
Learning Multi-Modal Grounded Linguistic Semantics by Playing “I Spy”

Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Peter Stone, and Raymond J. Mooney
Department of Computer Science, University of Texas at Austin

Austin, TX 78712, USA
{jesse, jsinapov, maxwell, pstone, mooney}@cs.utexas.edu

Abstract

Grounded language learning bridges words like
‘red’ and ‘square’ with robot perception. The vast
majority of existing work in this space limits robot
perception to vision. In this paper, we build per-
ceptual models that use haptic, auditory, and pro-
prioceptive data acquired through robot exploratory
behaviors to go beyond vision. Our system learns
to ground natural language words describing ob-
jects using supervision from an interactive human-
robot “I Spy” game. In this game, the human and
robot take turns describing one object among sev-
eral, then trying to guess which object the other
has described. All supervision labels were gath-
ered from human participants physically present
to play this game with a robot. We demonstrate
that our multi-modal system for grounding natu-
ral language outperforms a traditional, vision-only
grounding framework by comparing the two on the
“I Spy” task. We also provide a qualitative analysis
of the groundings learned in the game, visualizing
what words are understood better with multi-modal
sensory information as well as identifying learned
word meanings that correlate with physical object
properties (e.g. ‘small’ negatively correlates with
object weight).

1 Introduction
Robots need to be able to connect language to their envi-
ronment in order to discuss real world objects with humans.
Mapping from referring expressions such as “the blue cup”
to an object referent in the world is an example of the sym-

bol grounding problem

[Harnad, 1990]. Symbol grounding
involves connecting internal representations of information
in a machine to real world data from its sensory perception.
Grounded language learning bridges these symbols with nat-
ural language.

Early work on grounded language learning enabled a ma-
chine to map from adjectives and nouns such as “red” and
“block” to objects in a scene through vision-based classi-
fiers [Roy, 2001]. We refer to adjectives and nouns that
describe properties of objects as language predicates. Most

Figure 1: Left: the robot guesses an object described by a
human participant as “silver, round, and empty.” Right: a
human participant guesses an object described by the robot
as “light,” “tall,” and “tub.”

work has focused on grounding predicates through visual in-
formation. However, other sensory modalities such as haptic
and auditory are also useful in allowing robots to discrimi-
nate between object categories [Sinapov et al., 2014b]. This
paper explores grounding language predicates by considering
visual, haptic, auditory, and proprioceptive senses.

A home or office robot can explore objects in an unsuper-
vised way to gather perceptual data, but needs human super-
vision to connect this data to language. Learning grounded
semantics through human-robot dialog allows a system to ac-
quire the relevant knowledge without the need for laborious
labeling of numerous objects for every potential lexical de-
scriptor. A few groups have explored learning from inter-
active linguistic games such as “I Spy” and “20 Questions”
[Parde et al., 2015; Vogel et al., 2010]; however, these stud-
ies only employed vision (see Section 2).

We use a variation on the children’s game “I Spy” as a
learning framework for gathering human language labels for
objects to learn multi-modal grounded lexical semantics (Fig-
ure 1). Our experimental results test generalization to new
objects not seen during training and illustrate both that the
system learns accurate word meanings and that modalities be-
yond vision improve its performance.

To our knowledge, this is the first robotic system to per-
form natural language grounding using multi-modal sensory
perception through feedback with human users.
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2 Related Work
Researchers have made substantial progress on grounding
language for robots, enabling tasks such as object recogni-
tion and route following from verbal descriptions. Early work
used vision together with speech descriptions of objects to
learn grounded semantics [Roy and Pentland, 2002].

