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Abstract

Robotic systems that interact with untrained human users must be able to understand and
respond to natural language commands and questions. If a person requests “take me to Alice’s
office”, the system and person must know that Alice is a person who owns some unique of-
fice. Similarly, if a person requests “bring me the heavy, green mug”, the system and person
must both know “heavy”, “green”, and “mug” are properties that describe an object in the en-
vironment, and have similar ideas about to what objects those properties apply. To facilitate
deployment, methods to achieve these goals should require little initial in-domain data.

We present completed work on understanding human language commands using sparse ini-
tial resources for semantic parsing. Clarification dialog with humans simultaneously resolves
misunderstandings and generates more training data for better downstream parser performance.
We introduce multi-modal grounding classifiers to give the robotic system perceptual contexts
to understand object properties like “green” and “heavy”. Additionally, we introduce and ex-
plore the task of word sense synonym set induction, which aims to discover polysemy and
synonymy, which is helpful in the presence of sparse data and ambiguous properties such as
“light” (light-colored versus lightweight).

We propose to combine these orthogonal components into an integrated robotic system that
understands human commands involving both static domain knowledge (such as who owns
what office) and perceptual grounding (such as object retrieval). Additionally, we propose
to strengthen the perceptual grounding component by performing word sense synonym set
induction on object property words. We offer several long-term proposals to improve such an
integrated system: exploring novel objects using only the context-necessary set of behaviors,
a more natural learning paradigm for perception, and leveraging linguistic accommodation to
improve parsing.
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1 Introduction
As robots become more pervasive in human environments, they must be able to understand ques-
tions and commands from untrained human users in natural language. Consider, for example,

Go to Alice’s office and get the light mug for the chair. (1)

Human utterances like the one above can be translated into semantic meanings. Given a semantic
meaning, a robot can check against its knowledge and perception to resolve references to the real
world and take actions appropriately in response. For example, one semantic interpretation of the
above is

go(the(λx.(office(x) ∧ owns(alice, x)))) ∧ deliver(the(λy.(light2(y) ∧mug1(y))), bob) (2)

Translating human utterances to semantic meanings helps overcome synonymy of commands
and words, compositionality (e.g. “Alice’s office”, “not green”), and ambiguity (e.g. “the chair” for
furniture and “the chair” for the head of an organization). For example, in (1) above, “the chair”
refers to a person, bob, not an object, and “Alice’s office” is understood as a request for some
space satisfying both being an office and belonging to alice.

In order to converse about the environment they share with humans, these robots must gather
and maintain world knowledge through perception. Some world knowledge is ontological, such as
the layout of a building, ownership relations between people and rooms, or assignments between
patients and doctors in a hospital. This information can be created by humans and stored as a
knowledge base accessible for language understanding. For example, in (1), the parse of “Alice’s
office” can be grounded against such a knowledge base to find the room satisfying the given con-
straints. Other world knowledge is perceptual, such as whether an object is a “mug”, where some
movable objects were last seen, and whether an object can be picked up and moved somewhere
else. A service robot in a human environment needs both types of knowledge to understand and
respond to human requests through dialog and actions.

The words used to describe object properties do not form a one-to-one mapping with underlying
predicates. For example, “claret” and “purple” can reasonably refer to the same underlying visual
classifier. Additionally, “light” may refer to either a predicate for light coloration or a predicate for
light weight. Robust robot perception must account for these ambiguous word senses, and should
benefit from identifying synonymous senses. In (1), for example, the system must find the correct
sense of “light”, marked as a second sense in the associated parse (2).

In this proposal, we describe steps towards a system that improves its language understanding
and perception components incrementally through dialog with a human user. Such a system would
have a natural language understanding pipeline comprising semantic parsing, dialog, and percep-
tion. For learning, we discuss: using existing resources like ImageNet (Deng et al. [2009]) together
with small, hand-annotated semantic information (lexicon, ontology) to initialize a system; lever-
aging interactive human-computer games like “I Spy” to further bootstrap robot perception; and
continuous improvement of parsing and perception components once deployed through passive
supervision from human dialog. Such a system would be able to understand and correctly execute
the request in (1) while refining both its parsing and perception components through interaction
with humans over time.
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In the remainder of this document, we first discuss the substantial body of related work on
semantic parsing for understanding human language commands, robot perception, and handling
word senses (Section 2). We continue with a discussion of completed work that uses weak supervi-
sion from human-robot dialog to generate training data for a semantic parser (Section 3). We then
describe completed work that grounds predicates in multi-modal perception, allowing a robot to
move beyond pre-written predicates (“office”, “possesses”) into human descriptor words (“mug”,
“heavy”) (Section 4). We continue in this vein, discussing a methodology for synonym set induc-
tion (Section 5), which we propose to apply to perceptual predicates (Section 6.1). We propose to
integrate all these components into a single robotic system for understanding and grounding hu-
man language requests (Section 6.2). Finally, we discuss longer-term proposals for improving an
integrated system (Section 7) and summarize this proposal (Section 8).

2 Background and Related Work
This proposal concerns the integration of semantic parser learning with robot perception for nat-
ural language understanding without requiring the use of large corpora or initial domain-relevant
training data. Completed work as well as that proposed is situated within the Building-Wide In-
telligence (BWI) project at the University of Texas at Austin1. We use Segway-based robots for
embodied experiments as described in Khandelwal et al. [2014].

We discuss existing work on instructing robots through natural language, a task our proposed
integrated system will do with semantic parsing and perception. We overview relevant work on
learning semantic parsers, including work on inducing training data for semantic parses from
conversations. We discuss language grounding as a task, grounding in machine perception, and
grounding with additional signal from human-robot interactions. Finally, we overview natural lan-
guage understanding tasks involving detecting and handling polysemy and synonymy in language,
which is relevant for our integration goal of using synset induction to improve perceptual ground-
ing performance.

2.1 Instructing Robots in Natural Language
Instructing robots through natural language is essential for the cooperation of humans and robots in
shared environments. Researchers have focused on different aspects of human-robot communica-
tion, including using perception alongside semantic parsing for action understanding and acquiring
new actions from language descriptions in a perceivable environment.

Understanding the mutual environment is essential for human-robot communication. Seman-
tic parsing has been used as the understanding step in tasks like unconstrained natural language
instruction where a robot must navigate an unknown environment (Kollar et al. [2010], Matuszek
et al. [2012b]). Weak supervision can be used to improve these parsers continuously based on
interactions with humans (Artzi and Zettlemoyer [2013b]), similar to the goals of this proposal.
Simpler parsing approaches, such as transforming commands using semantic role labeling to form

1http://www.cs.utexas.edu/˜larg/bwi_web/
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a meaning representation, are less training intensive at the cost of being less robust to language
variation (Bastianelli et al. [2013]). There have been focused efforts to relate to understand human
language commands with respect to a shared environment, such as the SemEval task of Dukes
[2014]. Work on semantic graphs connects environment referents probabilisticly based on both
sensor data and human language (Walter et al. [2013]), while similar work additionally incorpo-
rates knowledge base information and conversation context (Mohan et al. [2013]). One framework
acts to both understand human language requests about objects in the world and generate language
requests regarding the shared environment (Tellex et al. [2014]). Other work performs perception
first to build a model of the shared environment, then performs semantic parsing independently and
uses the perceived world as a knowledge base to resolve predicate information (Yang et al. [2014],
Lu and Chen [2015]).

Recent work angles to translate human instructions directly to grounded behavior like route-
following, skipping parsing in favor of sequence-to-sequence, instruction-to-action mapping using
neural methods (Mei et al. [2016]). Past methods consider information jointly from the instruc-
tional utterance and the perceived environment to perform action understanding as a sequence
(Misra et al. [2014]) or hierarchy (Kuehne et al. [2014]).

Going beyond action understanding, past work has also used semantic representations of utter-
ances together with perception of objects in an environment to learn new manipulation behaviors
from human instruction (She et al. [2014]). Similarly focused situated action learning for naviga-
tion maps human language instructions into executable program-like behaviors that can be used as
modules for hierarchically-composed actions (Meriçli et al. [2014]).

We propose a robotic system that understands requests for actions in natural language that can
include both domain knowledge and perceptual information. This will involve semantic parsing as
part of understanding, but does not include plans for action learning. Instead, we focus on executing
pre-programmed actions (such as delivery and navigation) robust to language variations and use of
perceptual predicates like “heavy mug” to describe objects in the real world.

2.2 Learning Semantic Parsers
A semantic parser, for example Artzi and Zettlemoyer [2013a], is a function from strings of words
to a semantic meaning defined by some ontology. Formally, a parser P : P(W )× LO → S0 takes
in a sequence of word tokens T ∈ P(W ) for W the set of all word tokens and a lexicon LO for
ontology O and outputs a semantic parse s ∈ SO the set of all semantic parses in ontology O.
An ontology O defines a set of atoms and predicates. Atoms are things like items, places, people,
and true/false boolean values. Predicates are functions on atoms that return other atoms (such
as true and false values). The lexicon L is a data structure that contains information about how
individual word tokens relate to that ontology, for example that token “alice” refers to ontological
atom alice or that possessive marker “’s” invokes predicate owns (see Figure 1). A semantic
parse is a meaning representation in terms of ontological predicates and lambda expressions. The
meaning of “bring alice a coffee”, for example, could be represented as

bring(alice, coffee)
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NP : the(λx.(office(x) ∧ owns(alice, x)))

N : office

office

NP/N : λP.(the(λx.(P (x) ∧ owns(alice, x))))

(NP/N)\NP : λy.λP.(the(λx.(P (x) ∧ owns(y, x))))

’s

NP : alice

Alice

Figure 1: A CCG-driven λ-calculus parse of the expression “Alice’s office”.

