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Natural-Language Video Description with

Deep Recurrent Neural Networks

by

Subhashini Venugopalan, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Raymond J. Mooney

For most people, watching a brief video and describing what happened (in
words) is an easy task. For machines, extracting meaning from video pixels and
generating a sentence description is a very complex problem. The goal of this
thesis is to develop models that can automatically generate natural language de-
scriptions for events in videos. It presents several approaches to automatic video
description by building on recent advances in “deep” machine learning. The tech-
niques presented in this thesis view the task of video description akin to machine
translation, treating the video domain as a source “language” and uses deep neural
net architectures to “translate” videos to text. Specifically, I develop video caption-
ing techniques using a unified deep neural network with both convolutional and
recurrent structure, modeling the temporal elements in videos and language with
deep recurrent neural networks. In my initial approach, I adapt a model that can
learn from paired images and captions to transfer knowledge from this auxiliary
task to generate descriptions for short video clips. Next, I present an end-to-end
deep network that can jointly model a sequence of video frames and a sequence
of words. To further improve grammaticality and descriptive quality, I also pro-
pose methods to integrate linguistic knowledge from plain text corpora. Addition-
ally, I show that such linguistic knowledge can help describe novel objects unseen
in paired image/video-caption data. Finally, moving beyond short video clips, I
present methods to process longer multi-activity videos, specifically to jointly seg-
ment and describe coherent event sequences in full-length movies.
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Chapter 1

Introduction

Videos are a rich and complex source of information, and they constitute
the largest chunk of the content on the internet. For most humans, understand-
ing multimedia content is easy, and in many cases images and videos are a pre-
ferred means of augmenting and enhancing human interaction and communica-
tion. Given a video, humans can discern a great deal from this rich information
source and can interpret and describe the content to varying degrees of detail e.g.
as a succinct summary, or even as a detailed sequence of events (Figure 1.1). For
computers however, interpreting content from image and video pixels is very chal-
lenging. The goal of research in language and vision is to develop intelligent sys-
tems that can autonomously analyze and understand this complex visual data as
well as interact and express itself in natural language.

This dissertation looks fundamentally at the problem of describing content
in videos. The ability to automatically describe videos in natural language enables
many important applications such as content-based video retrieval, video segmen-
tation and segment indexing, textual summarization of video clips, video descrip-
tion for the visually impaired, and automated video surveillance among others. In
this chapter I will first outline some of the challenges in video understanding and
description, and then highlight contributions of my research.

Challenges. The core of video description or captioning, consists of three
main research components, object recognition, activity recognition, and surface re-
alization (or sentence generation). Early work on natural language description of
visual data focused primarily on static images (Yao et al., 2010, Farhadi et al., 2010,
Kulkarni et al., 2011, Li et al., 2011, Kuznetsova et al., 2012, Yang et al., 2011). These
relied on several algorithms and techniques for recognizing objects in images, and
simple template based approaches for generating a sentence. There have been a
few research works that have extended these methods to video description (Ko-
jima et al., 2002, Lee et al., 2008, Khan and Gotoh, 2012, Barbu et al., 2012, Ding et
al., 2012, Das et al., 2013b;a, Rohrbach et al., 2013, Yu and Siskind, 2013) but only
within narrow domains (e.g., cooking), which contain limited vocabularies of ob-
jects and activities. These works relied heavily on the specific domain in order to
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Short Description: A monkey pulls a dog’s tail and is chased by the dog.
Detailed Description: A monkey pulls a dog’s tail. The dog turns around and chases the 
                                          monkey. The monkey runs away and swings around a pole. 

Figure 1.1: Describing activities depicted in videos require integration of both
visual and linguistic capabilities. For most humans this is easy. This example
presents frames from a YouTube video clip and human generated descriptions of
different granularity.

build good object and activity classifiers, hence they were quite difficult to gener-
alize to videos ‘in-the-wild’.

