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Abstract

For most people, watching a brief video and describing what happened (in
words) is an easy task. For machines, extracting the meaning from video pixels
and generating a sentence description is a very complex problem. The goal of my
research is to develop models that can automatically generate natural language
(NL) descriptions for events in videos. As a first step, this proposal presents
deep recurrent neural network models for video to text generation. I build on
recent “deep” machine learning approaches to develop video description mod-
els using a unified deep neural network with both convolutional and recurrent
structure. This technique treats the video domain as another “language” and
takes a machine translation approach using the deep network to translate videos
to text. In my initial approach, I adapt a model that can learn on images and
captions to transfer knowledge from this auxiliary task to generate descriptions
for short video clips. Next, I present an end-to-end deep network that can jointly
model a sequence of video frames and a sequence of words. The second part of
the proposal outlines a set of models to significantly extend work in this area.
Specifically, I propose techniques to integrate linguistic knowledge from plain
text corpora; and attention methods to focus on objects and track their inter-
actions to generate more diverse and accurate descriptions. To move beyond
short video clips, I also outline models to process multi-activity movie videos,
learning to jointly segment and describe coherent event sequences. I propose
further extensions to take advantage of movie scripts and subtitle information
to generate richer descriptions.
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Chapter 1

Introduction

The ability to describe videos in natural language (NL) enables many important applications
such as content-based video retrieval, video segmentation and segment indexing, textual
summarization of video clips, video description for the visually impaired, and automated
video surveillance. The past year has seen a marked increase in work on natural-language
image description and a growing interest in video description. We develop the first fully
deep model for video captioning. These models have achieved promising results on the task
of generating natural language descriptions of short video clips. Yet there is very limited
existing work on solving the problem at scale, to recognize and capture interactions between
objects, particularly for large vocabulary, “in-the-wild” video collections, and long (possibly
movie-length) sequences. In this proposal, I develop and outline improved methods for
natural-language video description by combining the latest techniques in computer vision
and natural language processing (NLP) and leveraging transformative advances in “deep”
machine learning.

Most prior work on NL-description of visual data focus on static images [106, 30, 53,
58, 54, 105]. In the last year alone, several deep neural network based methods [25, 15, 44,
47, 55, 65, 80, 98] announced breakthrough results on the task of describing images with
a single sentence. In contrast, video description has seen far less attention, and many of
the recent deep neural network approaches to captioning do not address the problem of
detecting sequences of activities and describing them in full sentences. Existing research in
video description has focused on narrow domains with limited vocabularies of objects and
activities [49, 56, 45, 7, 24, 45, 20, 19, 80, 108]. Progress in open-domain video description
has been difficult in part due to large vocabularies and very limited training data consisting
of videos with associated descriptive sentences. Another serious obstacle has been the
lack of rich models that can capture the joint dependencies of a sequence of frames and a
corresponding sequence of words.

My completed research takes a step towards addressing some of these challenges. De-
scribing activities depicted in video requires integrating both visual and linguistic capa-
bilities, as seen from the example in Figure 1.1. In previous work [91], we first focus on
addressing the issue of describing open-domain videos with large vocabularies by integrat-
ing linguistic knowledge with visual recognition. Using a two step approach, we build
visual classifiers to recognize several hundred objects, activities and scenes in videos. Then,
to determine salient objects and activities, we combine knowledge mined from text cor-
pora with confidences from the visual classifiers using a factor graph to estimate the best
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Description: A monkey pulls a dog’s tail and is chased by the dog.

Figure 1.1: Describing activities depicted in videos require integration of both visual and
linguistic capabilities. This example presents frames from a YouTube video clip and a
description that a good model should generate.

subject-verb-object-scene (SVOP) tuple that can be used to describe a short video clip.

In recent work [95] we use deep recurrent neural networks based on Long Short Term
Memory (LSTM, [39]) to learn what is worth describing directly from video and sentence
pairs. Additionally, we overcome the limitation of reduced video training data, by trans-
ferring knowledge from the data rich auxiliary task of image captioning to further improve
results on the video description task. In [96], we extend this deep video captioning frame-
work further, by proposing a more robust model that can capture the joint dependencies of
a sequence of frames and a corresponding sequence of words.

In this proposal, I first develop extensions to incorporate prior linguistic knowledge into
deep video captioning models. I propose multiple techniques to integrate knowledge from
plain text corpora to improve video description. Second, current video captioning models
do not explicitly track and capture interactions between objects. To address this, I propose
to use attention models [5, 68, 103] that can learn where to look, to attend to objects and
activities in videos to generate a more accurate description of the event in the video. Next,
to move beyond single sentence descriptions of short video clips, I outline models that can
process multi-activity videos learning to simultaneously segment and describe coherent
event sequences. Additionally, I propose to investigate schemes that use movie scripts and
subtitles to generate more accurate descriptions of scenes in movies.

Organization

The remainder of this work is organized in three chapters: Chapter 2 presents back-
ground, related work and our initial approach on integrating language and vision using
factor graphs to generate descriptions; Chapter 3 discusses our recent recurrent neural
network approaches to video captioning; Chapter 4 details my proposed work presenting
short term extensions to incorporate statistical language models and models of attention,
and then proceeds to discuss long-term efforts to address multi-activity videos and further
extensions to improve DVS descriptions.



Chapter 2

Background and Related Work

In this chapter, I first review early research on integrating language and vision to generate
image and video description. Next, I present some initial models for video description.
Then I will briefly describe joint prior work on integrating language statistics with visual
detection confidences to generate descriptions of videos.

2.1 Background: Language and Vision

Both natural language processing (NLP) and computer vision (CV) have made great
strides in recent years [43, 31], leveraging transformative advances in machine learning and
the availability of very large datasets. Now, the two fields are rapidly encroaching upon
each other: language is increasingly focused on “grounding” meaning in perception, and
vision is exploiting linguistic ontologies and trying to “tell a story” from imagery, relating
objects, activities, people, and scenes. Until last year, there was a small but growing body
of work at the intersection of NLP and CV on topics like connecting words to pictures
[8, 9, 22], describing images in natural language (NL) [30, 53, 58], and comprehending NL
instructions in terms of robot perception and action [66, 90, 52, 36].

This past year, saw a dramatic increase in image captioning and retrieval works [25, 98,
44, 47, 29, 64] owing to the release of large image captioning datasets MSCOCO [59] and
Flickr30k [40]. More recently there have also been a number of works in image question
answering [62, 1, 77, 109]. In comparison, video description has received far less attention.

2.2 Video Description

Large-vocabulary video activity description presents unique challenges, including mod-
eling dynamics and actor-action-object relationships from limited training data, as well as
dealing with polysemy and ambiguity. Results on activity description in video have been
restricted to a small set of actions and objects[45, 56, 49, 24, 50, 20, 19]. Work on large-
vocabulary description has focused mostly on nouns/adjectives, specifically, early work on
videos considered tagging videos with metadata [3] and clustering captions and videos
[41, 71, 101] for retrieval tasks.

Work on video description used hand-crafted templates, grammars, and/or rules, work
in fairly constrained domains. For example, [7, 108] produce sentential descriptions for
short videos but only recognizes a limited set of (5-10) objects and activities and uses a
manually engineered grammar to generate a fairly restricted range of descriptive sentences.



2.3. Integrating Language and Vision using Factor Graphs

Several previous methods for generating sentence descriptions divided the task into two
parts. The first is the content generation where they identify the most salient objects that
need to be described. The second is surface realization where they generate a sentence based
on the identified content. For example, [35, 50] use a two stage pipeline that first identifies
the semantic content (subject, verb, object) and then generates a sentence based on a tem-
plate. In [50] they first train individual classifiers to identify candidate objects, actions and
scenes. They then use an n-gram language model to determine the best subject-verb-object
for describing a video. This is then used to generate a sentence. [50] used a limited set
of videos containing a small set of 20 entities. [35] was the first to describe “in-the-wild”
videos with large vocabularies. showed an advantage of using linguistic knowledge only
for the case of “zero shot activity recognition,” in which the appropriate verb for describing
the activity was never seen during training.

2.3 Integrating Language and Vision using Factor Graphs

In our prior work [91], we address the task of video description by first recognizing
objects, activities and scenes in the video; and then generate a sentence description based
on the most likely subject-verb-object-place (SVOP) tuple. We follow the method in [35] to
first build object and action classifiers. For detecting objects, we use ObjectBank [57] and
the LLC-10k classifiers of [23] trained on ImageNet 2011 with 10k object categories. Our
action classifiers used Dense Trajectories [100], and the features for scene recognition were
based on [102]. We trained non-linear SVMs [12] to obtain confidences over 45 subjects, 218
verbs, 241 objects and 12 scenes, thus covering a large vocabulary.