A lambda expression allows meaning to abstract over sets of ontological atoms, predicates, and
truth values. The meaning of “go to alice’s office” could be represented as

go(λx.(the(office(x) ∧ owns(alice, x))))

In this case, the predicate the will pick out some unique atom x that is both an office and belongs
to alice, returning that atom as the argument of the go command.

Learning a semantic parser to perform these translations is non-trivial, but using statistical pars-
ing with compositional semantics makes it feasible. Many works, including our own, frame com-
positional semantics through combinatory categorial grammar (CCG) (Steedman and Baldridge
[2011]). CCG adds a syntactic category to each token of input sequence t and then hierarchically
combines those categories to form a syntax tree. These syntax categories are typically a small set
of basic, like N (noun) and NP (noun phrase), together with compositional entries, like PP/NP
(a prepositional phrase formed after consuming a noun to the right). In a compositional seman-
tics framework, the input lexicon L contains entries mapping word tokens to not just semantic
meanings but also CCG syntax categories. Semantic meanings can be composed according to the
hierarchy established by the CCG syntactic parse to form a semantic parse that spans the entire
token sequence. Figure 1 demonstrates this for “Alice’s office”.

Given data in the form of paired token sequences with their semantic parse trees, a statistical
parser can be trained to produce those parses given novel sequences (Berant et al. [2013], Liang
and Potts [2015]). However, annotating token sequences with entire parse trees is costly, and many
works instead train with latent trees, requiring only the final desired semantic form (tree root)
(Liang et al. [2011]). Some works go beyond parser training and additionally incorporate ontology
matching, which removes the restriction that the lexicon use predicates that exactly match the
domain (Kwiatkowski et al. [2013]).

The number of parameters to be learned in a semantic parser becomes large quickly even in
a restricted domain, and annotating natural language with semantic forms is an expensive human
effort. Consequently, some work in semantic parser learning has focused on overcoming data spar-
sity during training, such as inducing training examples automatically from existing conversational
data (Artzi and Zettlemoyer [2011]).

In our completed work (Section 3), we build on that idea to gather parsing training examples
from dialog. We propose to use semantic parsing as an understanding step in a robotic system capa-
ble of grounding language referents in world knowledge as well as perceptual information. Adding
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perceptual information means we will have confidence from both the parser about a semantic form
and also from the perceptual system in how likely that parse is given the objects in the real world.
In Section 6.2, we propose novel contributions regarding this potential feedback loop.

2.3 Language Grounding with Machine Perception
Commanding robots with language requires both semantic understanding and a subsequent ground-
ing step where referents in the real world are connected to language used to describe them. Map-
ping from referring expressions such as “the blue cup” to an object referent in the world is an ex-
ample of the symbol grounding problem (Harnad [1990]). Symbol grounding involves connecting
internal representations of information in a machine to real world data from its sensory perception.
Grounded language learning bridges these symbols with natural language. Comparative studies
have established that joint representations of language that consider some form of perception out-
perform text-only representations of word meaning (Silberer and Lapata [2012]).

Early work used vision together with speech descriptions of objects to learn grounded seman-
tics (Roy and Pentland [2002]). Recently, most work has focused on combining language with
visual information. For grounding referring expressions in an environment, many learn perceptual
classifiers for words given some pairing of human descriptions and labeled scenes (A. Lazaridou
and Baroni. [2014], Sun et al. [2013]). Some approaches additionally incorporate language models
into the learning phase (Krishnamurthy and Kollar [2013], FitzGerald et al. [2013], Matuszek et al.
[2012a]). Some researchers have translated images into a distribution over possible descriptions,
attempting to solve the problem in the other direction first, then doing query similarity in that
textual space (Guadarrama et al. [2015]).

Recent work bypasses any explicit language understanding in favor of neural methods, such as
Hu et al. [2016], who localize an object in a given image given a target query in natural language. In
a related task, other recent work aims to resolve ambiguities like prepositional phrase attachment
in natural language by using associated images to gather additional information (Christie et al.
[2016]).

There has been some work on combining language with sensory modalities other than vision,
such as audio (Kiela and Clark [2015]). Additionally, researchers have explored the use of haptic
and proprioceptive feedback from a robot arm to automatically learn to order objects by weight,
height, an width (Sinapov et al. [2016]). Other works bypass perception and work with knowledge
base structures directly, learning to map streams of text references of world states knowledge base
entries describing those states (Liang et al. [2009]).

In our completed work (Section 4), we introduce multi-modal perception for a robotic system
using vision together with haptics, audio, and proprioception. We propose to integrate that percep-
tion with an embodied system that accepts and understands natural language commands. Thus, we
will use multi-modal perception to ground language predicates like “heavy” used by humans in
descriptions of objects in the environment.
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2.4 Language Grounding with Human-Robot Interaction
Machine perception is not only necessary for human-robot interaction; it can also be improved
by that interaction. A number of researchers have focused on solving the symbol grounding prob-
lem for situated robots by leveraging their interactions with the very humans they are working to
understand.

One line of existing work focuses on gathering data from human demonstration and speech
to learn language grounding. These use an existing corpus of human demonstration as input. One
work uses unscripted human descriptions of objects together with their deictic hand gestures to
train a grounding system for identifying referent objects (Matuszek et al. [2014]). Similar work
used only speech from demonstrations from humans describing objects to achieve one-shot learn-
ing of object attributes and names (Perera and Allen [2013]). Other researchers have focused on
learning unary properties of objects (“red”) together with relational (“taller”) and differentiating
(“differ by weight”) properties of objects by exploring them with a robotic arm provided properties
and relational labels as human supervision after that exploration (Sinapov et al. [2014b]).

Closer to the work in this proposal, some researchers gather data for perceptual grounding us-
ing interaction with a human interlocutor. This combination of dialog and perception affords new
opportunities for smart interactions, such as the robot asking questions targeting weaknesses in
its understanding (as in our Thomason et al. [2016]). Early work on learning to ground object at-
tributes and names using dialog framed the data gathering phase as a “20 Questions”-style game
(Vogel et al. [2010]) where a robot tried to guess a target object by asking narrowing questions
(e.g. “is it red?”). Contemporary to this, other research focused on acquiring the same attribute and
name perceptual understandings through a command-, rather than game-based environment (Dindo
and Zambuto [2010]). Researchers have carried this idea to more complete systems with both per-
ceptual grounding and action learning capability for identifying and manipulating objects, where
the agent can request more information about uncertain concepts (Mohan et al. [2012]). Similar
to other work that learns from demonstration and description offline, Kollar et al. [2013] studies
the joint acquisition of perceptual classifiers and language understanding in an interactive setting.
Focused efforts have begun studying one-shot object attribute learning (Krause et al. [2014]).

More recent work aims to address perceptual mismatch between humans and robots, since our
sensory systems differ, and delineations present in the one may be undetectable in the other (Liu
et al. [2014], Liu and Chai [2015]). In the vein of game-based data gathering, researchers have
framed learning attribute classifiers for objects as an “I Spy” game in which a human describes a
target object among several options to a robot and confirms when the correct one is identified (Parde
et al. [2015]). Other object identification work has focused on integrating language with gesture,
bypassing perception in favor of language co-occurrences with particular objects (Whitney et al.
[2016]).

In completed work, we bootstrap our perception system using an interactive “I Spy” game
(Section 4). We propose to introduce continuous learning to the perceptual component of a robotic
system. As the robot has dialog interactions with humans involving requests like “bring bob the
heavy mug”, once the correct object has been identified and delivered, that object can serve as
a positive example for “heavy” and “mug” perceptual classifiers. This is similar to the existing
feedback loop in our completed work, where dialog confirmations allow us to generate additional
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semantic parser training data from earlier conversational misunderstandings (Section 3).

2.5 Polysemy and Synonymy in Language Understanding
Semantic understanding in language is complicated by words that have multiple, distinct meanings,
and by sets of words with the same underlying meaning. A sense inventory for words, such as
WordNet (Fellbaum [1998]), structures word meaning into senses which can be taken on by one
or more words. Words that refer to the same sense are called synonymous. A word which refers to
multiple meanings across its different senses is polysemous. Sets of word senses are called synsets.

Word sense induction (WSI) is the task of determining whether an individual word type, such as
“bat”, is polysemous, and what its underlying senses are. Given a set of word senses and a word in
context, the task of word sense disambiguation (WSD) is to choose what sense the word expresses
in the given context (Navigli [2009]). WSD has applications across language understanding, since
the multiple meanings of a word can be arbitrarily different and unrelated.

Traditional work on WSI discovers senses for a word by clustering the textual contexts in which
it occurs (Yarowsky [1995], Pedersen and Bruce [1997], Schutze [1998], Bordag [2006], Navigli
[2009], Manandhar et al. [2010], Reisinger and Mooney [2010], Di Marco and Navigli [2013]).
The multiple meanings for “bat” can be recognized as two clusters: one a set of contexts with
words like “cave” and “flew”; and another with words like “baseball” and “strike”. Other notions
of context can be used to discover word senses, such as images the word is used to describe. Some
previous work has recognized the value of perceptual word senses for tasks such as image-segment
labeling (Barnard and Johnson [2005]) and image retrieval from text queries (Lucchi and Weston
[2012]).

Past work has used visual information to disambiguate word senses, but assumes the senses
of each word are known in advance (Barnard and Johnson [2005]). Using both textual and visual
information to perform WSI has been done, but on datasets where every input word is known in
advance to be polysemous (Loeff et al. [2006], Saenko and Darrell [2008]).

Recent work performs co-clustering in separate textual and visual spaces, treating textual clus-
ters as word senses and visual clusters as iconographic senses (viewpoint changes, color differ-
ences, etc.) that offer a finer-grained distinction than word senses (Chen et al. [2015]).