Progress in open-domain video description has been difficult in part due
to large vocabularies and very limited training data consisting of videos with as-
sociated descriptive sentences. Early work by Krishnamoorthy et al. (2013) and
Guadarrama et al. (2013a) achieved promising results on the task of generating
natural language descriptions of short open-domain video clips by relying primar-
ily on good object recognition techniques and template based sentence generation.
However, the task of solving the problem at scale, to recognize and capture in-
teractions between objects, particularly for large vocabulary “in-the-wild” video
collections, and long (possibly movie-length) sequences still remained a challenge.
Another serious obstacle has been the lack of rich models that can capture the joint
dependencies of a sequence of frames and a corresponding sequence of words. My
completed research takes a step towards addressing some of these challenges.

Progress. These last few years, deep machine learning approaches have
achieved remarkable success on object recognition tasks and sequence modeling
in natural language, sparking renewed interest in image and video captioning.
In particular, deep convolutional neural network approaches (Krizhevsky et al.,
2012) achieved ground breaking results on object recognition tasks in large im-
age datasets (Deng et al., 2009b). Closely following this, deep recurrent neural
network approaches achieved resounding success on sequence modeling tasks in
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natural language processing, machine translation in particular (Bahdanau et al.,
2014, Sutskever et al., 2014) and speech recognition (Graves et al., 2013). These in
turn lead to a marked increase in work on natural-language image description.
Notably, several deep neural network based methods (Donahue et al., 2015, Chen
and Zitnick, 2015, Karpathy and Fei-Fei, 2015, Kiros et al., 2015, Kuznetsova et al.,
2014, Mao et al., 2014, Vinyals et al., 2015, Fang et al., 2015) achieved breakthrough
results on the task of describing images with a single sentence. In contrast, video
description has seen far less attention and deep neural network approaches to im-
age captioning do not address the problem of modeling a sequence of visual inputs
and describing them in full sentences.

Contributions. This thesis presents some of the first fully deep models for
video captioning. We leverage transformative advances in “deep” machine learn-
ing combining them with the latest techniques in computer vision and natural lan-
guage processing (NLP) to develop improved and scalable methods for natural-
language video description.

In previous work (Thomason et al., 2014), we focused on addressing the
issue of describing open-domain videos with large vocabularies by integrating lin-
guistic knowledge with visual recognition. As seen from the example in Figure 1.1,
describing activities depicted in video requires integrating both visual and linguis-
tic capabilities. Using a two step approach, we build visual classifiers to recognize
several hundred objects, activities and scenes in videos. Then, to determine salient
objects and activities, we combine knowledge mined from text corpora with confi-
dences from the visual classifiers using a factor graph to estimate the best subject-
verb-object-scene (SVOP) tuple that can be used to describe a short video clip. As
mentioned previously, scaling such models to describe salient elements is difficult.

Inspired by deep image captioning models (Donahue et al., 2015, Vinyals et
al., 2015), I present the first fully deep model for video description (Venugopalan
et al., 2015b). We use deep recurrent neural networks based on Long Short Term
Memory (LSTM, Hochreiter and Schmidhuber (1997)) to learn what is worth de-
scribing directly from video and sentence pairs. Additionally, we overcome the
limitation of reduced video training data, by transferring knowledge from the data
rich auxiliary task of image captioning to further improve results on the video de-
scription task. In Venugopalan et al. (2015a), we extend this deep video captioning
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framework further, by proposing a more robust model that can capture the joint
dependencies of a sequence of frames and a corresponding sequence of words. We
also show the generality of the approach by describing short clips from movies.

I then develop extensions to incorporate prior linguistic knowledge into
deep video and image captioning models. I propose multiple techniques to in-
tegrate knowledge from plain text corpora to improve both grammaticality and
descriptive quality in video captioning (Venugopalan et al., 2016). In addition, I
show that such methods of integrating linguistic knowledge can be particularly
helpful to describe novel objects unseen in paired image-caption training data
(Venugopalan et al., 2017). Next, to move beyond single sentence descriptions of
short video clips, I outline models that can process multi-activity videos learning
to simultaneously segment and describe coherent event sequences, in particular to
generate descriptions of longer clips from movies.