To improve recognition accuracy, we used text-mined knowledge to bias the collective
labeling of each test video with a coherent subject (S), verb (V), object (O), and scene/place
(P). We used the Stanford dependency parser [21] to syntactically analyze over 35GB of raw
text and extracted bigram co-occurrence statistics for SV, VO, and OP word pairs. These
determine the language potentials. We then use a factor graph to systematically integrate
visual detection confidences with probabilistic knowledge mined from text corpora. During
testing, efficient exact MAP inference for this simple linear-chain model is used to predict
the most probable (SVOP) description as illustrated in Figure 2.1.

2.4 Background: Long Short-Term Memory Networks

The framework of our proposed models is based on deep recurrent neural networks in
particular Long Short-Term Memory (LSTM) units. LSTM based recurrent neural networks
have recently shown superior performance on tasks such as speech recognition [34], ma-
chine translation [89, 16] and the more related task of generating sentence descriptions of
images [25, 98]. This section aims to provide an overview of recurrent neural network, in
particular, Long Short-Term Memory (LSTMs) networks with focus on sequence modeling.

241 LSTMs for sequence generation

A Recurrent Neural Network (RNN) is a generalization of feed forward neural networks
to sequences. Standard RNNs learn to map a sequence of inputs (x1,...,x;) to a sequence
of hidden states (h, ..., ), and from the hidden states to a sequence of outputs (z1, ..., z)
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Figure 2.1: The factor graph model for estimating the most likely subject-verb-object-place
(SVOP) tuple by combining confidences from visual detectors and statistics from language.
(Right) The factor graph model correctly predicts “person, slice, onion, kitchen” whereas
the vision system places a higher confidence on “person, slice, egg, kitchen”. HVC refers
to the Highest Vision Confidence system, based on just the visual classifiers. FGM refers to
the factor graph model’s prediction.

based on the following recurrences:

he = f(Wanxt + Wiphi—1) (2.1)
zt = §(Wihy) (2.2)

where f and g are element-wise non-linear functions such as a sigmoid or hyperbolic tan-
gent, x; is a fixed length vector representation of the input, i; € RY is the hidden state with
N units, W; are the weights connecting the layers of neurons, and z; the output vector.

RNNSs can learn to map sequences for which the alignment between the inputs and
outputs is known ahead of time [89] however it’s unclear if they can be applied to problems
where the inputs (x;) and outputs (z;) are of varying lengths. This problem is solved by
learning to map sequences of inputs to a fixed length vector using one RNN, and then
map the vector to an output sequence using another RNN. This is popularly referred to as
the “encoder-decoder” framework. Another known problem with RNNs is that, it can be
difficult to train them to learn long-range dependencies [38]. However, LSTMs [39], which
incorporate explicitly controllable memory units, are known to be able to learn long-range
temporal dependencies. In our work we use the LSTM unit in Figure 2.2, described in [110],
and [25].

At the core of the LSTM model is a memory cell c which encodes, at every time step, the
knowledge of the inputs that have been observed up to that step. The cell is modulated by
gates which are all sigmoidal, having range [0, 1], and are applied multiplicatively. The gates
determine whether the LSTM keeps the value from the gate (if the layer evaluates to 1) or
discards it (if it evaluates to 0). The three gates — input gate (7) controlling whether the LSTM
considers its current input (x;), the forget gate (f) allowing the LSTM to forget its previous
memory (c;—1), and the output gate (0) deciding how much of the memory to transfer to
the hidden state (h;), all enable the LSTM to learn complex long-term dependencies. The
recurrences for the LSTM are then defined as:
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Figure 2.2: The RNN and LSTM units (replicated from [25]). The memory cell is at the core
of the LSTM unit and it is modulated by the input, output and forget gates controlling how
much knowledge is transferred at each time step.

i = o (Wyixt + Wyihi 1) (2.3)
fr = c(Wypxs + Wighi 1) (2.4)
0y = 0(Wyoxt + Wiohi—1) (2.5)
et = fr ©ci—1+ 1t © p(Wiexs + Wychy_q) (2.6)
he =0t © ¢(cy) (2.7)

where ¢ is the sigmoidal non-linearity, ¢ is the hyperbolic tangent non-linearity, ® rep-
resents the product with the gate value, and the weight matrices denoted by W;; are the
trained parameters.

In the next chapter we propose two models that employ the LSTM to “decode" a visual
feature vector representing the video to generate textual output.



Chapter 3

Deep Recurrent Neural Networks for Video Description

In this chapter we present two models that use deep recurrent neural networks based on
Long Short Term Memory (LSTM, [39]) to generate video descriptions by learning directly
from video and sentence pairs. Our models take inspiration from recent breakthroughs in
machine translation [89] and image-captioning [25], and treats the input video as another
“language” and translates the visual input to a sequence of words. First, I describe LSTMs
to model sequence data. Next, I present an LSTM based model that’s adapted from an
image-captioning network [25] and transfer knowledge from the data rich auxiliary task
of image captioning to generate descriptions for short video clips. In the final section, I
present an end-to-end deep network that can jointly model a sequence of video frames and
a sequence of words.

3.1 Sequence modeling using LSTMs

Our framework is based on deep image description models in [25];[98] and extends them
to generate sentences describing events in videos. These models work by first applying a
feature transformation on an image to generate a fixed dimensional vector representation.
They then use a sequence model, specifically a Recurrent Neural Network (RNN), to “de-
code” the vector into a sentence (i.e. a sequence of words). In this work, we apply the same
principle of “translating” a visual vector into an English sentence and show that it works
well for describing dynamic videos as well as static images.

We identify the most likely description for a given video by training a model to maxi-
mize the log likelihood of the sentence S, given the corresponding video V and the model

parameters 0, 0 = argmax ) _ log p(S|V;6) (3.1)
0 (V.5)

Assuming a generative model of S that produces each word in the sequence in order, the

log probability of the sentence is given by the sum of the log probabilities over the words

and can be expressed as:

N
IOg P(S’V) - Zlog p(SWt|V'Sw1I""Swt71)
t=0

where S, represents the i" word in the sentence and N is the total number of words. Note
that we have dropped 6 for convenience.

A sequence model would be apt to model p(Sw,|V, Sw,,--.,Sw,,), and we choose an
RNN. An RNN, parameterized by 6, maps an input x;, and the previously seen words
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expressed as a hidden state or memory, /;_; to an output z; and an updated state i; using
a non-linear function f:

hy = fe(xt, htfl) (3.2)

where (1) = 0). In this work we use the highly successful Long Short-Term Memory (LSTM)
net as the sequence model (Section 2.4.1), since it has shown superior performance on tasks
such as speech recognition [34], machine translation [89, 16] and the more related task
of generating sentence descriptions of images [25, 98]. We present details of the network
in Section 2.4.1. To convert videos to a fixed length representation (input x;), we use a
Convolutional Neural Network (CNN). Each of our two models presented in this chapter
uses a different approach to handle input videos, and details of how we apply it is presented
when describing the model.

3.2 Translating Videos to Natural Language using LSTMs

In this section we build a model to translate from video pixels to natural language with
a single deep neural network. We use deep recurrent nets (RNNs), which have recently
demonstrated strong results for machine translation (MT) tasks using Long Short Term
Memory (LSTM) RNNSs [89, 16]. In contrast to traditional statistical MT [48], RNNs natu-
rally combine with vector-based representations, such as those for images and video. [25]
and [98] simultaneously proposed a multimodal analog of this model, with an architecture
which uses a visual CNN/convnet to encode a deep state vector, and an LSTM to decode
the vector into a sentence. Our model takes inspiration from both these approaches, and
adapts their techniques for video description.

Deep NN can learn powerful features [26, 111], but require a lot of supervised training
data. However, annotated video data with descriptions is scarce. We address the problem by
transferring knowledge from auxiliary tasks at different levels in the network. Each frame
of the video is modeled by a convolutional (spatially-invariant) network pre-trained on
1.2M+ images with category labels [51]. The meaning state and sequence of words is mod-
eled by a recurrent (temporally invariant) deep network pre-trained on 100K+ Flickr [40]
and COCO [59] images with associated sentence captions. We show that such knowledge
transfer significantly improves performance on the task of video description.