We propose to use polysemy and synonymy detection to induce synsets for predicates people
use to describe objects to our robotic system. This should allow us to discover, for example, the
polysemous meanings of “light” (weight and color). Additionally, it will create stronger classifiers
for rare words like “claret” by combining them with more common words like “purple”, mapping
these surface forms to the same underlying synset-based classifier.

3 Learning to Interpret Natural Language Commands through
Human-Robot Dialog

Intelligent robots need to understand requests from naive users through natural language. Here
we discuss a dialog agent for mobile robots that understands human instructions through seman-
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Figure 2: This abridged conversation took place when the system had access to only the initial,
small data (no additional training examples yet).

tic parsing, actively resolves ambiguities using a dialog manager, and incrementally learns from
human-robot conversations by inducing training data from user paraphrases. Figure 2 gives an
example conversation when the dialog agent had only slim initial training data for language un-
derstanding. The clarification questions in this conversation let the agent learn that “calender”
and “planner” mean “calendar”. This completed work allows us to translate utterances into logical
forms, and is the first step to resolving (1) in our proposed work to integrate parsing and perception
in an embodied robotic system. Full details are available in Thomason et al. [2015].

3.1 Methods
A human user first gives a command to our dialog agent, then the agent can ask clarification
questions (Figure 3). The agent maintains a belief state about the user’s goal. When it is confident
in this state, the dialog ends and the goal is passed on to the robot or other underlying system.

The agent produces a semantic form for each user utterance. We use the University of Washing-
ton Semantic Parsing Framework (SPF) (Artzi and Zettlemoyer [2013a]), a state-of-the-art system
for mapping natural language to meaning representations using λ-calculus and combinatory cate-
gorial grammar (CCG).

To get the system “off the ground” we initialize the parser with a small seed lexicon and then
train it on a small set of supervised utterance/logical-form pairs. We use a seed lexicon of 105
entries (40 of which are named entities) and a training set of only 5 pairs.

The agent maintains a belief state about the user goal with three components: action, patient,
and recipient. Each component is a histogram of confidences over possible assignments. The
agent supports two actions: walking and bringing items, so the belief state for action is two
confidence values in [0, 1]. recipient and patient can take values over the space of entities
(people, rooms, items) in the knowledge base as well as a null value ∅.
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Figure 3: Dialog agent workflow processing user command “go to the office”.

Multiple meaning hypotheses may be generated from a user utterance. Consider:
expression go to the office
logical form action(walk) ∧ recipient(walk, the(λy.(office(y))))

For n offices, this logical form has n groundings producing different meanings (see Figure 3).
The agent can be confident that walking is the task, but its confidence in the n meanings for
recipient is weakened. We use a confidence update based on the number k of hypotheses gen-
erated to track the agent’s confidence in its understanding of each component of the request. For
a user-initiative (open-ended) statement like this one, the agent updates all components of the belief
state. For each candidate hypothesisHi,c, with 0 ≤ i < k, c ∈ {action,patient,recipient},
the agent updates:

conf(c = Hi,c)← conf(c = Hi,c)
(

1− α

k

)
+
α

k
Where 0 < α < 1 is the threshold of confidence above which the candidate is accepted without
further clarification. The confidence in unmentioned arguments is decayed to wash out previous
misunderstandings. For Ac, the set of all candidates of component c, Āc = Ac \ ∪i{Hi,c} are
unmentioned. For each H̄j,c ∈ Āc, the agent updates:

conf(c = H̄j,c)← γconf(c = H̄j,c)

where 0 ≤ γ ≤ 1 is a decay parameter.
System-initiative responses are associated with a particular requested component. These can

take the form of confirmations or prompts for components. For the former, user affirmation will
update the confidence of all mentioned values to 1. For the latter, the positive and negative updates
described above operate only on the requested component.

The agent uses a static dialog policy π operating over a discrete set of states composed of
action, patient, recipient tuples together with the role to be clarified. The agent’s con-
tinuous belief state S is reduced to a discrete state S ′ by considering the top candidate arguments
Tc for each component c:

Tc = argmaxt∈Ac
(conf(c = t))
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Table 1: Representative subset of our policy π for mapping discrete states S ′ to questions.
S ′ π(S ′)

(action,
patient, Role Request Response Initiative
recipient)
(unknown Sorry I couldn’t understand that. Could you
unknown, all reword your original request? user
unknown)
(unknown, What action did you want me to take
Tpatient, action involving Tpatient and Trecipient? system
Trecipient)
(walk,∅, recipient Where should I walk? system
unknown)
(bring,
unknown, patient What should I bring to Trecipient? system
Trecipient)
(walk,∅, confirmation You want me to walk to Trecipient? system
Trecipient)
(bring,
Tpatient, confirmation You want me to bring Tpatient to Trecipient? system
Trecipient)

Each component c of S ′ is selected by choosing either Tc or “unknown” with probability conf(c =
Tc). The component c with the minimum confidence is chosen as the role to request. If “unknown”
is chosen for every component, the role requested is “all”. If “unknown” is chosen for no compo-
nent, the role requested is “confirmation”. Some policy responses are given in Table 1. If each of
the confidence values inspected during this process exceeds α, the conversation concludes. In all
experiments, parameters α = 0.95, γ = 0.5 were used.

Our agent induces parsing training examples from conversations with users to learn new lexical
items. It uses dialog conclusions and explicit confirmations from users as supervision. The seman-
tic parser in Figure 2 does not know the misspelling “calender”, the word “planner”, or number
“5”. When the user requests “item in slot 5” be delivered, it only confidently detects the action,
“bring”, of the user’s goal. The recipient, “Dave Daniel”, is clarified by a system-initiative
question. When the agent asks for confirmation of the action, the user does not deny it, increas-
ing the agent’s confidence. While clarifying the patient, the user implicitly provides evidence
that “calender”, “planner”, and “calendar” are the same. When two or more phrases are used in the
same sub-dialog to clarify an argument, the eventual logical form selected is paired with the earlier
surface forms for retraining.

User-initiative responses generate similar alignments. One users’ conversation began “please
report to room 3418”, which the agent could not parse because of the new word “report”. The agent
understood the re-worded request “go to room 3418”, and the former sentence was paired with the
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logical form of this latter for training. When the retraining procedure explored possible semantic
meanings for “report”, it found a valid parse with the meaning of “go”, “S/PP : λP.(action(walk)∧
P (walk))”, and added it to the parser’s lexicon. This meaning says that “report” should be followed
by a prepositional phrase specifying a target for the walking action.

3.2 Experiments
We evaluated the learning agent in two contexts. We used Mechanical Turk to gather data from
many diverse users asked to give the agent goals for an office environment. These users interacted
with the agent through a web browser, but user expectations, frustrations, and lexical choices with
a web browser versus a physical robot will likely differ. Thus, we also implemented an interface
for the agent on a Segway-based robot platform (Segbot) operating on a floor of our university’s
computer science building.

We split the possible task goals into train and test sets. In both contexts, users performed a nav-
igation and a delivery task. For the 10 possible navigation goals (10 rooms), we randomly selected
2 for testing. For the 50 possible delivery goals (10 people × 5 items), we randomly selected 10
for testing (80%/20% train/test split). The test goals for Mechanical Turk and the Segbot were the
same, except in the former we anonymized the names of the people on our building’s floor.

We ended all user sessions with a survey: “The tasks were easy to understand” (Tasks Easy);
“The robot understood me” (Understood); and “The robot frustrated me” (Frustrated). For the
Segbot experiment, we also prompted “I would use the robot to find a place unfamiliar to me
in the building” (Use Navigation) and “I would use the robot to get items for myself or others”
(Use Delivery). Users answered on a 5-point Likert scale: “Strongly Disagree”(0), “Somewhat
Disagree”(1), “Neutral”(2), “Somewhat Agree”(3), “Strongly Agree”(4). Users could also provide
open comments.

Mechanical Turk Experiments. The web interface shown in Figure 2 was used to test the agent
with many users through Mechanical Turk. We performed incremental learning in batches to fa-
cilitate simultaneous user access. We assigned roughly half of users to the test condition and the
other half to the train condition per batch. After gathering train and test results from a batch, we
retrained the parser using the train conversation data. We repeated this for 3 batches of users, then
we gathered results from a final testing batch in which there was no need to gather more training
data. We used user conversations for retraining only when they achieved correct goals.

Navigation: Users were asked to send the robot to a random room from the appropriate train
or test goals with the prompt “[person] needs the robot. Send it to the office where [s]he works”.
The referring expression for each person was chosen from: full names, first names, nicknames, and
titles. In this task, the corresponding office number was listed next to each name, and the “items
available” were not shown.

Delivery: Users were asked to tell the robot to assist a person with the prompt “[person] wants
the item in slot [number]”. The (person, item) pairs were selected at random from the appropriate
train or test goals. To avoid linguistic priming, the items were given pictorially (Figure 2).

For each train/test condition, we gathered responses from an average of 48 users per batch.
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Figure 4: Left: Average Mechanical Turk survey responses across the four test batches. Right:
Mean user turns in Mechanical Turk dialogs where the correct goal was reached. Means in under-
lined bold differ significantly (p < 0.05) from the batch 0 mean.

Figure 4 (Left) shows the mean survey-question responses across test batches. We used an unpaired
Welch’s two-tailed t-test to determine whether these means differed significantly. By batch 2, users
felt that the agent understood them more than in batch 0. By batch 3, they felt that it frustrated them
less. The dialog agent became more understandable and likable as a result of the semantic parser’s
learning, even though it had never seen the test-batch users’ goals.

To determine whether learning reduced the number of utterances (turns) a user had to provide
for the system to understand their goal, we counted user turns for dialogs where the user and agent
agreed on the correct goal (Figure 4 (Right)). Learning successfully reduced the turns needed to
understand multi-argument delivery goals.