In the past few years, much of this work has focused on
combining language with visual information. For ground-
ing referring expressions in an environment, many learn
perceptual classifiers for words given some pairing of hu-
man descriptions and labeled scenes [Liu et al., 2014; Mali-
nowski and Fritz, 2014; Mohan et al., 2013; Sun et al., 2013;
Dindo and Zambuto, 2010; Vogel et al., 2010]. Some ap-
proaches additionally incorporate language models into the
learning phase [Spranger and Steels, 2015; Krishnamurthy
and Kollar, 2013; Perera and Allen, 2013; Matuszek et al.,
2012]. Incorporating a language model also allows for more
robust generation of robot referring expressions for objects,
as explored in [Tellex et al., 2014]. In general, referring ex-
pression generation is difficult in dialog [Fang et al., 2014].
Since we are focused on comparing multi-modal to vision-
only grounding, our method uses simple language under-
standing and constructs new predicate classifiers for each un-
seen content word used by a human playing “I Spy”, and our
basic generation system for describing objects is based only
on these predicate classifiers.

Outside of robotics, there has been some work on combin-
ing language with sensory modalities other than vision, such
as audio [Kiela and Clark, 2015]. Unlike that line of work,
our system is embodied in a learning robot that manipulates
objects to gain non-visual sensory experience.

Including a human in the learning loop provides a more
realistic learning scenario for applications such as house-
hold and office robotics. Past work has used human speech
plus gestures describing sets of objects on a table as super-
vision to learn attribute classifiers [Matuszek et al., 2014;
Kollar et al., 2013]. Recent work introduced the “I Spy” game
as a supervisory framework for grounded language learn-
ing [Parde et al., 2015]. Our work differs from these by us-
ing additional sensory data beyond vision to build object at-
tribute classifiers. Additionally, in our instantiation of the “I
Spy” task, the robot and the human both take a turn describ-
ing objects, where in previous work [Parde et al., 2015] only
humans gave descriptions.

3 Dataset
The robot used in this study was a Kinova MICO arm
mounted on top of a custom-built mobile base which re-
mained stationary during our experiment. The robot’s percep-
tion included joint effort sensors in each of the robot arm’s
motors, a microphone mounted on the mobile base, and an
Xtion ASUS Pro RGBD camera. The set of objects used in
this experiment consisted of 32 common household items in-
cluding cups, bottles, cans, and other containers, shown in
Figure 2. Some of the objects contained liquids or other con-
tents (e.g., coffee beans) while others were empty. Contem-
porary work gives a more detailed description of this object

Figure 2: Objects used in the “I Spy” game divided into the
four folds discussed in Section 6.1, from fold 0 on the left to
fold 3 on the right.

grasp lift lower

drop press push

Figure 3: The behaviors the robot used to explore the ob-
jects. The arrows indicate the direction of motion of the end-
effector for each behavior. In addition, the hold behavior (not
shown) was performed after the lift behavior by simply hold-
ing the object in place for half a second.

dataset [Sinapov et al., 2016], but we briefly describe the ex-
ploration and modalities below.

3.1 Exploratory Behaviors and Sensory Modalities
Prior to the experiment, the robot explored the objects using
the methodology described by Sinapov et al. [2014a], and the
dimensionality of the raw auditory, haptic, and proprioceptive
data were reduced comparably (final dimensionality given in
Table 1). In our case, the robot used 7 distinct actions: grasp,
lift, hold, lower, drop, push, and press, shown in Figure 3.
During the execution of each action, the robot recorded the
sensory perceptions from haptic (i.e., joint efforts) and audi-

tory sensory modalities. During the grasp action, the robot
recorded proprioceptive (i.e., joint angular positions) sensory
information from its fingers. The joint efforts and joint po-
sitions were recorded for all 6 joints at 15 Hz. The audi-
tory sensory modality was represented as the Discrete Fourier
Transform computed using 65 frequency bins.

In addition to the 7 interactive behaviors, the robot also per-
formed the look action prior to grasping the object which pro-
duced three different kinds of sensory modalities: 1) an RGB
color histogram of the object using 8 bins per channel; 2)
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Behavior Modality
color fpfh vgg

look 64 308 4096
audio haptics proprioception

grasp 100 60 20
drop, hold,
lift, lower, 100 60
press, push

Table 1: The number of features extracted from each context,
or combination of robot behavior and perceptual modality.

