations
1) word: fate, hitg 1) word:

syntactic: vb syntactic: vb
2) word: the 2) word: the

syntactic: dt syntactic: dt
3) word: fpasta, ballg 3) word: fpasta, ballg

syntactic: nn syntactic: nn

1) word: fate, hitg 1) word:
syntactic: vb syntactic: vb

2) word: the 2) word: the
syntactic: dt syntactic: dt

3) word: 3) word:
syntactic: nn syntactic: nn

Figure 3.4: Generalization of a pair of patterns of equal length. For simplicity, the semantic
constraints are not shown, since they never have more than one generalization.

Generalizing Patterns

Generalizing a pair of patterns of equal length is also quite straightforward. Rapier pairs up the

pattern elements from �rst to last in the patterns and computes the generalizations of each pair.

It then creates all of the patterns made by combining the generalizations of the pairs of elements

in order. Figure 3.4 shows an example.

Generalizing pairs of patterns that di�er in length is more complex, and the problem of

combinatorial explosion is greater. Suppose we have two patterns: one �ve elements long and the

other three elements long. We need to determine how to group the elements to be generalized. If

we assume that each element of the shorter pattern must match at least one element of the longer

pattern, and that each element of the longer pattern will match exactly one element of the shorter

pattern, we have a total of three ways to match each element of the shorter pattern to elements of

the longer pattern, and a total of six ways to match up the elements of the two patterns. Figures 3.5

and 3.6 demonstrate the problem. As the patterns grow longer and the di�erence is length grows

larger, the problem becomes more severe.

In order to limit this problem somewhat, before creating all of the possible generalizations,

Rapier searches for any exact matches of two elements of the patterns being generalized, making

the assumption that if an element from one of the patterns exactly matches an element of the

other pattern then those two elements should be paired and the problem broken into matching
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Figure 3.5: Two patterns of di�ering lengths. The lines show the various elements that may be
grouped together for generalization.

the segments of the patterns to either side of these matching elements. However, the search for

matching elements is con�ned by the �rst assumption of matching above: that each element of the

shorter pattern should be generalized with at least one element of the longer pattern. Thus, if the

shorter pattern, A, has three elements and the longer, B, has �ve, the �rst element of A is compared

to elements 1 to 3 of B, element 2 of A to elements 2-4 of B, and element 3 of A to elements 3-5

of B. If any matches are found, they can greatly limit the number of generalizations that need to

be computed. Figure 3.7 shows an example where �nding an exact match is very helpful. Since

the third element of the longer pattern exactly matches the second element of the shorter, those

elements are paired, leaving only one way to combine the remaining pattern elements.

Any exact matches that are found break up the patterns into segments which still must be

generalized. Each pair of segments can be treated as a pair of patterns that need to be generalized,

so if any corresponding pattern segments are of equal length, they are handled just like a pair of

patterns of the same length as described above. Otherwise, we have patterns of uneven length that

must be generalized.

There are three special cases of di�erent length patterns. First, the shorter pattern may

have 0 elements. In this case, the pattern elements in the longer pattern are generalized into a set

of pattern lists, one pattern list for each alternative generalization of the constraints of the pattern

elements. Each of the resulting pattern lists must be able to match as many document tokens as

the elements in the longer pattern, so the length of the pattern lists is the sum of the lengths of

the elements of the longer pattern, with pattern items naturally having a length of one. Figure 3.8

demonstrates this case.

The second special case is when the shorter pattern has a single element. This is similar

to the previous case, with each generalization again being a single pattern list, with constraints

generalized from the pattern elements of both patterns. In this case the length of the pattern lists is

the greater of the length of the pattern element from the shorter pattern or the sum of the lengths

of the elements of the longer pattern. The length of the shorter pattern must be considered in case

it is a list of length greater than the length of the longer pattern. A example of this case appears

in Figure 3.9.

The third special case is when the two patterns are long or very di�erent in length. In this

case, the number of generalizations becomes very large, so Rapier simply creates a single pattern
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Figure 3.6: The six possible ways the elements of the patterns in Figure 3.5 may be matched up
for generalization.

list with no constraints and a length equal to the longer of the two patterns (measuring sums of

lengths of elements). This case happens primarily with slot �llers of very disparate length, where

there is unlikely to be a useful generalization, and any useful rule is likely to make use of the context

rather than the structure of the actual slot �ller.

When none of the special cases holds, Rapier must create the full set of generalizations

as described above. Rapier creates the set of generalizations of the patterns by �rst creating the

generalizations of each of the elements of the shorter pattern against each possible set of elements

from the longer pattern using the assumptions mentioned above: each element from the shorter

pattern must correspond to at least one element from the longer pattern and each element of the

longer pattern corresponds to exactly one element of the shorter pattern for each grouping. Once

all of the possible generalizations of elements are computed, the generalizations of the patterns

are created by combining the possible generalizations of the elements in all possible combinations

which include each element of each pattern exactly once in order. In the case of a pattern with 3

elements and one with 5, as in Figure 3.5, the generalizations of the pattern would be all of the

combinations of generalizations of elements corresponding to the six possible groupings of pattern

elements that appear in Figure 3.6. Since each generalization of elements may produce up to four

generalizations, there will typically be far more than six generalizations computed.

In the case where exact matches were found, one step remains after the various resulting

pattern segment pairs are generalized. The generalizations of the patterns are computed by creating

all possible combinations of the generalizations of the pattern segment pairs. In the case depicted
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Figure 3.7: The grouping that results from �nding an exact match between element 3 of the longer
pattern and element 2 of the shorter pattern from Figure 3.5. Once the identical elements are
paired, the remainder can be grouped in only one way.

Pattern to be Generalized
1) word: bank

syntactic: nn
2) word: vault

syntactic: nn

Resulting Generalizations
1) list: length 2 1) list: length 2

word: fbank, vaultg word:
syntactic: nn syntactic: nn

Figure 3.8: Generalization of two pattern items matched with no pattern elements from the other
pattern.

in Figure 3.7, this results in up to sixteen generalizations, as each generalization for the �rst pattern

segment is combined with the middle element of the patterns and each generalization of the �nal

pattern segment.

3.2.5 The Specialization Phase

The �nal piece of the learning algorithm is the specialization phase, indicated by calls to Special-

izePreFiller and SpecializePostFiller in Figure 3.2. These functions take two parameters, the rule

to be specialized and an integer n which indicates how many elements of the pre-�ller or post-

�ller patterns of the original rule pair are to be used for this specialization. As n increments,

the specialization uses more context, working outward from the slot-�ller. In order to carry out

the specialization phase, each rule maintains information about the two rules from which it was

created, which are referred to as the base rules: pointers to the two base rules, how much of the

pre-�ller pattern from each base rule has been incorporated into the current rule, and how much

of the post-�ller pattern from each base rule has been incorporated into the current rule. The two

specialization functions return a list of rules which have been specialized by adding to the rule
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Patterns to be Generalized
Pattern A Pattern B
1) word: bank 1) list: length 3

syntactic: nn word:
2) word: vault syntactic: nnp

syntactic: nn

Resulting Generalizations
1) list: length 3 1) list: length 3

word: word:
syntactic: fnn,nnpg syntactic:

Figure 3.9: Generalization of two pattern items matched with one pattern element from the other
pattern. Because Pattern B is a pattern list of length 3, the resulting generalizations must also
have a length of 3.

generalizations of the appropriate portions of the pre-�llers or post-�llers of the base rules.

One issue arises in these functions. If the system simply considers adding one element from

each pattern at each step away from the �ller, it may miss some useful generalizations since the

lengths of the two patterns being generalized would always be the same. For example, assume we

have two rules for required years of experience created from the phrases \6 years experience re-

quired" and \4 years experience is required." Once the �llers were generalized, the algorithm would

need to specialize the resulting rule(s) to identify the number as years of experience and as required

rather than desired. The �rst two iterations would create items for \years" and \experience," and

the third iteration would match up \is" and \required." It would be helpful if a fourth iteration

could match up the two occurrences of \required," creating a list from \is." In order to allow this

to happen, the specialization functions do not only consider the result of adding one element from

each pattern; they also consider the results of adding an element to the �rst pattern, but not the

second, and adding an element to the second pattern but not the �rst.

Pseudocode for SpecializePreFiller appears in Figure 3.10 and that for SpecializePostFiller

appears in Figure 3.11. In order to allow pattern lists to be created where appropriate, the functions

generalize three pairs of pattern segments. The patterns to be generalized are determined by �rst

determining how much of the pre-�ller (post-�ller) of each of the original pair of rules the current

rule already incorporates. Using the pre-�ller case as an example, if the current rule has an

empty pre-�ller, the three patterns to be generalized are: 1) the last n elements of the pre-�ller of

BaseRule1 and the last n� 1 elements of the pre-�ller of BaseRule2, 2) the last n� 1 elements of

the pre-�ller of BaseRule1 and the last n elements of the pre-�ller of BaseRule2, and 3) the last n

elements of the pre-�ller of each of the base rules. If the current rule has already been specialized

with a portion of the pre-�ller, then whatever elements it already incorporates will not be used, but

the pattern of the pre-�ller to be used will start at the same place, so that n is not the number of

elements to be generalized, but rather speci�es the portion of the pre-�ller which can be considered

at that iteration.

The post-�ller case is analogous to the pre-�ller case except that the portion of the pattern
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SpecializePreFiller(CurRule,n)
Let BaseRule1 and BaseRule2 be the two rules from which CurRule was created
Let CurPreFiller be the pre-�ller pattern of CurRule
Let PreFiller1 be the pre-�ller pattern of BaseRule1
Let PreFiller2 be the pre-�ller pattern of BaseRule2
Let PatternLen1 be the length of PreFiller1
Let PatternLen2 be the length of PreFiller2
Let FirstUsed1 be the �rst element of PreFiller1 that has been used in CurRule

Let FirstUsed2 be the �rst element of PreFiller2 that has been used in CurRule

GenSet1 = Generalizations of elements (PatternLen1 + 1 � n) to FirstUsed1 of
PreFiller1 with elements (PatternLen2 + 1 � (n � 1)) to FirstUsed2 of
PreFiller2

GenSet2 = Generalizations of elements (PatternLen1 + 1 � (n � 1)) to
FirstUsed1 of PreFiller1 with elements (PatternLen2 + 1 � n) to
FirstUsed2 of PreFiller2

GenSet3 = Generalizations of elements (PatternLen1 + 1 � n) to FirstUsed1 of
PreFiller1 with elements (PatternLen2 + 1 � n) to FirstUsed2 of
PreFiller2

GenSet = GenSet1 [GenSet2 [GenSet3

NewRuleSet = empty set
For each PatternSegment in GenSet

NewPreFiller = PatternSegment concatenate CurPreFiller
Create NewRule from CurRule with pre-�ller NewPreFiller
Add NewRule to NewRuleSet

Return NewRuleSet

Figure 3.10: Rapier Algorithm for Specializing the Pre-Filler of a Rule

to considered is that at the beginning, since the algorithm works outward from the �ller.

3.2.6 Example

As an example of the entire process of creating a new rule, consider generalizing the rules based on
the phrases \located in Atlanta, Georgia." and \o�ces in Kansas City, Missouri." These phrases
are su�cient to demonstrate the process, though rules in practice would be much longer. The
initial, speci�c rules created from these phrases for the city slot for a job template would be

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: located 1) word: atlanta 1) word: ,

tag: vbn tag: nnp tag: ,

2) word: in 2) word: georgia

tag: in tag: nnp

3) word: .

tag: .

and
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SpecializePostFiller(CurRule,n)
Let BaseRule1 and BaseRule2 be the two rules from which CurRule was created
Let CurPostFiller be the post-�ller pattern of CurRule
Let PostFiller1 be the post-�ller pattern of BaseRule1
Let PostFiller2 be the post-�ller pattern of BaseRule2
Let PatternLen1 be the length of PostFiller1
Let PatternLen2 be the length of PostFiller2
Let LastUsed1 be the last element of PostFiller1 that has been used in CurRule

Let LastUsed2 be the last element of PostFiller2 that has been used in CurRule

GenSet1 = Generalizations of elements LastUsed1 to n of PostFiller1 with
elements LastUsed2 to (n � 1) of PostFiller2

GenSet2 = Generalizations of elements LastUsed1 to (n � 1) of PostFiller1 with
elements LastUsed2 to n of PostFiller2

GenSet3 = Generalizations of elements LastUsed1 to n of PostFiller1 with
elements LastUsed2 to n of PostFiller2

GenSet = GenSet1 [GenSet2 [GenSet3

NewRuleSet = empty set
For each PatternSegment in GenSet

NewPostFiller = CurPostFiller concatenate PatternSegment
Create NewRule from CurRule with post-�ller NewPostFiller
Add NewRule to NewRuleSet

Return NewRuleSet

Figure 3.11: Rapier Algorithm for Specializing the Post-Filler of a Rule

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: o�ces 1) word: kansas 1) word: ,

tag: nns tag: nnp tag: ,

2) word: in 2) word: city 2) word: missouri

tag: in tag: nnp tag: nnp

3) word: .

tag: .

For the purposes of this example, we assume that there is a semantic class for states, but not one
for cities. For simplicity, we assume the beam-width is 2. The �llers are generalized to produce
two possible rules with empty pre-�ller and post-�ller patterns. Because one �ller has two items
and the other only one, they generalize to a list of no more than two words. The word constraints
generalize to either a disjunction of all the words or no constraint. The tag constraints on all of
the items are the same, so the generalized rule's tag constraints are also the same. Since the three
words do not belong to a single semantic class in the lexicon, the semantics remain unconstrained.
The �llers produced are:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) list: max length: 2

word: fatlanta, kansas, cityg

tag: nnp

and
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Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) list: max length: 2

tag: nnp

Either of these rules is likely to cover spurious examples, so we add pre-�ller and post-�ller gener-
alizations. At the �rst iteration of specialization, the algorithm considers the �rst pattern item to
either side of the �ller. This results in:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: in 1) list: max length: 2 1) word: ,

tag: in word: fatlanta, kansas, cityg tag: ,

tag: nnp

and

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: in 1) list: max length: 2 1) word: ,

tag: in tag: nnp tag: ,

The items produced from the \in"'s and the commas are identical and, therefore, unchanged.
Alternative, but less useful rules, will also be produced with lists in place of the items in the
pre-�ller and post-�ller patterns because of specializations produced by generalizing the element
from each pattern with no elements from the other pattern. Continuing the specialization with
the two alternatives above only, the algorithm moves on to look at the second to last elements in
the pre-�ller pattern. This generalization of these elements produce six possible specializations for
each of the rules in the current beam:

list: length 1 list: length 1 word: flocated, o�cesg

word: located word: o�ces tag: fvbn, nnsg

tag: vbn tag: nns

word: word: word: flocated, o�cesg

tag: fvbn, nnsg tag: tag:

None of these specializations is likely to improve the rule, and specialization proceeds to the second
elements of the post-�llers. Again, the two pattern lists will be created, one for the pattern item
from each pattern. Then the two pattern items will be generalized. Since we assume that the lexicon
contains a semantic class for states, generalizing the state names produces a semantic constraint of
that class along with a tag constraint nnp and either no word constraint or the disjunction of the
two states. Thus, a �nal best rule would be:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: in 1) list: max length: 2 1) word: ,

tag: in tag: nnp tag: ,

2) tag: nnp

semantic: state
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Chapter 4

Experimental Evaluation

Our purpose in developing Rapier is to show that machine learning can be used to develop useful

information extraction systems and that relational learning is particularly suitable for this task.

To this purpose, we have tested Rapier on three di�erent information extraction tasks in fairly

di�erent domains. We compare Rapier's performance on these tasks with a non-relational learning

system { a Naive Bayes-based learner which uses a �xed window of contextual information. We

also compare Rapier to two other relational learning systems which recently have been developed

by other researchers. Additionally in these experiments, we examine the usefulness of the various

types of constraints which Rapier can employ by running ablation tests.

4.1 Domain and Task Descriptions

The �rst domain consists of a set of 300 computer-related job postings from the Usenet newsgroup

austin.jobs. The information extraction task is to identify the types of information that would

be useful is creating a searchable database of such jobs, with �elds like message-id and the posting

date which are useful for maintaining the database, and then �elds that describe the job itself, such

as the job title, the company, the recruiter, the location, the salary, the languages and platforms

used, and required years of experience and degrees. Some of these slots can take only one value,

but for most of the slots a job posting can contain more than one appropriate slot-�ller. There are

a total of 17 di�erent slots for this task.

The various slots in this task di�er considerably in their di�culty for humans. Some, such as

the id and posting date, are trivial. Other fairly obvious slots are salary, the various location slots,

and required and desired degrees and years of experience. The position title is usually clear, but

not invariably: for instance, one has to decide whether \Unix Programmer needed" should produce

\Programmer" or \Unix Programmer." Companies and recruiters are fairly easy to recognize, but

not always easy to distinguish. There are four slots that provide information speci�c to computer-

related jobs: language, platform (which includes operating systems, machine names, and brands),

application, and area (which serves to cover all other interesting items { broad areas of computer

science such as arti�cial intelligence, natural language processing, or networking; APIs; application

frameworks such as MFC; and subject areas such as the World Wide Web. These slots require a

lot of domain speci�c knowledge. It can be very di�cult to determine from context whether an

unfamiliar term belongs in one of these slots. The area slot is particularly di�cult.
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The second domain is a set of 485 announcements of seminars collected by Dayne Freitag

at Carnegie Mellon University (Freitag, 1997). The task is to extract four pieces of information:

start time, end time, location, and speaker. Each of these slots takes only one value, though that

value may come in multiple forms (e.g. \2pm" and \2:00 pm" for the start time). Therefore, a slot

is considered �lled correctly as long as any one of the possible correct strings is extracted.

The third domain is a set of 600 Reuters newswire articles concerning corporate acquisitions

also collected at Carnegie Mellon (Freitag, 1998c).The information extraction task identi�es 13 slots.

Nine of the slots identify the purchaser, seller, and entity acquired by full name, abbreviation, and

code. The other four slots are the business and location of the entity being acquired, the dollar

amount of the transaction, and the status of the acquisition.

Examples of documents and the corresponding �lled templates for each domain can be found

in Appendix A.

4.2 Data Pre-processing

Although Rapier does not require full syntactic analysis, some pre-processing is required to seg-

ment the text into tokens and sentences appropriate for use by the part-of-speech tagger and then

to tag the text. For the experiments in this chapter, the documents were segmented using a simple

Perl script which separates words from punctuation, recognizing common abbreviations (using a

list of common abbreviations to avoid sentence breaks based on periods used for abbreviation), and

breaks the document into sentences at end-of-sentence punctuation and blank lines. The results

of this pre-processing were tagged using Brill's part-of-speech tagger as trained on the Wall Street

Journal corpus and tuned for each domain using the techniques described in Section 2.3.1. Initial

results with Rapier indicated that part-of-speech tagging without domain-speci�c tuning was not

helpful, and inspection of the tagging results indicated that they were inaccurate, so for each do-

main bigram and word lists were created, and the most common words in each corpus were added

to the lexicon with their possible parts of speech. This tuning took about two hours per domain.

4.3 Ablations

The Rapier system is designed to be able to use semantic classes and part of speech tags in its

rules. However, it is important to consider the utility of each kind of information. Therefore, for

the experiments presented here, three versions of Rapier were used: the full system using words,

part of speech tags, and semantic classes from WordNet; an ablation using only words (labeled

Rapier-w in tables); and an ablation using word and part-of-speech tags (labeled Rapier-wt).

Comparing these versions of Rapier provides information about how useful the various types of

information are.

4.4 Systems Compared Against

The �rst system that we compare to is a Naive Bayes-based information extraction system developed

at Carnegie Mellon (Freitag, 1998b). This classi�er uses word occurrence as its only feature. It

looks at the �ller and �xed window around the �ller and estimates the probability that a particular
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segment of text is a slot-�ller based on the estimated probability that each word in the text segment

is in a �ller for the slot and the probability that each word in the window preceding the segment is

in the left context window for the slot and that each word in the window following the segment is in

the right context window for the slot. One issue which this type of system has to cope with is that

slot-�llers are not necessarily uniform in length. Thus, the system considers multiple text segments

beginning at each word, with lengths from the shortest �ller seen for the slot to the longest �ller

seen for the slot. By default, the Naive Bayes system considers four words to either side of the

potential slot-�ller, a context which is often su�cient for a human to determine whether a string is,

in fact, a slot-�ller. However, the system's propositional nature may keep this context from being

su�cient. The system recognizes whether words are likely to appear in a �ller or its context, but

cannot represent the structure of a �ller or the greater probability of a string being a �ller if two

words appear in conjunction rather than separately. The experiments with Naive Bayes show what

is possible with a simple set of features and demonstrate the superiority of relational learning on

slots where the simple propositional representation is insu�cient.

Very recently, two other learning systems have been developed with goals very similar to

those of Rapier. These are both relational learning systems which do not depend on syntactic

analysis. Their representations and algorithms, however, di�er signi�cantly from each other and

from Rapier.

The �rst of these systems is SRV (Freitag, 1998b, 1998a, 1998c). SRV is a top-down covering

learner, with an algorithm similar to Foil. It uses four pre-determined predicates which allow it to

express information about the length of a fragment, the position of a particular token, the relative

positions of two tokens, and the result of feature value tests for tokens using user-de�ned features.

Thus, the language is quite expressive and has the ability to take advantage of orthographic,

syntactic, and semantic information if such information is provided in the user-de�ned features. For

example, in the experiments reported on here, SRV was supplied with features such as capitalization,

whether a token was a number, whether a token was a single digit number, and features describing

the length of the token, among others. Many of these features are quite speci�c and particularly

useful for the seminar announcement domain. SRV also does rule accuracy estimation, using

threefold internal cross-validation to provide con�dences for its rules.

The second system isWhisk (Soderland, 1998), which is designed to handle all types of ex-

traction problems, from very structured text to the semi-structured text common to web documents

and netnews postings to free text such as news articles. Like Rapier,Whisk uses a pattern-matching

representation: a restricted form of regular expressions. It can make use of user-provided semantic

classes and of information from syntactic analysis, but it does not require either type of informa-

tion. The learning algorithm is a covering algorithm, and rule creation begins by selection of a seed

example. However, Whisk creates the rule top-down, only restricting the choice of terms to be

added to a rule to those appearing in the seed example. Whisk di�ers from SRV and Rapier in its

rule representation and operation in two signi�cant ways. First, a single rule may extract items for

more than one slot. Second, rather than operating on documents, Whisk operates on instances,

which are typically sentences or similarly sized units. Thus, it somewhat limits the amount of

context that a given rule may consider.

One interesting feature of Whisk is its use of active learning. Whisk is designed to use a

form of selective sampling. It uses neither con�dences nor voting, but rather random selects a pool
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of instances from each of three classes of the unlabeled instances: 1) those covered by an existing

rule, to increase support for the reliable rules and provide counter-examples to imprecise rules; 2)

those that are near misses of an existing rule, providing likely useful instances to increase recall; 3)

and those not covered by any rule, to help ensure the completeness of the rule base.

Since SRV and Whisk are also relational learners, we do not expect to show that Rapier

is signi�cantly better than either. Rather, by examining their performance along with Rapier's,

we show that Rapier is competitive with recent systems, and we provide further evidence for the

usefulness of relational learning for information extraction.

4.5 Experimental Methodology

For all of the experiments in this research, we use averages of ten trials and report results on

separate test data. For the computer-related jobs domain, we used ten-fold cross-validation and

also trained on subsets of the training data at various sizes in order to produce learning curves.

For the seminar announcement and corporate acquisitions domains, we use the ten splits used by

Dayne Freitag in order to permit comparison with his results. These were 10 random splits of the

datasets in half, training on half of the data and testing on the other half.

Tests of machine learning systems usually measure simple accuracy: the number of examples

that are correctly classi�ed. In this type of task, however, since we don't have a �xed number of

examples to be classi�ed, simple accuracy has no clear meaning. There are really two measures

which are important: precision, which is the percentage of the slot �llers which the system �nds

which are correct, and recall, which is the percentage of the slot �llers in the correct templates

which are found by the system.

precision =
# of correct fillers extracted

# of fillers extracted

recall =
# of correct fillers extracted

# of fillers in correct templates

If both precision and recall are 100%, then the results are completely correct. Lower precision

indicates that the system is producing spurious �llers: that its rules are overly general in some

respect. Lower recall indicates that the system is failing to �nd correct �llers: that its rules

are too speci�c in some respect. When multiple �llers are possible for a slot, each �ller is counted

separately. Since these two numbers best describe the performance of the system we report them for

all experiments in this chapter. In addition to precision and recall, we report two other measures

for some experiments. The MUC conferences have introduced an F-measure (DARPA, 1992),

combining precision and recall in order to provide a single number measurement for information

extraction systems. The F-measure is computed as:

F =
(�2 + 1)PR

�2P +R

with � used to weight the measure to prefer better precision or better recall. Since the F-measure

provides a useful tool for examining the relative performance of systems when one has better

precision and the other better recall, we report that number where it is useful, using � equal to 1.

Finally, in order to facilitate comparison to other systems, we in some cases report coverage, which
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is the percentage of the slots which are supposed to be �lled which had some �ller predicted for

them. This �gure is not as useful as recall, but it is the �gure reported for Dayne Freitag's systems

on the seminar announcement and corporate acquisition domains, so we include it in addition to

recall in order to allow some comparison to be made.

Where tests of statistical signi�cance are appropriate, they were conducted using a two-tailed

paired t-test.

All of the experiments in this chapter were conducted using Rapier set to its default

parameters.

NumPairs = 5. The number of pairs randomly selected for generalization at each iteration of the

compression algorithm.

BeamWidth = 6. The width of the beam for the beam search.

MaxCompressFails = 3. The number of times in a row which the attempt to create a new, more

general rule is allowed to fail before compression of the rules for a given slot ends.

MaxExtendFails = 3. The number of times in a row which specialization loop is allowed to

iterate without improving the best rule in the beam.

MinCoverage = 3. The number of positive examples which a rule is required to cover.

4.6 Job Postings Results

In the computer-related job postings domain, we conducted experiments with four systems: the

three versions of Rapier with di�erent information supplied and the Naive Bayes-based information

extraction system described above. The Naive Bayes system provides a baseline indicating what

can be learned relying on word occurrence in the �ller and a �xed context. The default width of the

window the system looks at is four words to either side of the �ller, but preliminary tests showed

that raising this value to seven words improved performance on the job postings domain, so that

value was used for this experiment. The system also has a threshold parameter which was set to

maximize recall.

Figure 4.1 shows the learning curve for precision of the four systems and Figure 4.2 shows

their recall learning curve. Since precision and recall do not present the same picture, Figure 4.3

presents the F-measure learning curve.

Clearly, the Naive Bayes system does not perform well on this task, although it has been

shown to be fairly competitive in other domains, as will be seen below. Actually, there are some

slots on which Naive Bayes does perform well, but it does quite poorly on many, especially those for

which multiple �llers are common. It should be noted that the very low setting of the Naive Bayes

system's threshold accounts for its very low precision. However, recall is also considerably lower

than any of the Rapier systems, and raising the threshold to raise precision will simultaneously

lower recall, which is already quite low, signi�cantly lower than any version of Rapier. These

results indicate that this is a domain where relational learning helps and a simpler representation

such as the Naive Bayes system employs is insu�cient to produce a useful system.

In looking at the results for the various Rapier systems, there are several points of interest.

First, precision is quite high, over 89% for words only and word with POS tags and just over 70%
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Figure 4.1: Precision on computer-related job postings
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Figure 4.2: Recall on computer-related job postings
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Figure 4.3: F-measure on computer-related job postings

for the full system. This fact is not at all surprising, since the bias of the algorithm is very much

toward fairly speci�c rules, a natural result of a primarily bottom-up approach. High precision is

important for a task such as creating a jobs database. Although high recall is desirable (we want

as much of the correct information in the database as possible), it is even more important that the

information in the database be correct.

A second point of interest is that the learning curve is quite steep. The Rapier algorithm

is apparently quite e�ective at making maximal use of a small number of examples. The learning

curve attens out quite a bit as the number of examples increases. This is probably due at least

in part to the fact that this domain includes quite a few documents that are very similar to one

another, so adding more examples may not signi�cantly increase the amount of useful information

available to the learning system. This problem may be usefully addressed with active learning (as

discussed in Chapter 5). Note, however, that recall is still rising, though slowly, at 270 examples.

In looking at the performance of the three versions of Rapier, an obvious conclusion is that

word constraints provide most of the power of the rules. This should not be particularly surprising,

since the information provided by part-of-speech tags and semantic classes are, in some sense,

present in the words themselves. What the addition of POS tag constraints and semantic class

constraints should do is to provide generalizations that may be representable with word constraints

alone, but are simpler and more easily cover a complete class of words without having to see every

possible word in the class (as a disjunction of words must in order to represent the same concept).

The addition of tag constraints does improve performance at lower number of examples. The recall

of the version with tag constraints is signi�cantly better at least at the 0.05 level for each point

on the training curve up to 120 examples. Apparently, by 270 examples, the word constraints are

capable of representing the concepts provided by the POS tags. The di�erences between words-only

and words with POS tags on 270 examples are not statistically signi�cant. WordNet's semantic

classes provide no signi�cant performance increase over words and POS tags only.

41



These results are very encouraging. They are similar to the scores of the better systems

at MUC-6 on the template elements task (the one most similar to this information extraction

task) (DARPA, 1995). They are also su�cient to construct a useful, if imperfect, database of

computer-related jobs.

One other learning system, Whisk (Soderland, 1998), has been applied to this data set. In

a single trial using 200 documents for training and the remaining 100 for testing, Whisk achieved

76% precision and 40% recall. At 180 examples, Rapier with words only achieves 90% precision

and 60% recall. Of course, since Whisk was tested on a single trial, it is important not to over-

emphasize this result. However, Rapier's worst single trial at 180 examples gave 85% precision

and 54% recall. It is not clear why Whisk performs worse on this task. One possibility is its

restriction of context to a single sentence. Rapier learns rules which cross sentence boundaries

in this domain, and these may be needed for some slots. Both relational learning systems clearly

perform much better on this task than the Naive Bayes-based system does.

Besides simply looking at the summary numbers, it is useful to consider the accuracy of

the learning systems on each of the di�erent slots. As indicated above, the di�culty of the slots

varies for a human annotator, and it may be useful to see how the di�culty varies for the computer

system. Accordingly, Table 4.1 shows the results for the various slots with 270 training examples.

The easiest �elds for the computer are also some of the easiest for human beings. All of the

systems perform well on the id slot, and the Rapier systems perform very well on the posting date,

where Naive Bayes achieves 100% recall, although with low precision. The location slots, company,

recruiter, years of experience, and degrees required are all somewhat more di�cult for the Rapier

systems, but Rapier's performance on those is also quite good. The somewhat lower recall on

company and recruiter is probably due to the di�culty of distinguishing between the two �elds.

Unlike humans, Rapier performs rather poorly on the title slot. This is a slot where memorization

is not very helpful and context is inconsistent. The other slot on which Rapier performs quite

poorly is the area slot. The di�culties of this slot for humans was discussed above, and it is not

surprising that Rapier performs poorly here. Besides the two easy slots, Naive Bayes achieves

reasonable recall on the three location slots and on company and recruiter. On all of the other

slots it does extremely poorly. Much of this is probably due to the system's inability to consider

the order of tokens and to the �xed context window.

4.7 Seminar Announcement Results

For the seminar announcements domain, we ran experiments with the three versions of Rapier,

and we report those results along with results reported on this data using the same 10 data splits

with the Naive Bayes system mentioned above and with SRV (Freitag, 1998b). The dataset consists

of 485 documents, and this was randomly split approximately in half for each of the 10 runs. Thus

training and testing sets were approximately 240 examples each. The results for the other systems

are reported by individual slots only, and the �gures reported are for \accuracy" (which is measured

exactly the same way as precision) and coverage. However, a lower bound on recall can be computed

by multiplying the precision by the coverage. We also report results for Whisk. These results are

from a single trial, trained on 285 of the documents and tested on the remaining 200. As above,

because the results are based on a single trial, one should not be overly con�dent in comparisons
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System id title salary
Prec Rec Prec Rec Prec Rec

Rapier 98.0 97.0 67.0 29.0 89.2 54.2
Rap-wt 98.0 96.7 66.1 31.1 76.9 46.7
Rap-w 97.7 97.0 67.6 30.7 80.0 56.1
NaiBay 86.8 96.3 13.8 18.5 2.1 9.3

company recruiter state
Prec Rec Prec Rec Prec Rec

Rapier 76.0 64.8 87.7 56.0 93.5 87.1
Rap-wt 77.0 64.7 90.7 59.0 95.2 85.3
Rap-w 75.3 65.1 88.5 60.2 96.5 82.8
NaiBay 9.3 51.1 18.9 49.4 29.2 59.5

city country language
Prec Rec Prec Rec Prec Rec

Rapier 97.4 84.3 92.2 94.2 95.3 71.6
Rap-wt 97.5 86.1 91.5 93.5 95.5 70.2
Rap-w 97.0 86.1 93.4 92.0 94.0 73.7
NaiBay 33.3 55.4 14.4 62.3 13.9 9.8

platform application area
Prec Rec Prec Rec Prec Rec

Rapier 92.2 59.7 87.5 57.4 66.6 31.1
Rap-wt 90.1 57.9 85.8 57.7 69.0 31.4
Rap-w 89.7 53.5 88.7 53.8 68.2 29.5
NaiBay 6.5 6.6 4.0 7.9 7.4 5.6

req yrs exp des yrs exp req degree
Prec Rec Prec Rec Prec Rec

Rapier 80.7 57.5 94.6 81.4 88.0 75.9
Rap-wt 82.8 62.7 90.6 67.4 86.8 79.3
Rap-w 80.9 58.2 94.3 76.7 87.8 74.1
NaiBay 4.1 10.5 1.0 14.0 0.8 8.6

des degree post date total
Prec Rec Prec Rec Prec Rec

Rapier 86.7 61.9 99.3 99.7 89.4 64.8
Rap-wt 100 61.9 99.0 99.3 89.2 64.6
Rap-w 92.3 57.1 99.3 100 89.4 64.0
NaiBay 0 0 21.5 100 14.2 32.1

Table 4.1: Results by slot for the computer-related job postings task
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System stime etime loc
Prec Rec Cov Prec Rec Cov Prec Rec Cov

Rapier 93.9 92.9 98.9 95.8 94.6 96.3 91.0 60.5 66.3
Rap-wt 96.5 95.3 98.8 94.9 94.4 97.0 91.0 61.5 67.4
Rap-w 96.5 95.9 99.3 96.8 96.6 97.3 90.0 54.8 60.8

NaiBay 98.2 � 98.2 100 96.1 � 95.72 99.6 59.6 � 58.8 98.7
SRV 98.6 � 98.4 99.8 94.1 � 92.6 98.4 75.9 � 70.1 92.3
Whisk 89 89 - 96 74 - 93 59 -

System speaker
Prec Rec Cov

Rapier 80.9 39.4 46.7
Rap-wt 79.0 40.0 48.6
Rap-w 76.9 29.1 39.8

NaiBay 36.1 � 25.6 70.8
SRV 60.4 � 58.3 96.6
Whisk 71 15 -

Table 4.2: Results for seminar announcements task

between the systems based on them. Table 4.2 shows results for the six systems on the four slots for

the seminar announcement task. The �gures for recall for Naive Bayes and SRV are lower bounds

on the recall.