With respect to users’ free-form feedback, in testing batch 0, several enjoyed their conversa-
tions (“This was fun!! Wish it were longer!”). Several also commented on the small initial lexicon
(“It was fun to try and learn how to talk to the robot in a way it would understand”). The responses
by testing batch 3 had similarly excited-sounding users (“I had so much fun doing this hit!”). At
least one user commented on the lexical variation they observed (“The robot fixed my grammatical
error when I misspelled ‘calender’ Which was neat”). In addition to learning misspelling correc-
tions and new referring expressions, the agent learned to parse things like “item in slot n” by
matching n to the corresponding item and collapsing the whole phrase to this meaning.

Segbot Experiments. The agent was integrated into a Segway-based robot platform (Segbot) as
shown in Figure 5 (Left) using the Robot Operating System (ROS) (Quigley et al. [2009]). The
robot architecture is shown in Figure 5 (Right). Users interacted with the agent through a graphical
user interface by typing in natural language. The agent generated queries to a symbolic planner
formalized using action language BC (Lee et al. [2013]) from user goals.

For testing, users were given one goal from the navigation and delivery tasks, then filled out the
survey. The task prompts included the directory panels used in the Mechanical Turk experiments
pairing names and office numbers and showing items available to the robot for delivery (Figure 2).

We evaluated our agent’s initial performance by giving 10 users one of each of these goals (so
each delivery test goal was seen once and each navigation test goal was seen 5 times). Users were
allowed to skip goals they felt they could not convey. We refer to this group as Init Test.
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Figure 5: Left: Robot platform (Segbot) used in experiments. Right: Segbot architecture, imple-
mented using Robot Operating System (ROS).

We then allowed the agent to perform incremental learning for four days in our office space.
Students working here were encouraged to chat with it, but were not instructed on how to do so
beyond a panel displaying the directory information and a brief prompt saying the robot could
only perform “navigation and delivery tasks”. Users in test conditions did not interact with the
robot during training. After understanding and carrying out a goal, the robot prompted the user for
whether the actions taken were correct. If they answered “yes” and the goal was not in the test set,
the agent retrained its semantic parser with new training examples aligned from the conversation. 2

We evaluated the retrained agent as before. The same testing goal pairs were used with 10 new
users. We refer to this latter set as Trained Test.

During training, the robot understood and carried out 35 goals, learning incrementally from
these conversations. Table 2 compares the survey responses of users and the number of goals
users completed of each task type in the Init Test and Trained Test groups. We use the
proportion of users having completed goals in each task as a metric for dialog efficiency. For
navigation goals, Init Test had an average dialog length of 3.89, slightly longer than the 3.33
for Train Test.

We note that there is significant improvement in user perception of the robot’s understanding,
and trends towards less user frustration and higher delivery-goal correctness. Though users did not
significantly favor using the robot for tasks after training, several users in both groups commented
that they would not use guidance only because the Segbot moved too slowly.

4 Learning Multi-Modal Grounded Linguistic Semantics by Play-
ing “I Spy”

Grounded language learning bridges words like ‘red’ and ‘square’ with robot perception. The vast
majority of existing work in this space limits robot perception to vision. We build perceptual mod-
els that use haptic, auditory, and proprioceptive data acquired through robot exploratory behaviors
to go beyond vision. Our system learns to ground natural language words describing objects using

2View a video demonstrating the learning process on the Segbot at: https://youtu.be/FL9IhJQOzb8.
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Table 2: Average Segbot survey responses from the two test groups and the proportion of task goals
completed. Means in bold differ significantly (p < 0.05). Means in italics trend different (p < 0.1).

Init Test Trained Test

Survey Question Likert [0-4]
Tasks Easy 3.8 3.7
Robot Understood 1.6 2.9
Robot Frustrated 2.5 1.5
Use Navigation 2.8 2.5
Use Delivery 1.6 2.5
Goals Completed Percent
Navigation 90 90
Delivery 20 60

Figure 6: Left: the robot guesses an object described by a human participant as “silver, round, and
empty.” Center: a human participant guesses an object described by the robot as “light,” “tall,” and
“tub.” Right: objects used in the “I Spy” game divided into the four folds, from fold 0 on the left
to fold 3 on the right.

supervision from an interactive human-robot “I Spy” game.
While corpora like ImageNet (Deng et al. [2009]) can provide a large set of labeled images to

learn classifiers for words and noun phrases, properties like “heavy” are grounded in non-visual
space. Annotating a similarly large body of objects with non-visual properties and gathering robot
perception or even features (like weight) about them is costly and does not generalize across dif-
ferent robotic platforms. We propose the “I Spy” game as a paradigm to get a perceptual grounding
system “off the ground” since it is fun for human users and requires less labor than straight annota-
tion. This completed work provides a blueprint for perceptual grounding of the predicates “light”
and “mug” from the earlier example (1). We later propose to continuously refine this bootstrapped
perception in a fully integrated robotic system that uses dialog to clarify misunderstandings.

In this game, the human and robot take turns describing one object among several, then trying
to guess which object the other has described (Figure 6 (Left, Center)). We demonstrate that our
multi-modal system for grounding natural language outperforms a traditional, vision-only ground-
ing framework by comparing the two on the “I Spy” task. Full details are available in Thomason
et al. [2016].
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grasp lift lower

drop press push

Figure 7: The behaviors the robot used to explore the objects. In addition, the hold behavior (not
shown) was performed after the lift behavior by simply holding the object in place for half a second.

4.1 Methods
The robot used in this study was a Kinova MICO arm mounted on top of a custom-built mobile
base which remained stationary during our experiment. The robot’s perception included joint effort
sensors in each of the robot arm’s motors, a microphone mounted on the mobile base, and an
Xtion ASUS Pro RGBD camera. The set of objects used consisted of 32 common household items
including cups, bottles, cans, and other containers, shown in Figure 6 (Right). Some of the objects
contained liquids or other contents (e.g., coffee beans) while others were empty. Contemporary
work gives a more detailed description of this object dataset (Sinapov et al. [2016]), but we briefly
describe the exploration and modalities below.

Prior to the experiment, the robot explored the objects using the methodology described by Sinapov
et al. [2014a], and the dimensionality of the raw auditory, haptic, and proprioceptive data were re-
duced comparably (final dimensionality given in Table 3). In our case, the robot used 7 distinct
actions: grasp, lift, hold, lower, drop, push, and press, shown in Figure 7. During the execution of
each action, the robot recorded the sensory perceptions from haptic (i.e., joint efforts) and auditory
sensory modalities. During the grasp action, the robot recorded proprioceptive (i.e., joint angular
positions) sensory information from its fingers. The joint efforts and joint positions were recorded
for all 6 joints at 15 Hz. The auditory sensory modality was represented as the Discrete Fourier
Transform computed using 65 frequency bins.

In addition to the 7 interactive behaviors, the robot also performed the look action which pro-
duced three different kinds of sensory modalities: 1) an RGB color histogram of the object using
8 bins per channel; 2) Fast point feature histogram (fpfh) shape features (Rusu et al. [2009]) as
implemented in the Point Cloud Library (Aldoma et al. [2012]); and 3) deep visual features from
the 16-layer VGG network (Simonyan and Zisserman [2014]). The first two types of features were
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Behavior Modality
color fpfh vgg

look 64 308 4096
audio haptics proprioception

grasp 100 60 20
drop, hold,
lift, lower, 100 60
press, push

Table 3: The number of features extracted from each context, or combination of robot behavior and
perceptual modality.

computed using the segmented point cloud of the object while the deep features were computed
using the 2D image of the object.

Thus, each of the robot’s 8 actions produced two to three different kinds of sensory signals.
Each viable combination of an action and a sensory modality is a unique sensorimotor context. In
our experiment, the set of contexts C was of size 2× 3 + 6× 2 = 18. The robot performed its full
sequence of exploratory actions on each object 5 different times (for the look behavior, the object
was rotated to a new angle each time). Given a context c ∈ C and an object i ∈ O, let the set X c

i

contain all five feature vectors observed with object i in context c.
For each language predicate p, a classifier Gp was learned to decide whether objects possessed

the attribute denoted by p. This classifier was informed by context sub-classifiers that determined
whether p held for subsets of an object’s features.

The feature space of objects was partitioned by context. Each context classifierMc, c ∈ C was a
quadratic-kernel SVM trained with positive and negative labels for context feature vectors derived
from the “I Spy” game. We defined Mc(X c

i ) ∈ [−1, 1] as the average classifier output over all
observations for object i ∈ O (individual SVM decisions on observations were in {−1, 1}).

Following previous work in multi-modal exploration (Sinapov et al. [2014b]), for each context
we calculated Cohen’s Kappa κc ∈ [0, 1] to measure the agreement across observations between
the decisions of the Mc classifier and the ground truth labels from the “I Spy” game.3 Given these
context classifiers and associated κ confidences, we calculate an overall decision, Gp(i), for i ∈ O
for each behavior b and modality m as:

Gp(i) =
∑
c∈C

κcMc(X c
i ) ∈ [−1, 1] (3)

The sign of Gp(i) gives a decision on whether p applies to i with confidence |Gp(i)|.
For example, a classifier built for ‘fat’∈ P could give Gfat(wide-yellow-cylinder) =

0.137, a positive classification, with κgr,au = 0.515 for the grasp behavior’s auditory modality, the
most confident context. This context could be useful for this predicate because the sound of the
fingers’ motors stop sooner for wider objects.