Organization

The remainder of this work is organized in 9 chapters: Chapter 2 presents
background about initial works in video description and an introduction to deep
recurrent neural networks; Chapters 3 and 4 present the first recurrent neural
network based approaches to video captioning; Chapter 5 presents extensions to
incorporate statistical language models to improve descriptive quality of videos,
Chapter 6 shows how such linguistic knowledge can also be used to describe novel
objects, particularly in images. Chapter 7 then proceeds to discuss steps to address
multi-activity videos looking more closely at the task of generating descriptions of
movies. Finally, Chapter 8 places this dissertation in context discussing contempo-
raneous and related works, and Chapter 9 looks at some of the future directions.
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Chapter 2

Background

In this chapter, I briefly review early research on integrating language and
vision to generate image and video description. Next, I present some initial mod-
els for video description. Then I will describe how deep recurrent neural networks
(RNNs) are used to model sequences. Specifically I will examine a specific vari-
ant of RNNs termed Long Short-Term Memory (LSTM) RNNs which have been
popular in machine translation and image-captioning research.

2.1 Language and Vision

Both natural language processing (NLP) and computer vision (CV) have
made great strides in recent years (Jurafsky and Martin, 2009, Forsyth and Ponce,
2011), leveraging transformative advances in machine learning and the availabil-
ity of very large datasets. Now, the two fields are rapidly encroaching upon each
other: language is increasingly focused on “grounding” meaning in perception,
and vision is exploiting linguistic ontologies and trying to “tell a story” from im-
agery, relating objects, activities, people, and scenes. Until a couple of years back,
there was a small but growing body of work at the intersection of NLP and CV
on topics like connecting words to pictures (Barnard et al., 2003, Berg et al., 2004,
Deng et al., 2009a), describing images in natural language (NL) (Farhadi et al., 2010,
Kulkarni et al., 2011, Li et al., 2011), and comprehending NL instructions in terms
of robot perception and action (Matuszek et al., 2010, Tellex et al., 2011, Kruijff et al.,
2007, Guadarrama et al., 2013b).

The last couple of years saw a dramatic increase in image captioning and
retrieval works (Donahue et al., 2015, Vinyals et al., 2015, Karpathy and Fei-Fei,
2015, Kiros et al., 2015, Fang et al., 2015, Mao et al., 2014) owing to the release of
large image captioning datasets MSCOCO (Lin et al., 2014) and Flickr30k (Hodosh
et al., 2014). Shortly following this, there have also been datasets for image question
answering (Malinowski and Fritz, 2014, Antol et al., 2015, Ren et al., 2015a, Yu et al.,
2015). In comparison, progress in video description has been slower.
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2.2 Early Progress in Video Description

Video description, particularly for large-vocabularies and activities presents
unique challenges, including modeling dynamics and actor-action-object relation-
ships from limited training data, as well as dealing with polysemy and ambiguity.
Results on activity description in video have been restricted to a small set of actions
and objects (Khan and Gotoh, 2012, Lee et al., 2008, Kojima et al., 2002, Ding et al.,
2012, Krishnamoorthy et al., 2013, Das et al., 2013b;a). Work on large-vocabulary
description has focused mostly on nouns/adjectives, specifically, early work on
videos considered tagging videos with metadata (Aradhye et al., 2009) and clus-
tering captions and videos (Huang et al., 2013, Over et al., 2012, Wei et al., 2010) for
retrieval tasks.