All of the systems perform very well on the start time and end time slots, although Rapier

with semantic classes performs signi�cantly worse on start time than the other systems. These

two slots are very predictable, both in contents and in context, so the high performance is not

surprising. Start time is always present, while end time is not, and this di�erence in distribution

is the reason for the di�erence in performance by Naive Bayes on the two slots. The di�erence

also seems to impact SRV's performance, but Rapier performs comparably on the two, resulting

in the words only version having apparently better performance on the end time slot than the two

CMU systems. Whisk's regular expressions appear not to handle these �elds as well as the other

systems do.

Location is a somewhat more di�cult �eld and one for which POS tags seem to help quite

a bit. This is not surprising, since locations typically consist of a sequence of cardinal numbers

and proper nouns, and the POS tags can recognize both of those consistently. This is the one

�eld where Whisk outperforms Rapier. It is di�cult to compare SRV's performance to Whisk

and Rapier. SRV has higher recall but lower precision, and without precise recall numbers, which

system is better cannot be easily determined. However, it is clear that all of the relational systems

are better than Naive Bayes on this slot, despite the fact that building names recur often in the

data and thus the words are very informative.

The most di�cult slot in this extraction task is the speaker. This is a slot on which Naive

Bayes, Whisk, and Rapier with words only perform quite poorly, because speaker names seldom

recur through the dataset and all of these systems are using word occurrence information and have

no reference to the kind of orthographic features which SRV uses or to POS tags, which can provide

the information that the speaker names are proper nouns. Rapier with POS tags performs quite

well on this task, with worse recall than SRV, but considerably better precision. Since we don't

know the precise recall of SRV, it is di�cult to determine which of these systems is better on this

slot.

44



System acquired purchaser seller
Prec Rec Cov Prec Rec Cov Prec Rec Cov

Rapier 57.3 19.2 33.2 50.0 19.2 36.4 32.4 10.0 17.7
Rap-wt 58.0 22.1 37.6 51.1 20.5 37.6 33.2 11.0 18.1
Rap-w 54.5 16.8 30.6 51.9 19.6 35.2 41.0 10.0 14.1
NaiBay 19.8 � 19.8 100 � 36.9 36.9 100 � 15.6 15.6 100
SRV 38.4 � 37.1 96.6 42.4 � 40.8 96.3 16.4 � 13.6 82.7

acqabr purchabr sellerabr
Prec Rec Cov Prec Rec Cov Prec Rec Cov

Rapier 43.6 18.5 35.0 42.8 16.7 32.9 10.5 7.3 13.5
Rap-wt 49.5 21.0 36.2 43.8 20.0 38.0 16.4 7.0 15.2
Rap-w 45.5 14.8 27.9 36.43 11.9 26.4 24.83 3.97 7.19
NaiBay 23.2 � 23.2 100 39.6 � 39.6 100 16.0 � 16.0 100
SRV 31.8 � 31.7 99.8 41.4 � 41.2 99.6 14.3 � 13.6 95.1

acqloc status dlramt
Prec Rec Cov Prec Rec Cov Prec Rec Cov

Rapier 46.9 16.3 25.6 67.3 29.8 37.4 63.3 28.5 36.4
Rap-wt 46.5 18.5 27.8 64.8 28.9 37.3 67.4 26.0 31.6
Rap-w 44.3 10.5 16.3 68.8 26.0 32.4 70.0 24.5 28.7
NaiBay 7.0 � 7.0 100 33.3 � 33.3 100 24.1 � 24.1 100
SRV 12.7 � 10.6 83.7 39.1 � 35.1 89.8 50.5 � 46.0 91.0

Table 4.3: Results for corporate acquisitions task

In general, in this domain semantic classes had very little impact on Rapier's performance.

Semantic constraints are used in the rules, but apparently without any positive or negative e�ect

on the utility of the rules, except on the start time slot, where the use of semantic classes may

have discouraged the system from learning the precise contextual rules that are most appropriate

for that slot.

All in all, Rapier performs quite well on this dataset, achieving an F-measure of 82.60%

on the overall task using words and POS tags only. Clearly, these results support the usefulness of

relational learning for this task as well, although they show that it is not always necessary, since

for some slots, such as the times, a propositional system using simple features may be su�cient.

4.8 Corporate Acquisitions Results

As with the seminar announcements domain, for the corporate acquisitions domain, we ran exper-

iments with the versions of Rapier and compared to �gures reported for Naive Bayes and SRV

(Freitag, 1998c). Again, the �gures are reported by individual slot. Training and testing were

performed on 10 random splits of the data into 300 training and 300 testing examples.

Table 4.3 show the results for the �ve systems on nine slots from this task. Freitag does not

report results for the other four slots identi�ed in the data. Again, the �gures for recall for Naive

Bayes and SRV are lower bounds.

As is immediately clear from the results, this task is much more di�cult than the seminar

announcements for all of the systems. The six slots which extract names of companies, distinguish-

ing between full and abbreviated names, are extremely di�cult for Rapier. Part of the problem

is the distinction between full and abbreviated company names, because it makes it di�cult for
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Rapier to learn the contexts in which the various �elds should be extracted, since the full name

of the purchaser and the abbreviated name of the purchaser may show up in very similar contexts,

but must be distinguished from one another. The sparseness of data for the seller and seller abbre-

viation clearly a�ects all of the learning systems, since all do much more poorly on those �elds than

on the �elds for the purchaser or the entity being acquired. However, the performance of Rapier

improves on the two seller slots when it has access to POS tags, showing again that the tags can

help generalization when the system does not have much data available to it.

Determining which of the learning systems is best for this task is di�cult. Clearly, POS tags

help Rapier's performance, not surprisingly as the documents are more grammatical than those in

the other domains and they do not rely on visual layout to convey information. It is also clear that

Naive Bayes performs worse than SRV on most �elds, though not on the seller �elds. Comparing

SRV and Rapier is problematic with this data. Clearly, in some cases, such as the purchaser

abbreviation, SRV is better. In others, such as the acquisition location, Rapier performs better.

Because of the lack of exact recall �gures and the opposing bias regarding precision (Rapier has

a strong bias toward high precision; SRV uses a threshold and can thus have a precision-recall

tradeo�, but the �gures shown here are intended to have maximal coverage and thus have low

precision and higher recall), it is very di�cult to say which system performs better on many of the

slots shown. However, we can clearly see, again, that relational learning is more e�ective over all

than the Naive Bayes system.

It is clear, from these results, that none of the learners handle this task su�ciently well for

useful purposes. It may be that, in order to perform well on this task, Rapier will require some

way of representing syntactic phrases and their relationships.

4.9 Discussion

The results above show that relational learning can learn useful rules for information extraction, and

that it is more e�ective than the propositional system used for comparison. Di�erences between

the various relational systems are probably due to two factors. First, the three systems have

quite di�erent algorithms, whose biases may be more or less appropriate for particular information

extraction tasks. Second, the three systems use di�erent representations and features. All of the

systems use word occurrence, and all are capable of representing the sequence of terms. However,

Rapier and SRV are capable of representing information about the lengths of �llers (or, inRapier's

case, in other segment of text represented in the rule) without constraining anything else about

the �ller, and Whisk cannot. Two versions of Rapier make use of POS tags, which the other

systems could use, but did not in these experiments. SRV uses Boolean features which provide

orthographic information, and neither of the other systems has this information (though in some

cases the POS tags provide similar information: capitalized words are usually tagged as proper

nouns; numbers are tagged as cardinal numbers). Many of the features used seem quite speci�c to

the seminar announcements domain. It would be useful in the future to examine the e�ect of the

various features, seeing how much of the di�erence between the relational learning depends upon

the di�erent features they use and how much is due to their various algorithmic biases. All of the

systems are fairly easily extensible to include the features used by the other systems, so comparing

the systems' performance when using the same feature sets should be possible.
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Besides looking at the accuracy of a learning system (or in the area of information extraction,

its precision and recall), it is important to consider other performance measures, such as training

time, testing time, and rulebase complexity.

Because of its expressive, relational representation, Rapier's training time is fairly long.

The following training times are from running Rapier on an SGI-Origin-200 running IRIX 6.4.

For the jobs domain, the words only version varies from an average of 14 minutes to train on 10

examples to an average of 26 hours to train on 270 examples. Increasing the complexity of the

learning problem by adding tags increases the training times to 48 minutes to train on 10 examples

and 42 hours to train on 270. Training time with semantics are almost identical to those with words

and tags only. For the seminar announcements, training time is shorter per example because the

examples are shorter and there are fewer slots to learn rules for. Thus, the words only version can

train on 240 examples in just under 8 hours on average. Adding tags increases this to an average

of 15 hours. The acquisitions data also has fewer slots to train on than the jobs. On 300 examples,

the average training time was just under 15 hours for the words only version and 27 hours for the

tags version. These training times may seem prohibitive until the time involved for human being

to construct similar rules in considered. Development time for information extraction systems is

typically measured in man-months. The performance of Rapier as compared to the Naive Bayes

system which trains faster also shows that, on the jobs domain at least, the trade-o� between

accuracy and speed is in Rapier's favor.

Lengthy training times are generally not a problem in developing a practical system, but

testing times are signi�cant. The testing times in the computer-related jobs domain are under 2

seconds per example without semantics and 3.3 seconds per example using WordNet. The di�erence

is due to the �le I/O required to retrieve the WordNet semantic classes. The testing times are lower

for the seminar announcements domain and the corporate acquisitions domain which have fewer

slots to extract, under 1 second per example for the corporate acquisitions domain with or without

semantics and around 8 examples per second without semantics and close to 2 examples per second

with semantics in the seminar announcements domain. These times are su�ciently short for the

rules to be useful in a practical information extraction system.

One other issue of some interest in a learning system is the complexity of the de�nition that

is learned, and how much that complexity varies with the number of training examples. As an

estimate of the complexity of the rule, we use here the same notion of the size of a rule described

in Chapter 3. In measuring the size of a rule base, we include only the rules created by the

generalization process, not the initial most-speci�c rules, since the initial rules do not contribute

to the rule base's coverage of new examples.

The complexity of the rules seem to depend primarily on the task, being slightly more

complex with very small example sets, but not depending much on the type of constraints available.

The average rule complexity on the jobs domain is 20 with 10 examples and 19 with more than

100 examples. The complexity of the seminar announcement rules is somewhat higher, averaging

22, and the complexity of the rules for corporate acquisition is higher still, averaging 27. The

complexity of the rulebases in the jobs domain grows with the number of examples used to learn

the rulebase as does the number of rules. This growth is a little less than straight linear growth,

as seen in Figure 4.4.
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Figure 4.4: Rulebase complexity as a function of the number of examples used to construct the
rulebase

4.10 Sample Learned Rules

One �nal interesting thing to consider about Rapier is the types of rules it creates. One common

type of rule learned for certain kinds of slots is the rule that simply memorizes a set of possible

slot-�llers. For example, Rapier learns that \mac," \mvs," \aix," and \vms" are platforms in

the computer-related jobs domain, since each word only appears in documents where it is to be

extracted as a platform slot-�ller. One interesting rule along these lines is one which extracts

\C++" or \Visual C++" into the language slot. The pre-�ller and post-�ller patterns are empty,

and the �ller pattern consists of a pattern list of length 1 with the word constraint \visual" and

then pattern items for \c", \+" and \+". In the seminar announcements domain, one rule for the

location slot extracts \doherty," \wean" or \weh" (all name of buildings at CMU) followed by a

cardinal number. More often, rules which memorize slot-�llers also include some context to ensure

that the �ller should extracted in this particular case. For example, a rule for the area slot in the

jobs domain extracts \gui" or \rpc" if followed by \software."
Other rules rely more on context than on �ller patterns. Some of these are for very formal

patterns, such as that for the message id of a job posting:

48



Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: message 1) list: length 5 1) word: >

2) word: -

3) word: id

4) word: :

5) word: <

Probably the majority of rules have some mix of context and the contents of the �ller. An
example is the following rule for a title in the computer-related jobs domain:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: f:, seekingg 1)

2) fconsultant, dbag

In the seminar announcements domain, the following rule for the start time relies on a combinations
of the structure of the �ller and its context:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: f:, forg 1) syntactic: cd

2) 2) word: :

syntactic: :

3) syntactic: cd

4) syntactic: nn

In the corporate acquisitions domain, the following rule extracts the status of the acquisition:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) word: fit, executedg 1) word: fagreed, letterg 1) word: ffurther, tog

2) 2)

3)

Some of the rules are fairly complicated, as is the following rule for the purchaser slot in the
corporate acquisitions domain:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:

1) syntactic: fcd, nng 1) list: length 3 1) word: fsaid, \,", \f\g

2) syntactic: f:, tog syntactic: f:, nnpg 2) syntactic: fprp, dt, nnpg

2) syntactic: nnp 3)

4) word: facquired, investor, forg

For more examples of the types of rules which Rapier learns, see Appendix B.
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Chapter 5

Using Active Learning with Rapier

One of the goals of machine learning is to reduce the human time it takes to build a system by having

a human being annotate training examples rather than trying to build rules, since the annotation

is generally a much easier task, and requires knowledge only of the task to be performed, not of the

rule representation. However, even though annotation is easier than building rules in most cases,

it can still be quite time-consuming. Therefore, we would like to ensure that our annotation time

is spent as e�ectively as possible.

Examining the learning curves in Chapter 4 for the computer-related job postings domain

reveals that the curves are very steep at �rst and then level o� signi�cantly, though they are still

climbing slowly. At least part of the reason for this phenomenon is that many of the documents

in the training set are quite similar to one another. Once a few examples of a certain class of

documents have been seen, seeing more examples of the same class of documents has little e�ect

on the rule base, and the time spent by a person annotating such examples is wasted.

Therefore, we would like to �nd ways of choosing examples to be annotated that are useful

for learning. Active learning is the subarea of machine learning concerned with this type of issue.

Active learning systems in some way inuence the examples they are given, either by constructing

examples, by requesting certain types of examples, or by determining which of a set of unlabeled

examples are likely to be the most useful. The last option, which is called selective sampling (Cohn,

Atlas, & Ladner, 1994; Lewis & Catlett, 1994; Dagan & Engelson, 1995), is the most appropriate

for a natural language task such as information extraction, since there is a wealth of unannotated

data and the only issue is the cost of annotating the data.

5.1 Selective Sampling

The basic idea of selective sampling is that learning begins with a small pool of annotated examples

and a large pool of unannotated examples. The learner runs on the annotated examples, and the

resulting de�nition is used to select additional examples to annotate. The selection may proceed

in either of two ways: sequential sampling or batch sampling.

In sequential sampling, the pool of unannotated examples is examined one at a time. The

example is labeled according to the current learned de�nition and then either accepted for learning

(in which case, the annotator is asked to label it) or rejected. If the example is selected for learning,

the learner updates its de�nition, and then the next example will be selected.
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In batch sampling, the entire pool of examples is labeled using the current de�nition. Them

most useful examples are selected to be annotated and then added to the pool of annotated exam-

ples. The learner then updates its de�nition and again considers the pool of remaining unannotated

examples.

There are also two primarymethods of determining which examples are most useful: committee-

based sampling and uncertainty-based sampling. In committee-based sampling, the learner maintains

multiple de�nitions consistent with the current training data (i.e. multiple elements of the version

space (Mitchell, 1982)), categorizes unlabeled examples with each de�nition, and selects for labeling

those examples with the most disagreement amongst the \committee members" (Seung, Opper, &

Sompolinsky, 1992; Cohn et al., 1994). By singling out only such potentially informative exam-

ples for annotation, equivalent accuracy can be gained from labeling signi�cantly fewer examples

compared to random selection. The examples chosen should be those that best guide the learner

toward the correct de�nition, because whenever the de�nitions disagree about an example, at least

one of the de�nitions must be wrong, and adding that example will help the learning system to

produce the correct de�nition at that particular point. A system may use as few as two committee

members, or may use a larger committee, selecting each example for annotation with a probability

proportional to the amount of disagreement over its label (Engelson & Dagan, 1996). Committee-

based sampling has been successfully used for some natural language tasks such as part-of-speech

tagging (Engelson & Dagan, 1996) and text categorization (Liere & Tadepalli, 1997).

In uncertainty-based sampling, only one de�nition is learned, but the de�nition in some way

assigns a con�dence measure to each example as it is labeled (Lewis & Catlett, 1994). Then the

least con�dent examples are selected for annotation. The idea here is that the examples which

the de�nition is most con�dent about will provide very little additional information, while the

examples which are least con�dent will either con�rm that the de�nition is correct and strengthen

the con�dence or will demonstrate that the de�nition is not correct and enable the learning to

produce a better de�nition.

5.2 Incorporating Selective Sampling into Rapier

In implementing selective sampling for Rapier, two primary design decision had to be made:

choosing between sequential and batch samplings and choosing between committee-based and

uncertainty-based sampling.

We chose to use batch sampling because we believe that it is the choice which will more

e�ectively eliminate unnecessary annotation costs. Examining all of the candidates and selecting

the best example(s) to annotate is likely to cause performance to increase faster than examining

each candidate in turn and accepting or rejecting it. Using batch sampling also avoids the need for

establishing thresholds to determine whether the system is su�ciently con�dent that an example is

handled correctly. The system selects for use in learning the example(s) is is least con�dent about

(for uncertainty-based sampling) or about which there is the most disagreement (for committee-

based sampling) with no need for concern about how much con�dence or how much disagreement

there actually is.

For the decision between uncertainty-based and committee-based sampling, there is no a

priori reason for believing that either will work better than the other, and neither is likely to be
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particularly more di�cult to implement than the other in the context of Rapier. Uncertainty-

based sampling was chosen primarily for e�ciency reasons, since using committee-based sampling

requires learning multiple rulebases and Rapier's training times are signi�cant, as indicated in

chapter 4.

5.2.1 Uncertainty in Rapier

Using uncertainty-based sampling requires a notion of the con�dence the system has in its labeling

of an example. In order to determine the con�dence of the labeling of an example, we need to

begin with a notion of the con�dence of a rule. Rapier does not have a built-in notion of the

certainty of a rule, but, since no thresholding is required, the con�dence of a rule can be treated

very simply as its coverage of positive examples in the training set with a penalty for coverage of

negative examples:

conf = pos� 5(neg)

. The reasoning behind this notion of con�dence is fairly straightforward. It has been shown that

the majority of errors made by learned rules are made by rules which cover very small numbers of

positive examples (Holte, Acker, & Porter, 1989). Therefore, we want to trust rules that cover large

number of positive training examples and distrust those that cover only a few examples. However,

we also want to distrust rules which cover negative examples unless the number of positive examples

is overwhelming. Thus, we impose a substantial penalty on rules which cover negative examples.

Given this notion of the con�dence of a rule, we can determine the con�dence of the labeling

of a slot. In the case where a single rule �nds a slot-�ller, the con�dence for the slot will be the

con�dence of the rule that �lled that slot. However, when more than one slot-�ller is found, the

con�dence of the slot must be determined. There are three reasonable ways this might be done: 1)

take the average of the con�dences for the slot-�llers, 2) take the maximum con�dence, or 3) take

the minimum con�dence. Because we want to focuses attention on the least con�dent rules and �nd

the examples that either con�rm or contradict those rules, we choose to use the third alternative.

A �nal consideration in determining the con�dence of each slot is what the con�dence of

an empty slot is. Since no rule has extracted a slot-�ller for the slot, the slot could be considered

to have a con�dence of 0. However, in some tasks, some slots are empty a large percentage of the

time. In the computer-related jobs domain, the salary is present less than half the time, and it is

very seldom than both the company and the recruiter appear in the same posting. Thus, we don't

want to have an empty salary, company, or recruiter slot necessarily decreasing con�dence in the

labeling of the example. On the other hand, some slots are always (or almost always) �lled, and

the absence of slot-�llers for those slots should decrease con�dence in an example's labeling. To

handle this issue, we keep track of the number of times a slot appears in the training data with no

�llers and use that �gure as the con�dence of the slot when no �ller for it is found.

Once the con�dence of the slots has been determined, the con�dence of an example is easily

found by summing the con�dence of all slots.

5.2.2 Making Rapier Incremental

One of the major drawbacks to using active learning with Rapier is training time. We would like

to select very small pools of examples at each iteration (because selecting several examples at a time
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may lead us to select several very similar examples), but at each iteration we have to retrain with

the additional examples, and training time may begin to become prohibitive. However, making

Rapier incremental is a fairly straightforward process which can alleviate this problem.

Rapier's compression approach means changing it to be incremental is fairly simple. Since

Rapier begins with a rulebase and then compresses it, instead of creating the rulebase from the

examples, it can read in a previously rulebase, add rules for new examples, and then compress the

resulting rulebase.

The incremental version of Rapier begins by reading in the old examples (those used to

create the old rulebase) and the new examples for which rules are to be added. It then reads in the

old rulebase. To prevent the system from keeping rules which are already overly general, Rapier

evaluates each rule from the old rulebase on the entire example set. If a rule covers too many

negatives (using the same metric and threshold as used for allowing negative coverage described in

Section 3.2.3), the rule is removed from the rulebase, and new most-speci�c rules are created for

each positive example covered by the original rule. Finally, the system creates new most-speci�c

rules for each new example. Once the initial rulebase has been developed in this way, learning

proceeds exactly as described in Chapter 3.

This incremental version of Rapier does not reduce learning time to a few minutes per

example, since new rules must be evaluated on both the old and the new examples (and rule

evaluation takes a signi�cant percentage of the learning time) and since it must deal with overly

general rules. However, training times are signi�cantly reduced compared to learning from scratch

with the old and new examples, making using selective sampling a realistic possibility, and overall

performance is not signi�cantly impacted.
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Figure 5.1: Results of selective sampling versus random selection of examples

5.3 Experimental Evaluation

In order to evaluate the utility of using active learning with Rapier we conducted an experiment

using the computer-related job posting domain. For this experiment we ran 10 trials, using the

same training and testing sets as in Chapter 4. Since Rapier achieved its best results for 270

examples on the jobs domain using word constraints only and using only word constraints is most

e�cient, we conducted the active learning experiment using word constraints only.

Each trial began with the rulebase constructed from 10 examples in the experiment describe

in Chapter 4. Then the selective sampling was carried out with a batch size of one. Thus, the

rulebase was run on the remaining 260 examples from the training set, and the example for which

the rulebase was least con�dent was selected for training. Finally, the incremental version of

Rapier was used to construct a new rulebase from the original rulebase and the 11 examples, and

the process iterated. Precision and recall were measured at 10 example intervals.

Figure 5.1 shows results of the selective sampling process compared to the learning curve

using a random example selection from Chapter 4. In order to simplify the comparison between the

curves, the F-measure is used. From 30 examples on, the selective sampling consistently outperforms

the random example selection. The di�erence between the curves is not large, but does represent a

large reduction in the number of examples required to achieve a given level of performance. At 150

examples, the average F-score is 74.56, exactly the same as the average F-score of the words only

version with 270 random examples. This represents a savings of 120 examples, well over one-third

of the examples required without selective sampling.

The curve for selective sampling does not go all the way to 270 examples, because once

the performance achieved by the random examples at 270 examples is reached, the information

available in the data set has been exploited, and the curve will just level o� as the less useful

examples are added.
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These results indicate that a selective sampling method employing a simple con�dence mea-

sure can, in fact, signi�cantly reduce the number of examples that must be annotated to achieve a

given level of performance in this domain.

55



Chapter 6

Related Work

Although the information extraction task has been worked on for some time, researchers have only

recently begun to apply machine learning to the task. A summary of work in the �eld appeared

recently (Cardie, 1997). The earlier attempts to use machine learning worked in the context of

propositional machine learning systems, assuming the existence of prior thorough syntactic analysis,

and typically depending on a later discourse processing mechanism to complete the task. More

recently, with the advent of the world wide web with its wealth of information in textual, but often

semi-structured and ungrammatical, form, other researchers have begun to develop systems with

the same goals as Rapier. These systems focus on learning extraction rules whose results can be

directly used for a desired task, without dependence on prior parsing or other aspects of a larger

information extraction system.

6.1 Early Machine Learning Systems for Information Extraction

One of the earliest attempts to use learning in an information extraction system was AutoSlog

(Rilo�, 1993). AutoSlog creates a dictionary of extraction patterns by specializing a set of general

syntactic patterns. These patterns are used by a larger information extraction system including a

parser and a discourse analysis module. AutoSlog has two major drawbacks. First, it requires

a human expert to examine the patterns that it produces to determine which should be kept in

the extraction pattern dictionary. Thus, it is speeding up the construction of the dictionary, but

not fully automating it. Second, the specialization of the set of general patterns is done by looking

at one example at a time. It doesn't take into account the number of other correct examples the

specialization might also cover, or the number of times in the sample data that the pattern could

trigger incorrectly. This is one reason why a human expert is necessary to examine the validity of

the patterns generated. A newer version{AutoSlog-TS (Rilo�, 1996){generates potentially useful

patterns by using statistics about those patterns matching relevant and irrelevant documents. This

system has better precision than AutoSlog because it does rely on scoring patterns based on the

number of times they appear in the documents, but it does not use templates or annotation at

all. A human must determine which slot a given extraction pattern is for, and as with the earlier

system a human must go through the generated patterns and select those that will actually be used

by the system.
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Crystal (Soderland et al., 1995, 1996) is a more recent attempt to apply machine learning

to the creation of information extraction patterns. Its training instances are created by a sentence

analyzer which identi�es syntactic constituents such as subject, verb, object and tags each word

with a semantic class. Crystal also requires a semantic hierarchy for the domain and a list of

concepts for the domain. Like AutoSlog, Crystal's extraction patterns are syntactically based;

the \concept de�nitions" consist of constraints on the syntactic constituents of an instance. The

constraints can be on such things as words appearing in the constituent, semantic class, or the

root of a verb. The de�nition also indicates what constituent(s) of the instance are to be extracted

for what slots. Crystal generalizes its initial concept de�nitions by taking a seed instance and

relaxing the constraints on its constituents to cover additional instances that extract the same slots.

Generalization ends when too many negative examples will be covered by further relaxation of the

constraints.

Another system that learns information extraction patterns is Palka (Kim & Moldovan,

1995). Palka represents it rules as FP-structures, which constrain the root of the verb and have

semantic constraints on the phrases to be extracted. It generalizes and specializes the rules by

moving up and down in a semantic hierarchy or adding disjunctions of semantic classes. Palka's

representation is limited by its inability to place word constraints on noun or prepositional phrases,

and by its failure to place semantic constraints on any noun or prepositional phrases that are not

to be extracted. Like the previous systems, Palka relies on prior sentence analysis to identify

syntactic elements and their relationships.

Liep (Hu�man, 1996) also learns information extraction patterns. In many ways, Liep

functions like AutoSlog except that it learns only patterns that extract multiple slots, rather

than a single slot per pattern. Liep's extraction rules have syntactic constraints on pair-wise

syntactic relationships between sentence elements. It �nds the relationships that link elements

to be extracted, adding non-extracted elements as needed to form a path between the extracted

elements. Extraction patterns also contain semantic constraints, but these are not generalized.

The learning algorithm uses seed examples, proposing up to three rules from each example. Liep

tests each rule on the training set and keeps the one with the best F-measure. Liep's primary

limitations are that it also requires a sentence analyzer to identify noun groups, verbs, subjects,

etc.; it makes little use of semantic information; and it assumes that all information it needs is

between two entities to be extracted.

More recently, a system called RoboTag has been developed which uses decision trees to

learn the location of slot-�llers in a document (Bennett, Aone, & Lovell, 1997). This system, while

newer than others discussed in this section, is similar to these systems in that it is automating part

of the information extraction task in the context of a complete information extraction system and

it uses propositional learning, speci�cally, learning decision trees. RoboTag uses C4.5 (Quinlan,

1993) to learn decision trees which predict whether a given token is the �rst token of a slot-�ller

or the �nal token of a slot-�ller. The features available to the decision trees are the result of pre-

processing the text: segmenting the text, performing morphological analysis and lexical lookup.

The trees consider the token for which the decision is being made along with a �xed number of

tokens around it. Once RoboTag has learned trees to identify start and end tokens for slot-�llers,

it uses the trees to identify possible start and end tokens and then uses a matching algorithm to

pair up start and end tokens to identify actual slot-�llers.
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Two primary things distinguish Rapier from these early systems that learn extraction

patterns. First, Rapier is intended to handle the information extraction task on its own, rather

than being a part of a larger information extraction system. All of these systems except RoboTag

require a sentence analyzer, and most require later parts of the full information extraction system to

clean up their output. Crystal and Palka require domain-speci�c semantic hierarchies. We use

only freely available taggers and lexicons and do not do any post-processing of Rapier`s output.

The second distinguishing characteristic is Rapier's learning algorithm. Of the systems

described, only Crystal and RoboTag use generally applicable machine learning techniques to

create generalizations of the training examples. AutoSlog uses a set of heuristics to create gen-

eralizations from single examples, but it does not evaluate those generalizations on the training set

and thus makes no guarantees about the performance of its patterns on the training data. Liep

does evaluate the generalizations it proposes based on their coverage of the training examples, but

it simply proposes three generalizations based on one example and picks the best of those; thus, it

doesn't really make use of the other training examples in its generalization process. Palka does use

training examples to guide its generalization and specialization, but its algorithm is highly domain

speci�c since generalization and specialization consist entirely in moving up and down within a

domain-speci�c semantic hierarchy or adding disjunctions of semantic classes. Rapier is based on

general relational learning techniques, and while its representation is speci�c to domains that can

be represented as strings, we believe that it will prove to be applicable to NLP tasks other than

information extraction as discussed in Section 7.5.

6.2 Learning Information Extraction for Structured Text

One result of the popularity of the World Wide Web has been a need for systems that automat-

ically process web pages. For web pages that contain structured information, it is useful to learn

\wrappers" that translate the contents of a web page or class of web pages into a form that would

enable software robots to use the pages as if their contents were relational database entries.

One of the �rst systems designed for this task isWrapper Induction (Kushmerick, Weld,

& Roorenbos, 1997). This system only handles very regular, tabular types of data, since it looks for

uniform delimiters that identify the beginning and end of each slot and for delimiters that separate

the tabular information from surrounding text. The system only learns rules that cover all of the

examples, so any irregularities, such as missing data or �elds that are not always in the same order,

can keep it from learning a wrapper.

Other systems have since been designed to do wrapper induction, seeking to improve on

Kushmerick's system. SoftMealy (Hsu & Dung, 1998) induces �nite-state transducers in a

bottom-up fashion. Their representation and learning algorithm allow them to handle missing

values, slots with multiple values, and variant orderings as will as exceptions and typos{all prob-

lems for the earlier system.

Stalker (Muslea et al., 1998) uses a top-down covering algorithm to learn �nite automata

that act as wrappers. This system is also shown to handle web pages that Kushmerick's system

cannot, and to learn from very few training examples.

These systems are all successful and useful systems for their purpose of extracting highly

structured data. However, they lack exibility, being limited to working with highly structured
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data.

6.3 Recent Learning for Information Extraction from Semi-structured

and Free Text

Recently, a few researchers have begun work on learning systems with goals very similar toRapier's.

These systems are designed to work on multiple types of text, and they avoid reliance on full syn-

tactic analysis and domain-speci�c semantics, though some can make use of syntactic and semantic

information when it is available.

Most of these systems were presented in Section 4.4. The Naive Bayes based classi�er is

propositional, but has the same goals as far as voiding reliance on syntactic analysis and domain-

speci�c semantics as well being intended to stand alone rather than requiring post-processing (Fre-

itag, 1997). Freitag has extended this work by combining the Naive Bayes classi�er with grammat-

ical induction (Freitag, 1997). This approach uses a variety of features, such as whether a token is

capitalized or numeric, in addition to actual tokens. In fact, it uses the same feature set as that

employed by SRV. Using grammatical induction combined with the Naive Bayes system enables

the system to consider the structure of slot-�llers. However, the system does not use context.

SRV (Freitag, 1998c) andWhisk (Soderland, 1998) were both described in full in Section 4.4.

They are, clearly, the most similar systems to Rapier, being relational learning systems with many

of the same design goals. Although the three have quite di�erent rule representations, all of them are

capable of representing complex rules, including sequential relationships of tokens, and all of them

can handle some forms of syntactic or semantic information. The three systems di�er signi�cantly

in their learning algorithms. SRV andWhisk are both covering algorithms with primarily top-down

search; while Rapier uses a compression algorithm that is primarily bottom-up with a top-down

component. Based on the results presented in Chapter 4, SRV and Rapier seem to perform about

the same, with each having some strengths over the others. Whisk performed a little worse than

the other systems on the tasks which it was tested on. As was discussed in Chapter 4, it is not

clear how much the di�erences between the systems are attributable to their algorithms and how

much they come from the di�erent types of information used by each system. What is clear is that

relational learning is a promising direction for information extraction and further research into the

strengths and weaknesses of all three of these systems will aid in the development of more e�ective

information extraction systems.
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Chapter 7

Future Work

There are a number of directions in which this work could be extended. First, additional testing is

desirable, and several additional domains exist on which the system could be evaluated, including

extraction from university web pages (Freitag, 1998a), extraction from rental ads (Soderland, 1998),

and additional news story domains such as company management changes (DARPA, 1995). Second,

a number of enhancements could be made to Rapier's algorithm and representation, including

extending it to deal with additional constraint types and learning patterns that relate slots �llers

to one another. The work on active learning could be extended to examine the option of using

committees rather than the con�dence measure and also to explore the possibility of combining a

con�dence measure and committees. Next, Rapier makes assumptions that leave open a few issues

in information extraction that should be addressed. It does not deal with the distinction between

relevant and irrelevant documents for a task, and it assumes only one case frame per document,

clearly a problematic assumption for some tasks. Finally, it would be interesting to explore the

applicability of Rapier's representation and general learning algorithm to other types of natural

language problems.

7.1 Additional Test Domains

We have testedRapier on three di�erent realistic information extraction tasks. We have shown that

it performs quite well on two of the tasks, and that its overall performance seems to be comparable

to other current learning systems. However, there are several other data sets available that would

test Rapier's performance on other types of documents or tasks. The sets of university web

pages for courses and for research projects compiled at CMU (Freitag, 1998a) would test Rapier's

performance on HTML documents, an obviously interesting source for useful information extraction

tasks. Another interesting dataset is the apartment rental ads mentioned above (Soderland, 1998).

Successful performance on this particular task would, however, require the extensions to learn

multiple slot rules. Finally, testing on the MUC-6 company management changes task (DARPA,

1995) would provide a second \free text" domain and would a�ord the opportunity to compare

Rapier's performance to that of state-of-the-art hand-built information extraction systems.
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7.2 Enhancements to Rapier's Representation and Algorithm

7.2.1 Additional Constraint Types

One obvious extension of Rapier would be to add additional constrain types to the representation.

One possibility that we have considered is incorporating morphological information. To do this,

we could use the morphological functions in WordNet or some alternate source and then allow for

constraints on the roots and inections of words as well as on the surface form of the word. This

would add some complexity to the learning algorithm, as these constraints would give rise to the

same generalization issues as the word and tag constraints: needing to generalize using disjunction

or simply removing constraints.