3We use κ instead of accuracy because it better handles skewed-class data than accuracy, which could be decep-
tively high for a classifier that always returns false for a low-frequency predicate. We round negative κ up to 0.
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Language predicates and their positive/negative object labels were gathered through human-
robot dialog during the “I Spy” game. The human participant and robot were seated at opposite
ends of a small table. A set of 4 objects were placed on the table for both to see (Figure 6). We
denote the set of objects on the table during a given game OT .

Human Turn. On the participant’s turn, the robot asked him or her to pick an object and
describe it in one phrase. We used a standard stopword list to strip out non-content words from the
participant’s description. The remaining words were treated as a set of language predicates, Hp.
The robot assigned scores S to each object i ∈ OT on the table.

S(i) =
∑
p∈Hp

Gp(i) (4)

The robot guessed objects in descending order by score (ties broken randomly) by pointing at them
and asking whether it was correct. When the correct object was found, it was added as a positive
training example for all predicates p ∈ Hp for use in future training.

Robot Turn. On the robot’s turn, an object was chosen at random from those on the table.
To describe the object, the robot scored the set of known predicates learned from previous play.
Following Gricean principles (Grice [1975]), the robot attempted to describe the object with pred-
icates that applied but did not ambiguously refer to other objects. We used a predicate score R that
rewarded describing the chosen object i∗ and penalized describing the other objects on the table.

R(p) = |OT |Gp(i
∗)−

∑
j∈OT \{i∗}

Gp(j) (5)

The robot choose up to three highest scoring predicates P̂ to describe object i∗, using fewer if
S < 0 for those remaining. Once ready to guess, the participant touched objects until the robot
confirmed that they had guessed the right one (i∗).

The robot then pointed to i∗ and started a follow-up dialog in order to gather both positive and
negative labels for i∗. In addition to predicates P̂ used to describe the object, the robot selected up
to 5 − |P̂ | additional predicates P̄ . P̄ were selected randomly with p ∈ P \ P̂ having a chance
of inclusion proportional to 1 − |Gp(i

∗)|, such that classifiers with low confidence in whether or
not p applied to i∗ were more likely to be selected. The robot then asked the participant whether
they would describe the object i∗ using each p ∈ P̂ ∪ P̄ . Responses to these questions provided
additional positive/negative labels on object i∗ for these predicates.

4.2 Experiments
In our “I Spy” task,4 the human and robot take turns describing objects from among 4 on a tabletop
using attributes (Figure 6). As an example, we suggested participants describe an object as “black
rectangle” as opposed to “whiteboard eraser.” Additionally, participants were told they could han-
dle the objects physically before offering a description, but were not explicitly asked to use non-
visual predicates. Once participants offered a description, the robot guessed candidate objects in
order of computed confidence until one was confirmed correct by the participant.

4Video demonstrating the “I Spy” task and robot learning: https://youtu.be/jLHzRXPCi w
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In the second half of each round, the robot picked an object and then described it with up to
three predicates. The participant was again able to pick up and physically handle objects before
guessing. The robot confirmed or denied each participant guess until the correct object was chosen.

“I Spy” gameplay admits two metrics. The robot guess metric is the number of turns the
robot took to guess what object the participant was describing. The human guess metric is the
complement. Using these metrics, we compare the performance of two “I Spy” playing systems
(multi-modal and vision-only). We also compare the agreement between both systems’ predicate
classifiers and human labels acquired during the game.

During the course of the game, the robot used its RGBD camera to detect the locations of the
objects and subsequently detect whenever a human reached out and touched an object in response
to the robot’s turn. The robot could also reach out and point to an object when guessing.

To determine whether multi-modal perception helps a robot learn grounded language, we had
two different systems play “I Spy” with 42 human participants. The baseline vision only system
used only the look behavior when grounding language predicates. Our multi-modal system used
the full suite of behaviors and associated haptic, proprioceptive, and auditory modalities shown in
Table 3 when grounding language predicates.

Data Folds. We divided our 32-object dataset into 4 folds. For each fold, at least 10 human
participants played “I Spy” with both the vision only and multi-modal systems. Four games were
played by each participant. The vision only system and multi-modal system were each used in 2
games, and these games’ temporal order was randomized. Each system played with all 8 objects
per fold, but the split into 2 groups of 4 and the order of objects on the table were randomized.

For fold 0, the systems were undifferentiated and so only one set of 2 games was played by
each participant. For subsequent folds, the systems were incrementally trained using labels from
previous folds only, such that the systems were always being tested against novel, unseen objects.
This contrasts prior work using the “I Spy” game (Parde et al. [2015]), where the same objects
were used during training and testing.

Human Participants. Our 42 participants were undergraduate and graduate students as well as
some staff at our university. At the beginning of each trial, participants were shown an instructional
video of one of the authors playing a single game of “I Spy” with the robot, then given a sheet of
instructions about the game and how to communicate with the robot. In every game, participants
took one turn and the robot took one turn. To avoid noise from automatic speech recognition, a
study coordinator remained in the room and transcribed the participant’s speech to the robot from
a remote computer. This was done discretely and not revealed to the participant until debriefing
when the games were over.

Results. To determine whether our multi-modal approach outperformed a traditional vision only
approach, we measured the average number of robot guesses and human guesses in games played
with each fold of objects. The systems were identical in fold 0 since both were untrained. In the
end, we trained the systems on all available data to calculate predicate classifier agreement with
human labels.

Robot guess. Figure 8 (Left) shows the average number of robot guesses for the games in
each fold. Because we had access to the scores the robot assigned each object, we calculated the
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Metric System
vision only multi-modal

precision .250 .378+
recall .179 .348*
F1 .196 .354*

Figure 8: Left: Average expected number of guesses the robot made on each human turn with stan-
dard error bars shown. Bold: significantly lower than the average at fold 0 with p < 0.05 (unpaired
Student’s t-test). *: significantly lower than the competing system on this fold on participant-by-
participant basis with p < 0.05 (paired Student’s t-test). Right: Average performance of predicate
classifiers used by the vision only and multi-modal systems in leave-one-object-out cross valida-
tion. *: significantly greater than competing system with p < 0.05. +: p < 0.1 (Student’s un-paired
t-test).

expected number of robot guesses for each turn. For example, if all 4 objects were tied for first, the
expected number of robot guesses for that turn was 2.5, regardless of whether it got (un)lucky and
picked the correct object (last)first.5

After training on just one fold, our multi-modal approach performs statistically significantly
better than the expected number of turns for guessing (the strategy for the untrained fold 0 system)
for the remainder of the games. The vision only system, by contrast, is never able to differenti-
ate itself significantly from random guessing, even as more training data becomes available. We
suspect the number of objects is too small for the vision only system to develop decent models of
many predicates, whereas multi-modal exploration allows that system to extract more information
per object.

Human guess. Neither the vision only nor multi-modal system’s performance improves on
this metric with statistical significance as more training data is seen. This result highlights the
difficulty of the robot’s turn in an “I Spy” framework, which requires not just good coverage of
grounded words (as when figuring out what object the human is describing), but also high accuracy
when using classifiers on new objects. Context classifiers with few examples could achieve confi-
dence κ = 1, making the predicates they represented more likely to be chosen to describe objects.
It is possible that the system would have performed better on this metric if the predicate scoring
function R additionally favored predicates with many examples.

Predicate Agreement. Training the predicate classifiers using leave-one-out cross validation
over objects, we calculated the average precision, recall, and F1 scores of each against human
predicate labels on the held-out object. Table 8 (Right) gives these metrics for the 74 predicates
used by the systems.6

52.5 is the expected number for 4 tied objects because the probability of picking in any order is equal, so the
expected turn to get the correct object is 1+2+3+4

4 = 10
4 = 2.5

6There were 53 predicates shared between the two systems. The results are similar for a paired t-test across these
shared predicates with slightly reduced significance.
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Across the objects our robot explored, our multi-modal system achieves consistently better
agreement with human assignments of predicates to objects than does the vision only system.

Correlations to physical properties. To validate whether the systems learned non-visual prop-
erties of objects, for every predicate we calculated the Pearson’s correlation r between its decision
on each object and that object’s measured weight, height, and width. As before, the decisions were
made on held-out objects in leave-one-out cross validation. We found predicates for which r > 0.5
with p < 0.05 when the system had at least 10 objects with labels for the predicate on which to
train.

The vision only system led to no predicates correlated against these physical object features.
The multi-modal system learned to ground predicates which correlate well to objects’ height

and weight. The “tall” predicate correlates with objects that are higher (r = .521), “small” (r =
−.665) correlates with objects that are lighter, and “water” (r = .814) correlates with objects that
are heavier. The latter is likely from objects described as “water bottle”, which, in our dataset,
are mostly filled either half-way or totally and thus heavier. There is also a spurious correlation
between “blue” and weight (r = .549). This highlights the value of multi-modal grounding, since
words like “half-full” cannot be evaluated with vision alone when dealing with closed containers
that have unobservable contents.

5 Multi-Modal Word Synset Induction
Words in natural language can be polysemous (a single word with multiple meanings) as well as
synonymous (multiple words with the same meaning). Word sense induction attempts to determine
the senses of a polysemous word type by clustering the contexts in which it occurs.

Most prior work in this task has used linguistic context to determine senses. Some works use
visual context to ground senses in perceptual data, and still others use both. We go beyond word
sense induction to the task of word sense synonym set (synset) induction. Given a noun phrase and
an associated set of images with textual context, we perform polysemy and synonymy detection
through clustering to obtain synsets. We evaluate our approach by measuring how well we recover
membership in gold standard sets of senses in ImageNet (Deng et al. [2009]). We find that pol-
ysemy detection improves precision metrics, while synonymy detection improves recall metrics.
When polysemy and synonymy detection are chained, a mixture of both textual and visual features
of word observations gives better hypothesized synsets than textual or visual features alone.