Our approach has several important advantages over existing video description work.
The LSTM model effectively models the sequence generation task without requiring the use
of fixed sentence templates as in previous work [50, 35, 91]. Pre-training on image and text
data naturally exploits related data to supplement the limited amount of descriptive video
currently available. Finally, the deep convnet, the winner of the ILSVRC2012 [81] image
classification competition, provides a strong visual representation of objects, actions and
scenes depicted in the video.

The main contributions of this approach are:
¢ It is the first end-to-end deep model for video-to-text generation.

¢ Itleverages still image classification and caption data, and transfers knowledge learned
on such data to the video description task.
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Figure 3.1: The structure of our video description network. We extract fc; features for each
frame, mean pool the features across the entire video and input this at every time step to
the LSTM network. The LSTM outputs one word at each time step, based on the video
features (and the previous word) until it picks the end-of-sentence tag.

* We provide a detailed evaluation of our model on a collection of YouTube videos [13]
and demonstrate that it significantly improves over previous state of the art ap-
proaches discussed in Chapter 2.

3.2.1 CNN-LSTMs for video description

Figure 3.1 depicts our model for sentence generation from videos. We choose a two layer
LSTM model for the video description task. Our choice on the number and size of layers
is based on experiments in [25] comparing different architectures for image captioning. We
employ the LSTM to “decode" a visual feature vector representing the video to generate
textual output. The first step in this process is to generate a fixed-length visual input that
effectively summarizes a short video. For this we use a CNN, specifically the publicly
available Caffe [42] reference model, a minor variant of AlexNet [51]. The net is pre-trained
on the 1.2M image ILSVRC-2012 object classification subset of the ImageNet dataset [81]
and hence provides a robust initialization for recognizing objects and thereby expedites
training. We sample frames in the video (1 in every 10 frames) and extract the activations
from the fully connected layer (fc7) just prior to the classification layer; and perform a mean
pooling over the frames to generate a single 4,096 dimension vector for each video. The
resulting visual feature vector forms the input to the first LSTM layer. We stack another
LSTM layer on top as in Figure 3.1, and the hidden state of the LSTM in the first layer is the
input to the LSTM unit in the second layer. A word from the sentence forms the target of
the output LSTM unit. In this work, we represent words using “one-hot" vectors (i.e 1-of-N
coding, where is N is the vocabulary size).

Training and Inference: The two-layer LSTM model is trained to predict the next word Sy,
in the sentence given the visual features and the previous t — 1 words, p(Sw,|V, Sw,, - - -, Sw, 1 )-
During training the visual feature, sentence pair (V, S) is provided to the model, which then
optimizes the log-likelihood (Eq. (3.1)) over the entire training dataset using stochastic gra-
dient descent. At each time step, the input x; is fed to the LSTM along with the previous

10
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time step’s hidden state #;_; and the LSTM emits the next hidden state vector h; (and a
word). For the first layer of the LSTM, the input x; is the concatenation of the visual feature
vector and the previous encoded word (Sy, ,, the ground truth word during training and
the predicted word during test time). For the second layer of the LSTM, the input x; is the
value of z; from the first layer. Accordingly, inference must also be performed sequentially
in the order 1y = fiy(x1,0), hy = fw(x2, h1), until the model emits the end-of-sentence (EOS)
token at the final step T. In our model the output (h; = z;) of the second layer LSTM unit
is used to obtain the emitted word. We apply the Softmax function, to get a probability
distribution over the words w in the vocabulary D.

B exp(Wyzt)
p(T/U|Zt) - Zw/eD exp(Ww/zt) (33)

where W, is a learnt embedding vector for word w. At test time, we choose the word @
with the maximum probability for each time step t until we obtain the EOS token.

3.2.2 Transfer Learning from Captioned Images

Since the training data available for video description is quite limited (described in Sec-
tion 3.2.3), we also leverage much larger datasets available for image captioning to train our
LSTM model and then fine tune it on the video dataset. Our LSTM model for images is the
same as the one described above for single video frames (in Section 2.4.1, and Section 3.2.1).
As with videos, we extract fcy layer features (4096 dimensional vector) from the network
(Section 3.2.1) for the images. This forms the visual feature that is input to the 2-layer LSTM
description model. The vocabulary is the combined set of words in the video and image
datasets. After the model is trained on the image dataset, we use the weights of the trained
model to initialize the LSTM model for the video description task. Additionally, we reduce
the learning rate on our LSTM model to allow it to tune to the video dataset. This speeds
up training and allows exploiting knowledge previously learned for image description.

3.2.3 Evaluation

Video dataset. We perform all our experiments on the Microsoft Research Video Descrip-
tion Corpus (MSVD) [13]. This video corpus is a collection of 1970 YouTube snippets. The
duration of each clip is between 10 seconds to 25 seconds, typically depicting a single ac-
tivity or a short sequence. The dataset comes with several human generated descriptions
in a number of languages; we use the roughly 40 available English descriptions per video.
This dataset (or portions of it) have been used in several prior works [69, 50, 35, 91, 104] on
action recognition and video description tasks. For our task we pick 1200 videos to be used
as training data, 100 videos for validation and 670 videos for testing, as used by the prior
works on video description [35, 91, 104].

Domain adaptation, image description datasets. Since the number of videos for the de-
scription task is quite small when compared to the size of the datasets used by LSTM models
in other tasks such as translation [89] (12M sentences), we use data from the Flickr30k and
COCO2014 datasets for training and learn to adapt to the video dataset by fine-tuning the
image description models. The Flickr30k [40] dataset has about 30,000 images, each with

11
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5 or more descriptions. We hold out 1000 images at random for validation and use the
remaining for training. In addition to this, we use the recent COC02014 [59] image descrip-
tion dataset consisting of 82,783 training images and 40,504 validation images, each with
5 or more sentence descriptions. We perform ablation experiments by training models on
each dataset individually, and on the combination and report results on the YouTube video
test dataset.

Models We compare our models against previous state-of-the-art factor graph model
(FGM) proposed in [91] (Section 2.3).

Our LSTM models We present four main models. LSTM-YT is our base two-layer LSTM
model trained on the YouTube video dataset. LSTM-YT i, is the model trained on the
Flickr30k [40] dataset, and fine tuned on the YouTube dataset as desrcibed in Section 3.2.2.
LSTM-YT,,, is first trained on the COC0O2014 [59] dataset and then fine-tuned on the video
dataset. Our final model, LSTM-YT oqfiicks is trained on the combined data of both the
Flickr and COCO models and is tuned on YouTube. The models trained on image datasets
alone, without being tuned on the video corpus, perform rather poorly. The results of these
can be found in the paper [95].

Sentence Generation. To evaluate the generated sentences we use automated Machine
Translation metrics BLEU [72] and METEOR [6] and compare the predicted sentences
against all ground truth sentences. BLEU and METEOR scores are computed based on
the alignment between a given hypothesis sentence and a set of candidate reference sen-
tences. BLEU only checks for exact matches of n — grams in the predicted and groundtruth
reference. Whereas METEOR computes the alignment by comparing exact token matches,
stemmed tokens, paraphrase matches, as well as semantically similar matches using Word-
Net synonyms. Image description literature often use BLEU for evaluation, but a more
recent study [27] has shown METEOR to be a better evaluation metric. However, since both
metrics have been shown to correlate well with human evaluations, we compare the gener-
ated sentences using both and present our results in Table 3.1. We also present qualitative
examples in Figure 3.2 Samples of videos clips with the model’s predictions can be found at
https://www.youtube.com/watch?v=I1GaAoW8bA4c. The code for this model is available in the
caffe framework and can be viewed on github'.

3.2.4 Discussion

From the results in Table 3.1, it is evident that our LSTM based approach significantly
outperforms the previous state-of-art (FGM). We also observe that learning from the im-
age description data improves the performance of the model in terms of both METEOR
and BLEU. The model that was pre-trained on COCO2014 shows a larger performance im-
provement, indicating that our model can effectively leverage a large auxiliary source of
training data to improve its object and verb predictions. The model pre-trained on the com-
bined data of Flickr30k and COCO2014 shows only a marginal improvement, perhaps due
to overfitting.