Another possibly useful addition to Rapier's representation would be to add constraints

which are Boolean features of tokens. SRV uses a number of simple Boolean features which are

easy to compute by looking at a token: mostly orthographic features such as whether a word

is capitalized, whether it is a single character, whether it is \long" according to a pre-speci�ed

limit, whether it is entirely upper case, and so on (Freitag, 1998a). Rapier could be extended

to incorporate such features, and as long as they were simple Boolean features, they need add

no signi�cant computation, since this is a bottom-up algorithm, so there's not a branching factor

to be concerned about and each feature would be constrained to be true, constrained to false, or

unconstrained, so there are no issues of disjunction or other multiple possible generalizations to

consider.

7.2.2 Negated Constraints

Another possible addition for the algorithm would be to add negated constraints: that is words,

tags, or semantic classes that must not appear in the text matching the item or list with the

constraint. These constraints would be found by comparing correct �llers found by a rule with

the spurious �llers it produces and producing constraints to avoid elements of the spurious �llers.

Constraints that match a large percentage of the spurious �llers, but none, or few, of the correct

�llers would be added to the rule, and the resulting new rule(s) would be added to the list of

potential rules.

Intuitively, negated constraints could be very useful. Soderland also suggests the possibility

of adding negated constraints to Whisk's regular expressions (Soderland, 1998).

7.2.3 Syntax

Although Rapier performs quite well on the more informal domains on which it has been tested,

computer-related job postings and seminar announcements, it does not do as well on the corporate

acquisitions domain, which consists of more standard grammatical text. It seems likely that using

information from syntactic analysis would be helpful in this type of domain.

In order to incorporate information from parsing into Rapier, it would be necessary to

create an alternative type of pattern element, one which represents a syntactic phrase or clause.

This would allow Rapier to deal with a syntactic unit as an entity, but would complicate some

aspects of the algorithm. Each of the syntactic pattern elements would need to include all of the

pattern elements that make them up. Then, a most speci�c rule would consist of the highest level
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of syntactic units provided by whatever sentence analysis was used, and each of those would contain

references to the remainder of the hierarchy. Then the system would generalize by syntactic units

where possible. The specialization algorithm would need to accommodate the alternative pattern

element types, considering the option of adding units at each available syntactic level. Thus, if the

immediate left of the current rule in the specialization phase was \The man took the dog for a walk"

in the �rst original rule and was \The girl left the cat in the house," the specialization algorithm

would need to consider taking the entire sentences, looking at only the verb phrases, looking at only

the prepositional phrases, looking at the �nal noun phrases \a walk" and \the house," or looking

at just the �nal nouns. Thus, the branching factor of the search would increase.

Full parses would not necessarily be required to provide useful syntactic information to

Rapier. One simpler option would be to use a noun phrase extractor, a system that identi�es the

noun phrases in a text, without attempting a full parse.

There is one aspect of syntax which could not be easily incorporated into Rapier. The rule

representation would require signi�cant changes in order to express relationships between syntactic

units. A unit could be labeled as a noun phrase functioning as a subject, but the representation

would not allow for indicating which verb it is the subject of.

7.2.4 Domain-Speci�c Semantics

In this research, we attempted to use learning with only the information which could be easily

obtained with freely available natural language processing tools. Thus, the only semantic infor-

mation was from a general lexicon. However, the experiments reported in Chapter 4 indicate that

incorporating general semantic classes from WordNet does not improve performance, at least in

the tasks considered. Therefore, we believe that it would be helpful to explore the possibilities of

incorporating domain speci�c semantic classes. These might include lists of companies, computer

languages, operating systems, month names, states, and countries.

7.2.5 Named-Entity Extraction

Beginning in MUC-6, people began to evaluate systems for accomplishing parts of an overall in-

formation extraction task (DARPA, 1995). One of the tasks considered in that evaluation was

named-entity extraction, which is identifying the proper names which designate entities that might

be of interest such as corporations and people. It might useful to use a named-entity extractor

as part of the pre-processing of the text for Rapier. This would simplify the rule learning for

slots whose appropriate �ller were named entities, such as the recruiter and company slots in the

computer-related jobs domain, the speaker slot in the seminar announcements and the purchaser,

acquired, and seller slots in the corporate acquisitions domain.

7.2.6 Multiple Slot Rules

Another useful extension to Rapier would be the ability to learn rules which extract �llers for

multiple slots. There are two advantages to learning such rules. First, if two slots often appear in

a particular relationship to one another is a document, then learning a single rule for both slots

may help to focus the search for a good rule. This could be helpful for learning start time and

end time in the seminar announcements domain, or for learning purchaser and acquired in the
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corporate acquisitions domain, or for a position and a company in a management changes domain.

There are also certain situations where there are multiple �llers for slots, but the �llers are in some

way connected. For instance, in a rental ads domain on which Whisk has been tested (Soderland,

1998), it is common to have di�erent sized apartments at di�erent prices listed in the same ad. To

simply extract the numbers of bedrooms and the prices without connecting them is not helpful.

Learning rules that extract both the number of bedrooms and the related price can help to solve

this problem.

Modifying Rapier to handle multiple slot extraction rules should be fairly straightforward.

A rule would simply have additional patterns: one for each slot-�ller to be extracted, patterns

between the slot-�llers, and the context patterns before the �rst slot-�ller and after the last slot-

�ller. The primary issue that might be problematic would be the generalization of patterns in

between two slot �llers. These would probably contain useful information, but might be long and

of di�erent sizes, causing generalizing a pair of them to be prohibitively expensive. It might be

necessary to take a more top-down approach to learning the connecting patterns: starting with

an unconstrained pattern list and breaking it up into pattern items or smaller lists and adding

constraints (taken from those in the original rule pair to limit search) as long as such constraints

improved rule quality.

7.2.7 Precision and Recall Trade-o�s

In developing an information extraction system, there is often a necessity to trade-o� precision and

recall. In developing Rapier we have focused on developing a system with very high precision

and reasonably good recall. For the jobs database which partially motivated this work, such

a preference seems very appropriate. However, there are tasks where a preference for recall as

opposed to precision would be better. If, for instance, the purpose of the extraction was to �lter

the information for a human who needed all of the information, but didn't want to look at the entire

documents, it might be more appropriate to have maximal recall at the cost of lower precision.

Rapier does not currently have any way to trade o� between precision and recall. This

could, however, be done in di�erent ways. First, multiple rulebases could be learned using di�erent

random seeds. Then recall could be raised by accepting everything extracted by any rulebase,

or precision could be raised by accepting only the �llers that were agreed upon by all, or some

percentage of the rulebases. This would provide a limited sort of tradeo�.

A second possibility would be to use an approach similar to that taken by SRV, using internal

cross-validation or some other method to assign con�dences to rules, possibly allowing the creation

of more general rules, and then using a threshold to determine how con�dent the predictions are

required to be to vary precision and recall. Even without using cross-validation, this could be done

with the notion of the con�dence of a rule described in Chapter 5 and used there for selective

sampling. This could only be used to further raise the precision of the rulebase, since it does not

allow for covering more than the initial rulebase.

Finally, some sort of partial matching could be done with Rapier's rules, allowing the

system to extract items that are \near misses." This could, of course, only be used to raise recall.
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7.2.8 Boosting and Bagging

There has recently been quite a bit of work in machine learning on raising the accuracy of classi�ers

using boosting (Freund & Schapire, 1995, 1996) and bagging (Breiman, 1998). Both of these methods

involve learning multiple de�nitions of a concept, using example sets that are somehow varied and

then having the multiple de�nitions vote on the classi�cation of new examples.

In boosting, each example has a weight associated with it at each iteration. Initially, a

de�nition is learned with all of the examples equally weighted. Then the weights on the examples

are adjusted, increasing the weights of examples that are misclassi�ed by the initial de�nition and

decreasing the weights of correctly classi�ed examples. The boosting process then iterates, learning

a new de�nition with the newly weighted examples and adjusting the weights. The �nal classi�er

is the result of using all of the learned de�nitions to vote, with the weight of each de�nition's vote

being a function of that de�nition's accuracy on the training set.

In bagging, each de�nition is learned from a training set of size N which is drawn (with

replacement) from the initial set of training examples of the same size. Thus, each training set

from which a de�nition is learned will typically include some examples multiple times and exclude

other examples. The �nal classi�er is the result of voting all of these de�nitions, breaking ties

arbitrarily.

Bagging and boosting have both been shown to be e�ective ways of improving classi�er

performance (Quinlan, 1996). Thus, it might be useful to try using them to improve learning for

information extraction. The one drawback of employing these techniques would be the necessity of

learning multiple de�nitions, since Rapier's training time is signi�cant.

7.3 Experimenting with Active Learning

The experiment with applying active learning to Rapier discussed here shows that selective sam-

pling can be usefully applied to learning for information extraction. However, there are still some

interesting questions to explore here. As mentioned in Chapter 5, there was no necessity for choos-

ing uncertainty-based selective sampling rather than committee-based. Which would be the more

e�ective choice is an empirical question.

While developing a large committee of rulebases might be too computationally expensive, a

committee of two could determine how many of the slots in an example they disagree on and request

annotation for the example which produces the most disagreement. As with the con�dence-based

sampling described in Chapter 5, one problem which needs to be dealt with is un�lled slots. Because

of Rapier's high bias toward precision at the cost of recall, having the two rulebases agree that

a slot should be un�lled is not su�cient to indicate that it should, in fact, be empty. Therefore,

a committee-based active learning system should have a mechanism to deal with this problem,

perhaps randomly counting matching empty slots as a disagreement based on the percentage of

times the slot is �lled in the training data.

Actually developing di�ering committee members in Rapier may be quite easy because of

the inherent randomness in the algorithm. If simply using di�erent random seeds proved insu�cient,

it might be necessary to encourage one rulebase to be more general than the other, either by using

di�erent noise parameters or by forcing greater compression of the initial rulebase.
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7.4 Open Issues in Information Extraction

7.4.1 Set-valued Slot Fillers

Like other systems for learning extraction patterns, the current Rapier system only extracts values

that are strings taken directly from the original document text. However, for some tasks, it may

be more appropriate to select one of a pre-speci�ed set of values. Several slots in the terrorism

task template mentioned in Chapter 2 are of this type: the type of incident, the stage of execution

of the incident (accomplished, attempted, or threatened), the category of instrument used (gun,

bomb, grenade, etc.), and the category of the physical target, among others.

It should be possible to extend the algorithm to handle extracting values of this type.

Changes to the system itself should be relatively straightforward. First, the rule representation

would need to be modi�ed to include the value to be extracted, which would be either the value

from the set in the case of the pre-de�ned set of values or an indication that the string matching the

�ller pattern is the value to be extracted (the case handled currently). Second, the generalization

process would need to be modi�ed slightly to take into account the value to extracted. Clearly

the only interesting pairs of rules to generalize are those which extract the same value or which

both extract a string from the document. Finally, the training data provided to the system would

need some extension. Besides the actual value to be extracted, the system needs to know what

portion of the document it should create patterns from to extract that value. In the case of

strings taken from the document, this is very straightforward: we simply use all occurrences of

the string in the document to anchor rules. In other cases, however, the value and the portion

of the document which should anchor the rule must both be speci�ed. For example, a rule that

identi�es the stage of execution of a terrorist incident as \accomplished" might be anchored by

the phrase \HAVE BEEN KIDNAPPED" or \THE MASS KIDNAPPING TOOK PLACE" since

these are points in the document which indicate that the incident was, in fact, accomplished rather

than merely attempted or threatened. The anchor is necessary to provide the Rapier heuristics a

starting point to work from. However, one could explore the possibility of �nding words or phrases

common to documents sharing a particular slot value but rare in other documents as AutoSlog-

TS does(Rilo�, 1996), and then using those words or phrases as anchors for rules.

Another possible way to deal with this issue would be to treat it as a text categorization

problem and use a learner designed to handle text categorization per se (Sahami, 1998) rather than

adapting Rapier to the problem. For each set-valued slot, we could use the text categorization

learner to learn categorization rules treating each possible value of the slot as a category. However,

one potential advantage of usingRapier and its representation rather than a standard bag-of-words

text categorization approach is that, in some cases at least, the information upon which a decision

should be based is very localized, and so having the ability to create rules anchored somewhere in

the document and looking at a localized context may be more appropriate than a bag of words.

7.4.2 Document Relevance

One issue in information extraction which Rapier does not deal with is that of identifying relevant

and irrelevant documents. In the experiments presented here, all of the documents for training and

testing are relevant for the task: i.e. all documents in the computer-related job postings domain

are job postings about a computer-related job; all documents in the corporate acquisitions domain
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do describe an acquisition. However, a fully automated system will have to deal with both relevant

and irrelevant documents, or with choosing the relevant template to use: e.g. given a job posting,

the system might need to categorize it as a computer-related job, an engineering job, some other

kind of job posting, or an irrelevant post.

Although the Rapier system as it now stands does not address this issue, but we have

considered a few di�erent alternatives as to how to deal with it. One option is to run each document

thoughRapier's extraction rules for all possible templates and then use the results of the extraction

to determine which template, if any, is appropriate for the document. Presumably the most relevant

template would have the highest percentage of slots �lled, and documents which are completely

irrelevant should have very few slots �lled. However, the system would probably need to learn which

slots were actually useful in making the relevance decisions. Some slots might be highly speci�c

to a particular template, while others might be easily �lled even for irrelevant documents. For

example, the date a job o�ering was posted is useful information to extract, but it is information

that will be extracted for any netnews post. Being able to extract a �ller for the number of years

of experience required is strong evidence that the message is a job posting, but does nothing to

distinguish a computer job from any other kind of job.

A second option for dealing with the issue of distinguishing between relevant and irrelevant

documents and for determining which of a set of templates is most appropriate would be to use

standard information retrieval relevance feedback techniques (Salton, 1989; Frakes & Baeza-Yates,

1992) or to use a text categorization learning system to classify the documents initially and then

to pass the document on to the information extraction system, the decision as to which template

to use having already been made.

Finally, we might try to extend Rapier to handle the document classi�cation task as a

separate slot with �xed values. The primary di�culty here may be the issue of anchoring the rules,

since it does not seem feasible to have a person identify a particular portion of each document that

is the right place to anchor a rule determining the classi�cation of the document. However, the

idea of �nding phrases that distinguish particular �ller values and using that phrases to anchor

rules, as described above, would alleviate this problem.

All of these options seem potentially viable, though all have weaknesses as well as strengths.

Empirical tests will be required to determine what the best method of handling the classi�cation

issue is.

7.4.3 Recognizing Multiple Case Frames

Along with assuming that each document it sees is relevant, Rapier assumes that each document

should produce a single �lled template or case frame. This assumption is true of all of the training

and test data used in experiments described in this thesis. However, it is not necessarily the case in

all relevant documents. For example, in the job postings domain, sometimes a single posting may

describe several jobs. In the rental ads domain mentioned above, a single ad may describe include

several di�erent apartments at di�erent prices.

The need to create and �ll multiple templates for a single document raises several issues.

First, the system needs to recognize the need to create multiple templates. One way to do this is

to recognize when slots which should have only one �ller have multiple �llers extracted. This could

be very e�ective in a domain such as the rental ads. It is less so in a domain like the job postings
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where almost any slot can have multiple �llers{even job titles may appear in multiple variations

for the same job.

Another option would be to recognize the typical ordering of slots, if there are typical

orderings. Then, if all �llers for slot A typically come before all �llers for slot B and in a document

there are �llers for slot A followed by �llers for slot B followed by more �llers for slot A, this would

be a clue that multiple templates should be created.

Yet another option would be to learn text segmentation rules, either using Rapier or ap-

plying an alternative learning approach. For a domain like the job postings it may be possible

for Rapier to learn rules for recognizing the transition from one job to another since the primary

information about the two jobs is seldom intertwined and there are often clear demarcations be-

tween jobs. Recently, there has been some research into using learning approaches to segment text

(Beeferman, Berger, & La�erty, 1997; Richmond, Smith, & Amitay, 1997). However, these particu-

lar approaches may not be useful to this problem, since they often depend on the shift in vocabulary

due to a shift in subject, and within one of these documents, a move from one job to another or

from one seminar announcement to another is not likely to produce a change in vocabulary.

A second issue of dealing with multiple case frames is associating the correct �llers with

each of the templates. As mentioned above, for some domains this may be facilitated by learning

rules which extract �llers for multiple slots. For domains like job postings, it may be possible to

simply divide the document into the sections describing each separate case and to apply rules only

within each section.

The �nal issue is probably the simplest for the domains mentioned: recognizing the slots for

which only a single value will appear in the document, but that value should apply to all templates

created. Examples of this include the message id, posting date, and recruiter or company for a job

posting. This issue can probably be handled by simply learning which slots for any given domain

will appear only once per document despite applying to all cases.

7.4.4 Template Merging and Coreference Issues

Another issue which arises in some information extraction tasks is that of handling coreference

issues. Rapier has avoided these issues, which do not need to be addressed in a task like creating

the jobs database, since coreference problems seldom arise, and when they do, simply putting

both references in the database is probably appropriate, since the references are likely to be two

versions of the job title. However, looking at the seminar announcement task, we can see situations

where handling coreference is desirable. For example, the start time of a seminar may be expressed

both as \2:00 pm" and as \2pm." Since these two items are logically the same, our performance

measurement counts the slot correctly �lled if either appears, and if both versions appear, the slot

is still considered to have been correctly �lled once, but we don't penalize the system for extracting

both versions. However, in an application, it might be much better to recognize, if both versions

are extracted, that the two versions are referring to the same thing and to use only one of them.

7.5 Extension to Other Natural Language Processing Tasks

We believe that the representation used by Rapier as well as the basic algorithm will also prove

useful for natural language processing tasks other than information extraction. One such task is
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learning rules for word sense disambiguation. This task seems particularly appropriate because it

can be easily mapped into the current system. A template would be created for the word to be

disambiguated, with the template slots being the various senses of the word. The �ller in all cases

would be the word. The system would then learn pre-�ller and post-�ller patterns that would select

the word only if it had the desired sense. Of course, the content of the �ller would be the same

in all rules for each word, and the interesting result of running the rules would be determining

which sense of the word had a �ller selected for it. An alternative way to map the word sense

disambiguation task to the information extraction task would be to have the template consist of a

single slot with a �xed set of values (the possible word senses). It would be interesting to run some

experiments with word disambiguation corpora that have been used with other learning systems

(Mooney, 1996) to see whether Rapier's representation and algorithm are successful at this task.

We also hope to �nd additional natural language processing tasks for which our represen-

tation and algorithm seem appropriate. One possibility would be text classi�cation using patterns

automatically anchored as described above for �xed-value slots. Good text classi�cation may, how-

ever, require that multiple patterns anchored in di�erent parts of the text be learned for a single

rule.
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Chapter 8

Conclusions

The ability to extract desired pieces of information from natural language texts is an important task

with a growing number of potential applications. Tasks requiring locating speci�c data in news-

group messages or web pages are particularly promising applications. As the amount of textual

information available on-line grows, information extraction systems will become more and more

important as a method of making this information available and manageable. Manually construct-

ing such information extraction systems is a laborious task; however, learning methods have the

potential to help automate the development process. This dissertation has presented a novel rule

representation and a relational learning algorithm for learning information extraction rules.

Rapier uses relational learning to construct unbounded pattern-match rules for information

extraction given only a database of texts and �lled templates. The learned patterns employ limited

syntactic and semantic information to identify potential slot �llers and their surrounding context.

The system di�ers from other learning systems attempting the same task in its representation and

its primarily bottom-up learning algorithm. Rapier also di�ers from previous learning systems for

information extraction in that it learns rules to accomplish the task without reliance on previous

syntactic analysis and that it is intended to be able to handle some information extraction tasks

on its own, rather than being a part of a larger information extraction system.

Experimental evaluation of Rapier has shown that it performs well on two realistic infor-

mation tasks. Its performance is signi�cantly better than a propositional machine learning system

for information extraction, supporting our hypothesis that relational learning is more appropriate

than propositional learning for this task, due to the structure of natural language. Comparisons

with other, very recent relational learning systems for information extraction also support this

hypothesis. All three of the relational systems perform well, though further experimentation is

required to determine whether the variations in performance are primarily due to the algorithmic

di�erences between the systems or to the di�erent features the systems use.

One of the drawbacks to using supervised machine learning to build information extraction

systems is the necessity for a number of annotated examples. Therefore, this research has also

focused on a method for reducing the number of examples required to learn useful information

extraction rules. Experiments with using selective sampling with Rapier have shown that selective

sampling can signi�cantly reduce the amount of annotation required to develop a useful information

extraction system with Rapier. Using a simple notion of the con�dence of a rule, we achieved

with 150 selected examples performance equivalent to a system built with 270 randomly selected
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examples, reducing the required number of annotated examples by more than a third.

In conclusion, this dissertation has shown that current machine learning techniques, par-

ticularly relational learning techniques, in appropriate combinations and used with an appropriate

rule representation, can e�ectively accomplish a useful natural language processing task.
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Appendix A

Sample Data

This appendix contains pairs of documents and templates from the domains used in the experiments

in this research. The templates consist of the template name followed by a list of slots. Each slot

has the slot name followed by a colon and then the slot-�llers, separated by backslashes.

A.1 Computer-related Jobs

Below are two examples of documents and their templates from the computer-related jobs infor-

mation extraction task.

Document

Path: cs.utexas.edu!news-relay.us.dell.com!jump.net!news-fw!news.mpd!

newsgate.tandem.com!su-news-feed1.bbnplanet.com!su-news-hub1.bbnplane

t.com!cpk-news-hub1.bbnplanet.com!news.bbnplanet.com!news-peer.sprint

link.net!news.sprintlink.net!Sprint!ix.netcom.com!news

From: hktexas@ix.netcom.com (Hall Kinion)

Newsgroups: austin.jobs

Subject: US-TX-Austin WINDOWS, C++, MFC/OWL NEEDED (tab)

Date: Fri, 29 Aug 1997 19:11:09 GMT

Organization: Netcom

Lines: 22

Message-ID: <34081eca.8972712@NNTP.IX.NETCOM.COM>

NNTP-Posting-Host: aus-tx23-14.ix.netcom.com

Mime-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

X-NETCOM-Date: Fri Aug 29 2:23:27 PM CDT 1997

X-Newsreader: Forte Agent .99f/16.299

Xref: cs.utexas.edu austin.jobs:120178

US-TX-AUSTIN WINDOWS, C++, MFC/OWL NEEDED (tab)

Excellent opportunity to work with a small team within and

well-established company the develops software for the banking

industry! New management means new directions and exciting changes.
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A strong Windows C++ Developer is needed to complete a development

team.

Requirements:

Windows 16 and 32 bit

Expert C++

MFC or OWL

Must have done commercial applications

2-5 years experience

Must be a team player, be enthusiastic and ready to learn new

technology.

Salary- $50-70k, DOE

Please respond immediately to: Tracy

tab@hallkinion.com

ph. 512-349-0960

fax.512-349-0983

Template

computer_science_job

id: 34081eca.8972712@NNTP.IX.NETCOM.COM

title:

salary: $50-70k

company:

recruiter:

state: TX

city: AUSTIN

country: US

language: C++

platform: WINDOWS

application:

area: MFC \ OWL

req_years_experience: 2

desired_years_experience: 5

req_degree:

desired_degree:

post_date: 29 Aug 1997

Document

Path: cs.utexas.edu!cpk-news-hub1.bbnplanet.com!cam-news-hub1.bbnplan

et.com!news.bbnplanet.com!news-feed1.tiac.net!news-master.tiac.net!ne

ws@tiac.net

From: jcookinc@tiac.net (jcookinc)

Newsgroups: austin.jobs,tx.jobs,prg.jobs,comp.jobs,comp.jobs.offered

Subject: SOFTWARE DEVELOPER/PRODUCT DEVELOPER, Austin, TX

Date: Thu, 11 Sep 1997 15:45:29 GMT

Organization: Cook & Associates, Inc.

Lines: 53
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Message-ID: <5v93n8$q2k@news-central.tiac.net>

Reply-To: jcookinc@tiac.net

NNTP-Posting-Host: jcookinc.tiac.net

X-Newsreader: Forte Free Agent 1.0.82

Xref: cs.utexas.edu austin.jobs:122622 tx.jobs:377734

POSTING #445

Major Software Tools vendor located in Austin, Texas has opening

for a Software Developer/Product Developer.

$425 million/annual sales, 1400 employees, private offices, casual

work environment, non-smoking environment (test given during

pre-employment physical), great bonuses, 100match on 401K plan,

leading edge technology.

Will be responsible for Windows development, producing quality code

that is easy to maintain and well documented. Will perform

functional component design and communicate design considerations to

other team members and product authors. Will perform unit testing

and coordination for problem resolution with QA, support reps, tech

writers, product authors, and managers.

Requires 2+ years Windows development experience, SDK level required,

"C" coding. Pluses would be any C++, MFC, knowledge of RDBMS

(Oracle, Sybase, Informix, DB2/2, DB2/6K).

Hiring Salary Range $57K to $86K, depending on qualifications.

Excellent benefits and relocation assistance paid by hiring company.

Must have US CITIZENSHIP or GREEN CARD status and actual work

experience.

Strongly prefer reply by E-Mail using MS-WORD, WordPerfect 7 (as

attached file) or ASCII text format. Please refer to Posting Number

in reply.

These are Permanent/Fulltime/Salaried positions NOT CONTRACTs.

Reply To: John Cook

COOK & ASSOCIATES, INC.

Voice: 781-934-6571

E-Mail: jcookinc@tiac.net

COOK & ASSOCIATES, INC. is a permanent placement firm in business

since 1976. We specialize exclusively in the placement of Information
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Systems/Data Processing professionals on a national and local basis.

A large portion of our business involves relocating systems

professionals within the domestic United States. Our client companies

are diverse and include user organizations of all sizes, proprietary

software vendors, and many Fortune 500 firms. Let our years of

experience and history of professional, confidential service go to

work for you on your next career move. Of course, all associated

costs and fees are paid for by our client companies. For more

information on this or other opportunities please E-Mail your resume.

Template

computer_science_job

id: 5v93n8$q2k@news-central.tiac.net

title: SOFTWARE DEVELOPER/PRODUCT DEVELOPER

salary: $57K to $86K

company:

recruiter: COOK & ASSOCIATES, INC

state: Texas \ TX

city: Austin

country:

language: C++ \ C

platform: Windows

application: DB2/6K \ DB2/2 \ Informix \ Oracle \ Sybase

area: RDBMS \ MFC

req_years_experience: 2+

desired_years_experience:

req_degree:

desired_degree:

post_date: 11 Sep 1997

A.2 Seminar Announcements

Below are two sample documents paired with templates from the seminar announcements domain

(Freitag, 1997).

Document

Type: cmu.cs.robotics

Who: Daniela Rus, Cornell University

Topic: FINE MOTION PLANNING FOR DEXTEROUS MANIPULATION

Dates: 29-Jan-93

Time: 3:30 PM - 5:00 PM

Place: ADAMSON WING Auditorium in Baker Hall

PostedBy: maa+ on 26-Jan-93 at 13:23 from ISL1.RI.CMU.EDU (Michelle

Agie)

Abstract:
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****************************************************

RI SEMINAR

WHEN: Friday, Jan 29, 1993; 3:30 pm - 5:00 pm

Refreshments will be served by 3:15 pm

WHERE: ADAMSON WING Auditorium in Baker Hall

SPEAKER: Daniela Rus, Cornell University

TITLE: FINE MOTION PLANNING FOR DEXTEROUS MANIPULATION

*Those wishing to meet and talk with Daniela Rus can

schedule an appointment with Phyliss Pomerantz, by

calling 7897 or sending e-mail to plp@cs

Dexterity is an important feature for robots that

operate intelligently and independently in their environment.

While planning dexterous manipulation can be viewed as a general

motion planning problem, this leads to intractable algorithms.

Instead, we develop efficient geometric algorithms for the class

of parts orientations problems. For a given set of cooperating agents

(which can be robot fingers, robot arms, mobile robots, or fixtures

in the environment), an object, and a desired reorientation, we wish

to synthesize a robust plan for the agents that accomplishes the

desired reorientation. We present an efficient and exact

$O(n\log n)$ algorithm for the reorientation of polygonal objects of

size $n$ and show its extension to polyhedra. This algorithm exploits

the geometric structure of the problem and the task mechanics and

is near-sensorless, in that it requires only sparse sensing.

We are currently implementing the planar reorientation problem in the

context of a team of cooperating autonomous mobile robots.

The team will reorient boxes with polyhedral cross sections.

Since the reorientation plan requires a model, we describe an

algorithm for the robust acquisition of geometric models by mobile

robots with error bounds and demonstrate its performance with a

video. This work (joint with Jim Jennings) is an exploration

of how, even with sparse and noisy sensors typically found

on mobile robots, we can build adequate accounts and detailed models

of manipulable objects, while satisfying the modeling and information

requests of near-sensorless manipulation planners.

Template

seminar

stime: 3:30 PM
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etime: 5:00 PM

location: ADAMSON WING Auditorium in Baker Hall

speaker: Daniela Rus

Document

Type: cmu.cs.scs

Topic: Special AI Seminar

Dates: 29-Sep-94

Time: 3:00 PM

PostedBy: valdes+ on 28-Sep-94 at 13:22 from CS.CMU.EDU (Raul

Valdes-Perez)

Abstract:

Ken Forbus of Northwestern University will give a seminar on

"Articulate Virtual Laboratories for Engineering Education"

tomorrow (Thursday) at 3pm in Wean 4625. The abstract will be

posted when available.

Template

seminar

stime: 3:00 PM \ 3pm

etime:

location: Wean 4625

speaker: Ken Forbus

A.3 Corporate Acquisitions

Below are two sample documents paired with templates from the corporate acquisitions domain

(Freitag, 1998c).

Document

ENTERTAINMENT {EM} MAY SEEK CRAZY EDDIE {CRZY}

WASHINGTON, June 29 - Enetertainment Marketing Inc and its

president Elias Zinn have demanded a list of Crazy Eddie Inc

shareholders from the company and said they may pursue a merger

of the Edison, N.J. electronics retailer.

In a filing with the Securities and Exchange Commission,

Zinn said the demand for the shareholder list was made on June

26 because he may desire to communicate with other Crazy Eddie

shareholders "regarding the affairs" of the company.

Zinn and his firm, which disclosed they hold a 5.1 pct

stake in Crazy Eddie common stock, said they may acquire more

shares through a negotiated merger or tender offer.

Entertainment Marketing was informed on June 25 by Shearson
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Lehman Brothers Inc., acting on behalf of Crazy Eddie, that it

would be provided with "certain information" about Crazy Eddie,

it told the SEC.

Entertainment Marketing, a Houston-based firm involved in

electronics wholesaling and televised home shopping sales,

proposed an eight dlr a share merger acquisition of Crazy Eddie

on May 29, and modified the proposal on June 9 to include the

possible participation of Crazy Eddie management.

Entertainment Marketing told the SEC it expects to meet

with Crazy Eddie representatives in the near future.

Entertainment Marketing also disclosed that it retained

Drexel Burnham Lambert Inc as its financial advisor and

investment banker.

In light of a June 17 announcement from Crazy Eddie that

Chemical Bank would no longer fund a 52 mln dlr credit facility

with the company, plus further declines in the price of its

stock, Entertainment Marketing and Zinn said they are

"continuing to evaluate their alternatives with respect to

their investment" in Crazy Eddie stock.

Depending on its evaluation of the company, including

actions by Crazy Eddie's board and any possible third party

bids for the company, Entertainment Marketing and its president

said they may hold their present stake in the company, sell

some of their shares, or purchase more shares on the open

market, through private purchases or in connection with a

merger or tender offer.

According to the SEC filing, Entertainment Marketing and

Zinn bought their current holdings of 1,560,000 Crazy Eddie

common shares between May 20 and June 17 at 7.42 dlrs to 7.93

dlrs a share, or a total of about 11.9 mln dlrs.

Reuter

Template

acquisition

purchaser: Enetertainment Marketing Inc

purchabr: ENTERTAINMENT \ Entertainment Marketing

purchcode: EM

acquired: Crazy Eddie Inc

acqabr: CRAZY EDDIE

acqcode: CRZY

seller:

sellerabr:

sellercode:

dlramt:

acqloc: Edison, N.J.

acqbus: electronics

status: may pursue a merger

Document
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AMERICAN TRAVELLERS {ATVC} TO MAKE ACQUISITION

WARRINGTON, Pa., March 18 - American Travellers Corp said

it has entered into an agreement to purchase ISL Life Insurance

Co of Dallas, a corporate shell with active licenses to operate

in 12 states, for about 400,000 dlrs.

The company said closing is expected by late spring and

will result in American Travellers being licensed in seven new

states.

Reuter

Template

acquisition

purchaser: American Travellers Corp

purchabr: AMERICAN TRAVELLERS

purchcode: ATVC

acquired: ISL Life Insurance Co

acqabr:

acqcode:

seller:

sellerabr:

sellercode:

dlramt: 400,000 dlrs

acqloc: Dallas

acqbus:

status: entered into an agreement
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Appendix B

Learned Information Extraction Rules

This appendix contains a set of learned information extraction rules for each of the three domains

reported on in this dissertation. The rulebases include only the rules created in the compression

loop, not any initial, most-speci�c rules not covered by later, more general rules. These rules were

learned in the experiments described in Chapter 4, using Rapier with words and part-of-speech

tags.

The format in which the rules are presented here is Prolog-like, in the form:

rule(TemplateName, SlotName, NumPosCovered, NumNegCovered,

Pre-�llerPattern, FillerPattern, Post-�llerPattern).

Each of the patterns is formatted as a Prolog list of pattern elements. The elements are in the

form:

item(WordConstraints, TagConstraints)

list(Length, WordConstraints, TagConstraints)

where the constraints are \ " if empty, a single constant if there's one constraint, and a Prolog list

if the constraint has more than one disjunct.