We first perform WSI, detecting polysemy in words to form senses, and then group induced
senses together into synsets. Such synsets could be used in WSD tasks, and additional information
about each word sense is made available by grouping it with other, synonymous senses.

Understanding a word or phrase can be done in both textual and visual space. For instance,
the two readings of “bat” are both textually and visually distinct. When modeling polysemy and
synonymy, we perform multi-modal synset induction, considering both textual and visual contexts
for words.

Resources like ImageNet contain visual representations of synsets. However, ImageNet re-
quired extensive manual annotation from humans to construct, is limited to its current coverage,
and is and only available in English. Our methodology enables the automatic construction of an
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ImageNet-like resource from a collection of images and associated texts, and could be employed
for domain-specific or non-English synset induction. This completed work establishes a method-
ology for resolving the ambiguity of “light” in (1).

5.1 Methods
We select a subset of synsets from ImageNet that: 1) are leaves in the WordNet hierarchy (i.e.
words with no hyponyms); 2) are not used to train the VGG network (Simonyan and Zisserman
[2014]); 3) have associated images; 4) are embedded in pages discovered through reverse image
search with text; and 5) together represent polysemous and synonymous noun phrases as well as
those that were neither. We note that (5) makes our task strictly harder than structured word sense
disambiguation tasks such as Manandhar et al. [2010] and some previous word sense induction
datasets (Loeff et al. [2006], Saenko and Darrell [2008]), because not all our noun phrases have
multiple senses. Table 4 gives the number of noun phrases which participated in polysemous and
synonymous relationships among the 6,710 synsets S we extracted from ImageNet.

syn poly both neither
4019 804 1017 2586

Table 4: Number of noun phrases that are synonymous, polysemous, both, or neither in the subset
of ImageNet synsets we consider.

For each image in each synset, we extract visual features, perform reverse image search to find
and extract web text from pages in which the image is embedded, and extract textual features from
those pages. We deconstruct these gold-standard synsets to associate images directly with noun
phrases, making a monosemous (single-sense per word) baseline. We use polysemy-detecting WSI
followed by synonymy detection to reconstruct synsets from raw images and associated text, first
breaking noun phrases into multiple senses, then clustering those senses to form synsets.

Specifically, we associate individual noun phrases with subsets of the images/texts in the Ima-
geNet synsets to which they belong, mixing together multiple senses. In this way, the noun phrase
“kiwi” is associated with images and texts of both the fruit and the bird. Figure 9 demonstrates this
conversion from ImageNet synsets to mixed-sense noun phrases. Our task is then to recover the
synsets by detecting clusters of sense meaning in textual and visual space, such as the three sets
of images representing meanings of “kiwi” (polysemy detection, illustrated in Figure 10 (Left)),
then merging those senses together to form hypothesized synsets (synonymy detection, illustrated
in Figure 10 (Right)). This induces not just word senses but whole synsets from observed images
and text associated with noun phrases.

We take the synsets V used to train the VGG network as training data. For a subset of the
training images, we performed reverse image search and scraped the text of webpages on which
those images appeared. We performed latent semantic analysis (LSA) on tf-idf vectors of bag-of-
words representations of this text to create a 256-dimensional latent textual feature space.

For each synset s ∈ S, we downloaded up to 100 images per noun phrase associated with s in
ImageNet and extracted deep visual features as the activations of the 4,096-dimensional, penulti-
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Figure 9: ImageNet synsets are composed of noun phrases, each of which may describe multiple
synsets. We divide the images of a synset randomly among noun phrases, then collapse all images
associated with each noun phrase to form an inventory of mixed sense noun phrases.

mate later of the 16-layer VGG network (Simonyan and Zisserman [2014]), giving a set of image
observations Is. For each image, we performed reverse image search to gather a corpus of text
from web pages on which that image was embedded, then created a textual feature representation
for the image by embedding the text of those pages as a single document in our LSA space. This
gives a set of textual observations Ts parallel to Is for each synset s.

For each synset s, we have observations Os = 〈Is, Ts〉. Every synset s is composed of noun
phrases. We denote the union over all such noun phrases for all s ∈ S asNP . For each noun phrase
np ∈ NP in the dataset, we associated image observations with np from each synset in which it
participated by dividing each Os evenly among participating noun phrase (Figure 9). We refer to
noun phrase observations as Onp.

After this process, Onp for a polysemous np contains observations from multiple senses. Ad-
ditionally, the observations Os for a synset with multiple synonymous noun phrases have been
split across those noun phrases. Our task is to try to recover the original Os observations at the
synset level starting with the mixed-sense Onp observations at the noun phrase level. To do this,
we perform multi-modal synset induction.

Discovering polysemy in noun phrase np in this context is equivalent to dividing Onp into k
disjoint sets Onp,k representing k senses of np (Figure 10 (Left)). Given these senses, discovering
synonymy among noun phrase senses involves joining Onpi,ki and Onpj ,kj noun phrase senses that
refer to the same concept (e.g. “Chinese gooseberry” and “kiwi” the fruit) to form final, recon-
structed synsets r ∈ R for R the set of hypothesized synsets (Figure 10 (Right)).

Our goal is to reconstruct the original synsets for our subset of ImageNet using the perceptual
and textual information extracted from images now associated with potentially ambiguous noun
phrases. We performed reconstructions using only textual features, only visual features, and an
equally-weighted representation of both textual and visual features. Our reconstruction effort takes
place in two phases: polysemy detection and synonymy detection. We evaluation our reconstruc-
tion using two metrics: the v-measure and the paired f-measure, both used in the SemEval-2010
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Mixed-Sense Noun Phrase Data
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kiwi vine sense 0

Reconstructed Synsets

Figure 10: Left: In polysemy detection, clustering within each mixed noun phrase sense yields
some number of induced senses per noun phrase. Right: In synonymy detection, clustering is
performed over the induced word senses produced during polysemy detection. Senses are clustered
together to construct synsets.

Word Sense Induction and Disambiguation task (Manandhar et al. [2010]).

Polysemy detection. We use a non-parametric k-means algorithm that selects a number of clus-
ters k for each set of noun phrase observations Onp based on the gap statistic (Tibshirani et al.
[2001]).

The gap of a clustering of data D with k clusters is the average difference between the within-
dispersion of clusterings over uniform data and the within-dispersion of the clustering of D with
k clusters. Reference datasets B are generated with points uniformly distributed within the range
of the features in D. k-means clustering is done for each b ∈ B and the within-dispersion measure
Wk,b is calculated as

Wk,b =
k∑

r=1

Dr

2nr

with Dr the sum of pairwise distances for all points in cluster r and nr the number of points
belonging to cluster r in reference dataset b. Data D is then clustered into k clusters and Wk is
calculated similarly on the result. We use cosine distance to measure the space between points and
generate |B| = 100 reference datasets for each set of input data D. The gap at k clusters is then
calculated as

gap(k) =
1

B

∑
b∈B

log(Wkb − log(Wk))

Given this statistic, the optimal k∗ is estimated as the smallest k such that

gap(k) ≥ gap(k + 1)− sk+1

For sk+1 = sk
√

1 + 1
|B| and sk the standard deviation of the Wk,b values for b ∈ B. Intuitively, by

selecting k∗ in this way, we get the largest number of clusters that reduce the within-dispersion of
the clustering by more than chance (see Tibshirani et al. [2001] for more details).
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Additionally, we enforce the constraint that no induced sense (cluster of observations) has
fewer than 20 observations. This constraint is estimated from the training set V , which contains
an average of 131.24 observations per cluster with standard deviation 110.86, so that less than 20
observations per cluster is more than one standard deviation away from the expected mean. This
constraint is applied post-hoc, merging degenerate clusters into their nearest neighbor.

Thus, for a given noun phrase n, we cluster the observations Onp into k∗ senses, using the gap
statistic above to determine the number of clusters k∗. This gives us observation sets Onp,ki for
ki ∈ [0, k∗). Together, all these observation sets form a set of induced senses G.

Synonymy detection. In synonymy detection, for each induced sense in G we compute a mean
m to form a collection of mean vectors M . We then compute the pairwise cosine distance between
all mean vectors and perform greedy merges of the nearest means to form synsets R.

We continue merging clusters until an estimated K synsets is reached. We estimate K from the
average number of word senses per synset in the training set V . We enforce a constraint that no
synset contain more than 32 distinct word senses from G. This constraint is also estimated from
training data V , where 32 was the maximum number of word senses in a single synset.

Membership in each final synset r ∈ R is the union of observations of the senses g ∈ G whose
observations were merged (e.g. r = ∪igi).

When discovering polysemy, we want the minimum number of word senses that explain the
instances we observe, while in synonymy we only want to join together highly similar senses into
synsets. We note that using the gap statistic to estimate an optimal number of clusters for synonymy
detection would be inappropriate because we know k∗ is on the order of |G|. That is, we know the
number of synsets is closer to the number of word senses than to 1. The gap statistic is best applied
when looking for a minimum k∗, but further sensible divisions of k∗ well-separated clusters may
exist contained within larger clusters (Tibshirani et al. [2001]).