Early work on video description used hand-crafted templates, grammars
and rules, and worked in fairly constrained domains. For example, Barbu et al.
(2012) and Yu and Siskind (2013) produce sentential descriptions for short videos
but only recognize a limited set of (5-10) objects and activities and uses a manu-
ally engineered grammar to generate a fairly restricted range of descriptive sen-
tences. Several previous methods for generating sentence descriptions divided the
task into two parts. The first is the content generation where they identify the most
salient objects that need to be described. The second is surface realization where
they generate a sentence based on the identified content. For example, Guadar-
rama et al. (2013a) and Krishnamoorthy et al. (2013) use a two stage pipeline that
first identifies the semantic content (subject, verb, object) and then generates a sen-
tence based on a template. In Krishnamoorthy et al. (2013) they first train indi-
vidual classifiers to identify candidate objects, actions and scenes. They then use
an n-gram language model to determine the best subject-verb-object for describing
a video. This is then used to generate a sentence. Krishnamoorthy et al. (2013)
used a limited set of videos containing a small set of 20 entities. Guadarrama et
al. (2013a) was the first to describe “in-the-wild” videos with large vocabularies.
They showed the advantage of using linguistic knowledge, but only for the case of
“zero shot activity recognition”, in which the appropriate verb for describing the
activity was never seen during training.

6



Gold: person, slice, onion, none
HVC: person, slice, egg, kitchen
FGM: person, slice, onion, kitchen

Figure 2.1: The factor graph model for estimating the most likely subject-verb-
object-place (SVOP) tuple by combining confidences from visual detectors and
statistics from language. (Right) The factor graph model (denoted FGM) correctly
predicts “person, slice, onion, kitchen” whereas the vision system places a higher
confidence on “person, slice, egg, kitchen”. HVC refers to the Highest Vision Con-
fidence system, based on just the visual classifiers.

2.3 Integrating Language and Vision using Factor Graphs

In previous work (Thomason et al., 2014), we address the task of video de-
scription by first recognizing objects, activities and scenes in the video; and then
generate a sentence description based on the most likely subject-verb-object-place
(SVOP) tuple. We follow the method in Guadarrama et al. (2013a) to first build ob-
ject and action classifiers. For detecting objects, we use ObjectBank (Li et al., 2010)
and the LLC-10k classifiers of Deng et al. (2012) trained on ImageNet 2011 with
10k object categories. Our action classifiers used features from Wang et al. (2011)
(dense trajectories), and the features for scene recognition were based on Xiao et al.
(2010). We trained non-linear Support Vector Machines (SVMs) (Chang and Lin,
2011) to obtain confidences over 45 subjects, 218 verbs, 241 objects and 12 scenes,
thus covering a large vocabulary.

To improve recognition accuracy, we used text-mined knowledge to bias the
collective labeling of each test video with a coherent subject (S), verb (V), object
(O), and scene/place (P). We used the Stanford dependency parser (De Marneffe
et al., 2006) to syntactically analyze over 35GB of raw text and extracted bigram co-
occurrence statistics for SV, VO, and OP word pairs. These determine the language
potentials. We then use a factor graph to systematically integrate visual detection
confidences with probabilistic knowledge mined from text corpora. During test-
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ing, efficient exact MAP inference for this simple linear-chain model is used to
predict the most probable (SVOP) description as illustrated in Figure 2.1.

2.4 Deep Neural Networks

A major short-coming of all the early image and video description approaches
was that, in order to scale them one needed to pre-select and build classifiers for
a range of objects, actions, and scenes, and also devise methods to identify salient
objects worth describing. Advances in deep machine learning, in particular deep
convolutional neural networks (CNNs) (Krizhevsky et al., 2012), and deep recur-
rent neural networks (RNNs) (Bahdanau et al., 2014, Sutskever et al., 2014) helped
overcome both these challenges. Both deep CNNs and RNNs form the foundation
of the work presented in this thesis, hence we present a very brief overview of both
CNNs and RNNs from the perspective of how they are used in this thesis.

The framework of our video description models are based on deep neu-
ral networks, in particular, CNNs for modeling visual data and Long Short-Term
Memory (LSTM) RNN units for modeling language. While CNNs have shown
phenomenal success on object recognition tasks (Krizhevsky et al., 2012, Simonyan
and Zisserman, 2014b, Szegedy et al., 2015), LSTMs have recently shown supe-
rior performance on tasks such as speech recognition (Graves and Jaitly, 2014),
machine translation (Sutskever et al., 2014, Cho et al., 2014) and the more related
task of generating sentence descriptions of images (Donahue et al., 2015, Vinyals
et al., 2015). This section aims to provide a brief overview of convolutional neural
networks and recurrent neural networks, specifically Long Short-Term Memory
(LSTMs) networks with focus on sequence modeling.