Fast point feature histogram (fpfh) shape features [Rusu et al.,
2009] as implemented in the Point Cloud Library [Aldoma
et al., 2012]; and 3) deep visual features from the 16-layer
VGG network [Simonyan and Zisserman, 2014]. The first
two types of features were computed using the segmented
point cloud of the object while the deep features were com-
puted using the 2D image of the object.

Thus, each of the robot’s 8 actions produced two to three
different kinds of sensory signals. Each viable combination
of an action and a sensory modality is a unique sensorimotor
context. In our experiment, the set of contexts C was of size
2 ⇥ 3 + 6 ⇥ 2 = 18. The robot performed its full sequence
of exploratory actions on each object 5 different times (for
the look behavior, the object was rotated to a new angle each
time). Given a context c 2 C and an object i 2 O, let the set
X c

i

contain all five feature vectors observed with object i in
context c.

4 Task Definition
In our “I Spy” task,1 the human and robot take turns describ-
ing objects from among 4 on a tabletop (Figure 1). Partic-
ipants were asked to describe objects using attributes. As
an example, we suggested participants describe an object as
“black rectangle” as opposed to “whiteboard eraser.” Addi-
tionally, participants were told they could handle the objects
physically before offering a description, but were not explic-
itly asked to use non-visual predicates. Once participants of-
fered a description, the robot guessed candidate objects in or-
der of computed confidence (see Section 5.2) until one was
confirmed correct by the participant.

In the second half of each round, the robot picked an ob-
ject and then described it with up to three predicates (see Sec-
tion 5.2). The participant was again able to pick up and phys-
ically handle objects before guessing. The robot confirmed
or denied each participant guess until the correct object was
chosen.

“I Spy” gameplay admits two metrics. The robot guess
metric is the number of turns the robot took to guess what ob-
ject the participant was describing. The human guess met-
ric is the complement. Using these metrics, we compare the
performance of two “I Spy” playing systems (multi-modal
and vision-only) as described in Section 6. We also compare

1Video demonstrating the “I Spy” task and robot learning:
https://youtu.be/jLHzRXPCi w

the agreement between both systems’ predicate classifiers and
human labels acquired during the game.

5 Implementation
To play “I Spy”, we first gathered sensory data from the set
of objects through robot manipulation behaviors (described in
Section 3). When playing a game, the robot was given unique
identifying numbers for each object on the table and could
look up relevant feature vectors when performing grounding.

During the course of the game, the robot used its RGBD
camera to detect the locations of the objects and subsequently
detect whenever a human reached out and touched an ob-
ject in response to the robot’s turn. The robot could also
reach out and point to an object when guessing. We imple-
mented robot behaviors in the Robot Operating System2 and
performed text-to-speech using the Festival Speech Synthesis
System.3

5.1 Multi-Modal Perception
For each language predicate p, a classifier G

p

was learned
to decide whether objects possessed the attribute denoted by
p. This classifier was informed by context sub-classifiers that
determined whether p held for subsets of an object’s features.

The feature space of objects was partitioned by context, as
discussed in Section 3.1. Each context classifier M

c

, c 2 C
was a quadratic-kernel SVM trained with positive and nega-
tive labels for context feature vectors derived from the “I Spy”
game (Section 5.2). We defined M

c

(X c

i

) 2 [�1, 1] as the av-
erage classifier output over all observations for object i 2 O
(individual SVM decisions on observations were in {�1, 1}).

Following previous work in multi-modal explo-
ration [Sinapov et al., 2014b], for each context we calculated
Cohen’s Kappa 

c

2 [0, 1] to measure the agreement across
observations between the decisions of the M

c

classifier and
the ground truth labels from the “I Spy” game.4 Given these
context classifiers and associated  confidences, we calculate
an overall decision, G

p

(i), for i 2 O for each behavior b and
modality m as:

G
p

(i) =
X

c2C

c

M
c

(X c

i

) 2 [�1, 1] (1)

The sign of G
p

(i) gives a decision on whether p applies to i
with confidence |G

p

(i)|.
For example, a classifier built for ‘fat’2 P could give

Gfat(wide-yellow-cylinder) = 0.137, a positive
classification, with 

gr,au

= 0.515 for the grasp behavior’s
auditory modality, the most confident context. This context
could be useful for this predicate because the sound of the
fingers’ motors stop sooner for wider objects.