Evaluation via v-measure. The v-measure (Rosenberg and Hirschberg [2007]) of a reconstructed
set of synsets is the harmonic mean of its homogeneity and completeness with respect to the gold
synsets. High homogeneity means the reconstructed synsets mostly contain observations that cor-
respond to a single gold synset, while high completeness means each gold synset’s observations are
assigned to the same reconstructed synset. These are defined in terms of the class entropies H(S)
and H(R) of the gold-standard ImageNet synsets S and hypothesis reconstructed synsets R and
their conditional entropies H(S|R) and H(R|S). Specifically, homogeneity h(S,R) is calculated
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as follows:

H(S) =−
|S|∑
i=1

∑|R|
j=1 aij

N
log

∑|R|
j=1 aij

N

H(S|R) =−
|R|∑
j=1

|S|∑
i=1

aij
N

log
aij∑|S|
k=1 akj

h(S,R) =

{
1 H(S) = 0

1− H(S|R)
H(S)

H(S) > 0

with aij the number of observations of gold synset Si that ended up in hypothesized synset Rj and
N the total number of observations in the dataset. Completeness c(S,R) is defined as follows:

H(R) =−
|R|∑
j=1

∑|S|
i=1 aij
N

log

∑|S|
i=1 aij
N

H(R|S) =−
|S|∑
i=1

|R|∑
j=1

aij
N

log
aij∑|R|
k=1 aik

c(S,R) =

{
1 H(R) = 0

1− H(R|S)
H(R)

H(R) > 0

The v-measure is then calculated as follows:

v(S,R) =
2 ∗ h(S,R) ∗ c(S,R)

h(S,R) + c(S,R)

Evaluation via paired f-measure. The paired f-measure is the harmonic mean of the paired
precision and recall between the gold synsets and the hypothesized reconstructions. Rather than
count membership overlap between two sets, paired f -measure allows us to compare membership
overlap between sets of sets.

Specifically, we count the number of observation pairs (oi, oj) that are members of both synset
s and hypothesized synset r to get an overlap score between each s ∈ S and r ∈ R. There are

(|s|
2

)
observation pairs for each s and

(|r|
2

)
observation pairs for each r, across all such s and r comprising

C(S) gold pairs and C(R) reconstructed pairs, respectively. Then paired precision p(S,R), recall
r(S,R), and f -measure f(S,R) is defined as

p(S,R) =
|C(S) ∩ C(R)|
|C(R)|

r(S,R) =
|C(S) ∩ C(R)|
|C(S)|

f(S,R) =
2 ∗ p(S,R) ∗ r(S,R)

p(S,R) + r(S,R)
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5.2 Experiments
We consider several conditions when reconstructing synsets for our task. We perform polysemy
and synonymy detection with textual features only, visual features only, and an equal weight of
textual and visual features given when calculating distance between observations. We examine the
effects of performing only polysemy detection (equivalent to many past WSI works) as well as
polysemy followed by synonymy detection.

Quantitative Results. Table 5 shows the results for the polysemy-detecting WSI step. We note
that across all modalities, the homogeneity and paired precision increase after performing poly-
semy detection to split noun phrases into distinct senses.

features k h c v p r f
monosemous 7922 0.968 0.943 0.955 0.694 0.519 0.594

text 11535 ∗0.980 0.905 0.941 ∗0.725 0.381 0.499
vis 18913 ∗0.991 0.853 0.917 ∗0.839 0.209 0.335

text+vis 15395 ∗0.975 0.874 0.922 ∗0.803 0.275 0.409

Table 5: Number of hypothesized word senses (k), homogeneity (h), completeness (c), v-measure
(v), paired precision (p), recall (r), and f -measure (f) of our induced word senses with textual
features only, visual features only, and both when performing polysemy detection. The monose-
mous synsets are the sense-unaware baseline of mixed-sense noun phrases treated as monosemous
(e.g. one sense of “kiwi” which contains instances of people, fruits, and birds). ∗: higher than
corresponding baseline.

Table 6 shows the results for the synonymy step constructs hypothesis synsets R. We give
results both for detecting synonymy in each modality given the polysemy detection results in that
modality as well as given the “gold”, perfectly-detected word senses. Giving the gold senses as
input allows us to examine the synonymy step’s performance in isolation, while giving the output
of polysemy detection gives us the performance of the entire pipeline.

We note that given the gold senses, synonymy detection across all modalities improves the com-
pleteness and paired recall of the hypothesized synsets. Additionally, the combined text plus vi-
sion full pipeline achieves the highest v-measure and paired f -measure compared to the uni-modal
pipelines, though this does not hold if the synonymy step starts with imperfect induced senses.
This shows that the multi-modal pipeline steps work together, with the synonymy step overcoming
some errors produced in the polysemy step, more effectively than the uni-modal pipelines.

Qualitative Results. We look at the reconstructed synsets for the multi-modal text plus vision
pipeline. Returning to our “kiwi” example, we find the hypothesized synsets containing instances
from “kiwi”, shown in Figures 11. The reconstructed sets appear to correspond to: the whole fruit;
the bird; close-up pictures of the cut-open fruit; the fruit cut in half for eating; and people.
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|G| features k h c v p r f
gold |G| 9755 1.0 0.945 0.972 1.0 0.519 0.683

gold text 5476 0.895 ∗0.966 0.929 0.259 ∗0.722 0.382
gold vis 5476 0.941 ∗0.997 0.968 0.473 ∗0.909 0.622
gold text+vis 5476 0.936 ∗0.995 0.965 0.441 ∗0.904 0.593

monosemous 7922 0.968 0.943 0.955 0.694 0.519 0.594
text text 6476 0.855 0.909 0.881 0.173 0.482 0.255
vis vis 10618 0.904 0.875 0.889 0.334 0.343 0.339

text+vis text+vis 8643 0.893 0.900 0.896 0.290 0.456 0.354

Table 6: The metrics and synset evaluation sets of Table 5 for synonymy detection over resulting
synsets, with k now the number of hypothesized synsets. The senses in |G| were clustered using
the features listed, either textual only, visual only, or both. The gold set |G| is a perfect word-sense
induction from the baseline noun phrases. It represents the upper bound of the polysemy detection
step and thus the optimal input for the synonymy detection step. ∗: higher than corresponding
baseline.

The “people” set is particularly interesting and highlights why evaluating with ImageNet as a
gold standard makes performance gains difficult. It is unreasonable to expect any algorithm to be
able to distinguish, for example, photos of Croatian from Ukranian peoples, or people who could
be described as “energizers” from those that could not. The inclusion of pictorial representations
of humans described as “energizers’ or “inferior’ in ImageNet is noise any algorithm for synset
induction will have difficulty overcoming. The reconstruction method instead grouped all these
senses of noun phrases referring to people together in one large synset. We suspect that a human
evaluation of ImageNet synsets versus our reconstructed ones would find that ours were at least as
sensible as ImageNet’s, if not more, and plan this evaluation as proposed work.

Comparing to the uni-modal pipelines, using text alone produced two senses for “kiwi”: the
fruit (correctly synonymous with “kiwi vine” and “Chinese gooseberry”); and the bird and person
mixed together with a sense of “pen” (baby pen). Using vision alone produced two monosemous
synsets for the bird sense; membership in a humans synset (including “creole” and “preceptor”);
and five distinct fruit senses, two correctly synonymous with “kiwi vine”/“Chinese gooseberry”,
and another mistakenly combined with “honeydew melon” and “Persian melon” due to visual
similarity.

A multi-modal approach in which visual and textual features are considered together outper-
forms uni-modal approaches on the combined task of polysemy detection followed by synonymy
detection on the induced (imperfect) senses.

6 Short-Term Proposed Work
Our existing works on improving semantic parsing over time through dialog (Section 3), ground-
ing natural language predicates in robot perception (Section 4), and inducing synsets from words
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Figure 11: Our multi-modal pipeline’s hypothesized synsets containing the observations labeled
with the noun phrase “kiwi”. Observation images are shown alongside the noun phrase label they
had in the baseline, monosemous system on which we performed polysemy and synonymy detec-
tion to arrive at these synsets. We note that “gopher’ appears in WordNet as a native Minnesotan.
The words “energizer’ (synonymous with “vitaliz(s)er” and “animator”) and “inferior” appear as
adjectives in WordNet that can describe people.

associated with observations (Section 5) run in orthogonal, but complimentary, directions. All
completed work points towards an integrated, embodied system comprised of dialog, semantic
parsing, and perception. Our short term proposed work primarily aims to realize this integrated
system, enabling a robot to understand (1) while simultaneously improving its parsing and percep-
tion components through the interaction with the human interlocutor.

We also intend to produce synsets from the natural language predicates used to describe objects
in Section 4, using methodology inspired by Section 5. Forming synsets from these multi-modal
predicates should allow us to tease out polysemous predicates senses such as those for “light”, as
well as build stronger classifiers by combining the data of related predicates, such as “round” and
“cylindrical”.

Given predicate synset classifiers, we can develop a fully integrated robotic system that consists
of a dialog agent, a semantic parser, a knowledge base, and a multi-modal perceptual grounding
system. This integration should allow both parser strengthening through dialog supervision, as in
Section 3, semantic re-ranking via perceptual confidence, and perception strengthening through
dialog-based feedback.

6.1 Synset Induction for Multi-modal Grounded Predicates
In our experiments with multi-modal, grounding linguistic semantics (Section 4), we discovered
that people use some polysemous words (e.g. “light”) as well as effectively synonymous words
(e.g. “round” and “cylindrical”) when describing objects. By applying a synset induction algo-
rithm to the predicates learned from the “I, Spy” game of Thomason et al. [2016], we could tease
apart polysemous word senses and strengthen perceptual classifiers by combining synonymous
predicates’ data.
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This kind of learning would be helpful in a deployed system partly because it can learn domain-
specific polysemy and synonymy based on data. For example, in the office domain, the command
“Fetch me a pen” may mean a robot should bring a writing pen or that it should bring a whiteboard
pen. The polysemy step should be able to separate this domain senses of “pen”. The synonymy step
should subsequently merge the paper-relevant sense with a sense of “pencil” and the whiteboard-
relevant sense with a sense of “marker”.