B.1 Computer-related Jobs

The following rulebase was learned from 270 examples in the experiments described in Section 4.6.

rule(computer_science_job, title, 4, 0,

[item(['junior',':'],_)],[item(['sqa','programmer'],'nnp')],

[item(_,_),item(_,['nn','sym'])]).

rule(computer_science_job, title, 4, 0,

[item(_,['dt','sym'])],[item(['programmer','developer'],'nn')],

[item(['with','date'],_)]).

rule(computer_science_job, title, 6, 0,

[item(_,['endsent',':']),item(_,_),item([':','sas'],_)],

[list(1,'gui','nnp'),item('programmer','nnp')],[item(_,['endsent','nnp'])]).

rule(computer_science_job, title, 5, 0,

[item(['austin','subject'],_),item([',',':'],_)],

[item(_,'nnp'),item(['developers','dba'],_)],[]).

rule(computer_science_job, title, 3, 0,
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[item(_,[':','endsent'])],[list(2,_,['nns','nnp','nn']),

item(['consultant','administrators'],_)],[item('endsent','endsent')]).

rule(computer_science_job, title, 4, 0,

[item(_,'nnp'),item([',','-'],_),item(_,'nnp')],

[list(2,['/','technical','developer'],_),item('programmer','nnp')],

[list(2,_,_),item(['recruiter','$'],_)]).

rule(computer_science_job, title, 3, 0,

[],[item(['visual','software'],'nnp'),item(_,'nnp'),item(_,['nns','nnps'])],[]).

rule(computer_science_job, title, 3, 0,

[item(['nt','access'],_)],[item(['developers','programmer'],_)],[]).

rule(computer_science_job, title, 4, 0,

[item(_,['endsent','cd'])],[list(3,_,['nn','nnp','jj']),item('engineer','nn')],

[item(_,['nnp','vbn'])]).

rule(computer_science_job, title, 3, 0,

[],[item(_,'nnp'),item(_,'nnp'),item(['manager','specialists'],_)],[]).

rule(computer_science_job, title, 4, 0,

[item(_,['vbp','nnp'])],[item('programmers','nns')],[item(['with','needed'],_)]).

rule(computer_science_job, title, 3, 0,

[item(_,['in','nn'])],[item(['lead','software'],_),item(['developers','engineer'],_)],

[list(2,_,_),item(_,['nn','prp$'])]).

rule(computer_science_job, title, 3, 0,

[item(['subject','121818'],_),item(_,[':','endsent'])],

[item(['dba','programmer'],['nnp','jj'])],[]).

rule(computer_science_job, title, 7, 0,

[item(_,['in',':','vbn'])],[item(['programmers','dba','developer'],_)],

[item(_,['in','pos','wp'])]).

rule(computer_science_job, title, 4, 0,

[item(':',':')],[item(_,_),item(['developer','engineer'],_)],[item(_,['cd','prp'])]).

rule(computer_science_job, title, 5, 0,

[item(_,['jj',':'])],[item(['compiler','peoplesoft','database'],_),item(_,_)],

[item(_,['in',':','cd'])]).

rule(computer_science_job, title, 3, 0,

[item(['oracle','cobol'],'nnp')],[item(['dba','programmers'],'nnp')],

[item('to','to')]).

rule(computer_science_job, title, 4, 0,

[],[item(_,'nnp'),item(['&','driver'],_),item(['analysts','developer'],_)],[]).

rule(computer_science_job, title, 4, 0,

[],[item(['network','senior'],['nnp','jj']),item(['security','software'],_),

item(_,['nnp','nn'])],[]).

rule(computer_science_job, title, 3, 0,

[item(_,[':','endsent']),item(_,_),list(2,_,_),item(_,['nn',':'])],

[item(['multimedia','dba'],'nnp'),list(2,['programmer','developers','/'],_)],

[item(_,['endsent',':']),item(_,['nn','nnp']),item(_,_),item(_,['nn','nnp'])]).

rule(computer_science_job, title, 5, 0,

[item(_,[':','dt'])],[list(2,_,'nnp'),item(['database','interface'],'nnp'),

item(['developer','designers'],_)],[]).

rule(computer_science_job, title, 8, 0,

[item(['java',':'],_)],[list(2,_,['nn','nnp']),item('engineer','nn')],

[item(_,_),item(_,['in','nn']),item(_,['nnp',':'])]).

rule(computer_science_job, title, 3, 0,

[item(['a','-'],_)],[item(_,['nn','nnp']),item(['manager','programmers'],_)],

[item(_,['wp',':'])]).

rule(computer_science_job, title, 4, 0,

[item(_,['endsent',':'])],[list(3,_,['nn','nnp']),

item(['engineers','tester'],['nns','nnp'])],[item(_,['.','endsent'])]).

rule(computer_science_job, title, 6, 0,

[item(['-','+'],_)],[list(2,['/','mainframe','programmer'],_),

item(['programmer','analyst'],_)],[item(['needed','endsent'],_)]).

rule(computer_science_job, title, 4, 0,

[item(_,['endsent',':'])],[item(_,'nnp'),item(['qa','driver'],'nnp'),

item(_,'nn')],[]).

rule(computer_science_job, title, 5, 0,
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[],[item(['device','senior'],_),list(2,_,_),item(['developer','programmer'],_)],

[item('endsent','endsent')]).

rule(computer_science_job, title, 3, 0,

[],[item(_,'nnp'),item(['intranet','sqa'],'nnp'),item(_,_)],

[item(_,['endsent','vbn'])]).

rule(computer_science_job, title, 3, 0,

[item(_,[':','endsent'])],[item(_,'nnp'),item(['programmer','manager'],'nnp')],

[item('-',':')]).

rule(computer_science_job, title, 5, 0,

[],[item(['software','network','senior'],_),list(2,_,'nnp'),

item(['administrator','admin'],_)],[]).

rule(computer_science_job, title, 5, 0,

[],[item('programmer','nnp'),item(['analysts','analyst'],_)],

[item(_,['nn','endsent'])]).

rule(computer_science_job, title, 4, 0,

[list(2,_,_),list(2,_,_),item(_,['endsent','sym'])],

[list(2,_,['nnp','nn']),item(['developers','engineer'],_)],

[item(_,['endsent','('])]).

rule(computer_science_job, title, 7, 0,

[item(_,'nn'),item(_,_),item(_,_),item(['endsent',':'],_)],

[list(2,_,'nnp'),item(['developers','engineer'],_)],[]).

rule(computer_science_job, title, 4, 0,

[item(_,[':','endsent'])],[list(2,_,['nns','nnps','jj']),

item('programmer','nnp')],[item('endsent','endsent'),

item(['req','description'],_)]).

rule(computer_science_job, title, 5, 0,

[item([':','/'],_)],[list(1,'senior','nnp'),item('software','nnp'),

item(['consultant','engineer'],_)],[]).

rule(computer_science_job, title, 3, 0,

[],[item(['senior','human'],_),item(_,'nnp'),item(_,'nnp'),item(_,'nn')],[]).

rule(computer_science_job, title, 3, 0,

[item(_,':')],[item(['software','infrastructure'],'nnp'),

list(2,_,'nnp'),item(['manager','analysts'],_)],[]).

rule(computer_science_job, title, 3, 0,

[item(_,':')],[list(2,_,'nnp'),item(['analyst','technician'],_)],

[item('endsent','endsent')]).

rule(computer_science_job, title, 5, 0,

[item(_,':')],[item(_,'nnp'),item(['administrator','engineer'],_)],

[list(2,['location','for','endsent'],_),item(_,['nnp',':'])]).

rule(computer_science_job, title, 4, 0,

[item(['austin','assertive'],_),item(['/','customer'],_)],

[list(2,_,'nnp'),item(['engineers','developer'],_)],

[item(_,['endsent','to'])]).

rule(computer_science_job, title, 3, 0,

[item(['/','-'],_)],[item(_,'nnp'),item(['engineer','master'],_)],

[item(_,_),item(_,_),item(_,[':','nnp']),item(_,['nnp','nns'])]).

rule(computer_science_job, title, 3, 0,

[item(_,':')],[item(_,['jj','nnp']),item(['c','support'],'nnp'),

item(_,'nnp')],[]).

rule(computer_science_job, title, 3, 0,

[item(['-','basic'],_)],[list(3,['sr.','(','mainframe'],_),

item('programmer','nnp'),list(1,'analysts','nns')],

[item(_,[':','endsent'])]).

rule(computer_science_job, title, 3, 0,

[item(['2200','several'],_)],

[list(2,['analysts','programmers','systems'],_)],

[item(_,['.','vbp'])]).

rule(computer_science_job, title, 3, 0,

[item(['for','austin'],_)],[list(2,_,'nnp'),

item(['engineers','executives'],'nns')],[]).

rule(computer_science_job, state, 140, 0,

[list(3,_,_)],[item(['ohio','tx','california'],'nnp')],[]).
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rule(computer_science_job, state, 80, 1,

[],[item(['tx','oh'],_)],[list(2,_,_),item(_,_),item(_,'nnp'),

item(_,['to','nnp'])]).

rule(computer_science_job, state, 138, 0,

[list(3,_,_)],[item(['mi','ohio','tx'],'nnp')],

[item(_,[',',':','endsent'])]).

rule(computer_science_job, state, 136, 0,

[list(3,_,_)],[item(['oh','tx'],_)],[]).

rule(computer_science_job, state, 161, 2,

[list(2,[',','endsent','dallas'],_)],[item(['tx','az'],'nnp')],[]).

rule(computer_science_job, state, 143, 0,

[item(_,[':','in']),list(2,_,_)],[item(['tx','ohio'],'nnp')],[]).

rule(computer_science_job, state, 136, 0,

[list(2,_,_),item(_,[':',','])],[item(['oh','tx'],_)],

[item(['-','78746'],_),item(_,['nnp','cc'])]).

rule(computer_science_job, state, 132, 0,

[list(2,_,_)],[item(['tx','co'],'nnp')],[item(['75248','-'],_)]).

rule(computer_science_job, state, 109, 0,

[item(_,['jj',':']),list(2,_,_),item(_,[':',','])],

[item(['ohio','tx'],'nnp')],[item(_,[':','endsent']),

list(2,[',','duration','progress'],_),item(_,[':','nnp'])]).

rule(computer_science_job, salary, 4, 0,

[item(_,['nn','sym']),list(2,_,_),item(_,[':','nnp'])],

[list(2,_,['cd','to','$']),item(_,_),item('65k','cd')],[]).

rule(computer_science_job, salary, 3, 0,

[item(_,[':','endsent']),list(2,_,_)],[item(['to','40'],_),item(_,_),

item(['55','50'],_),list(2,_,_),item(_,['cd','.'])],[]).

rule(computer_science_job, salary, 4, 0,

[],[list(1,'to','to'),item('$','$'),list(2,_,_),item(_,_),item(_,_),

item(['120k','yr'],_)],[]).

rule(computer_science_job, salary, 7, 0,

[],[item('$','$'),item(_,'cd'),list(2,['35','to','-'],_),

item(_,['$','nn']),item(['78k','hr'],['cd','nn'])],[]).

rule(computer_science_job, salary, 4, 0,

[item(_,[':','in','nns'])],[list(1,'$','$'),item('to','to'),

item('$','$'),item(['65k','90k','75k'],'cd')],[]).

rule(computer_science_job, salary, 11, 0,

[],[list(1,'to','to'),item('$','$'),

item(['45k','62k','85k','60k'],'cd')],[]).

rule(computer_science_job, salary, 5, 0,

[item(['60',':','administrator'],_)],[item(_,['to','$']),

list(3,_,_),item(['65','60k','hr'],_)],[]).

rule(computer_science_job, salary, 3, 0,

[item(_,['in','vb'])],[list(2,_,['cd','$']),

item(['figures','pa'],_)],[]).

rule(computer_science_job, salary, 4, 0,

[item(['us','intranet','endsent'],_)],[list(3,_,['cd','to','$']),

item('$','$'),item(['20','40'],'cd'),list(2,_,_),

item(['hr','hour'],_)],[]).

rule(computer_science_job, salary, 4, 0,

[],[item('to','to'),item('$','$'),item(['55k','95k','40k'],_)],[]).

rule(computer_science_job, salary, 11, 0,

[item(['up','programmer'],_)],[item('to','to'),item('$','$'),

list(3,_,[',','cd'])],[item(_,['in','endsent'])]).

rule(computer_science_job, salary, 13, 0,

[],[item('$','$'),list(3,_,[',','cd']),item(_,_),item('$','$'),

item(_,'cd'),item(_,_),item(_,['nnp','cd'])],[]).

rule(computer_science_job, salary, 4, 0,

[item(_,[':','nnp'])],[list(1,'to','to'),item('$','$'),

item(['43k','40'],'cd'),item(_,_),item(_,['$','nnp']),item(_,_)],[]).

rule(computer_science_job, salary, 7, 0,

[item(_,['in','cc'])],[list(1,'to','to'),item('$','$'),
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list(3,_,[',','cd']),item('/','nn'),item(_,'nn')],[]).

rule(computer_science_job, salary, 6, 0,

[],[item('$','$'),list(2,_,_),item(_,_),item(['90k','70k'],'cd')],[]).

rule(computer_science_job, salary, 3, 0,

[item(_,['in',':'])],[item(_,['to','$']),list(2,_,_),

item(['85k','72k'],'cd')],[]).

rule(computer_science_job, req_years_experience, 4, 0,

[list(2,['-','for','environment'],_)],[item(['5','4'],_),

item('+','sym')],[]).

rule(computer_science_job, req_years_experience, 13, 0,

[item(['have','with'],_)],[item(_,'cd'),item('+','sym')],[]).

rule(computer_science_job, req_years_experience, 9, 0,

[item(['from',',','*'],_)],[item(['1','5','2'],_)],

[item(_,['nns',':'])]).

rule(computer_science_job, req_years_experience, 3, 0,

[list(2,_,_),item(['endsent','opportunities'],_),list(2,_,_)],

[item(['two','5'],_)],[item(_,['cc',':'])]).

rule(computer_science_job, req_years_experience, 4, 0,

[item(_,['cd','in']),item(_,['(','jjs'])],[item('2','cd')],

[item(_,['sym','nns']),item(_,['nns','endsent'])]).

rule(computer_science_job, req_years_experience, 7, 0,

[],[item('3','cd'),item('+','sym')],[item('years','nns'),

item(_,['vbp','vbg'])]).

rule(computer_science_job, req_years_experience, 6, 0,

[item(_,['cc','endsent'])],[item(['2','five'],'cd')],

[item('years','nns')]).

rule(computer_science_job, req_years_experience, 3, 0,

[item(['required','position'],_),item(_,_)],[item(['3','2'],'cd')],

[item('-',':')]).

rule(computer_science_job, req_years_experience, 9, 0,

[item(_,['endsent','vb'])],[item(['3','5'],_),item('+','sym')],[]).

rule(computer_science_job, req_years_experience, 8, 0,

[item(['endsent','of'],_)],[item(['two','2'],'cd')],

[item(_,['cc','nns'])]).

rule(computer_science_job, req_years_experience, 3, 0,

[item(_,[',','nnps'])],[item(['2','4'],'cd')],

[item(_,['nns','endsent'])]).

rule(computer_science_job, req_years_experience, 9, 0,

[item(['endsent','mpeg'],_)],[item(['3','2'],'cd')],

[item(['-','software'],_)]).

rule(computer_science_job, req_years_experience, 9, 0,

[item(_,['jjs','vb'])],[item('3','cd'),list(1,'+','sym')],

[item(_,'nns')]).

rule(computer_science_job, req_years_experience, 12, 0,

[list(2,['endsent','-',':'],_)],[item('3','cd'),list(1,'+','sym')],

[item(['to','years'],_)]).

rule(computer_science_job, req_years_experience, 8, 0,

[item(_,['vb','endsent'])],[item('2','cd'),list(1,'+','sym')],

[item(_,'nns'),list(2,_,_),item(_,['in','nnp'])]).

rule(computer_science_job, recruiter, 5, 0,

[],[item(['computemp','lcs','unasyst'],_)],

[item(_,['in',':','endsent'])]).

rule(computer_science_job, recruiter, 16, 0,

[item(_,'nnp'),item('endsent','endsent')],

[item(['information','cadre','mccoy'],_),item(_,_),item(_,_)],[]).

rule(computer_science_job, recruiter, 3, 0,

[item(_,['.',':']),item('endsent','endsent')],

[item(['omega','online'],'nnp'),item(_,'nnp')],[]).

rule(computer_science_job, recruiter, 7, 0,

[list(2,_,_),item([':','endsent'],_)],

[list(3,['&','employment','global','search','strategic'],_),

item(['staffing','international'],'nnp')],[]).
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rule(computer_science_job, recruiter, 3, 0,

[item(_,['cd','nn']),list(2,_,_)],[item(['lcs','esi'],'nnp')],

[item(_,[',','pos'])]).

rule(computer_science_job, recruiter, 53, 1,

[item(['taranto','0120'],_),item(_,_)],[item(_,'nnp'),

item(['placement','spectrum'],'nnp')],[]).

rule(computer_science_job, recruiter, 46, 1,

[item(_,['prp','.']),item(_,_)],[item(['technology','resource'],_),

item(['resources','spectrum'],'nnp')],[item(_,[':','endsent'])]).

rule(computer_science_job, post_date, 260, 2,

[],[item(_,'cd'),item(_,'nnp'),item(['1997','97'],_)],[]).

rule(computer_science_job, post_date, 168, 0,

[],[item(_,_),item('sep','nnp'),item('1997',_)],[]).

rule(computer_science_job, platform, 29, 0,

[list(2,_,_)],[item(['unix','rhetorex'],'nnp')],[]).

rule(computer_science_job, platform, 6, 0,

[],[item('os','nnp'),item('/','nn'),item('2','cd')],[]).

rule(computer_science_job, platform, 28, 1,

[item(_,[':','cc','('])],[item(['as400','nt','ibm','mvs'],'nnp')],[]).

rule(computer_science_job, platform, 9, 0,

[],[item(['hp3000','mvs'],'nnp')],[]).

rule(computer_science_job, platform, 4, 0,

[],[item(['windows95','os400'],_)],[]).

rule(computer_science_job, platform, 3, 0,

[],[item(['8086','vax'],_)],[]).

rule(computer_science_job, platform, 3, 0,

[],[item(['rs6000','sparc'],'nnp')],[]).

rule(computer_science_job, platform, 15, 0,

[],[item(['aix','windowsnt'],'nnp')],[]).

rule(computer_science_job, platform, 4, 0,

[],[item(['as','multi'],_),item(_,_),item(['400','workstation'],_)],

[]).

rule(computer_science_job, platform, 5, 0,

[],[item(['6502','novell'],_)],[item(_,[',','endsent'])]).

rule(computer_science_job, platform, 5, 0,

[item(['(','in'],_)],[item(['windows','ms'],'nnp'),

item(_,['cd','nnp'])],[]).

rule(computer_science_job, platform, 28, 1,

[],[item(_,'nnp'),item(['ux','95'],_)],[]).

rule(computer_science_job, platform, 15, 0,

[list(2,['systems','will','operating'],_),item(_,['vb',':'])],

[item(['nt','solaris'],'nnp')],[]).

rule(computer_science_job, platform, 8, 0,

[item(_,['nn','in'])],[item(['windows','pc'],_)],[item(_,'nns')]).

rule(computer_science_job, platform, 35, 0,

[],[list(1,_,'nnp'),item('nt','nnp')],[item(_,['endsent',','])]).

rule(computer_science_job, platform, 30, 1,

[list(2,_,_)],[item(['mac','solaris','unix'],'nnp')],[]).

rule(computer_science_job, platform, 18, 0,

[item(_,['in','nn'])],[item(['dos','nt'],'nnp')],[]).

rule(computer_science_job, platform, 4, 0,

[item(['as','('],_)],[item(['dialogic','windows'],'nnp')],[]).

rule(computer_science_job, platform, 7, 0,

[],[item(['win32','sun'],'nnp')],[item(['api',','],_)]).

rule(computer_science_job, platform, 48, 2,

[item(_,['nn',',','nnp','cc'])],[item(['win95','unix','amd29k'],_)],

[]).

rule(computer_science_job, platform, 8, 0,

[item(['unix','in'],_),item(_,[',','dt'])],[list(2,['/','ms','os'],_),

item(['windows','2'],_)],[item(_,[',','nn']),item(_,['cc','.'])]).

rule(computer_science_job, platform, 13, 0,

[],[item(['unix','sun'],'nnp')],[item(_,_),item(_,['vbz','nnp']),
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item(_,_),item(_,_),item(_,['.',','])]).

rule(computer_science_job, platform, 6, 0,

[item(_,[':','cd'])],[item(['aix','nt'],'nnp')],[]).

rule(computer_science_job, platform, 43, 0,

[],[item('windows','nnp'),item(['nt','3.1'],_)],[]).

rule(computer_science_job, platform, 3, 0,

[item(_,[',','sym'])],[item(['winnt','x86'],_)],[]).

rule(computer_science_job, platform, 4, 0,

[],[item(['mac','hp'],'nnp')],[item(['web','and'],_)]).

rule(computer_science_job, platform, 6, 0,

[item(_,['nn','dt']),list(2,['landmark','+'],_)],

[item(['aix','nt'],'nnp')],[item(_,['nn','vbd'])]).

rule(computer_science_job, platform, 13, 0,

[item(_,['nn','dt'])],[item(['win','unix'],'nnp')],[]).

rule(computer_science_job, platform, 3, 0,

[item(['strong','y2k'],_)],[item(['dos','ibm'],'nnp')],[]).

rule(computer_science_job, platform, 3, 0,

[item(_,['vb','nn'])],[item(['bsd','95'],_)],[]).

rule(computer_science_job, platform, 5, 0,

[item(_,['nn','endsent'])],[item(['solaris','windows'],'nnp')],

[item(_,['nn','nnp'])]).

rule(computer_science_job, platform, 18, 0,

[item(_,[',','nn','in'])],[item(['nt','aix','as400'],'nnp')],

[item(_,_),item(_,['nnp','cd'])]).

rule(computer_science_job, platform, 4, 0,

[],[item(_,'nnp'),item(['2200','pc'],_)],[]).

rule(computer_science_job, platform, 34, 0,

[item(_,['nnp','cc']),item(_,_)],[item(['unix','x86'],_)],[]).

rule(computer_science_job, platform, 16, 0,

[item(_,['nns','nnp']),item(',',',')],[item(['unix','psos'],_)],[]).

rule(computer_science_job, platform, 34, 1,

[item(_,['in',','])],[list(2,_,[':','nnp']),

item(['nt','ux'],'nnp')],[]).

rule(computer_science_job, language, 14, 0,

[list(2,['knowldge','mfc','working'],_),item(_,_)],[item('visual','jj'),

item('basic','nnp')],[]).

rule(computer_science_job, language, 19, 0,

[list(2,[',','intel','powerbuilder'],_)],[item(['x86','visual'],_),

item(['assembly','basic'],_)],[]).

rule(computer_science_job, language, 26, 0,

[item(['-',','],_)],[list(2,['/','pro','microfocus','*','cobol'],_),

item(['c','cobol','400'],_)],[item(_,['to',','])]).

rule(computer_science_job, language, 8, 0,

[],[item(['vc','rpg'],_),item(_,_),item(_,['sym','cd'])],[]).

rule(computer_science_job, language, 44, 0,

[item(_,['in',',','nn','('])],[item(['rpgiii','pb','natural','fortran',

'c','ksh'],_)],[item(_,['nn','cc','nns',','])]).

rule(computer_science_job, language, 19, 0,

[list(2,['using','or','development'],_)],[item(['oracle','visual'],_),

item(['forms','basic'],_)],[]).

rule(computer_science_job, language, 12, 0,

[item(_,['endsent','nnp']),item(_,_)],

[item(['progress','roscoe','cics','rpgiv'],'nnp')],[]).

rule(computer_science_job, language, 27, 0,

[],[item(['progress','html','java'],_)],[item([',','programming'],_)]).

rule(computer_science_job, language, 24, 0,

[item(['rdbms',','],_)],[item(['c','java'],'nn')],[item(_,[',','nn'])]).

rule(computer_science_job, language, 41, 0,

[],[item(['html','sequel','powerbuilder'],'nnp')],[]).

rule(computer_science_job, language, 14, 0,

[item(_,['endsent',':','cc'])],[item(['clos','c','tcl'],_)],

[item(_,[',','nnp','.'])]).
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rule(computer_science_job, language, 57, 1,

[],[item(['powerbuilder','c','idms'],_)],

[item(_,['.','nns','cc','nn','to'])]).

rule(computer_science_job, language, 9, 0,

[item(_,[',','in','vbp']),list(2,_,_),item(_,['cc','.'])],

[item(['ims','c','cl','pascal'],_)],[list(2,_,_),

list(2,['db2','modern','.','and','endsent'],_),

item(_,[',','endsent','dt'])]).

rule(computer_science_job, language, 7, 0,

[],[item(['bsh','cics'],_)],[list(2,_,_),item(_,['nn','endsent'])]).

rule(computer_science_job, language, 26, 1,

[],[item(['assembler','delphi','cobol'],_)],[item(_,[',','.'])]).

rule(computer_science_job, language, 53, 0,

[list(2,['or','oracle','austin','-'],_)],[item(['vc','c','pl'],_),

item(['+','/'],_),item(['+','sql'],_)],[]).

rule(computer_science_job, language, 36, 0,

[item(['writer','c',',','understanding'],_),

item(['/','and','unix','of'],_)],

[item(['cobol','c','shell','javascript'],_)],[]).

rule(computer_science_job, language, 23, 0,

[item(_,['nn','nnp','endsent']),list(2,_,_)],

[item(['idl','c','idms'],_)],[item(_,['nn','to'])]).

rule(computer_science_job, language, 26, 0,

[item(_,['cc',','])],[list(1,'objective','nnp'),item('c','nn')],

[item(_,['nn',','])]).

rule(computer_science_job, language, 34, 1,

[item([',','-','consider'],_)],[item(['rpgii','java','cobol'],'nnp')],

[]).

rule(computer_science_job, language, 21, 0,

[list(2,[',','-','an','austin'],_)],[item(['java','rpg','pli'],_)],

[]).

rule(computer_science_job, language, 7, 0,

[],[item(['smalltalk','sql'],'nnp')],[item(_,['nn','.'])]).

rule(computer_science_job, language, 15, 0,

[],[item(['ims','cobol'],'nnp')],[item(_,[',','endsent']),

item(_,['nnp','jj'])]).

rule(computer_science_job, language, 38, 0,

[item(['html','c','internet'],_),item(_,[',','nn'])],

[item(['xml','c','powerbuilder'],_)],[]).

rule(computer_science_job, language, 18, 0,

[list(2,[',','of','pascal'],_)],[item(['visual','mq'],_),

item(['basic','smalltalk'],'nnp')],[]).

rule(computer_science_job, language, 18, 0,

[],[item('cobol','nnp'),list(1,'ii','nnp')],[item(_,['in',','])]).

rule(computer_science_job, language, 14, 0,

[list(2,_,_)],[item(['delphi','natural','java','fortran',

'javascript'],['nnp','nn'])],[]).

rule(computer_science_job, language, 9, 0,

[],[item('visual','jj'),item('c','nn'),item('+','sym'),

item('+','sym')],[]).

rule(computer_science_job, language, 24, 0,

[item(_,['nn',':',','])],[item(['powerbuilder','c','rpg'],_)],

[item(_,['endsent',',','in'])]).

rule(computer_science_job, language, 17, 0,

[item(_,[',','vbg','in'])],[item(['pascal','sql','powerbuilder'],'nnp')],

[item(_,[',','endsent'])]).

rule(computer_science_job, language, 9, 0,

[item(['ms',','],_)],[list(2,_,['sym','nnp']),item(['shell','+'],_)],

[item(_,['endsent',','])]).

rule(computer_science_job, language, 42, 0,

[item(_,[',','in'])],[list(2,['c','vc','visual'],_),

item('+','sym'),item('+','sym')],[]).

86



rule(computer_science_job, language, 3, 0,

[item(['and','endsent'],_)],[item(['sql','cobol'],_)],[item(_,'nn')]).

rule(computer_science_job, language, 51, 0,

[item(_,[',',':','in'])],[item(['sql','cobol','c'],_)],

[item(_,[',','endsent','dt'])]).

rule(computer_science_job, language, 56, 0,

[item(_,[',','in'])],[item(['assembly','c','sql'],_)],

[item(_,['nn',',','cc'])]).

rule(computer_science_job, language, 8, 0,

[item(_,['endsent','in']),list(2,_,_)],

[item(['rpg400','cics'],'nnp')],[]).

rule(computer_science_job, language, 24, 0,

[item(_,[':','in'])],[item(['c','pl'],_),item(['+','/'],_),

item(_,['sym','cd'])],[]).

rule(computer_science_job, language, 14, 0,

[],[item(['jcl','vb'],'nnp')],[]).

rule(computer_science_job, language, 11, 0,

[],[item(['java','vbscript'],'nnp')],[item(_,_),item(_,['in','nn'])]).

rule(computer_science_job, language, 5, 0,

[item(_,[',','cc'])],[list(2,['*','bourne','sql'],_),

item(['shell','reportwriter'],_)],[]).

rule(computer_science_job, language, 26, 0,

[],[item(['c','tcl'],_),item(['+','/'],_),item(['+','tk'],_)],[item(_,_),

item(_,['endsent','jj'])]).

rule(computer_science_job, language, 44, 0,

[item(_,['in','nn'])],[item(_,_),item('+','sym'),item('+','sym')],[]).

rule(computer_science_job, language, 32, 0,

[item(_,['endsent',','])],[item(['c','pl'],_),item(['+','/'],_),

item(_,['sym','cd'])],[]).

rule(computer_science_job, language, 38, 0,

[item(_,['in',','])],[item(['sql','c'],_),item(['*','+'],'sym'),

item(_,_)],[]).

rule(computer_science_job, language, 26, 0,

[item(_,['nn',',']),item(_,['nn','rb'])],[item(['c','delphi'],_)],[]).

rule(computer_science_job, language, 7, 0,

[],[item(['4gl','shell'],['cd','nn'])],[item(_,['sym','nn'])]).

rule(computer_science_job, language, 32, 0,

[],[item(['powerbuilder','java'],'nnp')],[item(_,['nn',','])]).

rule(computer_science_job, language, 22, 0,

[],[item(['cobol','assembly'],'nnp')],[item(['programmers',','],_)]).

rule(computer_science_job, language, 13, 0,

[],[item(['javascript','perl'],'nnp')],[]).

rule(computer_science_job, id, 263, 2,

[item('endsent','endsent'),item('message','nn'),item('-',':'),

item('id','nn'),item(':',':'),item('<','sym')],[list(7,_,_)],

[item('>','sym')]).

rule(computer_science_job, id, 166, 0,

[item(':',':'),item('<','sym')],[list(5,_,_)],[item('>','sym'),

item('endsent','endsent')]).

rule(computer_science_job, desired_years_experience, 12, 0,

[item(['-','to'],_)],[item(['6','5','7'],_)],[item('years','nns'),

item('experience','vbp'),item(_,[':','in'])]).

rule(computer_science_job, desired_years_experience, 18, 0,

[item(['-','to'],_)],[item(['8','4','5','10','6'],['nn','cd'])],

[item('years','nns'),item(_,_),item(_,['nnp','jj','in','nn'])]).

rule(computer_science_job, desired_years_experience, 10, 0,

[item(['3','4','two'],'cd'),item(_,_)],

[item(['5','four'],['nn','cd'])],[]).

rule(computer_science_job, desired_years_experience, 20, 1,

[item('-',':')],[item(['4','5'],_)],[item(_,['nn','nns'])]).

rule(computer_science_job, desired_years_experience, 17, 0,

[item(_,['vbg','endsent','sym',',']),item(_,'cd'),item(_,[':','to'])],
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[item(['5','4'],_)],[item(_,'nns')]).

rule(computer_science_job, desired_degree, 6, 0,

[item(_,['endsent',':','cc'])],

[item(['masters','phd','b.s','mscs'],_)],[]).

rule(computer_science_job, desired_degree, 4, 0,

[item(['bs','preferred'],_),item(_,['nn','cc',':'])],

[item(['ba','ms','bs'],'nnp')],[]).

rule(computer_science_job, desired_degree, 5, 0,

[],[item(['msme','m.b.a'],'nnp')],[]).

rule(computer_science_job, country, 112, 2,

[item(['in','oracle','and',':','endsent'],_)],

[item(['uk','usa','us'],['prp','nnp'])],[]).

rule(computer_science_job, country, 109, 2,

[item(['and',':','endsent'],_)],[item(['uk','usa','us'],['nnp','prp'])],

[]).

rule(computer_science_job, country, 58, 1,

[item(['78759','pay','join'],_)],[item(['usa','us'],_)],[]).

rule(computer_science_job, company, 5, 0,

[],[item(['siemens','caleb'],'nnp'),

list(2,_,'nnp'),item(_,['nns','.'])],[]).

rule(computer_science_job, company, 6, 0,

[],[item(['cps','s3g','aerotek'],_)],[]).

rule(computer_science_job, company, 32, 0,

[],[item(['ses','alliance','victina'],'nnp')],[]).

rule(computer_science_job, company, 3, 0,

[item(_,['.','nn']),item(_,_)],[item(['wesson','edp'],_),

list(2,_,['nnps','nnp','nn'])],[item(_,['vbz','endsent'])]).

rule(computer_science_job, company, 7, 0,

[item(_,['nn','nnp','endsent']),item(_,_),item(_,_),

item(_,['endsent',':'])],[item(['new','momentum','rb'],_),

list(3,_,_)],[item(_,['vbz','(',','])]).

rule(computer_science_job, company, 3, 0,

[list(2,['-','cs.utexas.edu','pc'],_),item(_,_),item(_,['nnp',':']),

item(_,_),item(_,['in','endsent'])],[item(_,'nnp'),

list(2,['-','consultants','in'],_),item([',','house'],_),

item(['inc.','design'],'nnp')],[item(_,['.','endsent']),item(_,_),

item(_,_),list(2,_,_),item(_,['jj','nn']),item(_,_),item(_,['nn','"'])]).

rule(computer_science_job, company, 3, 0,

[],[item(['austinite','soft'],_),item(_,_)],[]).

rule(computer_science_job, company, 4, 0,

[item(['with',':'],_)],[list(2,_,'nnp'),

item(['graphics','terminals'],_)],[]).

rule(computer_science_job, company, 8, 0,

[],[item(['ctg','ptg'],'nnp')],[]).

rule(computer_science_job, city, 179, 0,

[list(2,_,_)],[item('austin','nnp')],[]).

rule(computer_science_job, city, 180, 0,

[list(2,_,_)],[item(['austin','london'],'nnp')],[]).

rule(computer_science_job, city, 64, 0,

[],[item(['cleveland','austin'],'nnp')],[item(['endsent','tx.'],_)]).

rule(computer_science_job, city, 25, 0,

[item(_,['rb','in'])],[item('austin','nnp')],[]).

rule(computer_science_job, area, 4, 0,

[item([',','of'],_)],[list(2,['security','atm','internet'],_)],

[item([',','with'],_),item(_,['nnp','jj']),item(_,['nnp','nn'])]).

rule(computer_science_job, area, 3, 0,

[item(['writing','-'],_)],[item(['device','project'],_),

item(_,['nns','nnp'])],[]).

rule(computer_science_job, area, 3, 0,

[item(['for','with'],'in')],[item(_,['nn','nnp']),

item(['2000','mrp'],_)],[]).

rule(computer_science_job, area, 4, 0,

88



[item(_,['endsent',':'])],[item(['communications','erp'],_)],[]).

rule(computer_science_job, area, 4, 0,

[],[item(_,['nnp','nn']),item(['qualification','2000','driver'],_)],

[item(_,['nnp','nn']),item(_,[':','.','in'])]).

rule(computer_science_job, area, 4, 0,

[item([':','oracle'],_)],[item(['web','dba'],'nnp')],[item(_,_),

item(_,['cd','endsent'])]).

rule(computer_science_job, area, 11, 0,

[],[item(['ole','adsm','rdb'],'nnp')],[]).

rule(computer_science_job, area, 3, 0,

[item(_,[':','cc'])],[item(['rdbms','database'],_)],

[item(['/','exposure'],'nn')]).

rule(computer_science_job, area, 3, 0,

[item(_,[':','endsent'])],[item(['compiler','cgi'],_)],[]).

rule(computer_science_job, area, 3, 0,

[],[item(['samp','functional'],'jj'),item(_,'nn')],[]).

rule(computer_science_job, area, 3, 0,

[item(_,['nnp','.']),item(_,_)],[item(['real','tcp'],'jj'),

item(_,_),item(_,'nnp')],[]).

rule(computer_science_job, area, 3, 0,

[item(_,['endsent','nn']),item(_,['in','cc'])],

[item(['gui','network'],_)],[]).