2http://www.ros.org
3http://www.cstr.ed.ac.uk/projects/festival
4We use  instead of accuracy because it better handles skewed-

class data than accuracy, which could be deceptively high for a clas-
sifier that always returns false for a low-frequency predicate. We
round negative  up to 0.

3479



5.2 Grounded Language Learning
Language predicates and their positive/negative object labels
were gathered through human-robot dialog during the “I Spy”
game. The human participant and robot were seated at oppo-
site ends of a small table. A set of 4 objects were placed
on the table for both to see (Figure 1). We denote the set of
objects on the table during a given game O

T

.
Human Turn. On the participant’s turn, the robot asked

him or her to pick an object and describe it in one phrase. We
used a standard stopword list to strip out non-content words
from the participant’s description. The remaining words were
treated as a set of language predicates, H

p

. The robot as-
signed scores S to each object i 2 O

T

on the table.

S(i) =
X

p2Hp

G
p

(i) (2)

The robot guessed objects in descending order by score (ties
broken randomly) by pointing at them and asking whether it
was correct. When the correct object was found, it was added
as a positive training example for all predicates p 2 H

p

for
use in future training.

Robot Turn. On the robot’s turn, an object was chosen at
random from those on the table. To describe the object, the
robot scored the set of known predicates learned from pre-
vious play. Following Gricean principles [Grice, 1975], the
robot attempted to describe the object with predicates that
applied but did not ambiguously refer to other objects. We
used a predicate score R that rewarded describing the chosen
object i⇤ and penalized describing the other objects on the
table.

R(p) = |O
T

|G
p

(i⇤)�
X

j2OT \{i⇤}
G

p

(j) (3)

The robot choose up to three highest scoring predicates P̂ to
describe object i⇤, using fewer if S < 0 for those remaining.
Once ready to guess, the participant touched objects until the
robot confirmed that they had guessed the right one (i⇤).

The robot then pointed to i⇤ and engaged the user in a brief
follow-up dialog in order to gather both positive and negative
labels for i⇤. In addition to predicates P̂ used to describe the
object, the robot selected up to 5 � |P̂ | additional predicates
P̄ . P̄ were selected randomly with p 2 P \P̂ having a chance
of inclusion proportional to 1� |G

p

(i⇤)|, such that classifiers
with low confidence in whether or not p applied to i⇤ were
more likely to be selected. The robot then asked the partic-
ipant whether they would describe the object i⇤ using each
p 2 P̂ [ P̄ . Responses to these questions provided additional
positive/negative labels on object i⇤ for these predicates for
use in future training.

6 Experiment
To determine whether multi-modal perception helps a robot
learn grounded language, we had two different systems play
“I Spy” with 42 human participants. The baseline vision only
system used only the look behavior when grounding language
predicates, analogous to many past works as discussed in Sec-
tion 2. Our multi-modal system used the full suite of be-
haviors and associated haptic, proprioceptive, and auditory

modalities shown in Table 1 when grounding language pred-
icates.

6.1 Methodology
Data Folds. We divided our 32-object dataset into 4 folds.
For each fold, at least 10 human participants played “I Spy”
with both the vision only and multi-modal systems (12 par-
ticipants in the final fold). Four games were played by each
participant. The vision only system and multi-modal system
were each used in 2 games, and these games’ temporal order
was randomized. Each system played with all 8 objects per
fold, but the split into 2 groups of 4 and the order of objects
on the table were randomized.

For fold 0, the systems were undifferentiated and so only
one set of 2 games was played by each participant. For sub-
sequent folds, the systems were incrementally trained using
labels from previous folds only, such that the systems were
always being tested against novel, unseen objects. This con-
trasts prior work using the “I Spy” game [Parde et al., 2015],
where the same objects were used during training and testing.