Thttps://github.com/vsubhashini/caffe/tree/recurrent/examples/youtube
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3.3. Sequence to Sequence — Video to Text

Model BLEU METEOR
FGM 1 13.68 23.90
LSTM-YT 31.19 26.87
LSTM-YT fickr 32.03 27.87
LSTM-YT o0 33.29 29.07
LSTM-YT toco+ flickr | 33-29 28.88

Table 3.1:

Scores for BLEU at 4 (combined n-gram 1-4), and METEOR scores from auto-

mated evaluation metrics comparing the quality of the generation. All values are reported

as percentage (%).

FGM: A person is playing a guitar in the
house.

YT: A group of performing on stage.
YTcoco: A manis doing a trick.
YTcocoflickr: A man is jumping on a pole.
GT: Two men working on a high building.

st i

FGM: A person is playing a guitar in the
house.

YT: A boy is walking.

YTcoco: A manis doing a women.
YTcocoflickr: A man is talking on a wall.
GT: A man is doing algebraic equations on a
white board.

™
Fer

FGM: A person is riding the horse

YT: A group of running.

YTcoco: A group of elephants.
YTcocoflickr: A group of elephants are
walking on a horse.

GT: An elephant leads it's young.

FGM: A person playing the goal of the road.
YT: A player playerin agoal.

YTcoco: A man playing a soccer ball.
YTcocoflickr: A soccer player is running.
GT: Two teams are playing soccer.

FGM: A person is running a race on the road.
YT: A group of running.
YTcoco: A group of people are running.

~
YTcocoflickr: A man is running.
- - GT: Eight men are running a race on a track.

Over fitting hurts and misses details
5
? o\
| . i‘ ,"i |

FGM: A person is riding a motorbike in the
kitchen.

YT: A man is jumping on the water.

YTcoco: A man is riding a bike.
YTcocoflickr: A man is riding a motorcycle.
GT: A boy is riding a motorcycle on the
seashore .

FGM: A person playing a guitar.

YT: A monkey is fighting with a man.
YTcoco: A man is playing aman.
YTcocoflickr: A man is playing a ball.

GT: A monkey is karate kicking at someone’s
gloved hand.

Figure 3.2: Examples to demonstrate effectiveness of transferring from the image descrip-
tion domain. YT refer to the LSTM-YT, YTcoco to the LSTM-YT,yc0, and YTcocoflickr to the
LSTM-YT o+ fiickr models. GT is a random human description in the ground truth. Sen-
tences in bold highlight the most accurate description for the video amongst the models.
Bottom two examples on the right show how transfer can overfit. Thus, while base LSTM-
YT model detects water and monkey, the LSTM-YT¢,c, and LSTM-YT o f1ickr models fail to
describe the event completely.

3.3 Sequence to Sequence — Video to Text

In this section, we propose a novel end-to-end sequence-to-sequence model to generate
captions for videos. A major limitation of our model [95] in the previous section is that it
fails to exploit any of the temporal information in the video, treating the video as a “bag of
image frames” and simply mean-pooling the results from individual frames to generate a
deep-network encoding of the video. To address this shortcoming we develop, S2VT [96],
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3.3. Sequence to Sequence — Video to Text

| LSTM |—>| LSTM |—>| LSTM |—>| LSTM |—>| LSTW LSTMj( LSTW LSTM LSTM |
talklng <EOS>

L J

Encodlng stage Decodlng stage t|me

Figure 3.3: S2VT consists of a stack of two LSTMs that learn a representation of a sequence
of frames in order to decode it into a sentence that describes the event in the video. The top
LSTM layer (colored red) models visual feature inputs (from RGB or optical flow frames).
The second LSTM layer (colored green) models language given the text input and the hid-
den representation of the video sequence. We use <BOS> to indicate begin-of-sentence and
<EOS> for the end-of-sentence tag. Since we use the same LSTM layers for both encoding
and decoding, zeros are used as a <pad> when there is no input at the time step.

a variant of our LSTM model that is sensitive to temporal structure and allows both input
(sequence of frames) and output (sequence of words) of variable length. Figure 3.3 depicts
our model. A stacked LSTM first encodes the frames one by one, taking as input the output
of a Convolutional Neural Network (CNN) applied to each input frame’s intensity values.
It sequentially processes video frames, incrementally building up a hidden-layer semantic
representation in the LSTM that effectively encodes the underlying activity. Once all frames
are read, the model generates a sentence word by word. The encoding and decoding of the
frame and word representations are learned jointly from a parallel corpus. To model the
temporal aspects of activities typically shown in videos, we also compute the optical flow
[10] between pairs of consecutive frames. The flow images are also passed through a CNN
and provided as input to the LSTM. Flow CNN models have been shown to be beneficial
for activity recognition [85, 25].

To our knowledge, this is the first approach to video description that uses a general
sequence to sequence model. This allows our model to (a) handle a variable number of
input frames, (b) learn and use the temporal structure of the video and (c) learn a language
model to generate natural, grammatical sentences. Our model is learned jointly and end-to-
end, incorporating both intensity and optical flow inputs, and does not require an explicit
attention model. We demonstrate that S2VT achieves state-of-the-art performance on three
diverse datasets, a standard YouTube corpus (MSVD) [13] and the M-VAD [93] and MPII
Movie Description [79] datasets. We also make our implementation (based on the Caffe [42]
deep learning framework) available on github”.

3.3.1 LSTMs for Sequence-to-Sequence Video-to-Text

Our model uses a stack of two LSTMs with 1000 hidden units each. Figure 3.3 shows
the LSTM stack unrolled over time. When two LSTMs are stacked together, as in our case,

2 https://github.com/vsubhashini/caffe/tree/recurrent/examples/s2vt
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the hidden representation (h;) from the first LSTM layer (colored red) is provided as the
input (x;) to the second LSTM (colored green). The top LSTM layer in our architecture is
used to model the visual frame sequence, and the next layer is used to model the output
word sequence.

Training and Inference In the first several time steps, the top LSTM layer (colored red in
Figure Figure 3.3) receives a sequence of frames and encodes them while the second LSTM
layer receives the hidden representation (#;) and concatenates it with the input padding
words (zeros), which it then encodes. There is no loss during this stage when the LSTMs
are encoding. After all the frames in the video clip are exhausted, the second LSTM layer is
fed the beginning-of-sentence (<BOS>) tag, which prompts it to start decoding its current
hidden representation to a sequence of words. While training in the decoding stage, the
model maximizes for the log-likelihood of the predicted output sentence given the hidden
representation of the visual frame sequence, and the previous words it has seen. For a
model with parameters 6 and output sequence Y = (y1,...,yn), this is formulated as:

m

0% = argmax Y _log p(yi|hyti—1,yi-1;0) (3.4)
6 t=1

This log-likelihood is optimized over the entire training dataset using stochastic gradient
descent. The loss is computed only when the LSTM is learning to decode. Since this
loss is propagated back in time, the LSTM learns to generate an appropriate hidden state
representation (h,) of the input sequence. The output (z;) of the second LSTM layer is
used to obtain the emitted word (y). We apply a softmax function to get the probability
distribution over the words y’ in the vocabulary V:

 exp(Wyz) 35
PR = o oWz )

We note that, during the decoding phase, the visual frame representation for the first LSTM
layer is simply a vector of zeros that acts as padding input. We require an explicit end-
of-sentence tag (<EOS>) to terminate each sentence since this enables the model to define
a distribution over sequences of varying lengths. At test time, during each decoding step
we choose the word y; with the maximum probability after the softmax (from Equation
Eq. (3.5)) until we obtain the <EOS> token.

3.3.2 Video and text representation

RGB frames. Similar to previous LSTM-based image captioning efforts [25, 99] and video-
to-text approaches [97, 107], we apply a convolutional neural network (CNN) to input im-
ages and provide the output of the top layer as input to the LSTM unit. In this work, we
report results using the output of the fc7 layer (after applying the ReLU non-linearity) on
the Caffe Reference Net (a variant of AlexNet) and also the 16-layer VGG model [86]. We
use CNNs that are pre-trained on the 1.2M image ILSVRC-2012 object classification subset
of the ImageNet dataset [81] and made available publicly via the Caffe ModelZoo.® Each
input video frame is scaled to 256x256, and is cropped down to a random 227x227 region.
It is then processed by the CNN. We remove the original last fully-connected classification

3https://github.com/BVLC/caffe/wiki/Model-Zoo
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layer and learn a new linear embedding of the features to a 500 dimensional space. The
lower dimension features form the input (x;) to the first LSTM layer. The weights of the
embedding are learned in combination with the LSTM layers during training.