rule(computer_science_job, area, 3, 0,

[item(['or','for'],_)],[item(['embedded','graphic'],_),

list(2,['interfaces','systems','user'],_)],[item(['.','experience'],_)]).

rule(computer_science_job, area, 13, 0,

[],[item(['lan','3d','odbc','ai','realtime'],_)],

[item(['executables','games','programming','endsent','/'],_)]).

rule(computer_science_job, area, 5, 0,

[],[item(['wans','opengl'],'nnp')],[]).

rule(computer_science_job, area, 6, 0,

[list(2,_,_)],[item(['gui','accounting'],_)],[]).

rule(computer_science_job, area, 9, 0,

[item(_,[',','nn'])],[item(['internet','ood'],_)],

[item(_,['endsent',','])]).

rule(computer_science_job, area, 13, 0,

[item(_,['sym',':','nn']),item(_,_)],

[item(['ooad','mfc','odi'],'nnp')],[]).

rule(computer_science_job, area, 3, 0,

[item('and','cc')],[item(['modeling','ole'],_)],[]).

rule(computer_science_job, area, 5, 0,

[],[item(['network','3d'],['nnp','cd']),

item(['management','graphics'],_)],[]).

rule(computer_science_job, area, 7, 0,

[],[item(['sqa','wan'],'nnp')],[list(2,_,_),item(_,['cc','nnp'])]).

rule(computer_science_job, area, 3, 0,

[list(2,_,_),item(_,['in',':'])],[item(['databases','internet'],_)],

[item(_,_),item(_,['nn','nnp']),item(_,['to','nnp'])]).

rule(computer_science_job, area, 3, 0,

[item(['direct','and'],_)],[item(_,['nn','nnp'])],

[item(['and','system'],['cc','nn']),item(_,['nn','nnps']),item(_,_),

item(_,['.','vbg'])]).

rule(computer_science_job, area, 3, 0,

[item(_,['cc','nnp'])],[item(['networking','embedded'],['vbg','vbn'])],

[item(_,[':','nnp'])]).

rule(computer_science_job, area, 4, 0,

[item(_,['in','cc'])],[item(['web','internet'],_)],[item(_,'nns')]).

rule(computer_science_job, area, 7, 0,

[list(2,['of','','/','endsent'],_)],[item(['rpc','adsl','cgi'],'nnp')],

[]).

rule(computer_science_job, area, 4, 0,

[],[item(['networking','automated'],_),
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item(['protocols','testing'],_)],[]).

rule(computer_science_job, area, 5, 0,

[item(_,[':','vbg']),list(2,_,_),item(_,['vbg',':'])],

[item(['gui','web'],'nnp')],[]).

rule(computer_science_job, area, 7, 0,

[list(2,['hot','oracle','endsent'],_)],[item(['dba','games'],'nnp')],

[item(['endsent','programmer'],_)]).

rule(computer_science_job, area, 6, 0,

[],[item(['mfc','multimedia'],'nnp')],[item(_,['dt','nns'])]).

rule(computer_science_job, area, 6, 0,

[],[item(['wan','cgi'],'nnp')],[item(_,['nns','nn'])]).

rule(computer_science_job, area, 6, 0,

[item(_,'nnp'),item(_,[',','endsent'])],[item(['telecom','odbc'],_)],

[]).

rule(computer_science_job, area, 13, 0,

[item(_,['nn',','])],[item(['client','network'],_),

list(2,_,['cc','nn','nnp']),item(['server','technologies'],_)],[]).

rule(computer_science_job, area, 3, 0,

[item(',',',')],[item(['animation','games'],_)],[]).

rule(computer_science_job, area, 8, 0,

[item(_,[',',':'])],[item(['mfc','tso'],'nnp')],[]).

rule(computer_science_job, area, 3, 0,

[item(_,['nn','endsent'])],[item(['dcom','graphics'],'nnp')],[]).

rule(computer_science_job, area, 9, 0,

[item(_,[',','nn'])],[item(['gui','rdbms'],'nnp')],[]).

rule(computer_science_job, area, 4, 0,

[],[item(['network','distributed'],_),

item(['gaming','systems'],['nn','nns'])],[]).

rule(computer_science_job, area, 7, 0,

[],[item(['corba','com'],'nnp')],[]).

rule(computer_science_job, area, 9, 0,

[item(_,['nn','nnp']),item(_,['in',','])],[list(2,['/','device','tcp'],_),

item(['drivers','ip'],_)],[]).

rule(computer_science_job, area, 5, 0,

[item(_,['nnp',','])],[item(['y2k','dms'],'nnp')],[]).

rule(computer_science_job, area, 4, 0,

[item(_,':'),item(_,_),item('-',':')],[item(['dba','telecom'],'nnp')],

[item(_,_),item(_,['cc','endsent'])]).

rule(computer_science_job, area, 12, 0,

[],[item(['isapi','lan'],'nnp')],[]).

rule(computer_science_job, area, 7, 0,

[],[item(['failure','device'],'nnp'),item(_,'nnp')],[]).

rule(computer_science_job, application, 5, 0,

[item(_,[':',','])],[item(['paradox','robohelp','server'],'nnp')],[]).

rule(computer_science_job, application, 28, 1,

[],[item(['sybase','maestro','domino','easytrieve','adabas'],'nnp')],

[]).

rule(computer_science_job, application, 5, 0,

[],[item(['dialog','ms','hp'],_),

item(['manager','frontpage','openview'],_)],[]).

rule(computer_science_job, application, 3, 0,

[item(_,['nnp','jj']),item(['utilities',','],_)],

[list(3,['/','access','qa','client'],_),item(['partner','400'],_)],[]).

rule(computer_science_job, application, 53, 2,

[],[item(['excel','oracle','foxpro','xrunner','debabelizer'],'nnp')],

[]).

rule(computer_science_job, application, 8, 0,

[item(_,['cc','in'])],[item(['pm','access','clearcase'],_)],[]).

rule(computer_science_job, application, 3, 0,

[item([',','progress'],_),item(['or',','],_)],

[list(3,_,['fw','nn','nnp'])],[item(_,['vbz',','])]).

rule(computer_science_job, application, 12, 0,
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[item(_,['nn','endsent']),item(_,_)],[item(['verilog','db2'],_)],[]).

rule(computer_science_job, application, 10, 0,

[item(_,'nnp'),item(_,[':',','])],

[item(['informix','netscape'],'nnp')],[]).

rule(computer_science_job, application, 5, 0,

[],[item(_,'nnp'),item(['back','beans','view'],_)],[]).

rule(computer_science_job, application, 4, 0,

[item(_,['endsent',','])],[list(2,['-','sql','control'],_),

item(['server','m'],'nnp')],[item(_,['endsent',',']),item(_,'nnp'),

item(_,_),item(_,['nnp',','])]).

rule(computer_science_job, application, 4, 0,

[item(['oracle','access'],_),item(',',',')],[list(2,_,'nnp')],

[item(_,['cc',',']),item(['sybase','gui'],'nnp')]).

rule(computer_science_job, application, 8, 0,

[item(_,['endsent','nnp','nns']),item(_,_)],

[item(['construct','sas','directdraw'],_)],[]).

rule(computer_science_job, application, 24, 0,

[item(_,['nnp','nn']),item(_,_)],

[item(['sybase','qad','groupware','backoffice','ideal'],'nnp')],[]).

rule(computer_science_job, application, 33, 0,

[],[item(['oracle','db2'],_)],[item(_,[',','cd','vbz'])]).

rule(computer_science_job, application, 3, 0,

[item(_,['nnp','(']),item(['back','java'],'nnp'),item(_,_)],

[item(['dazzle','cgi'],'nnp')],[item(_,['endsent',','])]).

rule(computer_science_job, application, 17, 0,

[],[item(['ingres','sybase','endevor'],_)],[list(2,_,_),

item(_,['nn',',',':'])]).

rule(computer_science_job, application, 4, 0,

[item(['hacmp','management','cics'],'nnp'),item(',',',')],

[list(3,['6000','/','hp','db2','openview','netview'],_)],

[item(_,['endsent','(',':'])]).

rule(computer_science_job, application, 5, 0,

[item(_,[',','cc'])],[item(_,'nnp'),item(['office','access'],_)],[]).

rule(computer_science_job, application, 10, 0,

[item(_,['cc','sym','nn'])],[item(_,'nnp'),item('server','nnp')],[]).

rule(computer_science_job, application, 10, 0,

[],[item(['sap','vsam','ita'],'nnp')],[]).

rule(computer_science_job, application, 6, 0,

[],[item(['operation','ms'],'nnp'),item(['center','access'],_)],[]).

rule(computer_science_job, application, 4, 0,

[item([',','with'],_)],[item(['netscape','peoplesoft'],'nnp')],

[item([',','implementation'],_)]).

rule(computer_science_job, application, 4, 0,

[item(['heavy','or'],_)],[item(['access','ims'],'nnp')],[]).

rule(computer_science_job, application, 13, 0,

[],[item(['ims','db2','ges'],_)],[item(_,['cc','nn','dt'])]).

rule(computer_science_job, application, 13, 0,

[item(_,[',','nnp','in'])],[item(['informix','sap','tso'],'nnp')],[]).

rule(computer_science_job, application, 5, 0,

[],[item(['essbase','focus','postalsoft'],'nnp')],[]).

rule(computer_science_job, application, 3, 0,

[item(_,[',',':'])],[item(['cosmic','crystal'],'nnp')],

[item(_,[',','nnp']),item(_,['cc','nnp'])]).

rule(computer_science_job, application, 20, 1,

[item(['or',','],_)],[item(['ims','db2'],_)],[]).

rule(computer_science_job, application, 7, 0,

[],[item(['winrunner','alc'],_)],[]).

rule(computer_science_job, application, 4, 0,

[],[item(['macromedia','direct'],_),item(['director','3'],_),item(_,_),

item(_,_)],[]).

rule(computer_science_job, application, 7, 0,

[],[item(['pop','access','abap'],'nnp')],[item(_,['nns','endsent','nnp'])]).
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rule(computer_science_job, application, 5, 0,

[],[item(['db','life'],'nnp'),item(_,['nn',':']),

item(_,['cd','nnp'])],[]).

rule(computer_science_job, application, 7, 0,

[item(',',',')],[item('access','nn')],[]).

rule(computer_science_job, application, 6, 0,

[],[item(['s2k','informix'],'nnp')],[item(_,[',','nns'])]).

rule(computer_science_job, application, 4, 0,

[],[item(['peoplesoft','excell'],'nnp')],[item(['.','access'],_)]).

rule(computer_science_job, application, 6, 0,

[],[item('lotus',_),item('notes',_)],[]).

rule(computer_science_job, application, 10, 0,

[item(_,['in','nn'])],[item(['access','sas'],_)],[]).

rule(computer_science_job, application, 27, 0,

[item(_,[':',','])],[item(['oracle','visualtest'],_)],[]).

B.2 Seminar Announcements

The following rulebase was learned in the experiments reported in Section 4.7 using Rapier with

words and part-of-speech tags.

rule(seminar, stime, 86, 2,

[list(2,_,_)],[item(_,'cd'),item(':',':'),item(_,'cd')],

[item(_,[':','.'])]).

rule(seminar, stime, 155, 0,

[item([':','at'],_)],[item(_,_),item(':',':'),item(['00','30'],'cd'),

item(['p.m.','am','pm','p.m'],_)],[]).

rule(seminar, stime, 4, 0,

[item([':','at'],_)],[item(['5pm','12.30'],_)],[]).

rule(seminar, stime, 20, 0,

[item(_,_)],[item(['3','4','7'],'cd'),item(':',':'),item(_,'cd'),

item('p.m.',_)],[list(3,_,_),item(_,['nnp',':','dt'])]).

rule(seminar, stime, 27, 0,

[item(['from','endsent'],_)],[list(2,_,[':','cd','nn']),

item(['pm','30pm','30'],_)],[item(_,[':','in','.'])]).

rule(seminar, stime, 17, 0,

[item(['time','.'],_),item([':','endsent'],_)],[list(3,_,[':','nnp','cd'])],

[item(['endsent','-'],_),item(['place','1'],_)]).

rule(seminar, stime, 6, 0,

[item('at','in')],[item(_,_),item(':',':'),item('30pm','cd')],[]).

rule(seminar, stime, 26, 0,

[item(['from',':'],_)],[item(_,'cd'),item(':',':'),

item(['30pm','30'],'cd')],[item(_,['to','endsent'])]).

rule(seminar, stime, 51, 1,

[item(_,[',','endsent','cd'])],[item(_,'cd'),item(':',':'),

list(2,['p.m.','30pm','30'],_)],[item(_,['endsent',',',':'])]).

rule(seminar, stime, 144, 3,

[item(['at',':',';'],_)],[item(['11','12','2','3'],'cd'),

item(':',':'),list(2,['pm','00','45','30'],_)],

[item(_,[',','endsent',':'])]).

rule(seminar, stime, 6, 0,

[item([':','at'],_)],[item(['9.00','1','5','7'],_),

item(_,['nn','nnp'])],[item(['in','endsent',','],_)]).

rule(seminar, stime, 3, 0,

[],[item(['7pm','4pm'],'cd')],[]).

rule(seminar, stime, 4, 0,

[item(['promptly','1994'],_),item(['at','endsent'],_)],

[list(3,_,[':','cd'])],[item(['until','-'],_)]).

rule(seminar, stime, 77, 0,

[item(['time','auditorium'],_),item([':',','],_)],[item(_,'cd'),
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item(':',':'),item(_,'cd')],[item(_,[':','.'])]).

rule(seminar, stime, 3, 0,

[],[item(['5','4'],_),item('p.m.','nn')],[]).

rule(seminar, stime, 8, 0,

[],[item(['1','3'],'cd'),item(':',':'),item(['25','30pm'],'cd')],

[item(_,_),item(_,['nn','endsent'])]).

rule(seminar, stime, 18, 0,

[item([',',':','seminar'],_)],[item(['12','1'],'cd'),item(':',':'),

item(_,'cd')],[item(_,[':','in'])]).

rule(seminar, stime, 4, 0,

[item(_,['in',','])],[list(2,_,_),item(['am','00pm'],['nnp','cd'])],

[]).

rule(seminar, stime, 32, 0,

[item(_,['nn',',']),item([':','at'],_)],[item(['11','3'],'cd'),

item(':',':'),item(['30','30pm'],'cd')],[item(_,[':','.'])]).

rule(seminar, stime, 20, 0,

[item(['at',':'],_)],[item(_,'cd'),item(':',':'),item(_,'cd'),

item(['a.m.','am'],_)],[]).

rule(seminar, stime, 6, 0,

[item(['endsent','at'],_)],[list(2,_,_),item(['noon','30pm'],_)],

[item(_,_),list(2,_,_),item(_,['cc',':'])]).

rule(seminar, stime, 3, 0,

[item(_,[',','nnp'])],[item('3','cd'),item(':',':'),item(_,'cd')],

[item(_,['endsent','nnp'])]).

rule(seminar, stime, 23, 0,

[item(':',':')],[item(['2','10'],'cd'),item(':',':'),item(_,'cd')],

[item(_,['endsent',':'])]).

rule(seminar, stime, 56, 0,

[item(_,[',','endsent'])],[item(_,'cd'),item(':',':'),item(_,'cd')],

[item('-',':')]).

rule(seminar, stime, 10, 0,

[item(_,['endsent','in'])],[item(_,'cd'),item(':',':'),

item(['30pm','00'],'cd')],[item(['-','in'],_),item(_,_),

item([':','7500'],_)]).

rule(seminar, stime, 17, 0,

[item([',',':'],_)],[item(['2','4'],'cd'),item(':',':'),

item('00','cd'),list(1,'p.m.','nn')],[item(_,['endsent',':'])]).

rule(seminar, speaker, 5, 0,

[list(2,_,_)],[item(['terra','toshiaki','mike','steven'],'nnp'),

item(_,'nnp')],[]).

rule(seminar, speaker, 6, 0,

[item(_,['in',':']),item(['endsent','roy'],_)],[list(2,_,'nnp')],

[item(['endsent','will','on'],_),item(['november','be','15'],_)]).

rule(seminar, speaker, 5, 0,

[item(_,[',','cd']),item(['and','/'],_)],[item(_,'nnp'),item(_,'nnp')],

[item(_,['(',','])]).

rule(seminar, speaker, 4, 0,

[],[list(2,_,'nnp'),item(['jones','brezany','mclaughlin'],'nnp')],

[item(_,_),item(_,['nn','dt','nnp'])]).

rule(seminar, speaker, 4, 0,

[item(_,['sym','nn','nnp']),item(_,[':','endsent'])],

[item(['roger','dan','jerome'],'nnp'),item(_,'nnp')],[]).

rule(seminar, speaker, 19, 0,

[item([':','by','endsent','7220'],_)],[item(['patrick','rajiv','dr.',

'pat','hugh'],'nnp'),list(3,_,[':','nnp'])],

[item(_,[',','vbz','endsent'])]).

rule(seminar, speaker, 16, 0,

[list(2,['.','instructor','"',':','pattern'],_),

item(_,[':','endsent',','])],

[item(['keith','leonard','alex','dr.'],'nnp'),list(3,_,'nnp')],

[item(_,['(','endsent','md',','])]).

rule(seminar, speaker, 6, 0,
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[],[item(['professor','william'],'nnp'),item(_,'nnp'),item(_,'nnp')],

[item(['of','endsent'],_)]).

rule(seminar, speaker, 13, 0,

[list(2,_,_),item(_,['endsent',','])],[item(['lev','alex','dr.'],'nnp'),

list(3,_,'nnp')],[item(_,['endsent','md',','])]).

rule(seminar, speaker, 3, 0,

[],[item(['richard','eric'],'nnp'),list(3,[',','nyberg','m','h.'],_),

item(_,_)],[item('endsent','endsent')]).

rule(seminar, speaker, 19, 0,

[item(_,['in','"','cc',',','endsent',':'])],[list(3,_,'nnp'),

item(['hager','christianson','trinkle','szeliski','sathi','kedzierski',

'gunzinger','fedder','baheti','smith','fink','papadimitriou',

'bracken'],'nnp')],[]).

rule(seminar, speaker, 9, 0,

[item(_,['endsent','nn'])],[item(['jonathan','chip','dinesh','robert',

'erik','bruce'],'nnp'),item(_,'nnp')],[]).

rule(seminar, speaker, 3, 0,

[item(_,_),item(_,_)],[list(2,_,'nnp')],[item(['of','endsent'],_),

item(['istar','dartmouth'],'nnp')]).

rule(seminar, speaker, 9, 0,

[item(_,[':','nn'])],[item(['randy','patrick','john','tony','gordon',

'ralph'],'nnp'),item(_,'nnp')],[]).

rule(seminar, speaker, 3, 0,

[item(_,[':','nnp']),item('endsent','endsent')],[item(['nobutoshi',

'professor'],'nnp'),item(_,'nnp')],[item(_,['md','vbz'])]).

rule(seminar, speaker, 6, 0,

[item(_,['endsent',':'])],[list(3,_,'nnp'),

item(['gould','lamport','lennert'],'nnp')],[]).

rule(seminar, speaker, 5, 0,

[],[item(['mel','wojciech','rita'],'nnp'),item(_,'nnp')],[]).

rule(seminar, speaker, 8, 0,

[item(_,['in','endsent','vbg'])],[item(['alessandro','robert','david',

'andrew'],'nnp'),item(_,'nnp')],[item(_,_),item(_,['vb','prp','nnp'])]).

rule(seminar, speaker, 8, 0,

[item(_,['in','cc',':'])],[list(3,_,'nnp'),

item(['borenstein','smith','simmons','desa'],'nnp')],[]).

rule(seminar, speaker, 12, 0,

[],[item(_,'nnp'),item(['gregory','koechling','etzioni','skiena',

'perlant','booch','fukawa','bischof'],_)],[]).

rule(seminar, speaker, 3, 0,

[item(['by',')'],_),item([':',','],_)],[item(_,'nnp'),item(_,'nnp')],

[item(_,['endsent','('])]).

rule(seminar, speaker, 3, 0,

[item(['endsent','and'],_)],[item(_,'nnp'),item(_,'nnp')],

[item(['endsent','computational'],_),item(['institute','linguistics'],'nnp')]).

rule(seminar, speaker, 4, 0,

[item('endsent','endsent')],[item(['bennett','paul','kai'],'nnp'),

list(3,_,['nnp',':'])],[item(_,[',','endsent','cc'])]).

rule(seminar, speaker, 15, 0,

[],[item(['jim','dr.'],'nnp'),list(3,_,'nnp')],

[item(_,['in','dt','endsent'])]).

rule(seminar, speaker, 4, 0,

[item(_,':')],[item(['peter','eric','neil'],'nnp'),item(_,'nnp')],[]).

rule(seminar, speaker, 3, 0,

[list(2,[':','endsent','who'],_)],[item(['michael','dr.jim'],'nnp'),

item(_,_)],[item(_,['endsent',',']),item(_,'nnp')]).

rule(seminar, speaker, 3, 0,

[],[item(['lara','mr.'],'nnp'),list(2,_,'nnp')],

[item(['biodegradation',','],_)]).

rule(seminar, speaker, 4, 0,

[item(['mechanisms','5409'],_),item('endsent','endsent')],[item(_,'nnp'),

item(_,'nnp')],[item('endsent','endsent')]).
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rule(seminar, speaker, 8, 0,

[item(_,['endsent',',','vb'])],[item(['steve','michelle','ed','fil'],'nnp'),

item(_,'nnp')],[]).

rule(seminar, speaker, 7, 0,

[item(_,['endsent',':'])],[item(['tom','james','cindy'],'nnp'),

item(_,'nnp')],[item(_,['in','endsent','cc'])]).

rule(seminar, speaker, 7, 0,

[],[item(_,'nnp'),item(['mountford','fitzgerald','amber','munter',

'hancock','dario'],'nnp')],[]).

rule(seminar, speaker, 22, 0,

[item(['endsent','biomolecules'],_),item(['speaker','"'],_),

item([':','endsent'],_)],[item(_,'nnp'),item(_,'nnp')],

[item(_,['endsent',','])]).

rule(seminar, speaker, 6, 0,

[],[item(['michael','mr.'],'nnp'),list(2,_,'nnp')],

[item(_,['endsent','('])]).

rule(seminar, speaker, 6, 0,

[],[item(['laura','mr.','alex'],'nnp'),item(_,'nnp')],

[item(_,['vbz','endsent'])]).

rule(seminar, speaker, 4, 0,

[item(_,['cc','in',':'])],[item(['rick','mr.','victor'],'nnp'),

item(_,'nnp')],[]).

rule(seminar, speaker, 4, 0,

[],[item(_,'nnp'),item(['adelson','christel','kelly'],'nnp')],[]).

rule(seminar, speaker, 4, 0,

[],[item(['ralph','ido','maxine'],'nnp'),list(2,_,'nnp')],

[item(_,['endsent','md',':'])]).

rule(seminar, speaker, 4, 0,

[item(_,'nn'),item(['employers',':'],_),item('endsent','endsent')],

[item(_,'nnp'),item(_,'nnp')],[item(['from','and'],_),

item(_,['dt','nnp'])]).

rule(seminar, speaker, 6, 0,

[],[item(_,'nnp'),item(['carpenter','greiner','coleman','vasulka',

'mccall'],'nnp')],[]).

rule(seminar, speaker, 3, 0,

[item([':','by'],_)],[item(['nobuhisa','professor'],'nnp'),list(2,_,'nnp')],

[item(_,['endsent','in'])]).

rule(seminar, speaker, 3, 0,

[item(_,['nnp','nn']),item(_,['endsent',','])],[list(2,_,'nnp'),

item(['curlee','katz'],'nnp')],[]).

rule(seminar, speaker, 6, 0,

[item(_,['vbz','endsent'])],[item(['mike','toshiaki','terra'],'nnp'),

item(_,'nnp')],[]).

rule(seminar, speaker, 4, 0,

[],[item(['alan','mr.','toshinari'],'nnp'),item(_,'nnp')],

[item(_,[',','md','endsent'])]).

rule(seminar, speaker, 5, 0,

[item(_,['cd','endsent'])],[item(_,'nnp'),item(['john','c.'],'nnp'),

item(_,'nnp')],[]).

rule(seminar, speaker, 3, 0,

[],[item(_,'nnp'),item(['hirschberg','cohen'],'nnp')],[]).

rule(seminar, speaker, 5, 0,

[],[item(['marc','tom'],'nnp'),list(2,_,'nnp')],[item('endsent','endsent')]).

rule(seminar, speaker, 4, 0,

[item('endsent','endsent')],[item('professor','nnp'),item(_,'nnp'),item(_,'nnp')],

[item(_,[',','endsent'])]).

rule(seminar, speaker, 4, 0,

[],[item(_,'nnp'),item(['manfred','s.'],'nnp'),list(3,_,[',','nnp'])],

[item('endsent','endsent')]).

rule(seminar, speaker, 5, 0,

[],[item(['mike','steve'],'nnp'),item(_,'nnp')],[item(_,['nnps','md'])]).

rule(seminar, speaker, 6, 0,
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[item(':',':')],[item(['dr.','dinesh'],'nnp'),item(_,'nnp'),item(_,'nnp')],[]).

rule(seminar, speaker, 4, 0,

[item(_,['endsent',':'])],[list(2,_,'nnp'),item(['cusumano','jacob'],'nnp')],[]).

rule(seminar, speaker, 3, 0,

[item(_,[':','nnp'])],[item(_,'nnp'),item(['simmons','gary'],'nnp')],[]).

rule(seminar, location, 29, 0,

[item(['place','00'],_),item(_,[':','endsent'])],[list(3,_,['nnp','cd'])],

[item('endsent','endsent'),item(_,['nnp','jj','nn'])]).

rule(seminar, location, 6, 0,

[item(_,['in','nn']),item(_,['dt','in'])],[list(3,_,['.','(','nnp','pos','cd']),

item(['room','hall',')'],_),item(',',','),list(2,_,['vbg','nnp','dt']),

item(_,['cd','nn'])],[]).

rule(seminar, location, 3, 0,

[item(_,['in','cd']),item(_,_)],[list(2,_,['jj','nnp']),item(['hall','conference'],_),

item(_,['cd','nn'])],[item(_,['cd','nn'])]).

rule(seminar, location, 3, 0,

[],[item(['sei','1295'],_),item(_,'nnp'),item(_,_),list(2,_,_),item(_,['nn','nnp'])],

[item(_,['.','sym'])]).

rule(seminar, location, 7, 0,

[item(['endsent','in','the'],_)],[item(['wean','room','adamson'],_),item(_,_)],

[item(_,[':','.'])]).

rule(seminar, location, 6, 0,

[item(['30','tuesday'],_),item(_,_),item(['endsent','april'],_),

item(['place','27'],['nn','cd']),item([':',','],_)],[list(7,_,_)],

[item(['duration','endsent'],_),list(2,_,_),item(_,['cd','dt']),item(_,_)]).

rule(seminar, location, 4, 0,

[item([':','role'],_),item(['00','of'],_),item(_,_)],[item(_,['cd','nnp']),

item(_,['nnp','cd'])],[item(_,_),item(_,[':','nnp']),item(_,_),item(_,'nnp')]).

rule(seminar, location, 7, 0,

[],[item(['faculty','doherty','baker'],_),list(3,_,_),

item(['skibo','2315','355'],_)],[]).

rule(seminar, location, 5, 0,

[],[item(_,_),item(['261','floor','conference'],_),item(_,_),item(_,_),

item(_,['in','nnp']),item(_,_),item(_,['jj','nnp']),item(_,['nn','nnp'])],[]).

rule(seminar, location, 15, 0,

[],[item(_,'nnp'),item(['2224','hall'],_),list(2,_,_),item(['edrc','100','wing'],_)],

[]).

rule(seminar, location, 3, 0,

[item(['pm','in'],_),item(_,['endsent','dt'])],[item(_,'nnp'),list(2,_,_),

item('(','('),item(_,'nnp'),list(2,[')','125','109'],_)],[item(_,['sym','.']),

item('endsent','endsent')]).

rule(seminar, location, 37, 0,

[],[item(['gsia','wean','warner','scaife'],'nnp'),item(_,'nnp'),

item(_,['cd','nnp'])],[]).

rule(seminar, location, 17, 0,

[],[item(['ucc','wean','hbh'],'nnp'),item(_,'cd')],[]).

rule(seminar, location, 16, 0,

[item(_,['cd','nn']),item(_,_)],[item(['316','adamson'],['cd','nnp']),item(_,_),

list(2,_,_),item(_,[',','nnp']),item(_,['nnp','cd'])],[item(['carnegie','endsent'],_)]).

rule(seminar, location, 5, 0,

[],[item(['room','basement','hamburg'],_),list(3,_,_),

item(['hbh','library','auditorium'],'nnp')],[]).

rule(seminar, location, 3, 0,

[item(_,[',','in'])],[list(2,_,['pos','nn','nnp']),item(['2110','office'],_)],[]).

rule(seminar, location, 3, 0,

[item(_,['nnp','nn']),item(_,_)],[item(_,['nnp','cd']),list(2,_,'nnp'),

item(['auditorium','tower'],_)],[item(_,[':','.'])]).

rule(seminar, location, 3, 0,

[],[item(['hh','skibo'],'nnp'),item(_,'nnp')],[]).

rule(seminar, location, 3, 0,

[item(_,['cd','nnp']),item(_,['in','endsent']),list(2,[':','the','place'],_)],

[item(['doherty','wherret'],'nnp'),list(3,_,['in','cd','nnp'])],
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[item(_,['dt','endsent'])]).

rule(seminar, location, 4, 0,

[item(['endsent','location'],_),item(['in',':'],_)],[list(7,_,_)],

[item(_,[',','endsent']),item(['starting','robert'],_)]).

rule(seminar, location, 5, 0,

[item(_,['in','cd']),list(2,_,_)],[item(['romm','carnegie'],_),list(2,_,_),

item(',',','),item(_,'nnp'),list(2,_,'nnp'),item(['center','hall'],'nnp')],[]).

rule(seminar, location, 12, 0,

[item([':','use'],_)],[item(_,_),item(['hall','2110'],_),item(_,_),

item(_,[':','nnp']),item(_,_)],[item(_,['endsent','('])]).

rule(seminar, location, 3, 0,

[],[item(['la','epp'],'nnp'),item(_,_),item(_,_),item(',',','),item(_,_),

list(2,_,_),item(_,['nnp',':']),item(_,['.','cd'])],[]).

rule(seminar, location, 18, 0,

[],[item(_,'nnp'),item(['2315','wing'],['cd','nnp']),list(3,_,['in',',','nnp']),

item('hall','nnp')],[]).

rule(seminar, location, 18, 0,

[list(2,_,_),item(_,[':',','])],[item(_,'nnp'),item(_,'nnp'),item(_,_),item(_,_),

item(_,'nnp'),item(['campus','hall'],'nnp')],[]).

rule(seminar, location, 3, 0,

[item(_,[':','dt'])],[list(2,_,'nnp'),item(['3505','auditorium'],['cd','nn'])],[]).

rule(seminar, location, 25, 0,

[item(_,['in','endsent'])],[item(_,'nnp'),item(['hall','1004'],_),item(_,['cd','nnp'])],

[item(_,['.','endsent'])]).

rule(seminar, location, 3, 0,

[],[item(['porter','ms'],'nnp'),list(2,_,_),item(_,['cd','nnp'])],[item(',',',')]).

rule(seminar, location, 4, 0,

[],[item('ph','nnp'),item(_,_)],[]).

rule(seminar, location, 3, 0,

[],[item(['1001','dh'],_),item(_,['nnp','cd'])],[]).

rule(seminar, location, 38, 0,

[],[item(_,['nnp','cd']),item(['hall','wean'],'nnp'),item(_,['cd','nnp'])],

[item('endsent','endsent')]).

rule(seminar, location, 34, 0,

[],[item(['weh','hh'],'nnp'),item(_,'cd')],[]).

rule(seminar, etime, 126, 3,

[item(['to','-','until'],_)],[list(3,_,_),item(['p.m.','pm','00pm','00'],_)],

[item(_,['dt',',','endsent','in'])]).

rule(seminar, etime, 5, 0,

[item('-',':')],[item(['200pm','11am','5pm','1430'],_)],[]).

rule(seminar, etime, 13, 0,

[item(['00','9am'],'cd'),item('-',':')],[list(3,_,[':','cd'])],

[item(_,[',','endsent'])]).

rule(seminar, etime, 139, 0,

[item(['-','until'],_)],[item(_,_),item(':',':'),item(_,'cd'),

list(1,['a.m.','p.m.','am','pm'],_)],

[item(_,['prp','endsent'])]).

rule(seminar, etime, 84, 4,

[item('-',':')],[item(['5','12','1'],_),item(':',':'),list(2,_,['nn','cd'])],

[item(_,['.','endsent','in'])]).

rule(seminar, etime, 10, 0,

[item(['to','-'],_)],[item(['5','2'],_),list(2,_,['cd','nn',':'])],

[item(_,['in','nnp','('])]).

rule(seminar, etime, 4, 0,

[item(['around','to'],_)],[item(['5','11'],_),item(':',':'),item(_,'cd')],[]).
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B.3 Corporate Acquisitions

The following rules were learned from 300 examples during the experiments in Section 4.8 using

Rapier with words and part-of-speech tags.

rule(acquisition, status, 20, 0,

[item(_,['vbd','prp','vbn','to'])],[item(['completed','acquired','terminated',

'reconsider'],_)],[item(['and','the','because','its'],_)]).

rule(acquisition, status, 3, 0,

[item(['taft','inc'],'nnp'),list(2,_,_)],[item(['requested','entered'],_),

list(2,_,_),item(['response','agreement'],'nn')],[item(_,_),item(_,['vb','nnp'])]).

rule(acquisition, status, 22, 1,

[list(2,_,_)],[item(['rejecting','terminated','completed'],_)],[item(_,_),

item(_,['nn','jj','rb'])]).

rule(acquisition, status, 5, 0,

[item('it','prp')],[item(['acquired','sold'],'vbd')],[item(_,['dt','rb']),

list(2,['the','7.7','all'],_),item(_,['nn','nns'])]).

rule(acquisition, status, 4, 0,

[item(['trust','will','inc'],_)],[item(['sold','offer','acquired'],_)],[]).

rule(acquisition, status, 15, 0,

[],[item(['tentiative','ended','definitive','received'],_),

item(['talks','agreement','approvcal'],_)],[item(_,['to','in'])]).

rule(acquisition, status, 6, 0,

[],[item(_,['vbn','vbz']),item(['to','no'],_),item(['buy','limit','bid'],_)],

[item(_,['dt','jj','in'])]).

rule(acquisition, status, 5, 0,

[item(_,[',','nn',':']),item(_,['in','nnp']),item([',','norstar','corp'],_),

item(_,_),item(_,['vbn','vbp','prp'])],[item(['purchased','agreed'],_)],

[item(['by','to'],_)]).

rule(acquisition, status, 3, 0,

[list(4,_,_)],[item(['revision','proposed','rejecting'],_)],

[item(['to','merger','this'],_),list(2,_,_),item(_,['dt','nnp','pos'])]).

rule(acquisition, status, 3, 0,

[item(_,[',','vbd']),item(['said','it'],_),item(['it','has'],_)],

[list(3,['approvals','regulatory','acquired','received'],_)],[item(['a','for'],_),

item(_,['nn','prp$'])]).