Human Participants. Our 42 participants were under-
graduate and graduate students as well as some staff at our
university.

At the beginning of each trial, participants were shown
an instructional video of one of the authors playing a single
game of “I Spy” with the robot, then given a sheet of instruc-
tions about the game and how to communicate with the robot.
In every game, participants took one turn and the robot took
one turn.

To avoid noise from automatic speech recognition, a study
coordinator remained in the room and transcribed the partici-
pant’s speech to the robot from a remote computer. This was
done discretely and not revealed to the participant until de-
briefing when the games were over.

6.2 Quantitative Results
To determine whether our multi-modal approach outper-
formed a traditional vision only approach, we measured the
average number of robot guesses and human guesses in games
played with each fold of objects. The systems were identical
in fold 0 since both were untrained. In the end, we trained the
systems on all available data to calculate predicate classifier
agreement with human labels.

Robot guess. Figure 4 shows the average number of robot
guesses for the games in each fold. Because we had access to
the scores the robot assigned each object, we calculated the
expected number of robot guesses for each turn. For example,
if all 4 objects were tied for first, the expected number of
robot guesses for that turn was 2.5, regardless of whether it
got (un)lucky and picked the correct object (last)first.5

After training on just one fold, our multi-modal approach
performs statistically significantly better than the expected
number of turns for guessing (the strategy for the untrained
fold 0 system) for the remainder of the games. The vision
only system, by contrast, is never able to differentiate itself

52.5 is the expected number for 4 tied objects because the proba-
bility of picking in any order is equal, so the expected turn to get the
correct object is 1+2+3+4

4 = 10
4 = 2.5
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Figure 4: Average expected number of guesses the robot
made on each human turn with standard error bars shown.
Bold: significantly lower than the average at fold 0 with
p < 0.05 (unpaired Student’s t-test). *: significantly lower
than the competing system on this fold on participant-by-
participant basis with p < 0.05 (paired Student’s t-test).

significantly from random guessing, even as more training
data becomes available. We suspect the number of objects is
too small for the vision only system to develop decent models
of many predicates, whereas multi-modal exploration allows
that system to extract more information per object.

Human guess. Neither the vision only nor multi-modal
system’s performance improves on this metric with statistical
significance as more training data is seen. Human guesses
hovered around 2.5 throughout all levels of training and sets
of objects.

This result highlights the difficulty of the robot’s turn in
an “I Spy” framework, which requires not just good cover-
age of grounded words (as when figuring out what object the
human is describing), but also high accuracy when using clas-
sifiers on new objects. Context classifiers with few examples
could achieve confidence  = 1, making the predicates they
represented more likely to be chosen to describe objects. It
is possible that the system would have performed better on
this metric if the predicate scoring function R additionally
favored predicates with many examples.

Predicate Agreement. Training the predicate classifiers
using leave-one-out cross validation over objects, we calcu-
lated the average precision, recall, and F1 scores of each
against human predicate labels on the held-out object. Ta-
ble 2 gives these metrics for the 74 predicates used by the
systems.6

Across the objects our robot explored, our multi-modal
system achieves consistently better agreement with human
assignments of predicates to objects than does the vision only
system.

6.3 Qualitative Results
We explored the predicates learned by our systems qualita-
tively by looking at the differences in individual predicate
classifier agreements, the objects picked out by these clas-
sifiers in each system, and correlations between predicate de-
cisions and physical properties of objects.

6There were 53 predicates shared between the two systems. The
results in Table 2 are similar for a paired t-test across these shared
predicates with slightly reduced significance.

Metric System
vision only multi-modal

precision .250 .378+
recall .179 .348*
F1 .196 .354*

Table 2: Average performance of predicate classifiers used
by the vision only and multi-modal systems in leave-one-
object-out cross validation. *: significantly greater than com-
peting system with p < 0.05. +: p < 0.1 (Student’s un-paired
t-test).