Optical Flow. In addition to CNN outputs from raw image (RGB) frames, we also incor-
porate optical flow measures as input sequences to our architecture. Others [70, 25] have
shown that incorporating optical flow information to LSTMs improves activity classifica-
tion. As many of our descriptions are activity centered, we explore this option for video
description as well. We follow the approach in [25, 32] and first extract classical variational
optical flow features [10]. We then create flow images [32], by centering x and y flow values
around 128 and multiplying by a scalar such that flow values fall between 0 and 255. We
also calculate the flow magnitude and add it as a third channel to the flow image. We then
use a CNN [32] initialized with weights trained on the UCF101 video dataset to classify
optical flow images into 101 activity classes. The fc6 layer activations of the CNN are em-
bedded in a lower 500 dimensional space which is then given as input to the LSTM. The
rest of the LSTM architecture remains unchanged for flow inputs.

Text input. The target output sequence of words are represented using one-hot vector
encoding (1-of-N coding, where N is the size of the vocabulary). Similar to the treatment
of frame features, we embed words to a lower 500 dimensional space by applying a linear
transformation to the input data and learning it's parameters via back propagation. The
embedded word vector concatenated with the output (/) of the first LSTM layer forms the
input to the second LSTM layer (marked green in Figure 3.3). When considering the output
of the LSTM we apply a softmax over the complete vocabulary as in Equation Eq. (3.5).

3.3.3 Evaluation

In the following we describe how we evaluate our approach. We first describe the
datasets we use, then the evaluation protocol, and then the details of our models.

Datasets In addition to the Microsoft Video Description corpus (MSVD) [13] (Section 3.2.3),
we also evaluate our approach on two large movie corpora, namely, the MPII Movie De-
scription Corpus (MPII-MD) [79], and the Montreal Video Annotation Dataset (M-VAD)
[93]. Statistics of each corpus is presented in Table 3.2.

MPII Movie Description Dataset (MPII-MD) MPII-MD [79] contains around 68,000 video
clips extracted from 94 Hollywood movies. Each clip is accompanied with a single sentence
description which is sourced from movie scripts and audio description (AD) data. The AD
or Descriptive Video Service (DVS) track is an additional audio track that is added to the
movies to describe explicit visual elements in a movie for the visually impaired. Although
the movie snippets are manually aligned to the descriptions, the data is very challenging
due to the high diversity of visual and textual content. Typically most snippets only have
single reference sentence. We use the training/validation/test split provided by the authors
and extract every fifth frame (videos are shorter than MSVD, averaging 94 frames).

Montreal Video Annotation Dataset (M-VAD) The M-VAD movie description corpus [93]
is another recent collection of about 49,000 short video clips from 92 movies. It is similar to
MPII-MD, but only contains AD data and only provides automatic alignment. We use the
same setup as for MPII-MD.
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MSVD MPII-MD MVAD

#-sentences 80,827 68,375 56,634
#-tokens 567,874 679,157 568,408
vocab 12,594 21,700 18,092
#-videos 1,970 68,337 46,009
avg. length 10.2s 3.9s 6.2s
#-sents per video  ~41 1 1-2

Table 3.2:  Corpus Statistics. While the number of tokens (words+punctuation) in all
datasets are comparable, but MSVD has fewer videos with more sentences per video and
both the movie corpora (MPII-MD and MVAD) have a large number of clips with a single
description per clip. Thus, the number of video, sentence pairs in all three datasets are
comparable.

3.3.4 Evaluation Metrics

Quantitative evaluation of the models are performed using the METEOR [6] metric
which was originally proposed to evaluate machine translation results. METEOR is the
most appropriate metric for our data since the movie description corpora have just 1 ground
truth reference each. [94] showed that METEOR is always better than other MT metrics such
as BLEU when the number of references is small. We use the code* released with the Mi-
crosoft COCO Evaluation Server [14] to obtain the scores for all our models reported in this
section.

3.3.5 Related approaches

We compare our sequence to sequence models against the factor graph model (FGM)
in [91] (Section 2.3), the mean-pooled models (Mean-Pool) in [97] and the Soft-Attention
models of [107].

The Soft-Attention model in [107] is a contemporaneous LSTM based approach. It is a
combination of weighted attention over a fixed set of video frames with input features from
GoogleNet and a 3D-convnet trained on Histogram of Gradients (HoG), Histogram of Flow
(HoF) and Motion Boundary Histograms (MBH) features from an activity classification
model.

3.3.6 Discussion: MSVD dataset

Table 3.3 shows the results on the MSVD dataset. The upper part shows results of
related approaches and the lower part different variants of our S2VT approach.

Our basic S2VT AlexNet model on RGB video frames (line 8 in Table 3.3) achieves
27.9% METEOR and improves over the basic mean pooled model proposed by [97] (line 2,
26.9%) as well as VGG mean pooled model (line 3, 27.7%). This suggests that our sequence
to sequence model even with the less powerful AlexNet features is able to encode video

“https://github.com/tylin/coco-caption
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Model METEOR

FGM [91] 23.9 (1)
Mean pool

- AlexNet [97] 26.9 (2)
- VGG 27.7 (3)
- AlexNet COCO pre-trained [97] 29.1 (4)
- GNet [107] 28.7 (5)
Soft-attention

- GoogleNet [107] 29.0 (8)
- GoogleNet + 3D-CNN [107] 29.6 ("
S2VT (ours)

- Flow (AlexNet) 24.3 (8)
- RGB (AlexNet) 27.9 (9)
- RGB (VGG) random frame order 27.9 (10)
- RGB (VGG) 29.2 (11)
- RGB (VGG) + Flow (AlexNet) 29.8 (12)

Table 3.3: MSVD dataset (METEOR in %, higher is better).

frames well. When the model is trained with the input frame sequence randomly ordered
(line 10 in Table 3.3) the score is considerably lower and comparable to the mean pooled
approach (line 3) indicating that the model does exploit temporal structure when available.

Our S2VT model which uses flow images (line 9) achieves only 24.3% METEOR but im-
proves the performance of our VGG model from 29.2%(line 10) to 29.8% (line 12), when com-
bined. Our ensemble using both RGB and Flow achieves a score comparable and slightly
better than the best model proposed in [107], Soft-attention with GoogleNet + 3D-CNN
(line 7). The edge that our model has is only modest, this is likely due to the much stronger
3D-CNN features (as the difference to GoogleNet alone, line 6, suggest). Thus, the closest
comparison between the Soft Attention Model [107] and our S2VT is arguably ours with
VGG (line 10) vs. their GoogleNet only model (line 6).

Figure 3.4 shows descriptions generated by our model on some of the videos in the
MSVD YouTube video dataset. To compare the originality in generation, we compute the
Levenshtein distance of the predicted sentences with those in the training set. From Ta-
ble 3.4, for the MSVD corpus, only 42.9% of the predictions are identical to some training
sentence, and another 38.3% can be obtained by inserting, deleting or substituting one word
from some sentence in the training corpus.

3.3.7 Discussion: Movie Corpora

For the more challenging MPII-MD and M-VAD datasets we use our single best model,
namely S2VT trained on RGB frames and VGG. To avoid over-fitting on the movie corpora
we employ drop-out which has proved to be beneficial on these datasets [78]. We found
it was best to use dropout at the inputs and outputs of both LSTM layers. Further, we
used ADAM [46] for optimization with a first momentum coefficient of 0.9 and a second
momentum coefficient of 0.999. For MPII-MD, reported in Table 3.5, we improve over the
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Edit-Distance k=0 k<=1 k<=2 k<=3

MSVD 429 81.2 93.6 96.6
MPII-MD 17.7 43.1 514 60.1
MVAD 03.0 38.9 43.9 60.1

Table 3.4: Percentage of generated sentences which match a sentence of the training set
with an edit (Levenshtein) distance of less than 4. All values reported in percentage (%).

Approach (MPII-MD) METEOR Approach METEOR

SMT (best variant) [79] 5.6 Visual-Labels [78] 6.3

Visual-Labels [78] 7.0 Temporal attention [107] 5.7

Mean pool (VGG) 6.7 Mean pool (VGG) 6.1

S2VT: RGB (VGG), ours 7.1 S2VT: RGB (VGG), ours 6.7
Table 3.5: MPII-MD dataset (ME- Table 3.6: M-VAD dataset (ME-
TEOR in %, higher is better). TEOR in %, higher is better).

SMT approach from [79] from 5.6% to 7.1% METEOR and over Mean pooling [97] by 0.4%.
Our performance is similar to Visual-Labels [78], a contemporaneous LSTM-based approach
which uses no temporal encoding, but more diverse visual features, namely object detectors,
as well as activity and scene classifiers.