rule(acquisition, status, 6, 0,

[],[item(['not','agreed','letter','decided'],_),item(_,_),

item(['discussions','buy','intent','buying'],_)],[item(['with','the','charmglow'],_)]).

rule(acquisition, status, 3, 0,

[item(_,['prp','vbp'])],[list(2,_,['dt','rb','vbd']),item(['true','agreement'],_)],

[item(_,['to','.']),item(['sell','endsent'],_)]).

rule(acquisition, status, 9, 0,

[item(_,['in','prp']),item(['the','has'],_)],[item(['agreed','agreement'],['vbn','nn']),

list(2,_,_),item(['principle','acquire','sell'],_)],[list(2,_,_),item(_,['dt','nnp'])]).

rule(acquisition, status, 3, 0,

[item(_,['nnp',',']),list(2,_,_),item(['agreed','reached'],'vbd'),item(['to','an'],_)],

[item(['agreement','move'],_),list(3,_,['nn','dt','to','in']),item(_,['vb','nn'])],

[list(2,_,_),item(_,_),item(_,_),item(_,_),item(_,'nnp')]).

rule(acquisition, status, 8, 0,

[item(_,'nnp'),item(_,_),item(_,['prp','vbz'])],[item(['agreed','no'],_),

list(3,['an','in','to','interest'],_),item(['sell','acquisition'],_)],[]).

rule(acquisition, status, 3, 0,

[item('has','vbz')],[item(['bought','acquired'],'vbn')],[item(_,['nnp','cd']),

list(2,['600','-',','],_),item(_,['nnp','nns'])]).

rule(acquisition, status, 9, 0,

[],[item(['seeking','agreed','plans','ended'],_),item(_,_),

item(['merger','principle','complete','agreement'],_)],[item(_,_),

item(['kappa','acquire','integration','endsent'],_)]).

rule(acquisition, status, 4, 0,
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[item(_,'nnp'),item(['said','corp'],['vbd','nnp']),item(['it','}'],_)],

[item(['agreed','will'],_),list(3,['tender','a','to','make'],_),item(_,['vb','nn'])],

[item(_,_),item(_,['dt','jj']),item(_,['cc','nnp'])]).

rule(acquisition, status, 8, 0,

[item(_,['prp','vbp']),item(_,_)],[item(['discussing','agreed'],_),item(_,_),

item(_,['nn','vb'])],[list(2,_,_),item(_,['dt','nn'])]).

rule(acquisition, status, 11, 0,

[item(_,'nnp'),item(_,'vbd'),item(['still','it'],_)],[item(['under','agreed'],_),

list(2,_,_)],[item(['and','consolidated','its','{'],_)]).

rule(acquisition, status, 3, 0,

[item(_,['in','vbd']),item(_,['dt','prp'])],[item(['offer','sold'],_)],

[item(_,['prp','prp$']),list(2,_,_),item(_,['nn','nnp'])]).

rule(acquisition, status, 3, 0,

[],[item(['agreement','received'],_),list(2,_,_),item(['principle','proposal'],'nn')],

[item(_,_),item(['j.p.','acquire'],_)]).

rule(acquisition, status, 3, 0,

[item(_,['nnp','vbd']),item(_,_),item(['it','reached'],_),item(['has','an'],_)],

[list(3,['principle','in','acquired','agreement'],_)],[item(['a','to'],_),

list(2,['seven','90','buy'],_),item(_,['nn','nnp'])]).

rule(acquisition, status, 3, 0,

[item(_,['vbd','nnp']),list(2,_,_)],[item(['agreement','sold'],['nn','vbd'])],

[item(_,['md','cd'])]).

rule(acquisition, status, 10, 0,

[],[item(['management','agreed'],_),item(_,['nn','in']),item(_,'nn')],[list(2,_,_),

item(_,['dt','nnp'])]).

rule(acquisition, status, 4, 0,

[item(_,['vbd',')']),item(_,_),item(_,_)],[item(['started','entered'],_),

item(_,_),item(_,_),item(_,'nn')],[]).

rule(acquisition, status, 3, 0,

[item(['inc','said'],_),item(_,_),item(_,['prp','vbz']),item(['has','been'],_)],

[list(3,_,['vb','to','vbn'])],[item(['{','by'],_),item(_,_),item(_,['nnp','nn'])]).

rule(acquisition, status, 3, 0,

[item(_,[')','nnp']),item(_,['nn','vbd']),item(['had','it'],_)],[list(2,_,_),

item(['acquire','sell'],'vb')],[item(_,['(','dt']),item(_,['nnp','cd'])]).

rule(acquisition, status, 17, 0,

[list(2,_,_)],[item(['sold','completed'],_)],[item('the','dt')]).

rule(acquisition, status, 6, 0,

[],[item(['request','exercise','entered'],['nn','vb','vbn']),list(4,_,_),

item(['proposals','acquire','agreement'],_)],[]).

rule(acquisition, status, 7, 0,

[item(_,['nns','nnp']),item(_,_),item(_,['endsent','vbd']),item(['the','it'],_)],

[item(['bid','acquired'],_)],[list(2,_,_),list(2,_,_),item(_,['nnp','jj'])]).

rule(acquisition, status, 6, 0,

[item(_,['vbd','prp'])],[item(['agreed','talks'],_),list(2,_,_),

item(['buy','place'],_)],[item(_,['wdt','dt'])]).

rule(acquisition, status, 4, 0,

[list(2,['have','it','they'],_)],[item(['acquired','bought'],_)],[item(_,'cd'),

item(',',','),item('000','cd')]).

rule(acquisition, status, 3, 0,

[],[item(['acquired','bought'],'vbd')],[item(['an','two'],_),item(_,['nn','jjr'])]).

rule(acquisition, status, 3, 0,

[item(['corp','co'],'nnp'),item(_,['vbd',',']),item(_,['prp','vbd']),

item(['has','it'],_)],[item(['acquired','agreed'],_)],[item(_,['dt','to']),

item(_,_),list(2,_,_),item(_,['in','jj'])]).

rule(acquisition, status, 3, 0,

[item(['merger','shareholders'],_)],[item('approved','vbd')],[]).

rule(acquisition, status, 5, 0,

[list(2,['is','a','it'],_)],[item(['seeking','letter'],_),item(_,_),

item(['sell','intent'],_)],[item(_,['prp$','to'])]).

rule(acquisition, status, 3, 0,

[list(2,['has','the',','],_)],[item(['purchased','offer'],_)],[item(_,['cd','vbz']),

item(_,[',','jj'])]).
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rule(acquisition, status, 4, 0,

[list(2,_,_)],[item(['acquired','sold'],_)],[item(['the','78'],_),

list(2,_,_),item(_,'nns')]).

rule(acquisition, status, 7, 0,

[item(_,['fw','nnp']),item(_,_),item(_,_),item(_,['nns','nnp']),item(_,_),item(_,_),

item(['in','it'],_),item(_,['prp$','vbz'])],[item(['proposed','completed'],'vbn')],

[]).

rule(acquisition, status, 7, 0,

[item(_,['nnp','vbd']),item(_,['vbz','prp'])],[list(2,_,_),

item(['sell','acquire'],'vb')],[item(['all','its'],['dt','prp$']),item(_,'nnp')]).

rule(acquisition, status, 4, 0,

[],[item(['terminated','continues'],_),list(2,_,['vb','dt','to']),

list(2,['sale','agreement','for'],_)],[item(_,['in','"'])]).

rule(acquisition, status, 7, 0,

[item(['been','has'],_)],[item(['terminated','completed'],'vbn')],[item(_,_),

item(_,['jj','rb'])]).

rule(acquisition, status, 5, 0,

[list(2,_,_),item(_,['vbz','vbp'])],[item(['acquired','ended'],'vbn')],[list(2,_,_),

item(_,['dt','nnp']),item(_,['in','nnp'])]).

rule(acquisition, status, 5, 0,

[item(_,['nn','vbd']),item(['has','it'],_)],[list(2,['negotiations','completed',

'started'],_)],[item(['with','its'],_)]).

rule(acquisition, status, 11, 0,

[],[item(['agreed','found'],'vbn'),list(2,_,_),item(['principle','buyer'],'nn')],

[]).

rule(acquisition, status, 11, 0,

[item(_,['prp','rb'])],[item(['completed','rejected'],'vbd')],[item(_,'dt')]).

rule(acquisition, sellercode, 12, 0,

[item('{','(')],[item(_,'nnp')],[item('}',')'),item(['to','explores'],_),

item(['complete','sell','unit'],_),item(_,['nn','dt','nnp'])]).

rule(acquisition, sellercode, 15, 0,

[],[item(['lrho.l','hepc.l','atco.o','ckb','hnsn.l','bac','crrs','ftr','kb','bor',

'tae','gm','han'],_)],[]).

rule(acquisition, sellercode, 9, 0,

[item('{','(')],[item(_,'nnp')],[item('}',')'),item(['for',',','sells','completes'],_),

item(['235','who','sale','foam','30'],_)]).

rule(acquisition, sellercode, 6, 0,

[],[item(['bmy','slb','bnl','gy','esk'],'nnp')],[item('}',')'),

item(_,['.','vbz','nn'])]).

rule(acquisition, sellercode, 7, 0,

[item('{','(')],[item(_,'nnp')],[item('}',')'),item(['signs','unit'],_),

item(['pact','endsent'],_),item(_,['in','nnp']),item(_,['nnp',',']),item(_,_),

item(_,['nnp','.'])]).

rule(acquisition, sellercode, 3, 0,

[item(['''s','dome'],['pos','nnp']),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(_,['nn','nnp']),item(_,['nns','nnp']),list(2,_,_),item(_,['(','nn']),

item(_,['in','nnp'])]).

rule(acquisition, sellercode, 15, 0,

[item('{','(')],[item(_,'nnp')],[item('}',')'),item(['sells','selling','south'],_),

list(2,_,_),item(_,['endsent','nn'])]).

rule(acquisition, sellercode, 8, 0,

[item('{','(')],[item(_,'nnp')],[item('}',')'),item(['sells','seeks','ends'],'vbz'),

item(_,_),item(_,['nnp','vb','to'])]).

rule(acquisition, sellercode, 3, 0,

[item(_,'nnp'),item(['corp','healthcare'],'nnp'),item('{','(')],[item(_,'nnp')],

[item('}',')'),item(_,['.','to']),list(2,_,_),item(_,_),item(_,['nnp','endsent'])]).

rule(acquisition, sellercode, 3, 0,

[item(_,'nnp'),item(_,'nnp'),item('{','(')],[item(_,_)],[item('}',')'),

item(['agrees','completes'],'vbz'),list(2,_,_),item(['sell','sale'],_)]).

rule(acquisition, sellercode, 3, 0,

[item(['harcourt','buy'],_),item(_,'nnp'),item('{','(')],[item(_,'nnp')],

[item('}',')'),item('unit','nn')]).
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rule(acquisition, sellercode, 6, 0,

[item(_,_),item(_,_),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(_,[',','to']),item(['usair','sell'],_),item(_,['(','nnp'])]).

rule(acquisition, sellercode, 3, 0,

[item(_,[',','nnps']),item(['but','{'],_)],[item(_,['nnp','nns'])],

[item(_,['vbz',')']),item(_,_),item(_,['in','vb'])]).

rule(acquisition, sellerabr, 3, 0,

[item(['houston','denver'],'nnp'),item(',',','),item(['march','april'],'nnp'),

item(['4','1'],'cd'),item('-',':')],[list(2,_,'nnp')],[item(['inc','corp'],'nnp'),

item('said','vbd'),item('it','prp')]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['nn','nnp']),list(2,_,_),item(['.','subsidiary'],_),

item(_,['endsent','in'])],[item(_,'nnp'),item(_,'nnp')],[item(['said','corp'],_),

item(_,_),item(_,['nns','nnp'])]).

rule(acquisition, sellerabr, 3, 0,

[item(['1','2'],'cd'),item('-',':')],[item(_,'nnp')],[item(['inc','corp'],'nnp'),

item('said','vbd'),item(_,_),item(_,['nnp','vbz'])]).

rule(acquisition, sellerabr, 4, 0,

[item(['acquiring','from','-'],_)],[item(['trimac','quaker','butler'],'nnp')],

[]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['rb','nn']),item(_,_),item(['plants',','],_),list(2,_,_),

item(_,['nn','vbn']),item(['for','by'],'in')],[item(_,'nnp')],[item(_,['.',',']),

item(_,_),item(_,['nnp','rb'])]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['in','cd']),item(_,['(',':'])],[list(2,_,'nnp')],[item(['mines','corp'],_),

item(['inc','said'],_),item(_,[')','prp']),item(['in','completed'],_),

item(_,['jj','dt']),item(['mining','sale'],'nn')]).

rule(acquisition, sellerabr, 4, 0,

[item(_,['nnp','nn']),item(_,_),item(_,_),list(2,['indentify','march','the',

'pct'],_),item(['2','buyer','owned'],_),item(_,['in',':'])],[item(_,'nnp')],

[item(['corp','''s','mining'],_),list(3,_,_),item(_,[',','dt','nns'])]).

rule(acquisition, sellerabr, 4, 0,

[item(_,['nnp','vbd','jj']),item(_,_),item(['march','this','an'],_),

item(['9','transaction','issue'],_),item(_,[':',',','to'])],[item(_,'nnp')],

[item(_,['nnp','rb',',']),list(3,_,_),item(_,['jj','in','dt'])]).

rule(acquisition, sellerabr, 3, 0,

[],[item(['kaufman','allied'],_),item(_,_),item(['board','signal'],_)],[]).

rule(acquisition, sellerabr, 3, 0,

[item(['pct','3'],_),item(['of','-'],_)],[item(_,'nnp'),item(_,'nnp')],

[item(_,['pos','nnp']),item(_,['jj','vbd']),item(_,_),item(['of','agreed'],_)]).

rule(acquisition, sellerabr, 6, 0,

[],[item(['hepworth','chesapeake','chevron','allied','quest'],'nnp')],

[item(_,['vbz','nnp','pos','vbd'])]).

rule(acquisition, sellerabr, 3, 0,

[item(['who','march'],_),item(_,_),item(['hearing','-'],_)],[list(2,_,'nnp')],

[item(['steel','ltd'],'nnp'),item(_,['pos','vbd']),list(2,_,_),

item(_,['cd','vbn'])]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['vbg','jj']),list(2,_,_),item(['buy','endsent'],_)],[item(_,'nnp'),

item(_,['nnp','nnps'])],[item(_,['nnp','vbn']),item(_,_),

list(2,['of','endsent','purchase'],_),item(_,['dt','nnp'])]).

rule(acquisition, sellerabr, 4, 0,

[],[item(['borg','texas','johnson'],'nnp'),

list(2,['-','american','warner','products'],_)],[item(['corp','{','to'],_)]).

rule(acquisition, sellerabr, 3, 0,

[item(['25','3'],'cd'),item('-',':')],[item(_,'nnp'),list(3,_,['nnp','nn',':'])],

[item(['corp','corfp'],'nnp'),item('said','vbd')]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['nnp','jj']),item(_,_),item(['april','of'],_),item(_,['cd','rb']),

item(_,[':','vbn'])],[list(2,_,'nnp')],[item(['inc','10'],_),item(['said','-'],_),

item(_,['prp','cd']),list(2,_,_),item(_,_),item(['the','debentures'],_)]).
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rule(acquisition, sellerabr, 3, 0,

[item(_,['md','endsent']),list(2,_,_),item(_,['nnp','cd']),item(_,_),

item(['-','000'],_)],[item(_,'nnp')],[item(['international','shares'],_),

item(_,['nnp','in']),item(_,['vbd','nnp']),item(_,['prp','nnp']),

item(_,['vbd','nnp'])]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['vbn','vbp']),item(_,_),item(_,['nnp',',']),item(['hubert','"'],_)],

[item(_,'nnp')],[item(_,_),item(_,['nn','.'])]).

rule(acquisition, sellerabr, 3, 0,

[item(['cleveland','toronto'],'nnp'),item(',',','),item('march','nnp'),

item(['13','6'],'cd'),item('-',':')],[list(2,_,['nnp','vbg']),item(_,'nnp')],

[item(['enterprises','ltd'],_)]).

rule(acquisition, sellerabr, 3, 0,

[item(['stevenson','.'],_),item(_,['vbd','endsent'])],[list(2,_,'nnp')],

[item(['will','said'],_),item(['continue','the'],_),item(['to','sale'],_),

item(_,['vb','vbz'])]).

rule(acquisition, sellerabr, 3, 0,

[item(['{','buys'],_)],[item(_,'nnp'),item(_,'nnp')],[item(['inc','{'],_),

item(_,[')','nnp']),item(['for','}'],_),list(2,_,_),item(_,'nn')]).

rule(acquisition, sellerabr, 3, 0,

[item(['hands','york'],_),list(2,_,_),item(_,['endsent','cd']),item(_,['dt',':'])],

[list(2,_,'nnp')],[item(['sources','corp'],_),item(_,'vbd'),item(['no','it'],_),

item(_,['nns','vbz'])]).

rule(acquisition, sellerabr, 3, 0,

[item(_,'nnp'),item(',',','),item(_,'nnp'),item(['2','6'],'cd'),item('-',':')],

[list(2,_,'nnp')],[item(['corp','ltd'],'nnp'),item(_,_),item(_,['prp','cd']),

list(2,_,_),item(_,['dt','in'])]).

rule(acquisition, sellerabr, 3, 0,

[item(['the','buy'],_)],[item(_,'nnp')],[item(['said','''s'],_),

item(_,['.','nnp'])]).

rule(acquisition, sellerabr, 3, 0,

[item(['oct','substantial'],_),item(['19','developments'],_),

item(['-','affecting'],_)],[item(_,'nnp'),item(_,'nnp')],[item(_,['nnp',',']),

item(_,_),item(_,['prp$','nn'])]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['wrb','in'])],[item(['hanson','cpc'],'nnp')],[item(_,['vbd','nnp'])]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['nnp',')']),item('to','to'),item('buy','vb')],[item(_,'nnp')],

[item(['division','{'],_)]).

rule(acquisition, sellerabr, 3, 0,

[item(_,['dt','vbd']),list(2,['endsent','local','.'],_),

item(['annesley','subsidiary'],_),item(_,['rb','in'])],[item(_,'nnp')],

[item(['petroleum','corp'],'nnp')]).

rule(acquisition, seller, 6, 0,

[item(['subsidiary',',','3'],_),item(['of','"','-'],_)],[list(2,_,'nnp'),

item(['corp','industries','co'],_)],[item(_,_),item(_,['in','nnp','prp'])]).

rule(acquisition, seller, 4, 0,

[item(['consumer','endsent','akron'],_),list(3,_,_),item(_,_),

item(['accounts','20','1'],_),item(['from','-'],_)],[list(2,_,'nnp'),

item(['co','inc','federal'],'nnp')],[item(_,['(','vbd']),

list(4,_,_),item(_,[')','nnp','dt'])]).

rule(acquisition, seller, 4, 0,

[item(['4','2','19'],'cd'),item('-',':')],[item(_,'nnp'),

item(['stores','sandwiches','industries'],_),item('inc','nnp')],[]).

rule(acquisition, seller, 5, 0,

[item(['march','houston','chief'],_),item(_,_),item(['-','from','officer'],_)],

[list(2,_,_),item(['corfp','inc','cohen','l.p.'],'nnp')],[item(_,_),

item(_,['dt','cd','prp']),item(_,_),item(_,_),item(['advisory','a','.','shares'],_),

item(_,['nn','jj','endsent','in'])]).

rule(acquisition, seller, 7, 0,

[item(_,[':','vb','('])],[item(['borealis','riedel','general','allied','deltec',

'kaufman'],'nnp'),list(2,_,_),item(['sa','corp','inc','ltd'],'nnp')],[]).
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rule(acquisition, seller, 3, 0,

[list(3,_,_)],[item(_,'nnp'),item(['holdings','l.','development'],'nnp'),

item(_,'nnp')],[item(_,[')',',','vbd']),list(3,_,_),item(_,'nnp')]).

rule(acquisition, seller, 3, 0,

[item(['chicago','york'],'nnp'),item(',',','),item(_,'nnp'),item(['2','26'],'cd'),

item('-',':')],[item(_,'nnp'),item('corp','nnp')],[item('said','vbd'),

item('it','prp'),item(_,['vbd','vbz'])]).

rule(acquisition, seller, 4, 0,

[item(['from','inc'],_),item(_,['(','pos'])],[list(4,_,_),item('inc','nnp')],

[item(_,[')','('])]).

rule(acquisition, seller, 8, 0,

[],[item(['allied','owens','cpc','cvs','creditors'],_),list(3,_,_),

item(['corp','inc','facilities'],_)],[]).

rule(acquisition, seller, 3, 0,

[item(['april','{'],_),item(_,_),item(_,[':',')'])],[list(2,_,['jj','nnp']),

item(['chemical','holdings'],'nnp'),item(_,'nnp')],[item(_,_),

list(2,['undisclosed','hepc.l','for'],_),item(_,_),item(_,['vbd','.'])]).

rule(acquisition, seller, 5, 0,

[item(_,['vbn',':','('])],[item(['rhone','hanson','borg','canadian'],'nnp'),

list(2,_,_),item(['chimie','plc','corp','ltd'],'nnp')],[]).

rule(acquisition, seller, 4, 0,

[item(['magnetics','march'],_),item(_,['nn','cd']),item(['of','-'],_)],

[item(_,'nnp'),list(2,['system','mccormack','industries','resources','bank'],'nnp'),

item('inc','nnp')],[item(_,[',','vbd']),item(_,_),item(_,['nn','vbz']),

item(['found','of','completed'],_)]).

rule(acquisition, seller, 3, 0,

[item(['chairman','from'],_)],[list(2,_,'nnp'),item(['brinkman','corp'],'nnp')],

[item(_,['cc',','])]).

rule(acquisition, seller, 3, 0,

[item(['air','march'],'nnp'),item(['corp','17'],_),item(_,['pos',':'])],

[list(2,_,'nnp'),item(['airlines','corp'],_)],[item('said','vbd'),

item(_,['prp','jj'])]).

rule(acquisition, seller, 3, 0,

[item(_,['in','nnp']),item(_,_),item(['capital','march'],_),item(_,['nn','cd']),

item(_,['in',':'])],[item(_,'nnp'),item('inc','nnp')],[item(_,['pos','vbd']),

item(_,['rb','prp']),item(_,_),list(2,['d','completed','subsidiary'],_),

item(_,['dt','cc'])]).

rule(acquisition, seller, 3, 0,

[list(2,_,_)],[item(['nordbanken','gencorp'],'nnp')],[item(_,[')','vbd'])]).

rule(acquisition, seller, 3, 0,

[item('9','cd'),item('-',':')],[list(3,_,'nnp'),item(['partners','inc'],_)],

[item(_,'vbd'),item(_,_),item(_,['vbd','nnps']),item(_,_),item(_,['nn','nnp'])]).

rule(acquisition, seller, 3, 0,

[item(_,['vbn','vb']),item(_,['in','cd'])],[list(2,_,'nnp'),

item(['hat','corp'],'nnp')],[item(_,[',','nn'])]).

rule(acquisition, seller, 3, 0,

[item(_,['vb',')']),item('{','(')],[list(5,_,_),item('ltd','nnp')],[]).

rule(acquisition, seller, 4, 0,

[item(['pct','subsidiary','substantially'],_),item(['of','all'],_)],

[list(3,_,['cc','nnp']),item(_,'nnp'),item(['usa','corp','associate'],'nnp')],

[item(_,['(','pos'])]).

rule(acquisition, seller, 4, 0,

[item(_,['nnp','nn']),item(['-','of'],_),item(_,['vbn','('])],[list(2,_,'nnp'),

item(['inc','ab'],'nnp')],[item(_,['vbd',')'])]).

rule(acquisition, seller, 3, 0,

[item(['march','new'],'nnp'),item(_,['cd','nnp']),item(_,[':','nn'])],

[list(3,_,['nnps','nnp']),item(['edelman','co'],'nnp')],[item(['said','and'],_),

list(2,_,_),item(['agreed','inc'],_),list(2,_,_),item(_,['nnp','prp$'])]).

rule(acquisition, seller, 3, 0,

[item(_,['nnp','cc']),item(_,_),item(['april','shield'],_),item(_,['cd',',']),

item(['-','while'],_)],[list(2,_,'nnp'),item('corp','nnp')],[item(_,['vbd','md']),

item(_,['prp','vb']),item(_,_),item(_,['to','vb'])]).
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rule(acquisition, seller, 5, 0,

[item(['edelman','of','18'],_),item(_,['cc','(',':'])],[item(_,'nnp'),

item(_,'nnp'),item(['inc','co'],'nnp')],[item(_,['(',')','vbd']),

item(_,['nnp','in','prp'])]).

rule(acquisition, seller, 3, 0,

[list(2,_,_),item(_,['cc','('])],[item(_,'nnp'),item(['l.','holdings'],'nnp'),

item(_,'nnp')],[item(_,[',',')']),item(_,_),list(2,_,_),item(_,'nnp')]).

rule(acquisition, seller, 3, 0,

[item(['-','with'],_)],[list(2,_,'nnp'),item(['city','southern'],'nnp'),item(_,_),

item(_,'nnp')],[]).

rule(acquisition, seller, 4, 0,

[item(_,['nnp','vb']),list(2,['the','2','shares','6'],_),item(_,[':','in'])],

[item(_,_),item(['finance','industries','o'],'nnp'),list(2,_,'nnp')],

[item(_,['vbd',','])]).

rule(acquisition, seller, 3, 0,

[item(['.','detroit'],_),item(',',','),item('march','nnp'),item(['24','31'],'cd'),

item('-',':')],[item(_,'nnp'),list(2,_,'nnp'),item(['inc','corp'],'nnp')],

[item('said','vbd'),list(2,_,_),item(_,['nnp','to'])]).

rule(acquisition, seller, 3, 0,

[],[item(['u.s.','allegheny'],'nnp'),item(_,'nnp'),item(_,'nnp')],[item(_,'vbd')]).

rule(acquisition, seller, 4, 0,

[item(_,['vbn','nnp']),item(['{','from'],_)],[list(2,_,'nnp'),

item(['inc','co'],'nnp')],[item(_,_),item(_,['.','cd'])]).

rule(acquisition, seller, 3, 0,

[item(_,['cd','vbn']),item(_,[':','('])],[item(_,'nnp'),list(2,_,['nnp',':']),

item(['ltd','corp'],'nnp')],[item(_,['pos',')']),item(_,_),list(2,_,_),

item(_,['in','vbn']),item(_,_),item(_,_),item(_,['nnp','jj'])]).

rule(acquisition, seller, 3, 0,

[item(_,['nn','nnp']),list(2,['venture','from','joint'],_),item(['from','{'],_)],

[item(_,'nnp'),list(2,['mines','minerals','gold'],'nnp'),item('inc','nnp')],

[item(_,_),item(_,['dt','in'])]).

rule(acquisition, seller, 3, 0,

[item([',','by'],_)],[list(2,_,'nnp'),item(['ltd','myers'],'nnp')],

[item(_,_),item(_,'nnp')]).

rule(acquisition, seller, 3, 0,

[item(_,[',','in'])],[list(2,_,_),item(['resources','myers'],'nnp'),item(_,'nnp')],

[item(_,_),item(_,'nnp')]).

rule(acquisition, seller, 3, 0,

[item(['from','-'],_)],[list(2,_,'nnp'),item(['resources','energy'],'nnp'),

item('corp','nnp')],[]).

rule(acquisition, seller, 3, 0,

[],[item(['bank','kaiser'],'nnp'),item(_,_),item(['america','corp'],'nnp')],

[]).

rule(acquisition, seller, 3, 0,

[item(['2','portfolio'],_),item(['-','of'],_)],[list(2,_,'nnp'),

item(['international','credit'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, purchcode, 4, 0,

[],[item(['abi','u','ldco.o'],'nnp')],[item('}',')'),item(_,[',','vbz','nn']),

list(2,_,_),item(_,['vbn','nn','endsent'])]).

rule(acquisition, purchcode, 4, 0,

[item(['ltd','oats'],'nnp'),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(_,['vbd','vbz']),item(_,['dt','prp','nnp'])]).

rule(acquisition, purchcode, 7, 0,

[item(_,['jj','nnp']),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(['affiliation','to','cleared'],_),item(['endsent','acquire','to'],_)]).

rule(acquisition, purchcode, 43, 2,

[],[item(['kra','rads','brf','mits.t','ma','amkg','atcma','ko','xtr','tjco','bls',

'vido','mony.o','ppw','tpsi','hrcly.o','aare','cfmi','forf','mmm','jn.to','twa',

'kdi','lvi','cmco','dci','clg','narr','rtrsy','len','comm.o','ssbk','pkn','csra.s',

'keyc','mer','jpi'],'nnp')],[]).

rule(acquisition, purchcode, 4, 0,

[item(['fielder','to','hampshire'],_),item(_,'nnp'),item('{','(')],[item(_,_)],
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[item('}',')'),item(_,['in','endsent','to'])]).

rule(acquisition, purchcode, 4, 0,

[item(['plc','scientific','alza'],'nnp'),item('{','(')],[item(_,'nnp')],

[item('}',')'),item(_,['vbd','in','endsent']),list(2,_,_),

item(_,['to','nn',','])]).

rule(acquisition, purchcode, 6, 0,

[item(['inc','mortgage','fleet','greyhound'],'nnp'),item('{','(')],[item(_,_)],

[item('}',')'),item(['outline','buys','said'],_),item(_,['nn','nnp','prp'])]).

rule(acquisition, purchcode, 20, 1,

[],[item(['darta.o','btek.o','dyr','fwf','anwa.t','pant','asrn.as','lsb','soi',

'forf','rabt','fsb','nva.a.to','lce','trb','duri','laf'],'nnp')],[]).

rule(acquisition, purchcode, 5, 0,

[],[item(['spc','func','c','uac'],_)],[item('}',')')]).

rule(acquisition, purchcode, 4, 0,

[item(['ssmc','plc','henley'],'nnp'),item('{','(')],[item(_,'nnp')],

[item('}',')'),item(_,['to','vbg','vbz'])]).

rule(acquisition, purchcode, 8, 0,

[item(_,['nns','nnp']),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(_,[',','to','vbd']),item(_,_),item(['bank','acquisition','would'],_)]).

rule(acquisition, purchcode, 7, 0,

[item(_,['nnp','nns']),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(['sets','acquires','acquisitions'],_),item(_,['nnp','vbd'])]).

rule(acquisition, purchcode, 7, 0,

[item(_,'nnp'),item('{','(')],[item(_,'nnp')],[item('}',')'),item(['to','said'],_),

item(['purchase','buy','its'],_),item(_,['nnp','vbp']),item(_,['nnp','nn'])]).

rule(acquisition, purchcode, 5, 0,

[item(_,_),item(_,['nnp','vb']),item('{','(')],[item(_,_)],[item('}',')'),

item(['gets','has','says'],'vbz')]).

rule(acquisition, purchcode, 6, 0,

[item(['plc','monsanto','allwaste','of'],_),item(_,['(','dt'])],[item(_,'nnp')],

[item(['}','group'],[')','nnp']),item(_,['in','to','cc'])]).

rule(acquisition, purchcode, 7, 0,

[item(_,'nnp'),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(_,['vbz','cc']),item(['acquisition','has'],_)]).

rule(acquisition, purchcode, 3, 0,

[item(_,['nnp',':']),item(['co','tv'],_),item(['{','to'],_)],[item(_,'nnp')],

[item(['}','inc'],_),item(_,_),item(_,['vbn','nnp'])]).

rule(acquisition, purchcode, 3, 0,

[item(_,'nnp'),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(_,[':','md'])]).

rule(acquisition, purchcode, 3, 0,

[item(['march','industries'],'nnp'),item(['23','inc'],_),item(_,[':','('])],

[item(_,'nnp')],[item(['group','}'],_),item(_,_),item(_,['vbd','endsent'])]).

rule(acquisition, purchcode, 7, 0,

[item(_,_),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(['buys','purchases'],_),item(_,_),item(_,_),item(_,'nnp')]).

rule(acquisition, purchaser, 8, 0,

[item(['inc','march','25'],_),item(_,['nn',':']),item(_,['to',':','('])],

[list(5,_,_),item(['corp','inc'],'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(['with','-'],_)],[item(_,'nnp'),item(['inc','partners'],_)],

[item(_,['(',',']),item(_,['nnp','dt'])]).

rule(acquisition, purchaser, 5, 0,

[item(_,[':','('])],[list(2,_,'nnp'),item(_,_),item(['forbes','insurance',

'west'],'nnp'),item(['group','co','inc'],'nnp')],[]).

rule(acquisition, purchaser, 6, 0,

[item(['rural','april','oct','pictures'],_),item(_,_),item(_,[':','to'])],

[item(_,['nnp','dt']),item(['private','group','commercial','management'],_),

item(_,['nnp','nn'])],[]).

rule(acquisition, purchaser, 3, 0,

[item(_,['vbd',':'])],[list(3,_,['pos','nnp']),item(['g.','american'],'nnp'),

item(_,['nnp','nnps'])],[item(_,['vbd','nn'])]).
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rule(acquisition, purchaser, 6, 0,

[item(['march','24','20'],_),item(_,_),item(_,[':','(','dt'])],[list(2,_,'nnp'),

item(['systems','aerospace','manhattan'],'nnp'),item(_,'nnp')],[list(2,_,_),

item(_,['(','vbd','nn'])]).

rule(acquisition, purchaser, 5, 0,

[item(_,['(','dt'])],[item(_,'nnp'),item(['plc','government'],_)],

[item(_,[')','vbz']),item(_,['in','vbd','vbn'])]).

rule(acquisition, purchaser, 5, 0,

[item(['19','to'],_),item(_,[':','('])],[list(2,_,_),

item(['corp','ireland'],'nnp')],[item(_,['vbd',')']),list(2,_,_),

item(_,['nnp','vbn'])]).

rule(acquisition, purchaser, 5, 0,

[],[item(['henley','allwaste','county','finlays'],'nnp'),item(_,'nnp')],

[item(_,[')','vbd'])]).

rule(acquisition, purchaser, 4, 0,

[item(_,[':','('])],[item(_,'nnp'),list(2,_,_),item(['go','capital'],_),

item(['inc','corp'],'nnp')],[]).

rule(acquisition, purchaser, 5, 0,

[item(_,['nns','cd','nn']),item(_,['to',':','nn'])],[list(3,_,'nnp'),

item(['taft','inc','co'],'nnp')],[item(_,_),item(['columbia','it','narragansett'],_),

item(_,[',','vbd','nnp']),item(_,'nnp')]).

rule(acquisition, purchaser, 4, 0,

[item(_,[':','prp$','('])],[list(2,_,'nnp'),item(['bancshares','first',

'holding'],'nnp'),item(['inc','ab'],'nnp')],[]).

rule(acquisition, purchaser, 4, 0,

[item(['25','30','}'],_),item(['-','said'],_)],[list(2,_,'nnp'),

item('corp','nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[],[item(['gst','amoskeag'],'nnp'),item(_,'nnp'),list(2,_,'nnp')],[item(_,'vbd')]).

rule(acquisition, purchaser, 7, 0,

[item(_,['cd','pos','vbd']),item(['-','g.d.','its'],_)],[list(3,_,_),

item(['ltd','co'],'nnp')],[item(['{','subsidiary','unit'],_)]).