When multi-modal helps. We performed a pairwise com-
parison of predicates built in the multi-modal and vision
only systems, again using leave-one-out cross validation over
objects to measure performance. Table 3 shows the predicates
for which the difference in f1 between the two systems was
high.

The multi-modal system does well on the predicates “tall”
and “half-full” which have non-visual interpretations. A tall
object will exert force earlier against the robot arm press-
ing down on it, while a half-full object will be lighter than
a full one and heavier than an empty one. The color predicate
“pink” seems to confuse the multi-modal grounding system
using non-visual information for this purely visual predicate.
This doesn’t hold for “yellow”, though the classifiers for “yel-
low” never became particularly good for either system. For
example, two of the three most confident objects in the multi-
modal setting are false positives.

Correlations to physical properties. To validate whether
the systems learned non-visual properties of objects, for every
predicate we calculated the Pearson’s correlation r between
its decision on each object and that object’s measured weight,
height, and width. As before, the decisions were made on
held-out objects in leave-one-out cross validation. We found
predicates for which r > 0.5 with p < 0.05 when the system
had at least 10 objects with labels for the predicate on which
to train.

The vision only system led to no predicates correlated
against these physical object features.

The multi-modal system learned to ground predicates
which correlate well to objects’ height and weight. The “tall”
predicate correlates with objects that are higher (r = .521),
“small” (r = �.665) correlates with objects that are lighter,
and “water” (r = .814) correlates with objects that are heav-
ier. The latter is likely from objects described as “water bot-
tle”, which, in our dataset, are mostly filled either half-way
or totally and thus heavier. There is also a spurious correla-
tion between “blue” and weight (r = .549). This highlights
the value of multi-modal grounding, since words like “half-
full” cannot be evaluated with vision alone when dealing with
closed containers that have unobservable contents.

7 Conclusion
We expand past work on grounding natural language in robot
sensory perception by going beyond vision and exploring
haptic, auditory, and proprioceptive robot senses. We com-
pare a vision only grounding system to one that uses these
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Predicate fmm

1 � fvo

1 High Confidence Positive High Confidence Negative
multi-modal system

can 0.857

tall 0.516

half-full .462

yellow .312

vision only system

pink -.3

Table 3: Predicates for which the difference |fmm

1 � fvo

1 | between the multi-modal (mm) and vision only (vo) systems was
greater than or equal to 0.3, both systems had at least 10 objects with labels for that predicate on which to train, and the system
with the worse f1 had at most 5 fewer objects with labels on which to train (to avoid rewarding a system just for having more
training labels). The highest- and lowest-confidence objects for each predicate are shown. The top rows (fmm

1 � fvo

1 > 0) are
decisions from the multi-modal system, the bottom row from the vision only system.

additional senses by employing an embodied robot playing “I
Spy” with many human users. To our knowledge, ours is the
first robotic system to perform natural language grounding
using multi-modal sensory perception through natural inter-
action with human users.

We demonstrate quantitatively, through the number of
turns the robot needs to guess objects described by humans,
as well as through agreement with humans on language predi-
cate labels for objects, that our multi-modal framework learns
more effective lexical groundings than one using vision alone.
We also explore the learned groundings qualitatively, show-
ing words for which non-visual information helps most as
well as when non-visual properties of objects correlate with
learned meanings (e.g. “small” correlates negatively with ob-
ject weight).

In the future, we would like to use one-class classification
methods [Liu et al., 2003] to remove the need for a follow-up
dialog asking about particular predicates applied to an ob-
ject to gather negative labels. Additionally, we would like to
detect polysemy for predicates whose meanings vary across
sensory modalities. For example, the word “light” can refer to
weight or color. Our current system fails to distinguish these
senses, while human participants intermix them. Addition-
ally, in our current system, the robot needs to explore objects
in advance using all of its behaviors. However, for purely
visual predicates like “pink” and other colors, only the look

behavior is necessary to determine whether an object has the
property. We will work towards an exploration system that
uses its learned knowledge of predicates from a game such
as “I Spy” to determine the properties of a novel object while
attempting to use as few exploratory behaviors as necessary.
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