On M-VAD we achieve 6.7% METEOR which significantly outperforms the temporal
attention model [107] (5.7%) and Mean pooling (6.1%). On this dataset we also outperform
Visual-Labels [78] (6.3%).For the more challenging MPII-MD and M-VAD datasets we use
our single best model, namely S2VT trained on RGB frames and VGG. To avoid over-fitting
on the movie corpora we employ drop-out which has proved to be beneficial on these
datasets [78]. We found it was best to use dropout at the inputs and outputs of both LSTM
layers. Further, we used ADAM [46] for optimization with a first momentum coefficient of
0.9 and a second momentum coefficient of 0.999.

In Figure 3.5 we present descriptions generated by our model on some sample clips from
the M-VAD dataset. More example video clips, generated sentences, and data are available
on the authors’ webpages’.

3.4 Summary of Completed Work

This section proposed two deep models for video description that used convolutional
and recurrent networks to translate from pixels to sentences. In our first model we pre-
sented techniques to take advantage of large image description datasets, and transfer knowl-
edge from the image captioning task to the video captioning task. We then developed a se-
quence to sequence video description model, where frames are first read sequentially and
then words are generated sequentially. This allows us to handle variable-length input and
output while simultaneously modeling the temporal structure. Our model out-performs all

Shttp://vsubhashini.github.io/s2vt.html
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Correct descriptions. Relevant but incorrect Irrelevant descriptions.
descriptions.

e I ) N B

S2VT: A small bus i; running into a building.

S2VT: A herd of zebras are walking in a field. [S2VT: A man is cutting a piece of a pair of a paper.

S2VT: A cat is trying to get a small board.

S2VT: A man is shooting a gun at a target. S2VT: A man is spreading butter on a tortilla. [ S2VT: A black clip to walking through a path.
(a) (b) (c)

Figure 3.4: Qualitative results on MSVD YouTube dataset from our S2VT model (RGB on
VGG net). (a) Correct descriptions involving different objects and actions for several videos.
(b) Relevant but incorrect descriptions. (c) Descriptions that are irrelevant to the event in

the video.
(4) (%)

(1) ) 3)

(6a) (6b)
Temporal Attention (GNet+3D-conv, ): S2VT (Ours): (1) Now, the van pulls outa window anda  DVS: (1) Now, at night,, our view glides over a highway
(1) At night, SOMEONE and SOMEONE tall brick facade of tall trees . a figure stands at a curb. its lanes glittering from the lights of traffic below.
step into the parking lot. (2) Someone drives off the passenger car and drives off. ~ (2) Someone's suv cruises down a quiet road.
(2) Now the van drives away. (3) They drive off the street. (3) Then turn into a parking lot.
(3) They drive away. (4) They drive off a suburban road and parks in a dirt (4) A neon palm tree glows on a sign that reads
(4) They drive off. neighborhood. oasis motel.
(5) They drive off. (5) They drive off a suburban road and parks on a street. ~ (5) Someone parks his suv in front of some rooms.
(6) At the end of the street, SOMEONE (6) Someone sits in the doorway and stares at her (6) He climbs out with his briefcase , sweeping his
sits with his eyes closed. with a furrowed brow. cautious gaze around the area.

Figure 3.5: M-VAD Movie corpus: Representative frame from 6 contiguous clips from
the movie “Big Mommas: Like Father, Like Son”. From left: Temporal Attention
(GoogleNet+3D-CNN) [107], S2VT (in blue) trained on the M-VAD dataset, and DVS:
ground truth.

previous works on Youtube clips from the MSVD dataset, and the DVS movie description
datasets.
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Chapter 4

Proposed Work

The goal of this proposal is to develop models that achieve a deeper integration of lin-
guistic and visual semantics to automatically describe a wide range of ordinary videos in
natural language. Automatic video description techniques should be capable of identifying
salient events worth describing and should be able to appropriately describe a wide variety
of video content with a large number of diverse actions, objects, scenes and other proper-
ties. Deep neural network video description models take a significant step in this direction
by learning to describe salient objects directly from video and caption pairs. Although,
recent deep recurrent approaches to video description show promising results, they are
still limited in many ways. Current deep neural video-captioning models, (i) rely largely
on linguistic knowledge in paired image/video-sentence corpora, (ii) fail to generalize for
multiple event sequences in longer videos, (iii) fail to track and capture interactions between
a variety of objects, and (iv) lack the ability to generate detailed and accurate descriptions
for natural everyday scenes, particularly in movies. In the next few sections, I propose
approaches to address these shortcomings.

First, as immediate extensions, I propose a variety of methods to integrate prior linguis-
tic knowledge into existing video captioning networks. Specifically we take advantage of
large monolingual text corpora, and propose methods to incorporate knowledge from dif-
ferent kinds of neural net language models to aid video description. These models can be
further extended to attend to specific objects and actions, using attention methods [68, 103]
to track and capture interactions between objects and generate more accurate descriptions.
Moving beyond single sentence descriptions of short video clips, as a long-term goal, I pro-
pose models to address description of longer multi-activity videos. These models will learn
to simultaneously segment a long video into coherent scenes and generate a description for
each event at it's completion. In the final section, as bonus work, I propose to investigate
schemes to enhance DVS descriptions for movies. In particular, the focus of the model
will be on leveraging movie script and subtitle information to include names of characters
during the generation process. This additional information can also be used to enhance the
overall quality of the generated DVS descriptions.

4.1 Using Statistical Linguistic Knowledge to Aid Video Description

Real-world videos depict interaction of actors with a range of objects, scenes and actions,
and recent neural network-based architectures have shown promising results on recognizing
and describing these activities “in-the-wild”. A significant factor contributing to the success
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of neural network architectures for image description is the availability of large amounts of
paired image-sentence corpora. In the case of videos however, there is a lack of high-quality
paired video-sentence corpora. In contrast, monolingual text corpora are widely available.
Despite the lack of visual grounding, plain text corpora exhibit rich linguistic structure that
can aid video to text translation. Most work in statistical machine translation utilizes both
a language model trained on a large corpus of monolingual data for the target language as
well as a translation model trained on more limited parallel bilingual data. In this work, we
explore ways to incorporate knowledge from language corpora to improve natural language
descriptions for videos.

We investigate three approaches to integrate linguistic information into an LSTM-based
sequence to sequence video to text system [96]. Our first approach is to incorporate distribu-
tional vector representation of words in addition to (or as a substitute) to word embeddings
learned internally by the video description network. Our second approach is to pre-train
the video description model on large corpora of raw NL text to capture general linguistic
regularities. Our third approach is to integrate a trained RNN language model employ-
ing early and mid-level fusion techniques to improve video description. [37] developed an
LSTM model for machine translation that incorporates a monolingual language model (LM)
for the target language showing improved results. We utilize a similar approach to integrate
an LM so as to include the representation of words learned by the LM as an input feature
to the video to text decoder. We can additionally, rescore the output words generated by
the caption model based on the trained language model.

4.1.1 Distributional Vector Representations

A drawback of our previous deep video captioning network is that, they represent words
using a 1-of-N (one hot) encoding. This naive representation reduces the vocabulary of the
captioning model significantly (by an order of magnitude) compared to a regular language
model. In order to encode a wider variety of words, it would be advantageous to use
embeddings learned from a distributional vector space. Approaches such as Word2Vec [67]
and Glove [73] use large text corpora to learn vector-space representations of words that
capture fine-grained semantic and syntactic regularities. One approach to learn a similar
representation in the caption model is to embed (one-hot) words into a lower dimensional
space by applying a linear transformation, and learning its parameters via backpropagation.
This can be represented as f : Vijo; — Visim, where V denotes the vocabulary'. However,
this embedding is learned only from the text in the parallel training data which is very
limited. We propose ways to enhance this embedding further using external distributional
vectors:

Initialization A simple technique to incorporate a trained distribution vector representa-
tions is to use the weights from the external embedding, Word2Vec or Glove, to ini-
tialize the caption model’s word embedding (that maps from one-hot representation
to a lower dimensional vector).

Additional Embedding Another technique that has been used in the process of learning
sentence vectors [113], is to learn an additional embedding mapping from the external

1subscripts 1hot, Istm, and w2v refer to the representations of the 1-hot vectors, the LSTM word embedding,
and the distributional vector space respectively
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distributional vectors to the lower dimensional vector, i.e f : Vypy — Vigty,. This has
the added advantage that any word in Vy», can now be mapped to a vector when
encoding the input.