rule(acquisition, purchaser, 5, 0,

[item(_,[')',':',','])],[item(_,'nnp'),list(2,_,_),

item(['technology','electronics','and','co'],_),

item(['partners','co','communications','of'],_),item(_,'nnp')],[]).

rule(acquisition, purchaser, 4, 0,

[item(_,['dt','nnp','nn']),list(2,['newly','units','3','shipping'],_),

item(_,['vbn',':','to'])],[item(_,'nnp'),item(['central','industries','r.'],'nnp'),

item(_,'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(['to','march'],_),item(_,_),item(_,['pos',':'])],[list(3,_,'nnp'),

item('plc','nnp')],[item('{','('),item(_,'nnp'),item('}',')'),

item(_,['vbg','vbd']),list(2,_,_),item(_,['nn','to'])]).

rule(acquisition, purchaser, 3, 0,

[item(_,[':','in'])],[item(_,['nnp','dt']),item(['-','leveraged'],_),item(_,_),

item(['corp','firm'],_)],[item(_,'vbd'),item(_,['prp','vbn'])]).

rule(acquisition, purchaser, 7, 0,

[item(['23','19','agreement'],_),item(['-','with'],_)],[list(2,_,'nnp'),

item(['corp','inc'],'nnp')],[item(['said','{'],_),item(_,['prp','nnp']),

item(['acquired','has','}'],_)]).

rule(acquisition, purchaser, 6, 0,

[item(_,'nnp'),item(',',','),item(_,'nnp'),item(_,'cd'),item('-',':')],

[list(2,_,'nnp'),item(['appleton','co'],'nnp')],[item(_,['vbd',',']),

item(_,['prp','dt']),item(_,['vbd','nnp']),list(2,_,_)]).

rule(acquisition, purchaser, 4, 0,

[item('march','nnp'),item(_,'cd'),item('-',':')],[list(2,_,'nnp'),

item(['corp','inc'],'nnp')],[item('said','vbd'),item('it','prp'),

item(['made','has'],_),item(['a','agreed'],_)]).

rule(acquisition, purchaser, 4, 0,

[item(['march','bid','3'],_),item(_,_),item(_,['(',':'])],[list(2,_,['pos','nnp']),

item(['grandview','holdings','hospitality'],'nnp'),item(['plc','inc'],'nnp')],
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[]).

rule(acquisition, purchaser, 3, 0,

[item(['13','said'],_),item(['-','that'],_)],[list(3,_,'nnp')],[item(_,'vbd'),

list(2,_,_),item(_,['dt','jj'])]).

rule(acquisition, purchaser, 3, 0,

[item(_,['to','nns']),item(_,_),item(['with','by'],'in')],[list(2,_,'nnp'),

item(['inc','corp'],'nnp')],[item(_,[',','vbd']),list(2,_,_),

list(2,['-','its','florida'],_),item(_,['nn','vbn'])]).

rule(acquisition, purchaser, 3, 0,

[item(_,['cc','to']),item(['s.','{'],_)],[list(2,_,['nnp','jjs']),

item(['rockwell','inc'],'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(_,['nn','cd']),item(_,['(',':'])],[item(_,_),item(['holdings','travellers'],_),

item(['ltd','corp'],'nnp')],[]).

rule(acquisition, purchaser, 4, 0,

[item(['-','24'],_),item(_,['(',':'])],[list(2,_,'nnp'),item(['corp','ltd'],'nnp')],

[item(_,[')','vbd']),item(_,['vbd','prp']),item(['it','has'],_),

item(['is','agreed'],_)]).

rule(acquisition, purchaser, 3, 0,

[item(['known','acquired'],'vbn'),item(['as','by'],'in')],[list(3,_,'nnp'),

item(['international','inc'],'nnp')],[]).

rule(acquisition, purchaser, 4, 0,

[item(_,['in','nn',':']),item(_,['nn',':','('])],[list(2,_,'nnp'),

item(['j.','american','pty'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, purchaser, 5, 0,

[item(_,['in','vbg','cd']),list(2,_,_),item(_,['nn','vbn','jj']),

item(['that','to','insurer'],_)],[list(3,_,'nnp'),item(_,_),

item(['inc','corp','n.v.'],'nnp')],[item(_,['in','('])]).

rule(acquisition, purchaser, 4, 0,

[item(['of','-'],_)],[item(_,'nnp'),item(_,_),item(_,'nnp'),item(_,_),

item(['kellogg','inc'],'nnp')],[item(_,'vbd')]).

rule(acquisition, purchaser, 3, 0,

[item(['stressed','27'],_),item(['that','-'],_)],[list(4,_,_)],

[item(_,['cc','vbd'])]).

rule(acquisition, purchaser, 5, 0,

[],[item(['bryson','siebel','prospect','kappa'],'nnp'),list(3,_,_),

item(['inc','plc'],_)],[]).

rule(acquisition, purchaser, 7, 0,

[item(['and','-','by','{'],_)],[item(['dudley','first','oregon','union'],'nnp'),

list(2,_,'nnp'),item(['taft','corp','mills','sa'],'nnp')],[list(3,_,_),

item(_,['vbn','jj','vbd'])]).

rule(acquisition, purchaser, 4, 0,

[item(['19','5'],_),item('-',':')],[item(_,'nnp'),list(2,_,['nnp',':']),

item(['co','lp'],'nnp')],[item(_,['vbd','nnp'])]).

rule(acquisition, purchaser, 4, 0,

[item(_,'cd'),item('-',':')],[item(_,'nnp'),item(_,'nnp'),item(_,'nnp')],

[item(['said',','],_),item(_,['in','dt']),item(_,['dt','nnp']),

list(2,_,'nn'),item(_,['in',','])]).

rule(acquisition, purchaser, 4, 0,

[item(['.','24','corp'],_),item(_,['endsent',':','pos'])],[item(_,'nnp'),

item(_,'nnp'),item(_,'nnp')],[item(['said','unit'],_),

item(['in','it','said'],_),item(_,['dt','vbz','prp'])]).

rule(acquisition, purchaser, 4, 0,

[item('investor','nn')],[item(_,'nnp'),item(_,'nnp')],

[item(_,['vbd',','])]).

rule(acquisition, purchaser, 3, 0,

[item(['-','with'],_),item('{','(')],[list(2,_,'nnp'),

item(['santander','plc'],_)],[]).

rule(acquisition, purchaser, 3, 0,

[item(_,['dt','nnp']),item(_,_),item(_,['(','endsent'])],[list(3,_,'nnp'),

item(['negara','inc'],'nnp')],[item(_,[')','vbd']),item(_,['vbd','prp'])]).

rule(acquisition, purchaser, 3, 0,

107



[item(_,['cd','nn']),item(_,[':','to'])],[item(_,'nnp'),item(_,'nnp'),

item(_,'nnp'),item('inc','nnp')],[item(_,['vbd','(']),list(2,_,_),

item(_,['rb',')'])]).

rule(acquisition, purchaser, 4, 0,

[item(['the','by','{'],_)],[item(_,'nnp'),item(['retrieval','industries',

'alden'],'nnp'),list(2,_,'nnp')],[item(_,['.','in',')'])]).

rule(acquisition, purchaser, 7, 0,

[item(_,['nn',':','('])],[item(_,'nnp'),list(2,['department','t.','stores',

'coal'],'nnp'),item(['sosnoff','co'],'nnp')],[item(_,['.','vbd',')'])]).

rule(acquisition, purchaser, 5, 0,

[list(2,_,_),list(2,_,_)],[item(_,'nnp'),list(2,_,'nnp'),

item(['management','partners'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(_,['to',':']),item('{','(')],[list(3,_,'nnp'),item(['ag','plc'],'nnp')],

[]).

rule(acquisition, purchaser, 3, 0,

[item(['-','company'],_)],[item(_,'nnp'),item(['pacific','finanziara'],'nnp'),

item(_,'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[],[item(['215','narragansett'],_),item(_,'nnp'),item(_,'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(['affiliate','9'],_),item(_,[',',':'])],[item(_,'nnp'),

item(['inc','co'],'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(['april','announced'],_),item(_,_),item(_,[':','('])],[list(2,_,'nnp'),

item(['sa','ltd'],'nnp')],[list(2,_,_),item(_,['dt','('])]).

rule(acquisition, purchaser, 4, 0,

[item(_,[':','(','to'])],[list(3,_,['nnps','nnp']),

item(['canada','products','usa'],'nnp'),item(_,'nnp')],

[item(_,[',',')','in'])]).

rule(acquisition, purchaser, 3, 0,

[item(['president','investor'],'nnp')],[item(_,'nnp'),item(_,'nnp')],

[item(_,['vbz','vbd']),item(['been','he'],_)]).

rule(acquisition, purchaser, 4, 0,

[],[item(['lone','nestle','malaysia'],'nnp'),list(2,_,_),

item(['inc','ltd','bank'],_)],[]).

rule(acquisition, purchaser, 3, 0,

[item(['developer','a'],_)],[item(_,'nnp'),item(['trump','corp'],'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(['2','13'],'cd'),item('-',':')],[item(_,'nnp'),list(3,_,_),

item(['co','barbara'],'nnp')],[item('said','vbd')]).

rule(acquisition, purchaser, 3, 0,

[],[item(['metropolitan','groupe'],'nnp'),item(_,'nnp'),item(_,'nnp'),

item(_,'nnp')],[]).

rule(acquisition, purchaser, 4, 0,

[],[item(['upland','ge','mcandrews'],'nnp'),list(3,_,_),

item(['corp','inc'],'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(['-','26'],_),item(_,['(',':'])],[list(2,_,'nnp'),item('inc','nnp')],

[item(_,['sym','vbd'])]).

rule(acquisition, purchaser, 3, 0,

[item(_,[':','vbn'])],[item(_,'nnp'),item(_,'nnp'),list(2,_,_),

item(['bank','investment'],'nnp'),item('corp','nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[],[item(['snyder','faraway'],'nnp'),item(_,'nnp'),item(_,'nnp'),item(_,'nnp')],

[]).

rule(acquisition, purchaser, 4, 0,

[item(_,[':',','])],[list(3,_,'nnp'),item(['bancorp','n.v.'],'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(['into','to'],_)],[item(_,'nnp'),item(_,'nnp'),item(['plc','inc'],'nnp')],

[]).

rule(acquisition, purchaser, 3, 0,
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[item(['11','times'],_),item(['-','that'],_)],[item(_,'nnp'),list(2,_,_),

item(['co','inc'],'nnp')],[item(['said','has'],_),list(2,_,_),item(_,['vbz','in'])]).

rule(acquisition, purchaser, 4, 0,

[item(_,[':','in'])],[list(2,_,'nnp'),item(['acquisition','group'],'nnp'),

item(['co','plc'],'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(_,['in','pos'])],[list(2,_,'nnp'),item(['industries','and'],_),

item(['inc','foods'],_)],[item(['{','subsidiary'],_)]).

rule(acquisition, purchaser, 4, 0,

[item(['30','18'],'cd'),item('-',':')],[item(_,'nnp'),

item(['financial','group'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[item(_,['nn','nnp']),item(_,_),item(_,_)],[item(_,'nnp'),item(['and','coal'],_),

item(_,_),list(2,_,_),item('ltd','nnp')],[]).rule(acquisition, purchaser, 3, 0,

[],[item(['pantera','gli'],'nnp'),item(_,['pos','nnp']),item(_,'nnp')],[]).

rule(acquisition, purchaser, 3, 0,

[],[item(_,'nnp'),item(['kgaa','health'],'nnp'),

list(2,['inc','of','affiliates'],_)],[item(_,_),item(_,_),item(_,['nnp','prp'])]).

rule(acquisition, purchaser, 3, 0,

[item(_,['vbn',':'])],[item(_,'nnp'),item(['industries','holdings'],'nnp'),

item(_,'nnp')],[item(_,['nnp','('])]).

rule(acquisition, purchaser, 4, 0,

[item(['29','agreement'],_),item(['-','with'],_)],[list(2,_,'nnp'),

item(['inc','co'],'nnp')],[item(_,['vbd','in'])]).

rule(acquisition, purchaser, 3, 0,

[item(_,['(',':'])],[item(['dart','vertex'],'nnp'),item(_,'nnp'),item(_,'nnp')],

[]).

rule(acquisition, purchaser, 3, 0,

[item(_,['cd','nnp']),item(_,_)],[list(2,_,'nnp'),item(['''s','partners'],_),

item(['inc','lp'],'nnp')],[]).

rule(acquisition, purchaser, 5, 0,

[item(['.','18'],_),item(_,['endsent',':'])],[item(_,'nnp'),

list(2,_,_),item(['corp','info'],'nnp')],[item([',','said'],_)]).

rule(acquisition, purchabr, 6, 0,

[item(_,['nnp','rb','nn']),item(_,['vbn','nn']),item(_,[':','.']),

item(_,['(','endsent'])],[list(2,_,'nnp')],[item(['}','expects','said'],_),

item(['signed','last','it'],_)]).

rule(acquisition, purchabr, 3, 0,

[],[item(['macandrews','community'],'nnp'),item(_,_),item(['forbes','system'],_)],

[]).

rule(acquisition, purchabr, 4, 0,

[],[item(['chase','esselte','gabelli'],'nnp')],[item(_,['nnp','nn'])]).

rule(acquisition, purchabr, 4, 0,

[item(['york','dlrs','endsent'],_),list(2,_,_),list(2,_,_),

item(['27','.','circumstances'],_),item(_,[':','endsent',','])],

[list(2,_,['rb','nnp'])],[item(['international',',','said'],_),

item(['holdings','a','he'],_)]).

rule(acquisition, purchabr, 4, 0,

[],[item(_,'nnp'),item(['food','-'],_),list(2,_,'nnp')],[item(['{','co'],_),

item(_,'nnp'),item(_,_),item(_,['vbz','prp']),item(_,_),item(_,_),item(_,'nnp')]).

rule(acquisition, purchabr, 12, 0,

[],[item(['packaging','sanwa','thermo','united','coca','rio','pantera','dudley',

'general'],'nnp'),item(['systems','bank','process','insurance','cola','tinto',

'''s','taft','acquisition'],_)],[]).

rule(acquisition, purchabr, 4, 0,

[],[item(['swiss','lvi','safeguard'],'nnp'),item(_,'nnp')],[item(_,_),

item(_,['nnp','vb'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['dt','endsent'])],[item(_,['nnp','nn']),list(3,_,['prp','nn',':']),

item(['taft','l'],'nnp')],[]).

rule(acquisition, purchabr, 3, 0,

[],[item(_,'nnp'),item(_,'nnp')],[item(_,['vbz','(']),item(['stake','ht'],_),
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item(_,_),item(_,['nnp','vbz'])]).

rule(acquisition, purchabr, 4, 0,

[],[item(['bryson','dart','teck'],'nnp')],[item(['said','corp'],_)]).

rule(acquisition, purchabr, 6, 0,

[item(_,['jj','in']),list(2,_,_),item(_,_),item(_,_),item(_,['in','nnp']),

item(_,_),item(_,[',','prp$'])],[item(_,'nnp')],[item(['said','furniture'],_),

item(_,['.','nnp']),list(2,_,_),item(_,['nnp','vbd'])]).

rule(acquisition, purchabr, 6, 0,

[list(2,_,_)],[item(['radiation','dixons','hearst','lsb'],'nnp')],[]).

rule(acquisition, purchabr, 4, 0,

[item(_,[':','cd']),item(_,['(',':'])],[item(_,'nnp')],

[item(['america','ltd'],'nnp')]).

rule(acquisition, purchabr, 3, 0,

[],[item(_,'nnp'),item(_,'nnp')],[item('co','nnp'),item(_,['(','vbd']),

item(_,'nnp'),item(_,_),item(_,['to','nnp'])]).

rule(acquisition, purchabr, 5, 0,

[item(_,['in','nnp']),item(_,_),item(['york','march'],'nnp'),item(_,_),

item(['saul','-'],_)],[item(_,'nnp')],[item(['told','group'],_),

item(_,_),list(2,_,_),item(_,_),item(_,['nnp','cd'])]).

rule(acquisition, purchabr, 3, 0,

[item(['china','agreement'],_),item(_,['vbz',','])],[list(2,_,['nnps','nnp'])],

[item(['buys','will'],_)]).

rule(acquisition, purchabr, 4, 0,

[],[item(['metropolitan','henley','cross'],'nnp')],[item(_,['(','nn','vbd'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['(',':'])],[item(_,'nnp'),item(['montauk','''s'],_),

item(_,['nns','nnp'])],[item(_,[')','nnp'])]).

rule(acquisition, purchabr, 3, 0,

[item(['13','-'],_),item(['-','{'],_)],[list(2,['''s','cellular','scott'],_),

item(_,'nnp')],[item('inc','nnp')]).

rule(acquisition, purchabr, 5, 0,

[item(_,['nn','in','dt'])],[item(['twa','sosnoff','searle','coke'],_)],

[item(['action','''s','held','.'],_)]).

rule(acquisition, purchabr, 5, 0,

[],[item(['ufurf','snyder','conagra','c.o.m.b.'],_)],[]).

rule(acquisition, purchabr, 4, 0,

[item(_,['cd','nn']),item(['-','of'],_)],[list(2,_,'nnp')],

[item(['corp','''s'],_),item(_,_),item(['.','darta.o','in'],_)]).

rule(acquisition, purchabr, 4, 0,

[item(['2','january','-'],_),item(_,[':',',','('])],[item(_,'nnp')],

[item(['said','reported','oil'],_)]).

rule(acquisition, purchabr, 4, 0,

[item(['june','exchange'],'nnp'),item(['1','commission'],_),item(_,[':',','])],

[list(3,_,[':','nnp'])],[item(['corp',','],_)]).

rule(acquisition, purchabr, 4, 0,

[item(['ohio','n.h.',','],_),item(_,_),item(['june','march',','],_),

item(_,['cd','cc']),item(_,[':','prp$'])],[list(2,_,'nnp'),item(_,'nnp')],

[item(['corp','bank'],'nnp')]).

rule(acquisition, purchabr, 8, 0,

[],[item(['neoax','clabir','3m','contel','narragansett','amsouth'],_)],[]).

rule(acquisition, purchabr, 5, 0,

[item(_,[',','dt','endsent','in'])],

[list(2,['to','roth','j.p.','-','singapore','stars'],_),

item(['american','industries','government','go'],_)],[item(['has','said','inc'],_)]).

rule(acquisition, purchabr, 3, 0,

[item(['chicago','march'],'nnp'),item(['corp','18'],_),item(_,['pos',':'])],

[item(_,'nnp'),item(_,'nnp')],[item(['bank','corp'],'nnp'),

item(_,['nn','vbd'])]).

rule(acquisition, purchabr, 4, 0,

[item(_,['to','jj']),item(_,['vb','.']),item(_,['in','endsent'])],

[item(_,'nnp')],[item(_,['in','cc'])]).

rule(acquisition, purchabr, 3, 0,
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[item(_,['.',':']),item(['endsent','two'],_)],[list(2,_,'nnp')],

[item(['''s','stock'],_),item(_,'nn'),item(_,['nn',','])]).

rule(acquisition, purchabr, 7, 0,

[item(['agreement','19','investor'],_),item(['for','-','mulls'],_)],[item(_,'nnp')],

[item(_,_),list(2,['acquire','lp','kpa','energies'],_),item(_,['dt',')','vbd']),

item(_,['cd','prp',':'])]).

rule(acquisition, purchabr, 4, 0,

[item(['''','25','bnp'],_),item(_,['prp',':','in'])],[list(2,_,['nn','pos','nnp'])],

[item(['enterprises','corp','bid'],_)]).

rule(acquisition, purchabr, 7, 0,

[item(_,['nn','in','rb']),item(_,_),item(['"','two','.'],_),

item(_,['dt','jj','endsent'])],[list(3,_,['cc','nnp'])],

[item(['group','shares','said'],_),item(['told','.','it'],_),

item(_,['dt','endsent','vbd']),list(2,_,_),item(_,['.','dt','in'])]).

rule(acquisition, purchabr, 3, 0,

[item(['louis','april'],'nnp'),item(['-','17'],_),item(['based','-'],_)],

[item(_,'nnp'),item(_,['nnps','nnp'])],[]).

rule(acquisition, purchabr, 3, 0,

[],[item(_,'nnp'),item(_,_),item(['forbes','barbara'],'nnp')],[]).

rule(acquisition, purchabr, 3, 0,

[item(['of','26'],_),item(_,['dt',':'])],[item(_,'nnp')],

[item(['group','international'],'nnp'),item(_,['in','nnp'])]).

rule(acquisition, purchabr, 3, 0,

[],[item(['trus','metropolitan'],'nnp'),list(2,_,'nnp')],[item(['inc','{'],_),

item(_,['(','nnp'])]).

rule(acquisition, purchabr, 3, 0,

[item(['30','to'],_),item(_,[':','dt'])],[item(_,'nnp')],[item(['bank','facility'],_)]).

rule(acquisition, purchabr, 4, 0,

[item(_,['endsent','vbd']),list(2,_,_),list(2,_,_),list(2,_,_),item(['-','by'],_)],

[item(_,'nnp')],[item(['mining','.'],_),item(['co','endsent'],_)]).

rule(acquisition, purchabr, 5, 0,

[item(['issued','5'],_),item(['by','-'],_)],[list(3,_,[':','nnp'])],

[item(['.','corp'],_)]).

rule(acquisition, purchabr, 4, 0,

[item(['is','amount','april'],_),item(['subject','.','1'],_),item(_,_)],

[list(2,_,['nnps','nnp'])],[item(['''s','said','and'],_),

item(['ability','the','chemicals'],_)]).

rule(acquisition, purchabr, 5, 0,

[item(_,['nnp',':']),item(['w','said','{'],_)],[item(_,'nnp')],

[item(['inc','is','ltd'],_)]).

rule(acquisition, purchabr, 3, 0,

[item(_,'nn'),item(_,['to',','])],[item(_,'nnp')],[item(['corp','said'],_),

item(['for','it'],_)]).

rule(acquisition, purchabr, 3, 0,

[item(_,['.','cd']),item('-',':'),item(_,['vbn','('])],[list(2,_,'nnp')],

[item(['said','group'],['vbd','nnp'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['in','nn']),item(_,['nn','in']),item(['of','some'],_)],[item(_,'nnp')],

[item(['''s','coffee'],_),list(2,_,_),item(_,_),item(_,['vbp','nnp'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['nn','endsent']),item(['.','dna'],_),item(['endsent','said'],_)],

[list(2,_,'nnp')],[item(_,['pos','md']),item(_,['cd','vb'])]).

rule(acquisition, purchabr, 5, 0,

[],[item(['alza','usair','deak'],'nnp')],[item(['corp','''s','said'],_),

list(2,_,_),item(_,['nnp','vb','endsent'])]).

rule(acquisition, purchabr, 3, 0,

[item(['but','{'],_)],[item(_,'nnp')],[item(['said','industries'],_),

item(_,_),item(_,_),item(_,['nnp','vbd'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['in',':'])],[list(2,_,'nnp'),item(['mortgage','capital'],'nnp')],

[list(2,_,_),item(_,_),item(_,['jj','vbd'])]).

rule(acquisition, purchabr, 3, 0,
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[item(_,['in','('])],[list(2,_,'nnp'),item(['microwave','capital'],'nnp')],

[item(_,_),item([',','l.p.'],_)]).

rule(acquisition, purchabr, 5, 0,

[item(['june','shares','.'],_),item(_,_),item(_,['endsent',':'])],[item(_,'nnp')],

[item(['inc','said','also'],_),item(_,_),item(_,['nns','prp'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['nnp','cd']),item(_,[')',':']),item(['as','{'],_)],[item(_,'nnp')],

[item(_,'nnp'),item(['ltd','}'],_),item(_,['(','vbd'])]).

rule(acquisition, purchabr, 4, 0,

[item(_,['jj','nn']),list(2,_,_),item(_,_),item(['by','endsent'],_)],[item(_,'nnp')],

[item(['.','said'],_),item(_,['endsent','dt']),item(['the','acquisition'],_)]).

rule(acquisition, purchabr, 6, 0,

[item(_,['vbn','nn']),item(['by','-'],_)],[list(2,_,'nnp')],[item(['.','corp'],_),

item(_,['endsent','vbd']),item(_,_),item(_,_),item(_,_)]).

rule(acquisition, purchabr, 3, 0,

[item(_,['cd','nns']),item(_,['nn','.']),item(['of','endsent'],_)],[item(_,'nnp')],

[item(['for','said'],_),item(_,['dt','nn']),item(['hughes','of'],_)]).

rule(acquisition, purchabr, 4, 0,

[],[item(['monier','allwaste','grandview'],'nnp')],[]).

rule(acquisition, purchabr, 4, 0,

[],[item(['furniture','chrysler','emery'],'nnp')],[]).

rule(acquisition, purchabr, 3, 0,

[item(_,'nnp'),item(['to','with'],_)],[item(_,'nnp')],[item(_,['(','endsent'])]).

rule(acquisition, purchabr, 4, 0,

[item(['commission','19'],_),item(_,[',',':'])],[item(_,'nnp')],

[item(['said','corp'],_),item(_,['prp$','vbd']),item(_,['nn','prp'])]).

rule(acquisition, purchabr, 4, 0,

[],[item(['merrill','unicorp','globe'],'nnp'),list(2,_,'nnp')],

[item(['{','was','manufacturing'],_)]).

rule(acquisition, purchabr, 6, 0,

[item(_,['nnp','vbn']),item(_,_),item(_,['nnp','prp']),item(_,['cd','.']),

item(_,[':','endsent'])],[item(_,'nnp')],[item(['co','''s'],_),

list(2,_,_),item(_,['prp','vbd'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['dt','vbd']),item(['acquisition','that'],_)],[item(_,'nnp')],

[item(_,['pos','cc'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['(','nn']),list(2,_,_),item(['unit','-'],_),item(_,_)],[item(_,'nnp')],

[item(['holdings','benefitting'],_),item(_,['nnp','in'])]).

rule(acquisition, purchabr, 3, 0,

[item(['electric','exchange'],'nnp'),item(['co','commission'],'nnp'),

item(_,['pos',','])],[list(2,_,'nnp')],[item(['corp','said'],_),

item(_,['vbd','prp']),list(2,_,_),item(_,_),item(_,['to','dt'])]).

rule(acquisition, purchabr, 3, 0,

[item(['30','2'],'cd'),item('-',':')],[item(_,'nnp')],[item(_,'nnp'),

item(['corp',','],_)]).

rule(acquisition, purchabr, 3, 0,

[item(['-','on'],_)],[list(2,_,'nnp')],[item(['bancshares','offer'],_)]).

rule(acquisition, purchabr, 3, 0,

[item(_,[':','endsent'])],[item(_,'nnp')],[item(['capital','publishes'],_)]).

rule(acquisition, purchabr, 3, 0,

[item(['endsent','june'],_),item(_,['nnp','cd']),item(_,['vbd',':'])],

[item(_,'nnp')],[item(['''s','department'],_)]).

rule(acquisition, purchabr, 5, 0,

[item('endsent','endsent')],[item(_,'nnp')],[item(['already','also'],'rb'),

item(['holds','reported'],_)]).

rule(acquisition, purchabr, 3, 0,

[item(['-','than'],_)],[item(_,'nnp')],[item(['financial','that'],_)]).

rule(acquisition, purchabr, 3, 0,

[],[item(['american','first'],_),item(_,['nns','nnp'])],[item(_,['vbg','.'])]).

rule(acquisition, purchabr, 3, 0,

[],[item(['union','jannock'],'nnp'),item(_,'nnp')],[item(_,'nnp')]).
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rule(acquisition, purchabr, 3, 0,

[item(_,['in','vbd']),item(_,_),item(_,['cd','endsent'])],[list(2,_,'nnp')],

[item(['said','staff'],_),item(['it','will'],_)]).

rule(acquisition, purchabr, 3, 0,

[item(_,['rb','nnp']),item(_,['in','nnp']),item(_,_),item(_,_),item(_,['nns','cd']),

item(_,[',',':'])],[item(_,'nnp')],[item(['''s','ltd'],_),item(_,_),list(2,_,_),

item(['taft','said'],_)]).

rule(acquisition, purchabr, 3, 0,

[list(2,_,_)],[item(['fleet','norstar'],'nnp')],[item(_,['nn','nnp']),

item(_,['nnp','vbd'])]).

rule(acquisition, purchabr, 3, 0,

[item(_,['nnp','nn']),list(2,[',','has','association'],_),item(['succeeded','by'],_)],

[list(2,_,'nnp')],[item(_,['in',','])]).

rule(acquisition, dlramt, 5, 0,

[item(_,['nn',')']),list(2,_,_),item(['estimated','for'],_)],[item(_,'cd'),

item('mln','jj'),item(_,['nn','nns'])],[item(_,['nn','.']),

item(_,_),item(_,['endsent','dt'])]).

rule(acquisition, dlramt, 8, 0,

[item(_,['vb','nnp']),item(['for','bids'],_)],[list(2,_,['jj','cd']),

item(_,['nnp','jj']),item(['stg','dlrs'],_)],[item(_,_),item(_,_),item(_,_),

item(_,['nn','nnp'])]).

rule(acquisition, dlramt, 7, 0,

[item(['9','valued','stock'],_),item(['at','for'],'in')],[list(2,_,[',','cd']),

item(['mln','691'],_),item('dlrs','nns')],[]).

rule(acquisition, dlramt, 10, 0,

[item(_,['nn','nnp']),item(_,_),item(_,_),item(_,['nn','nnp']),list(2,_,_),

item(_,['dt','in'])],[item('undisclosed','jj')],[item(['sum','terms'],_)]).

rule(acquisition, dlramt, 6, 0,

[item(_,'nnp'),item(['rejects','for'],_)],[item(_,'cd'),item('mln',_),

item(['stg','dlrs'],_)],[item(_,['nn',','])]).

rule(acquisition, dlramt, 8, 0,

[item(_,_),item(_,['nnp','endsent']),item(_,_),item(_,_)],[item('undisclosed','jj')],

[item(['terms','.'],_),item(_,_),item(_,['endsent','prp'])]).

rule(acquisition, dlramt, 9, 0,

[item(_,'dt'),item(_,_),item(['of','were'],_)],[item(['not','10.5'],_),

list(2,['dlrs','disclosed','mln'],_)],[item('.','.')]).

rule(acquisition, dlramt, 3, 0,

[],[item(['94.8','82'],'cd'),item('mln','jj'),item(_,_)],[]).

rule(acquisition, dlramt, 8, 0,

[item(_,['nnp',')']),item(_,[',','in']),item(['for','an'],_)],

[item('undisclosed','jj')],[]).

rule(acquisition, dlramt, 3, 0,

[],[item(['1.62','538'],'cd'),item(_,_),item('dlr','nn')],[]).

rule(acquisition, dlramt, 3, 0,

[item(_,'in'),item(_,['in','vbg'])],[item(['one','100'],'cd'),

item(_,_),item(['stg','dlrs'],_)],[item(['.','in'],_)]).

rule(acquisition, dlramt, 5, 0,

[],[item(_,'cd'),item(['billion','mln'],'nnp'),item('dlrs','nns')],[]).

rule(acquisition, dlramt, 8, 0,

[item(_,['nn','nnp']),item(['were','an'],_)],[item(['not','undisclosed'],_),

list(2,['price','disclosed','purchase'],_)],[item(_,['.','in'])]).

rule(acquisition, acquired, 3, 0,

[item(['16','schedule'],_),item(_,[':','in'])],[list(3,_,'nnp')],

[item(['said','merger'],_)]).

rule(acquisition, acquired, 3, 0,

[item(_,['to','vb']),item(['purchase','its'],_)],[item(_,'nnp'),item(_,'nnp')],

[item(_,[',','nn'])]).

rule(acquisition, acquired, 4, 0,

[item(['of','its'],_)],[list(2,_,'nnp'),item(['airlines','inc','operations'],_)],

[item(['for','to'],_)]).

rule(acquisition, acquired, 5, 0,

[item(_,['in','('])],[list(2,['plastics','cenergy','western'],_),
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item('corp','nnp')],[]).

rule(acquisition, acquired, 4, 0,

[item(['the','its'],_)],[list(2,_,_),item(['magnetics','division'],_)],

[item(_,['nn','to'])]).

rule(acquisition, acquired, 5, 0,

[],[item(['integrated','foote','sunrise','com'],'nnp'),list(3,_,_),

item(['branch','co','inc'],_)],[]).

rule(acquisition, acquired, 5, 0,

[item(['in','its'],_)],[item(_,'nnp'),item(['enterprises','corp'],_)],[]).

rule(acquisition, acquired, 4, 0,

[],[item(['consolidated','group','micro'],_),list(2,_,_),

item(['international','mineral','ii'],_),item(_,_)],[]).

rule(acquisition, acquired, 3, 0,

[item(['may','acquisition'],_),item(['support','of'],_)],[list(2,_,['nn','nnp','cd']),

item(['corp','centers'],_)],[]).

rule(acquisition, acquired, 4, 0,

[item(_,['jj',',','dt']),item(_,_),item(['in','buy','of'],_)],

[item(['johnson','first','ranks'],'nnp'),item(_,'nnp'),list(2,_,_)],

[item(_,['(','.','in'])]).

rule(acquisition, acquired, 8, 0,

[item(['in','acquired','purchase'],_)],[list(4,_,['vbg','nn','dt','nnp']),

item(['financial','plant','corp'],_)],[item(_,['to','in',','])]).

rule(acquisition, acquired, 3, 0,

[item(_,['in','nnp']),list(2,['-','{','4'],_)],[item(['usair','pioneer'],'nnp'),

list(2,_,'nnp'),item(['inc','ltd'],'nnp')],[]).

rule(acquisition, acquired, 4, 0,

[item(['in','bid'],_),item(_,['(','in'])],[list(3,_,'nnp'),

item(['corp','inc'],'nnp')],[item(_,[')',','])]).

rule(acquisition, acquired, 5, 0,

[],[item(['salt','south','coffee','d'],_),list(3,_,_),

item(['division','advocate','plant','corp'],_)],[]).

rule(acquisition, acquired, 3, 0,

[item(_,['prp$','in'])],[list(3,_,'nnp'),item(['creek','division'],'nnp')],

[item(_,['to','nn'])]).

rule(acquisition, acquired, 8, 0,

[],[item(['cyclops','hillards','datron'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acquired, 4, 0,

[item(_,['nns','nnp','prp']),item(['of','and','told'],_)],[list(2,_,'nnp'),

item(['corp','africa'],'nnp')],[item([',','said','{'],_),

list(2,_,_),item(_,['nn','vbd',')'])]).

rule(acquisition, acquired, 3, 0,

[item(['of','{'],_)],[item(['cenergy','protein'],'nnp'),list(2,_,'nnp')],

[item(_,['.',')'])]).

rule(acquisition, acquired, 4, 0,

[item(_,['in','nnp']),item(_,['dt',')'])],[list(2,_,'nnp'),item(_,'nnp'),

item('division','nnp')],[]).

rule(acquisition, acquired, 5, 0,

[item(['buy','with','in'],_)],[item(_,'nnp'),list(2,_,_),

item(['restaurants','sa','inc.'],'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[item(_,['.','in']),item(_,['endsent','('])],[list(3,_,'nnp'),

item(['corp','services'],_)],[item(_,['vbz',')']),item(_,['nn',','])]).

rule(acquisition, acquired, 3, 0,

[item(_,['(','prp'])],[item(_,'nnp'),item(_,_),item(['bank','melrose'],'nnp'),

list(2,['dickson','bhd',','],_)],[item(_,[')','cc'])]).

rule(acquisition, acquired, 3, 0,

[item('of','in')],[list(2,_,'nnp'),item(['acquiring','services'],_),

item(_,'nnp')],[]).

rule(acquisition, acquired, 5, 0,

[],[item(_,'nnp'),item(['fairview','cable','lewis','baltic'],'nnp'),

list(2,_,['nnps','nn','nnp'])],[item(_,[')','in'])]).

rule(acquisition, acquired, 15, 0,

114



[item(_,['vb','in','nn']),item(['the','its','in'],_)],[item(_,['jj','nnp']),

list(2,_,_),item(['project','portfolio','inc'],_)],[]).

rule(acquisition, acquired, 3, 0,

[item(_,['nn','in']),item(['of','its'],_)],[list(2,_,_),item(['fund','division'],_)],

[item(_,[',','to']),item(_,['"','dt'])]).

rule(acquisition, acquired, 4, 0,

[item(['stake','merge'],_),item(_,'in')],[list(2,_,'nnp'),item('corp','nnp')],

[item(['to','was'],_)]).

rule(acquisition, acquired, 3, 0,

[item(_,['nn','vbz']),item(_,_),item(_,[',','dt'])],[list(2,_,'nnp'),

item(['chronicle','co'],'nnp')],[item([',','from'],_)]).

rule(acquisition, acquired, 3, 0,

[item(_,['(','in'])],[item(_,'nnp'),list(2,_,_),

item(['services','investmento'],'nnp'),item(['inc','sarl'],'nnp')],[]).

rule(acquisition, acquired, 5, 0,

[item(_,['cc','vb'])],[item(_,['nnp','cd']),item(_,_),

item(['inc','hospitals'],_)],[item(_,['in','to'])]).

rule(acquisition, acquired, 4, 0,

[item(['stake','of','affiliate'],_),item(_,['(','in'])],[item(_,'nnp'),

list(2,_,_),item(_,['nnp','vbg']),item(['ltd','n.v.','ag'],'nnp')],

[item(_,_),list(2,_,_),item(_,_),item(_,[',',':'])]).

rule(acquisition, acquired, 3, 0,

[item(_,'nn'),item(_,['vbn','in'])],[list(2,_,'nnp'),

item(['bancorp','technology'],'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[item(_,[',','vbg']),item(_,['nnp','nn']),item(_,['cd','.']),item(_,_)],

[list(2,_,'nnp')],[item(['{','said'],_),item(['ncro.l','the'],_),item(_,[')','nn']),

list(2,_,_),item(_,'nn')]).

rule(acquisition, acquired, 4, 0,

[list(2,['to','of','acquire','-'],_)],[item(_,'nnp'),

item(['inn','hudson','semiconductor'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acquired, 4, 0,

[item(['394','of','the'],_)],[item(['piedmont','bankamerica','antonson'],'nnp'),

item(_,'nnp'),item(_,'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[item(_,['nn','in']),item(_,[',','vbg'])],[list(2,_,['jj','nnp']),

item(_,_),item(['international','inc'],'nnp')],[item(_,[',','(']),

item(['and','wen'],_)]).

rule(acquisition, acquired, 4, 0,

[],[item(['moore','dome','u.s.'],'nnp'),list(3,_,['cc','nn','nnp']),

item(['inc','ltd','parts'],_)],[item(_,['(','nnp','nn'])]).

rule(acquisition, acquired, 4, 0,

[],[item(['retail','scandinavia','industrial'],_),list(3,_,_),

item(['inc','division'],_)],[]).

rule(acquisition, acquired, 3, 0,

[],[item(['conrac','monier'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[item(_,['nns','in']),item(_,['in','('])],[list(2,_,'nnp'),

item(['holding','industries'],'nnp'),item(['corp','inc'],'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[],[item(_,'nnp'),item(_,'nnp'),item(_,_),list(2,_,_),

item(['association','chimie'],'nnp')],[item(_,['(','to'])]).

rule(acquisition, acquired, 3, 0,

[],[item(_,_),item(['corp','corn'],_),list(2,_,_),item(['america','business'],_)],

[]).

rule(acquisition, acquired, 3, 0,

[item(_,[')','('])],[list(3,_,['nn','nnp']),item(['business','inc'],_)],

[item(_,['.',')']),item(_,_),item(_,['nns','vbd']),list(2,_,_),item(_,['dt','nnp'])]).

rule(acquisition, acquired, 3, 0,

[],[item(['state','national'],_),list(2,['of','television','bank'],_),

item(_,['nn','nnp']),item(_,'nnp')],[item(',',','),list(2,_,_),

item(_,['nn','('])]).