In completed work, every observation is associated with a unique label (Thomason and Mooney
[2016]). This means each pair of an image and the text of webpages it appeared on was associated
with a single noun phrase, such as “kiwi” or “Chinese grapefruit”. However, in the “I, Spy” game,
and in robot perception in general, an observation can be associated wtih many labels. For exam-
ple, the same object may be described as “blue”, “cylindrical”, and “bottle”. A baseline for this
proposed work would simply duplicate each object to exist as an instance for every label and run
the synset induction algorithm as it exists. However, because perceptual contexts offer many more
than the two modalities observed in completed work, there are certainly more interesting ways to
frame the problem with multi-modality and multi-label objects.

6.2 Grounding Semantic Parses against Knowledge and Perception
In completed work, we trained a semantic parsing system with only bootstrapping initial data
by using dialog with human users as passive supervision to generate more parser training data
(Section 3). The parses produced were grounded against a knowledge base of facts regarding the
surrounding office space. Knowledge base predicates in the semantic parser required querying
against this information, while other types of predicates (such as and) could be handled logically.
Proposed work would augment these parses with perceptual predicates grounded not by querying
the knowledge base but by consulting sensory information and learned perceptual synset classifiers.

In this way, a person could specify a command like “Bring me a black eraser from Peter’s
office”. The knowledge base predicate owns is still necessary to resolve “Peter’s office”, while
perceptual predicates black and eraser will require the robot to evaluate items in the target of-
fice that satisfy these criteria. Several challenges need to be overcome to accomplish this integrated
system. However, the integration also allows for novel information feedback loops.

Predicate Induction. In basic semantic parsing, the ontology of predicates natural language
words can map into is fixed. When a new word is seen during parser training, part of the parser
training task is to find the semantic form composed of these fixed ontological predicates that
matches the word. In a system with perceptual predicates, however, new words may not mean
something in the existing ontology, some new perceptual classifier that needs to be learned.

Thus, we propose to perform predicate induction during parsing on some new words that be-
have like perceptual predicates. Synset induction, as described in Section 6.1, could be performed
intermittently on predicate classifiers to collapse some new induced predicates into existing classi-
fiers (synonymy) as well as flag some words as polysemous during parsing since they map to two
distinct perceptual contexts. The parsing step will be relieved of synonymy and polysemy detec-
tion for words describing perceptual predicates (because this will be handled by synset induction),

31



but must still identify words that trigger predicate induction (for example, finding those that are
behaving as adjectives and nouns).

Semantic Re-ranking from Perception Confidence. A user utterance can be parsed into many
candidate semantic forms. Probabilistic semantic parsers, such as the one used in our completed
work, attempt to produce the best form first based on learned heuristics. The first form produced is
not always correct, but the correct form may be found in some k-length beam from the parser.

We propose to maintain a list of k candidate forms for an utterance from the semantic parser.
When evaluating explorable objects, the robot can use perceptual classifiers from all candidate
forms and decide whether some object satisfies the constraints of a given form. Confidence in
whether a candidate object is correct will be a combination of the parser’s confidence in a form and
perception’s confidence in that form’s predicates’ application to the candidate. Figure 12 demon-
strates this for “the light mug” and two candidate objects, where the predicates the parser is most
confident in are not the ones corroborated by the environment, but re-ranking corrects this.

Figure 12: Candidate parses of “the light mug” contain the two senses of “light” (color and weight).
Only the second sense is corroborated by the available objects in the environment, and the highest
combined score (parser + perception classifiers) achievable is for the second, less confident parse
together with object 1.

After confirming with the requesting human that the correct object was delivered, the semantic
form that triggered the choice can be paired with the utterance to form a new training example for
the parser, in the fashion of completed work (Section 3).

Perception Training Data from Dialog. In addition to the opportunities for parser training data
induction from dialog after finding a target object, an integrated system can provide feedback from
dialog to perception. Once a target object for some action has been identified and confirmed by
a human user as correct, that object can be added as a positive example for the predicates used
to describe it in the semantic form chosen. Thus, in the above example, once the right mug is
identified, the perceptual classifiers for “mug”, “green”, and the color-sense of “light” gain an
additional positive example—the mug brought to the person.

6.3 Related Works in Progress.
Two directions of proposed work are currently being explored primarily by colleagues of the au-
thor. These methods could be incorporated into the fully integrated robotic system.
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Improving Speech Recognition through Parsing. Completed work uses a text-based interface
between the user and embodied agent. A more natural interaction would allow human users to
verbalize commands and responses to the agent. However, off-the-shelf speech recognition systems
typically have high word-error rates unless trained extensively on individual user voices. Even
small word-error rates can render utterances unparseable.

Work is under progress to add a speech recognition layer to our integrated system that utilizes
the parser to improve speech recognition accuracy (Rodriquez et al. [2016]). Given an utterance, a
speech recognizer can produce a beam of k candidate transcriptions. Each transcription can be run
through the semantic parser. The transcription that is both parseable and gives the has the highest
weighted confidence score between the speech recognizer and parser will be chosen as the correct
transcription. This transcription can be paired with the audio signal to generate a new training pair
for the speech recognizer. In this way, the speech recognition module can be improved over time
as the embodied agent converses with human users.

Learning Dialog Policy. Completed work uses a static, hand-coded dialog policy to resolve
confusion the agent has when taking commands from human users. This policy centers around
slot-filling for commands and their known arguments, done by estimating a discrete belief about
the user goal from an otherwise continuous one.

Work to replace this with a POMDP-based policy (Young et al. [2013]) that considers a contin-
uous belief state about the user goal is currently under review (Padmakumar et al. [2016]). Such a
policy should converge to user goals more quickly by accurately taking an expected shortest dialog
path from the current understanding of the user’s goal to a complete and confident understanding.

7 Long-Term Proposed Work
While our short-term proposals focus on the realization of an integrated system, these longer-term
proposals aim to improve various aspects of that system once it exists. Each of these proposals is
orthogonal and complementary, such that the implementation of each should improve the perfor-
mance of the system as a whole.

Intelligent Exploration of Novel Objects. In the proposed integrated system, every exploration
behavior is performed on novel objects in order to build a complete perceptual feature represen-
tation. These behaviors are slow to perform and cause wear on the robotic arm. If a person has
requested “a pink marker”, performing the full suite of exploratory behaviors is also unnecessary.

We propose to explore novel objects using only the behaviors necessary to ground perceptual
predicates appearing in a given user utterance. Thus, for “a pink marker”, the system should consult
the predicate classifiers for “pink” and “marker” and identify the perceptual contexts (discussed in
Section 4) that provide the most information to these classifiers. In this example, the look behavior
followed by relevant visual feature extraction is likely sufficient to identify whether an object
can be described with both “pink” and “marker”. By contrast, asking for “the heavy mug” would
require the robot to lift candidate objects.
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Positive-unlabeled Learning for Perception. In completed work on perception (Section 4), per-
ceptual classifiers are implemented as linear combinations of decisions from support vector ma-
chines operating in each perceptual context. SVMs draw a decision boundary in a feature space
given labeled positive and negative examples. We add a stage to the “I, Spy” game where we ex-
plicitly ask human users whether predicates apply to a particular object. This allows us to gather
negative examples alongside the natural positive examples that arise from identifying a described
object.

We propose to replace the SVMs with positive-unlabeled classifier methods (Liu et al. [2003],
Elkan and Noto [2008]). Some of these methods include streaming information, more like the
additional examples our system will receive over time from conversational feedback (Chang et al.
[2016]). In this way, when building classifiers for concepts like “heavy”, we will only need positive
examples of heavy objects. This will remove the need for gathering negative examples during
dialog with humans.

Leveraging Accommodation. In most natural language understanding work, understanding user
utterances is done by tweaking algorithms in the system to better understand what is spoken. How-
ever, the overarching goal of an NLU is often to communicate effectively with a human partner.
Effective communication can come from more robust understanding, but it can also come from
better input utterances from the human partner. In particular, if a user adapts her speech so that the
system can better understand, effective communication is still achieved. In a vanilla dialog system,
the user has no way to know what words or syntactic constructions the system understands best.

Past work by the author has explored the connection between user learning and tutoring dialog
success (Thomason et al. [2013]) as it relates to accommodation. Accommodation is a conversa-
tional phenomenon in which interlocutors converge to shared referring expressions, lexical and
syntactic choices, cadence, volume, and other vocal variations (Lakin et al. [2003], Gravano et al.
[2015], Lubold et al. [2015]).

We propose to leverage accommodation to improve natural language understanding in our inte-
grated system. When responding to a human user, rather than using template-based conversational
responses, our dialog agent will consider a range of possible utterances and rank those utterances
based on how well the semantic parser can understand them. Previous work has used a similar
strategy to influence lexical choices (Lopes et al. [2013]). Through accommodation, we can expect
human users to adopt the lexical and syntactic choices of the robotic agent as the conversation
proceeds. By choosing to speak an utterance that the semantic parser understands most easily to
the user, the system tacitly encourages the user to make lexical choices the parser itself will better
understand.

8 Conclusion
For humans and robots to communicate effectively in shared environments like homes, offices, and
factories, robots must be able to understand and respond to natural language from humans. We
present completed work on using semantic parsing together with dialog to bootstrap and iteratively
improve language understanding through conversations with humans, learning to ground predicates

34



like “light” in multi-modal perceptual space for a robot with an arm, and inducing word sense
synonym sets.

We propose to improve predicate grounding by word sense synonym set induction to address
ambiguous predicates and improve recognition performance for rare predicates with more common
synonyms. We propose to then integrate semantic parsing, dialog, and perception into an embodied
robotic system that improves its semantic and perceptual understandings over time with passive
supervision from dialog with human users.

We then cover a series of orthogonal directions for future work to improve the overall integrated
robotic system. These include intelligently exploring new objects and using positive-unlabeled
learning for perceptual grounding, and leveraging accommodation to improve semantic recogni-
tion.
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