Concatenate as a feature Yet another technique, is to simply concatenate words from the
V2o external embedding, Word2Vec or Glove, as an additional input feature along
with the one-hot vectors.

4.1.2 LSTM Language Pre-Training

In our second approach, we propose pre-training the language layers of the LSTM net-
work to learn an LM using web-scale text corpora. [88] showed LSTMs to be very effective
language models. Additionally, [37] have also used LSTM based language models for ma-
chine translation. Since the LSTM model learns to estimate the probability of an output
sequence given an input sequence (Section ), we can learn a language model, by training
the LSTM layer to predict the next word given the previous words. We propose to use both
web-scale text corpora and text from parallel corpora to train the LM. As in the original
captioning network, the embedding and the LSTM parameters for just the language layers
can be learned via backpropagation using stochastic gradient descent. The weights from
this language model can then be used to initialize the embedding and weights of the LSTM
layers of the complete captioning model. The network can finally be tuned on the video
description datasets. The LM pre-training should help the caption model create a better
representation of the text and enable it to generate more diverse descriptions by capturing
regularities inherent in natural language.

4.1.3 Language Fusion

In addition to the language model learned during captioning, we will investigate whether
an external LM can further enhance fluency during final caption generation stage. While
paired image-text corpora can be scarce, particularly for new concepts, monolingual text
corpora is widely available. Despite the lack of visual grounding, plain text corpora exhibit
rich linguistic structure, and we can take advantage of this for enhancing caption gener-
ation. We propose two ways (i) a shallow fusion and (ii) a mid-level fusion technique to
integrate a pre-trained LM to aid sentence generation. These are illustrated in Figure 4.1

Shallow LM Fusion

Our fusion approach is similar to how machine translation models incorporate a trained
language model during decoding [37]. At each step of sentence generation, the video cap-
tion model proposes a distribution over the vocabulary word. We can use the language
model to re-score the final output by considering the weighted average of the sum of scores
proposed by the LM as well as the video-description model (VM). More specifically, if y;
denotes the output at time step t, and if pyy and ppp denote the proposal distributions
of the video captioning model, and the language models respectively, then for all words
y' € V in the vocabulary we can recompute the score of each new word, p(y; = y/') as:

w-pym(yr=y)+ (1 —a)-prm(y: =y') (4.1)

The hyper-parameter « can be tuned on the validation set.
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Figure 4.1: Illustration of our shallow and mid-level fusion approaches to integrate an
independently trained language model to aid captioning.

Mid-level LM Fusion

In the mid-level fusion approach we integrate the LM a step deeper in the generation
process by concatenating the hidden state of the language model LSTM (kM) with the
hidden state of the video description model (1) and use the combined vector to predict
the output word. In this process, the video captioning model is fine-tuned to use hidden
states from both models to predict the next word. Thus, in this case, probability of the
predicted word at time step ¢ is

p(yely<t,x) o< exp(yf (WE(h™M, hf™M) + b)) (4.2)

where W is the weight matrix and b the biases. In this method we need to only tune those
weights used to parameterize the output prediction. We should avoid tuning the LM or the
video captioning network to prevent overwriting already learned weights.

4.2 Using Attention to Generate Descriptions

Recent deep visual captioning models learn to describe salient objects in images and
videos directly from captions and input visual features [98, 25, 29]. However, steering a
model to the more important information and learning to attend to different aspects of the
input has been shown to further improve caption generation [103]. Inspired by the recent
success of attention models in sequence to sequence frameworks for machine translation [5],
object recognition [4, 68], image captioning [103] and speech recognition [11] we propose
to investigate models that can attend to different objects/actors at different times while
generating captions of events as they unfold in the video. Our approach would focus on in-
corporating attention mechanisms in combination with our LSTM based segmentation and
description model. Specifically, we plan to extract features from a lower convolution layer
for each frame over different spatial regions (pertaining to objects/actors). We can then de-
fine an attention mechanism to generate weights for different spatial locations and frames.
This allows the decoder to selectively focus on different locations/objects at different times
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weighting a subset of all the feature vectors. The network will learn to look at different
locations depending on the sequence of words that it has already generated. Such models
should be able to attend to salient aspects of the video while generating a description.

4.3 Multi-sentential Descriptions of Longer Videos

Generating multi-sentential descriptions of longer videos will be longer-term focus of
my proposed research. A major limitation of existing works is that they only generate
a single-sentence description of short (6-20 sec) video clips. We propose to extend our
LSTM approach to produce multi-sentential descriptions of longer multi-activity videos,
initially training and testing on DVS-annotated videos. We plan to develop an LSTM-based
system to simultaneously segment a video-stream into single-activity clips and produce a
sentential description of each individual clip. Using the segmented data in our DVS corpus
as supervision, we will train the LSTM to also detect activity boundaries in video and signal
when to end a segment, translate the resulting hidden-state representation of the current
clip into an NL sentence, and then reset the state to begin encoding the next activity.

4.3.1 Using Text-Mined Scripts to Improve the Recognition of Event Sequences

Current video description models tend to generate repetitive descriptions for consec-
utive shots in a video.We propose to use text-mined “scripts” to improve the recognition
of activity sequences in videos. Scripts encode knowledge of stereotypical events includ-
ing information about their ordered sequence of sub-events and their arguments [82]. The
classic example is the “restaurant script,” which encodes knowledge about what normally
happens when dining out: A patron enters a restaurant, a hostess shows them to a table,
the waiter brings them a menu, the patron orders food, and so forth. Scripts can be used
to improve text understanding by supporting inference of implied information as well as
resolution of anaphora and lexical and syntactic ambiguities [83].

Recently, [74, 75] have developed improved approaches to script learning that employs
a richer model of events. Further [75] also uses an LSTM network to model scripts. We
propose to develop methods for using such learned scripts to aid the interpretation of
activity sequences in videos. Our approach will use the learned script model to estimate
the prior probability of a sequence of activities and use it to bias the visual recognition and
segmentation of action sequences. For example, in a cooking video, the sequence of actions
“open, pour, mix” is a priori more likely than “mix, pour, open” and therefore is a preferred
interpretation. We plan to incorporate such a script model into our proposed method for
joint event segmentation and description.

Adapting Script Models to DVS data on event sequence One approach would be to
use existing LSTM based script models, but include visual features as an additional input
to predict the next event in the sequence. In this case, our models would be trained on
consecutive scenes from pre-segmented clips, along with the input representations for each
of the events. Given the next clip, the model should learn to predict the next event in the
sequence conditioned on the previous event sequences and the current clip. Additionally,
we can incorporate another layer that generates a full sentence description of the event from
the short sequence of actions representing the script event.
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4.3.2 Temporal Video Segmentation

Temporal video segmentation typically refers to sub-dividing a video into spatio-temporal
volumes. Oftentimes, it is at either shot boundaries, where the camera view changes or at
scene boundaries where the background scene itself changes. In movies, video editing and
interleaving can also create a natural temporal boundary. In our work we are primarily
interested in temporal video segmentation based on the content and event in the video.
Our approach needs to be capable of not only identifying high level scene boundaries, but
also event boundaries (or changepoints), which could be subtle boundaries between the com-
pletion of a coherent event sequence and the beginning of another. E.g. in a cooking video
this could be the point where the cook finishes pouring some sauce into the dish and starts
mixing it.

There have been some works that have investigated temporal video segmentation to
identify events [61], however they are applied in the case of ego-centric videos to identify
when the wearer is static, in transit, or moving just their head. Most video segmentation
techniques focus mainly on difference between consecutive frame pixel values to identify
boundaries. They rely on image descriptors such as color histograms and local motion
features and bag-of-features descriptors. Our approach would focus more on the event and
hence we will exploit deep features which can aid in object, scene, and action recognition to
identify coherent event boundaries. Additionally, we also want to simultaneously describe
each event as it completes.