115



rule(acquisition, acquired, 3, 0,

[],[item(['interlake','central'],'nnp'),item(_,'nnp'),

list(3,['buckhannon','of','co','bank'],_)],[item(_,['cc',','])]).

rule(acquisition, acquired, 4, 0,

[item(_,['in','('])],[item(_,'nnp'),item(['bankshares','savings','pantries'],_),

item(_,'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[item(_,['vbg','vb'])],[item(_,_),item(['television','industries'],['nn','nnp']),

item(_,['nn','nnp'])],[]).

rule(acquisition, acquired, 3, 0,

[],[item(_,['dt','nnp']),item(_,['nn','nnp']),item(_,['in','nnp']),

list(2,_,_),item(['township','association'],'nnp')],[item(_,'in')]).

rule(acquisition, acquired, 3, 0,

[item(_,['prp$','vb'])],[list(3,_,'nnp'),item(['abex','co'],'nnp')],

[item(_,[',','in'])]).

rule(acquisition, acquired, 3, 0,

[item(['9','share'],_),item(_,[':','in'])],[list(2,_,'nnp'),

item(['industries','products'],'nnp'),item(['inc.','inc'],'nnp')],[]).

rule(acquisition, acquired, 6, 0,

[item(_,['vb','vbn']),item(_,['(','to'])],[item(_,'nnp'),item(_,_),item(_,'nnp'),

item(['co','inc'],'nnp')],[item(_,[')','cc'])]).

rule(acquisition, acquired, 3, 0,

[],[item(['rb','allegheny'],'nnp'),item(_,'nnp'),item(['inc','co'],'nnp')],

[list(2,_,_),item(_,['in','nn'])]).

rule(acquisition, acquired, 4, 0,

[item(['in','producer'],_)],[list(2,_,'nnp'),item(['inc.','ltd'],'nnp')],[]).

rule(acquisition, acquired, 4, 0,

[],[item(['dey','first','merchants'],'nnp'),list(6,_,_),

item(['stores','hohenwald','park'],'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[item(_,['prp$',':'])],[list(2,_,'nnp'),item(['world','equipment'],'nnp'),

item(['inc','co'],'nnp')],[]).

rule(acquisition, acquired, 4, 0,

[item(['acquire','unit'],_),item(_,['(','vbz'])],[item(_,'nnp'),

list(2,_,_),item(['tv','inc'],_)],[item(_,[')','nn'])]).

rule(acquisition, acquired, 3, 0,

[list(2,_,_),list(2,_,_),item(['of','''s'],_)],[item(_,'nnp'),

item(['financial','manufacturing'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acquired, 4, 0,

[item(_,['in','jj'])],[list(3,_,'nnp'),item(['inc','inc.'],'nnp')],

[item(['gulf','common'],_)]).

rule(acquisition, acquired, 3, 0,

[item(_,['(',','])],[list(2,_,'nnp'),item(['lamborghini','systems'],'nnp'),

item(_,'nnp')],[item(_,[')',','])]).

rule(acquisition, acquired, 3, 0,

[item(_,['cd','nn']),item(_,[':','in'])],[list(3,['southern','fe','hughes',

'santa'],'nnp'),item(_,'nnp'),item(['co','corp'],'nnp')],

[item(['rose',','],_),item(_,['cd','dt']),item(_,['to','nn'])]).

rule(acquisition, acquired, 7, 0,

[item('shares','nns'),item('of','in')],[item(_,'nnp'),

list(2,_,_),item('inc','nnp')],[]).

rule(acquisition, acquired, 3, 0,

[],[item(['revlon','trilogy'],'nnp'),item(_,'nnp'),item(_,'nnp')],[]).

rule(acquisition, acquired, 3, 0,

[],[item(['taft','kresge'],'nnp'),item(_,['nnp','nn']),item(_,['nnp','nns'])],

[]).

rule(acquisition, acquired, 3, 0,

[item(_,['nn','in']),item(['in','two'],_)],[item(_,'nnp'),item(_,'nnp'),

item(['corp','blocks'],_)],[]).

rule(acquisition, acquired, 3, 0,

[],[item(['westfiar','imperial'],'nnp'),list(2,_,'nnp'),

item(['corp','association'],'nnp')],[]).
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rule(acquisition, acquired, 3, 0,

[item(_,['vbd','in']),list(2,_,_)],[item(_,'nnp'),list(2,_,'nnp'),

item(['physik','property'],'nnp')],[]).

rule(acquisition, acqloc, 3, 0,

[item(['firm','}'],_),item(['based',','],_),item(['in','a'],_)],

[list(3,_,[',','nnp'])],[item(_,['.',':']),item(_,['endsent','vbn'])]).

rule(acquisition, acqloc, 3, 0,

[],[item(_,'nnp'),list(2,_,[',','cc','nnp']),

item(['washington','california'],'nnp')],[]).

rule(acquisition, acqloc, 3, 0,

[item([',','co'],_),item(['based','}'],_),item(_,'in')],[item(_,'nnp'),

item(',',','),list(2,_,['.','nnp'])],[item(_,['.',',']),

list(2,_,_),item(_,['vbd','jj']),list(2,_,_),item(_,['in','vbg'])]).

rule(acquisition, acqloc, 5, 0,

[item(_,['nn','in']),list(2,_,_),item(['in','of'],'in')],[item(_,'nnp'),

item(',',','),list(5,_,_)],[item(_,['cc',',']),item(['the','and'],_),list(2,_,_)]).

rule(acquisition, acqloc, 3, 0,

[item(_,['nn','nns']),item('in','in')],[item(_,'nnp'),item(',',','),item(_,'nnp')],

[item(',',','),item(_,['cc','in'])]).

rule(acquisition, acqloc, 4, 0,

[item(['based','tampa','l.'],_),item(_,_)],[list(2,_,_),

item(['n.j.','petersburg','ontario'],'nnp')],[]).

rule(acquisition, acqloc, 5, 0,

[item(['the','a','in','an'],_)],[list(3,_,['nnp',',','rb']),

item(['pacific','diego','germany','n.y.'],'nnp')],[item(_,['to','nn',',','vbg'])]).

rule(acquisition, acqloc, 8, 0,

[item(_,['in','prp$'])],[item(['italian','french','canada','michigan'],_)],[]).

rule(acquisition, acqloc, 4, 0,

[item(['extensive','a','the'],_)],[list(3,_,['cc',',','jj','nnp']),

item(['.','canadian','seattle'],_)],[item(_,['nn',':','nns'])]).

rule(acquisition, acqloc, 3, 0,

[item(_,['.',',']),item(_,_),item(['western','in'],['nnp','in'])],

[list(3,_,['.','nnp'])],[item(['is',','],_),list(2,['gas','and','a'],_),

item(_,['vbz','nn'])]).

rule(acquisition, acqloc, 4, 0,

[item(_,['vb','in',','])],[item(['cleveland','london','brazil'],'nnp')],

[item(_,['nn',','])]).

rule(acquisition, acqloc, 3, 0,

[item(_,['dt','prp$'])],[item(_,_),item(['angeles','german'],_)],[item(_,[':','nn'])]).

rule(acquisition, acqloc, 3, 0,

[item(_,['in','jj'])],[list(2,_,[',','nnp']),item(['jersery','n.y.'],'nnp')],[]).

rule(acquisition, acqloc, 3, 0,

[item('in','in')],[list(2,_,[',','nnp']),item(['kong','ohio'],'nnp')],[]).

rule(acquisition, acqloc, 3, 0,

[item(_,'nn'),item(_,['to','nns']),item(_,_),item(_,['vbg','jj'])],[item(_,'nnp')],

[item(_,['nns','cc']),item(_,_),list(2,_,_),item(_,['vbn','vbd'])]).

rule(acquisition, acqloc, 3, 0,

[item(_,['to','in']),list(2,['endsent','central','printer'],_)],

[item(['kansas','toronto'],'nnp')],[item(['utility',','],_)]).

rule(acquisition, acqloc, 3, 0,

[item(['in','of'],'in')],[item(['w.','new'],'nnp'),item(_,'nnp')],[item(_,_),

item(_,['endsent','nnp'])]).

rule(acquisition, acqloc, 3, 0,

[],[item(['south','monterey'],_),list(3,['calif',',','east','park'],_),

item(_,['nnp','.'])],[item(_,_),item(_,['vbp','endsent'])]).

rule(acquisition, acqcode, 4, 0,

[item(['piedmont','petroleum','hughes'],'nnp'),list(2,_,'nnp'),item('{','(')],

[item(['pie','dmp','ht'],'nnp')],[item('}',')'),list(1,_,_),item(_,['in','endsent']),

list(2,_,_),item(_,['nn',','])]).

rule(acquisition, acqcode, 23, 1,

[item(_,['jjr','('])],[item(_,'nnp')],[item(_,['jj',')']),

item(['holdings','shares','stake','founder'],_)]).
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rule(acquisition, acqcode, 4, 0,

[item(_,_),list(2,_,'nnp'),item(_,'nnp'),item('{','(')],

[item(['dmp.mo','gy','tfb'],'nnp')],[]).

rule(acquisition, acqcode, 52, 2,

[],[item(['bko','amdc','fen','rtb','eye','cax','gnva','tc','caw','unicoa','aix','rni',

'csbk','dca','mnra.s','ncro.l','trmw','crtr.o','kwp','pvdc','atpi','cds','rev','symb',

'cyl','hay','mtx','fin','dnam','clev','gaf','pza','wen','biod','valt','rpch','efh',

'icgs.l','prsl','inet','flt','fcsi'],'nnp')],[]).

rule(acquisition, acqcode, 12, 0,

[item(_,['(','to'])],[item(['pepi.o','pnp','rhml.l','gsti','ag','blas.o','sgl','npt',

'fte','datr','efac'],'nnp')],[]).

rule(acquisition, acqcode, 13, 0,

[item(_,'nnp'),list(2,_,_),item(_,'nnp'),item('{','(')],[item(_,'nnp')],

[item('}',')'),item(['stake','call'],_)]).

rule(acquisition, acqcode, 3, 0,

[],[item(['enzn','u'],'nnp')],[item('}',')'),item(_,_),item(_,['nnp','dt']),

item(_,[',','nnp'])]).

rule(acquisition, acqcode, 7, 0,

[item(_,['nns','nnp']),item('{','(')],[item(_,'nnp')],[item('}',')'),

item(['stake','endsent'],_),item(['for','washington'],_)]).

rule(acquisition, acqcode, 3, 0,

[item(['fund','metrobanc'],'nnp'),item('{','(')],[item(_,'nnp')],

[item('}',')')]).

rule(acquisition, acqbus, 4, 0,

[item(_,['in','vbz','nnp'])],[item(_,'nn'),list(2,_,_),item(_,'nn'),

item(['systems','development'],_)],[]).

rule(acquisition, acqbus, 4, 0,

[],[item(_,['nn','jj']),item(_,'nn'),item(['rental','centers','equipment'],_)],

[]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nnp','rb']),list(2,_,_),item(['wholesales','the'],_)],

[list(2,['and','nicotine','parts'],_),item(_,['nn','nns'])],

[item(['to','market'],_),list(2,_,_),item(_,['jj','prp'])]).

rule(acquisition, acqbus, 5, 0,

[list(2,['has','of','massive','finlays','a'],_)],

[item(['confectionery','oil','hermetic','federal'],['nn','jj']),list(3,_,_),

item(['newsagent','gas','packages','bank'],_)],[]).

rule(acquisition, acqbus, 4, 0,

[item(_,'dt')],[item(_,'nn'),item(_,['nns','nn'])],[item(['unit','company'],'nn')]).

rule(acquisition, acqbus, 4, 0,

[item(['its','of','italian'],_)],[list(3,_,['vbn','nn','jj']),

item(['circuits','products','maker'],_)],[item(_,_),item(_,['nnp',','])]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nn',',']),list(2,_,_),item(_,_),item(_,['rb','nnp']),list(2,_,_),

item(['affiliated','the'],_)],[list(2,_,['jj','nn'])],[item(['companies','had'],_),

item(_,_),item(_,['dt','nn'])]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nn','vb']),item(_,_),item(['seven','-'],_),item(_,['jj','vbn'])],

[list(2,_,_)],[item(['and','maker'],_)]).

rule(acquisition, acqbus, 5, 0,

[item(['ocean','distributes','term','makes'],_)],[list(3,_,[':','nn','jj']),

item(_,['vbg','nns'])],[item(_,_),item(_,['to','endsent','dt'])]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nn','endsent']),item(_,_),item(_,_),item(_,_),item(['superior','makes'],_)],

[list(8,_,_)],[item(['accounts',','],_),list(2,_,_)]).

rule(acquisition, acqbus, 3, 0,

[],[item(['travel','leasing'],'nn'),list(3,_,_),item(_,_)],

[item([',','system'],_),list(2,_,_)]).

rule(acquisition, acqbus, 3, 0,

[item(_,['dt','in'])],[item(_,_),item(['abatement','products'],_)],

[item(_,['nn',','])]).

rule(acquisition, acqbus, 5, 0,

118



[item(_,['cc','to','nn','nnp']),item(_,_),item(['of','its','in','a'],_)],

[list(2,_,['jj','nn']),item(['interconnect','products','instruments','merchandise'],_)],

[list(2,_,_),item(_,['wdt','nns','to','nn'])]).

rule(acquisition, acqbus, 3, 0,

[item(['maker','the'],_),item(_,['in','jjs'])],[item(_,['vbn','nn']),

item(_,['nns','nn'])],[]).

rule(acquisition, acqbus, 4, 0,

[item(['only','of','two'],_)],[list(2,_,_),

item(['gold','holding','ferrosilicon'],['vbg','nn'])],[item(_,'nns')]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nn','nnp']),item(_,_),item(['markets','provides'],_)],[list(10,_,_)],

[item(_,[',','to']),list(2,_,['in','nnp','nn']),item(_,['vbd','nnp']),list(2,_,_)]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nn',',']),list(2,_,_)],[item(_,'nn'),item(_,'nn')],

[item(['facility','firm'],'nn')]).

rule(acquisition, acqbus, 3, 0,

[item(_,['md','jj']),item(_,_),item(['in','and'],_),item(['the','seven'],_)],

[item(_,['jj','nn']),item(_,'nn')],[item(_,['nn','nns'])]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nnp','vbn']),item(_,['vbz','in'])],[list(3,_,'nn'),

item('and','cc'),item(_,'nn'),item(_,['nns','nn'])],[]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nnp','nn']),list(2,['60',',','includes'],_),item(['operating','its'],_)],

[list(3,_,_)],[item(['in','company'],_),list(2,_,_),list(3,_,_),item(_,['md','in'])]).

rule(acquisition, acqbus, 3, 0,

[item(_,['vbz','cd'])],[item(['community','accounting'],'nn'),list(2,_,['nns','nn'])],

[item(_,['to','in'])]).

rule(acquisition, acqbus, 4, 0,

[item(['its','ten'],_)],[list(4,_,_)],[item(['unit','restaurants'],_),

item(_,[',','in']),item(_,['nnp','jj']),item(_,'nnp')]).

rule(acquisition, acqbus, 3, 0,

[item(_,['vbz','vbn']),list(2,_,_)],[item(['auto','convenience'],'nn'),

item(_,'nns')],[]).

rule(acquisition, acqbus, 3, 0,

[item(_,['cd','dt']),item(_,_),list(2,['company','stg','held'],_),item(_,_)],

[item(['supermarket','video'],'nn'),list(2,_,_)],[item(_,['in','nn']),

item(_,_),item(_,['cc','nnp'])]).

rule(acquisition, acqbus, 3, 0,

[item(['owned','concrete'],_)],[item(_,'nn'),item(_,'nn')],[item(_,['in','nn'])]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nn','nnp']),item(_,'vbz')],[item(_,'nn'),item(_,'nns')],

[item(_,_),item(_,_),item(_,['cd','nnp'])]).

rule(acquisition, acqbus, 3, 0,

[item(['a','cenergy'],_),list(2,_,_),list(2,['a','owned',','],_),

list(2,['of','u.s.','manufacturer'],_)],[list(2,['and','colorants','oil'],_),

item(_,['in','nn']),item(_,['dt','nn']),item(_,['nns','cc']),item(_,'nn')],

[item(_,['.','nn']),item(_,_),list(2,_,_),item(['hanna','said'],_),list(2,_,_)]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nn','jj'])],[item(['oil','feedstuff'],'nn'),item(_,_),item(_,'nn')],

[item(_,['nn','nns'])]).

rule(acquisition, acqbus, 3, 0,

[item(['in',','],_),item(['toronto','an'],_),list(2,_,_)],[item(['oil','collects'],_),

list(3,['oils','lubricating','products','used'],_)],[item(_,['in','nn'])]).

rule(acquisition, acqbus, 3, 0,

[item(_,['nnp',',']),item(_,_),item(_,[')','vbz'])],[list(3,_,[':','nn','vbn']),

item(_,['nn','nns'])],[item(_,['.',',']),item(['endsent','had'],_)]).

rule(acquisition, acqbus, 3, 0,

[],[item(['hotel','brokerage'],_)],[item(_,['in','nns'])]).

rule(acquisition, acqbus, 5, 0,

[item(_,['vbn','vbz'])],[list(3,_,['vbg',':','nns','nn']),item('and','cc'),item(_,_),

item(_,'nns')],[]).

rule(acquisition, acqabr, 4, 0,
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[item(_,['nn','nnp']),item(_,['pos','vbz','in'])],[item(_,'nnp'),

list(2,_,['nn','nnp',':'])],[item(['tobacco','sale','lithographing'],_)]).

rule(acquisition, acqabr, 4, 0,

[item(['west','march','to'],_),item(_,_),item(_,['vbz',':','jj'])],[item(_,'nnp'),

list(2,['bank','crellin','tool','-'],_)],[item(['endsent','co','shares'],_),

item(_,_),item(_,[',','cd','jj'])]).

rule(acquisition, acqabr, 3, 0,

[item(_,['vb','vbd','prp$']),list(2,_,_),list(2,_,_)],

[item(['american','builders','gerber'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(_,['vbd','dt']),item(_,['prp$','nn']),item(['stake','of'],_),item(_,['in','dt'])],

[item(_,'nnp'),item(_,'nnp')],[item(_,'nnp'),item(_,['nnp','in'])]).

rule(acquisition, acqabr, 5, 0,

[item(_,['vbn','nnp']),item(_,['cc','nn',')']),item(['{','buys','of','purchases'],_)],

[item(_,['nns','nnp'])],[item(['inc','{','aviation','endsent'],_)]).

rule(acquisition, acqabr, 7, 0,

[item(_,['cd','(','nn','vbd'])],[item(['cyclops','western','europeesche','unitek'],_)],

[]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nnp','nn','prp$']),item(_,['pos','vbz','jj'])],[list(3,_,'nnp')],

[item(['tobacco','sale','industries'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nnp','nns']),item(['craft','to'],_),item(['(','buy'],_)],[list(2,_,'nnp')],

[item(_,['sym','endsent']),item(_,_),item(_,['endsent',','])]).

rule(acquisition, acqabr, 6, 0,

[],[item(['brinkmann','revlon','rospatch','wyona','plainwell'],'nnp')],[]).

rule(acquisition, acqabr, 4, 0,

[],[item(['hayes','santa','south'],'nnp'),list(3,_,_),

item(['albion','southern','l'],'nnp')],[item(_,_),item(_,['vbd','dt','nnp'])]).

rule(acquisition, acqabr, 4, 0,

[item(_,['nn','jj','dt']),item(['that','boosts','13.3'],_)],[list(3,_,['cc','nnp'])],

[item(['petroleum','{','common'],_),list(2,_,_),item(_,_),item(_,['endsent','nnp'])]).

rule(acquisition, acqabr, 15, 0,

[item(['5.1',',','interest','bid'],_),item(_,['in','cd','jj'])],[item(_,'nnp')],

[item(['shares','common','mining','corp'],_),item(_,['cc','nns','nnp',','])]).

rule(acquisition, acqabr, 5, 0,

[],[item(['fermenta','fairchild','sgl','coastal'],'nnp')],[]).

rule(acquisition, acqabr, 4, 0,

[list(2,['in','pct','.','93'],_),item(['{','of','endsent'],_)],[item(_,['nnps','nnp'])],

[item(['computer','''','is'],_),item(['associates','voting','the'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(['interest','pct'],'nn'),item(['in','of'],'in')],[item(_,'nnp'),item(_,_)],

[item(['inc','{'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,['vbg','('])],[item(_,'nnp'),list(2,['poulenc','engineering','-'],_)],

[item(['and','chimie'],_),item(_,_),item(['inc','}'],_)]).

rule(acquisition, acqabr, 4, 0,

[item(_,['jj','nns']),item(_,_),item(['in','endsent'],_)],[list(2,_,'nnp')],

[item(['electric','is'],_),item(['products','a'],_)]).

rule(acquisition, acqabr, 4, 0,

[],[item(['cadillac','radiation','moore'],_),item(_,'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nns','rb']),list(2,_,_),item(_,['prp$','endsent'])],[item(_,_),

item(['pafific','and'],_),item(_,'nnp')],[item(_,['nn',','])]).

rule(acquisition, acqabr, 3, 0,

[list(2,_,_),item(_,['nnp','vbd']),item(_,_),item(_,[':','endsent'])],

[item(['progressive','pay'],_),list(3,_,['nnp','pos'])],[item(_,['nnp','vbz']),

item(_,_),item(_,_),item(_,['prp','in'])]).

rule(acquisition, acqabr, 3, 0,

[item(_,['in','('])],[item(['computer','allegheny'],'nnp'),list(2,_,['nn','nnp'])],

[item(['{','systems'],_)]).

rule(acquisition, acqabr, 4, 0,
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[item(_,['nnp','jj']),item(_,['nnps','nn']),item(['to','of'],_)],

[list(2,['''s','service','debbie'],_),item(_,'nnp')],[item(_,['.','cc']),

item(_,_),item(_,['nnp','nns'])]).

rule(acquisition, acqabr, 5, 0,

[],[item(['becher','dei','metex','zoran'],'nnp')],[]).

rule(acquisition, acqabr, 6, 0,

[item(['said','based','of','{','which'],_)],

[item(['hermetronics','tricil','gencorp','temco','hutton'],'nnp')],[]).

rule(acquisition, acqabr, 4, 0,

[item(['pct','letter'],'nn'),item(_,['in','to'])],[item(_,'nnp')],

[item('''s','pos'),list(2,_,_),item(_,['nns','dt'])]).

rule(acquisition, acqabr, 3, 0,

[item(['endsent','says'],_)],[item(_,'nnp'),item(_,['nnp','nn'])],

[item(['provides','sale'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(['sells','{'],_)],[item(_,'nnp')],[item(_,['nn','cc']),

item(_,['in','nnp']),item(['16.9','inc'],_)]).

rule(acquisition, acqabr, 4, 0,

[item(['station','acquire'],_)],[item(_,'nnp')],[item(_,_),item(_,['vbg','nnp']),

item(_,_),item(_,'nnp'),item(['nationale',','],_)]).

rule(acquisition, acqabr, 4, 0,

[],[item(['conrac','kdi','spectrum'],'nnp')],[]).

rule(acquisition, acqabr, 8, 0,

[item(_,['nnp','to','in']),item(_,_),item(_,_),item(['equity','stake','ltd'],_),

item(['in','{'],_)],[list(2,_,[')','nnp'])],[item(_,['endsent','to','in'])]).

rule(acquisition, acqabr, 6, 0,

[],[item(['lamborghini','cenergy','linotype'],'nnp')],[]).

rule(acquisition, acqabr, 10, 0,

[item(['company','qintex','pct'],_),item(['said','extends','of'],_)],[item(_,'nnp')],

[list(2,_,_),item(['f.','}','common'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,['in',':'])],[item(_,'nnp')],[item(['enterprises','development'],_),

list(2,_,_),item(_,['in','prp$'])]).

rule(acquisition, acqabr, 4, 0,

[item(_,['to','nn']),item(['acquire','sells'],_)],[item(_,['nns','nnp']),

item(_,['nnp','nn'])],[item(['sacramento','endsent'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nn','vbn']),item(_,['nn','vbg']),list(2,_,_)],[item(['dome','dayton'],'nnp'),

item(_,'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nnp','nn']),item(_,_),item(['''s','{'],_)],[list(2,_,['nnps','nnp'])],

[item(['business','stores'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nnp','in']),list(2,_,_),item(_,'in')],[item(_,'nnp')],

[item(['should','inn'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nn','vbd']),item(_,['nn','.']),item(['at','endsent'],_)],

[item(_,'nnp'),item(_,'nnp')],[item(_,['cc','md']),item(_,_),item(_,['vb','in'])]).

rule(acquisition, acqabr, 3, 0,

[item(_,['in','vbd']),item(_,['vbg','('])],[item(_,'nnp')],

[item(['''s','technische'],_)]).

rule(acquisition, acqabr, 3, 0,

[],[item(_,_),item(['toll','world'],'nn')],[item(_,['nnp','('])]).

rule(acquisition, acqabr, 3, 0,

[item(['said','of'],_)],[list(2,_,'nnp')],[item(['operates','resources'],_)]).

rule(acquisition, acqabr, 3, 0,

[],[item(['supermarkets','scan'],'nnp'),list(2,['graphics','general','-'],_)],

[list(2,_,['vb','vbz','to']),item(_,['dt','in'])]).

rule(acquisition, acqabr, 3, 0,

[item(_,['nn','vbz']),item(_,['nn','nnp']),item('for','in')],[item(_,'nnp')],

[item([',','merger'],_)]).

rule(acquisition, acqabr, 3, 0,
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[item(['houston','buy'],_)],[item(_,'nnp')],[item(['for','inc.'],_)]).

rule(acquisition, acqabr, 9, 0,

[item(_,['to',')','nn']),item(['purchase','has','of'],_)],[item(_,'nnp')],

[item(['consolidated','{','stock'],_)]).

rule(acquisition, acqabr, 9, 0,

[],[item(['rhm','cyclops','cgct','uab'],'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(_,[',','nns']),list(2,_,_),item(['12','for'],_),item(_,[':','dt'])],

[item(_,'nnp')],[item(['corp','share'],_),list(2,_,_),item(_,['prp$','nnp'])]).

rule(acquisition, acqabr, 3, 0,

[item(['in','sells'],_)],[item(['shearson','national'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acqabr, 5, 0,

[],[item(['pizza','ic','trilogy'],'nnp'),item(['inn','gas','resource'],'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(_,[',','dt']),item(['each','four'],_)],[item(_,'nnp'),item(_,['nnp','nnps'])],[]).

rule(acquisition, acqabr, 3, 0,

[item(['for','buy'],_)],[item(['nichols','usair'],'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(_,['endsent','nnp']),item(_,_),item(_,['vbd','endsent'])],[item(_,'nnp'),

item(_,['nnps','nnp'])],[item(['has','had'],_)]).

rule(acquisition, acqabr, 4, 0,

[item(['endsent','paks'],_),list(2,_,_),item(['said','buy'],_)],[item(_,'nnp')],

[item(_,['nnps','nn'])]).

rule(acquisition, acqabr, 4, 0,

[item(['holdings','acquisition'],_),item(['in','of'],'in')],[list(2,_,'nnp')],

[item(['.','inc'],_),item(_,['endsent','in'])]).

rule(acquisition, acqabr, 4, 0,

[item(_,['vbd','endsent'])],[item(_,'nnp')],[item(['general','had'],_),

list(2,_,_),item(_,['(','in'])]).

rule(acquisition, acqabr, 3, 0,

[item(['394','for'],_)],[item(_,'nnp')],[item(_,['nns','pos'])]).

rule(acquisition, acqabr, 3, 0,

[item(_,['prp$','pos']),item(['dome','said'],_)],[list(2,_,['nnps','nnp'])],

[item(_,['pos','vbd'])]).

rule(acquisition, acqabr, 5, 0,

[item(['its','march'],_),item(['stake','18'],_),item(['in','-'],_)],

[list(2,_,'nnp')],[item(['ltd','inc'],'nnp')]).

rule(acquisition, acqabr, 3, 0,

[],[item(['norddeutsche','foote'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acqabr, 4, 0,

[item(['hold','principle'],_),item(['in','to'],_),item(['{','acquire'],_)],

[item(_,'nnp'),list(2,_,'nnp')],[item(_,'nnp'),item(_,[')','in'])]).

rule(acquisition, acqabr, 3, 0,

[item(['remainder','stake'],'nn'),item(_,'in')],[item(_,'nnp')],

[item(_,['nns','endsent']),list(2,_,_),item(['cheaper','march'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,[')','nnp']),item(['to','pincus'],_),item(['buy','starts'],_)],

[list(3,_,['in','nnp'])],[item(_,['endsent','(']),item(_,'nnp'),item(_,[',',')']),

list(2,['va','bid','w.'],_),item(_,['endsent','.'])]).

rule(acquisition, acqabr, 3, 0,

[item(_,['vbd','vb']),list(2,['dealings','columbus','its'],_),list(2,_,_)],

[item(['builders','american'],'nnp'),item(_,'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(_,['vbn','nn']),item(['by','said'],_)],[list(2,_,'nnp')],

[item(['newspapers','shareholders'],_),list(2,_,_),list(2,_,_),item(_,['vbz','cd'])]).

rule(acquisition, acqabr, 7, 0,

[item(['in','its'],_)],[item(_,'nnp')],[item(['{','corp'],_)]).

rule(acquisition, acqabr, 3, 0,

[item(_,[',','dt']),item(['1986','board'],_),item([',','of'],_)],[item(_,'nnp')],

[item(_,[':','nnp'])]).

rule(acquisition, acqabr, 5, 0,

[],[item(['taft','caesars'],'nnp'),item(_,'nnp')],[]).
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rule(acquisition, acqabr, 3, 0,

[item(['buys','in'],_)],[item(['antonson','shearson'],'nnp')],[]).

rule(acquisition, acqabr, 3, 0,

[item(['said','to'],_),item(['that','acquire'],_)],[list(2,_,['nn','nnp'])],

[item(_,[',','endsent']),item(_,['vbn','nnp']),item(_,['in','nnp'])]).

rule(acquisition, acqabr, 3, 0,

[],[item(['horizon','consolidated'],'nnp')],[item(_,['in','jj'])]).

rule(acquisition, acqabr, 3, 0,

[item(_,['cd','nnp']),list(2,_,_),item(_,_),item(_,['vbn','.']),list(2,_,_),

item(_,['vbd','dt'])],[item(_,'nnp')],[item(['cement','board'],_)]).
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Appendix C

Part-of-Speech Tags Used

This appendix contains a list of the part-of-speech tags used in the experiments described in Chapter

4.

TAG Meaning

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential \there"

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PP Personal pronoun

PP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO \to"

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle
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VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb
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