4.3.3 Bi-directional LSTM for video segmentation

Conventional LSTMs have a deficiency in the sense that they are only able to make use
of previous context. For the task of video segmentation however, it would be optimal to
make use of the future context as well. Bidirectional RNNs (BRNNSs) [84] achieve this by
processing the data in both directions using two separate hidden layers, one each for the
previous context and the future context, which are both then fed forwards to the same
output layer. In the case of bi-directional LSTMs, it consists of two LSTMs, where one of
the LSTMs first processes the reverse sequence. Then, the other (forward) LSTM processes
the sequence in-order, and the hidden state of the forward ( & ) and reverse LSTMs (?) are
concatenated to generate the output at each time-step. If x; and y; represent the input and
output at each time step ¢, then this can be represented as

— —

H=H (wﬁxt W B+ bﬁ) 4.3)

— <

no=H <Wx7xt +Weo Tt + b?) (4.4)
— —

ytzwﬁyht+w<yyht+by (45)

where W are the weight matrices, b the bias terms and H is the composite function of the
LSTM unit (Section 3.1 Equations (2.3-2.7)). Deep bi-directional LSTMs have been used
successfully for hand-writing recognition [60] to predict characters and in speech recogni-
tion [33] to identify phonemes with very low error rates. This proposal will explore both
conventional LSTMs and bi-directional LSTMs for video segmentation and captioning.

We propose to use a hierarchy of LSTM layers to address the problem of jointly segment-
ing and captioning longer videos. Our key idea, is to train one LSTM layer (conventional,
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or bi-directional, or even pyramidal [11]) to focus exclusively on segment/shot boundaries
i.e. it will determine whether the current frame belongs to the previous shot or if it is a new
shot. Then, the next layer will predict a value to explicitly reset the LSTM units (in the layer
below) to indicate the beginning of a new sub-sequence. We will use an additional (output)
LSTM layer, that will take as input the last state (before resetting) from the previous LSTM
layer, in order to generate the output sentence (or script event). This architecture can be
thought of as skip-lists, where each higher layer receives inputs from the layers below and
decides whether or not it should output something at the current time step.

4.3.4 Combining features from unsupervised segmentation approaches

A strong baseline to compare against, would be to have different models for temporal
segmentation and sentence generation. There have been a few unsupervised approaches to
temporal video segmentation [87, 76, 112]. The underlying principle in these approaches
is to cluster similar shots into coherent scene segments using color based features. [76,
112] are of particular interest since they apply their technique to segment TV shows and
movies. Shot boundaries are easily detected using color histogram differences between
consecutive frames, hence both works assume the video is already sub-divided into shots
(based on camera view). They then consider key frames from these shots to extract object
descriptors and color histogram features to group shots containing similar, objects, actors,
and background scenes into a single scene segment. Generating descriptions for videos
segmented using such unsupervised techniques can provide a strong baseline. Additionally,
we can concatenate color histogram features and other intensity based features used by
the unsupervised methods along with our deep features to assist our LSTM based video
segmentation models.

4.3.5 Dataset for evaluation

We will evaluate the ability of the system to properly segment and produce NL de-
scriptions for each segment by using BLEU and METEOR metrics to score the descriptions
for novel DVS-annotated videos (Section 3.3.3). Additionally, we will also compare our
temporal segmentation approach against the small set of movies and TV shows in [76].
We also plan to test the resulting system on full YouTube videos, using crowd-sourcing
to manually annotate a small corpus of YouTube videos for training and testing, and also
using crowd-sourcing to collect human evaluations of the automatically-generated multi-
sentential descriptions.

4.4 Exploiting Movie Scripts and Sub-titles to Enhance DVS Descriptions for
Movies

As bonus work, we propose to go beyond generating simplistic sentence descriptions
for movies by developing effective methods for identifying characters in order to generate
more precise descriptions including character names and associating actions to characters.
Current movie description models [96, 107] are trained on sentences where character names
are replaced with the generic noun “Someone”. While this is based on the premise that
movies in the test set are never seen before and hence characters in it are unknown; in
practice however, we have access to additional sources of information such as movie scripts
and subtitles that can help in learning and recognizing characters.
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It's important to note that by itself, neither the script nor the subtitles contain the re-
quired information to label the identity of the people in the video. The subtitles record
what is said, but not by whom, whereas the script records who says what, but lacks tim-
ing information. Movie scripts typically include names of all characters and most movies
loosely follow the sequence of events in the original script. Both the scripts and the subti-
tles together can be used to estimate the presence of a character on the video screen [28, 2].
Moreover, movie scripts are readily available and subtitles can also be easily obtained using
automatic speech recognition. In addition, we can also obtain a few annotations of the char-
acters by clustering similar faces and actively requesting for annotations on some examples.
Then we can use techniques from [18, 17] to learn characters from ambiguously or partially
labeled images.

4.4.1 Identifying Character Screen Presence from Movie Scripts

There is a body of prior work on identifying characters in video streams, e.g.,[28, 2]
that uses subtitles and scripts to automatically assign character names to faces in the video
frames. However, these works only recognize the presence of a character in the frame
and do not identify the sequence of actions/events or generate their descriptions. Another
closely related set of works look at aligning text from the web or books to appropriate
positions in videos [63, 113]. Our proposed work differs from these since we are not looking
to directly align existing text, but instead we wish to compose information in these texts
(character names, actions) to generate a description of the event on the screen. Our proposal
is to combine the subtitle and movie script information, to first identify the time intervals
at which a character is present on screen. Then, given the clips from the movie, using the
time stamp, each shot can be tagged with the characters that are likely to be present. Then
we can use multiple instance learning (MIL) and other methods to learn character identities
from ambiguously and partially labeled images [18, 17]. This can be used to generate
more accurate DVS descriptions by including names of characters even on new test videos.
Additionally, scripts and subtitle dialogues can be used to improve text understanding by
supporting inference of implied information as well as co-reference resolution.

Datasets We plan to utilize some of the videos from the MPII-MD movie dataset described
in Section 4.3.5. The DVS dataset contains aligned traditional Hollywood scripts for 40
of the 90 movies. They contain scene captions, dialogs and scene descriptions. They are
temporally pre-aligned as described in [79] and a detailed alignment is performed manually.
We plan to use data from the 40 movies to train our model, and evaluate it’s ability to
incorporate character information in the remaining videos.

4.4.2 Detection models for characters based on examples

Another technique would be to employ semi-supervised approaches to identify charac-
ters [17] in movies by taking advantage of face detection algorithms. An initial approach
would be to run a frontal face detector on frames from the clips. We could then use a
simple clustering algorithm to cluster similar faces, or employ a face tracker such as the
Kanade-Lucas-Tomasi tracker [92]. Clustering and face tracking can establish correspon-
dence between pairs of faces within the same shot. Additionally, face-tracking is more
robust as it can also establish matches between faces where the frontal face detector may

28



4.4. Exploiting Movie Scripts and Sub-titles to Enhance DVS Descriptions for Movies

have missed detection due to pose variation or expression change. Then, based on the ex-
ample image for each character, we can learn a classifier to classify images to any of the
characters (or identify none-of-the-above). This can then be integrated with our existing
LSTM based description models. The final network, will include features from a regular
object classifier as well as the character classifier, and needs to be tuned on a few sentences
containing character names to generate appropriate sentences.

Alternately, we can employ simple language transfer techniques to completely avoid
annotating some sentences with character names on the test movies. The primary rea-
son for fine-tuning the caption model on sentences with character names is to update the
language model within the LSTM network enabling it to generate coherent sentences in-
corporating the names. However, if we can transfer knowledge from words used in similar
contexts, such as man, woman, person, to the new words (names of characters), then the
language model will be able to construct sentences describing the event including the char-
acter names. Adopting the model in [64], it is possible to make a slight modification to
the LSTM decoder to include an additional layer that combines the visual features and lan-
guage features just before prediction. This will enable the LSTM model to easily integrate a
character classifier and also allow the transfer of weights from known words to new words
facilitating the generation of coherent sentences incorporating names of characters.
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Chapter 5

Conclusion

Generating natural language descriptions for events in videos enables several applications.
The last year has seen a dramatic interest description of static images and growing interest
in video description. This proposal focuses on generating natural language descriptions
that capture sequences of activities depicted in diverse video corpora, where limited prior
work exists. The major obstacles to scale video description are limited training data, wide
diversity of visual and language content, and lack of rich and robust representations. As
a step in addressing these challenges, this proposal presents the first fully deep model to
generate descriptions of events depicted in videos. Our model is capable of learning salient
entities worth describing directly from video and sentence pairs. It treats the video do-
main as another “language” and takes a machine translation approach to translate videos
to text. This proposal also highlights several directions to significantly extend work in this
area. Specifically, we propose strategies to generate more diverse and accurate descriptions
by integrating prior linguistic knowledge and attention methods to focus on object inter-
actions. We also propose schemes to process longer multi-activity videos by learning to
jointly segment and describe coherent event sequences.
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