2.4.1 Convolutional Neural Networks

Convolutional neural networks (LeCun et al., 1995) are specifically designed
architectures of neural networks to efficiently process and handle data with some
fixed spatial topology such as images, or fixed-length sequences of words. The
goal of a CNN is to typically learn a spatially invariant representation of the input,
particularly useful for classification tasks. This is achieved by neural net architec-
tures consisting of convolutional and pooling layers described below.
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Convolutional layer. The goal of a convolutional layer is to automatically learn
weights of convolutional filters that can be helpful in identifying local features
like detection of edges, and curvatures. The input to a CNN is typically a multi-
dimensional array (or a tensor). In the case of color images, it would be a 256x256x3
tensor. And a filter is a set of weights or parameters e.g.. it could be of dimension
say 5x5x3. In order for the CNN to learn local features, the filter is (mathematically)
convolved over the entire input tensor to obtain an activation map. Intuitively, the
filter weights help the model “learn” or “look for” local features that (would show
up in the activation map, and) can help in downstream tasks. Each convolutional
layer, learns not just a single filter, but a collection of filters. The weights and
parameters of these filters are learned through back-propagation.

Pooling layer. Pooling layers are often used in CNNs to decrease the size of the
representation learned by the convolutional layer by applying a fixed downsam-
pling transformation. The downsampling is done spatially at the cost of losing
some local spatial information, but overall this helps the network learn a good
condensed representation of the input.

Convolutional
Layer

Pooling
Layer

Activation/Feature Maps

Convolutional
Layer

Pooling
Layer

Fully-connected
Layers

Figure 2.2: A simple convolutional neural network architecture 2 convolutional
layers, 2 pooling layers, and 2 fully-connected layers.

Most CNN architectures have multiple convolutional layers followed by a
pooling layer, and this structure could be repeated multiple times to create stacks
of convolutional layers, and pooling layers, finally ending with fully connected
layers and a final classification objective as shown Figure 2.2. The activations just
before the classification layer could serve as a condensed representation of the im-
age. All the parameters of the network are trained using back-propagation.

9



2.4.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a generalization of feed forward
neural networks to sequences. Standard RNNs learn to map a sequence of inputs
(x1, . . . , xt) to a sequence of hidden states (h1, . . . , ht), and from the hidden states
to a sequence of outputs (z1, . . . , zt) based on the following recurrences:

ht = f(Wxhxt +Whhht−1) (2.1)

zt = g(Wzhht) (2.2)

where f and g are element-wise non-linear functions such as a sigmoid or hyper-
bolic tangent, xt is a fixed length vector representation of the input, ht ∈ RN is the
hidden state with N units, Wij are the weights connecting the layers of neurons,
and zt the output vector.

2.4.3 Long Short-Term Memory RNNs

RNNs can learn to map sequences for which the alignment between the in-
puts and outputs is known ahead of time (Sutskever et al., 2014) however it was
unclear if they could be applied to problems where the inputs (xi) and outputs (zi)
are of varying lengths. This problem was solved by learning to map sequences of
inputs to a fixed length vector using one RNN, and then map the vector to an out-
put sequence using another RNN (Cho et al., 2014). This is popularly referred to as
the “encoder-decoder” framework. Another known problem with RNNs is that, it
can be difficult to train them to learn long-range dependencies (Hochreiter et al.,
2001). However, LSTMs (Hochreiter and Schmidhuber, 1997), which incorporate
explicitly controllable memory units, are known to be able to learn long-range tem-
poral dependencies. In our work we use the LSTM unit in Figure 2.3, described in
Zaremba and Sutskever (2014), and Donahue et al. (2015).

At the core of the LSTM model is a memory cell c which encodes each in-
put, creating a condensed representation of the sequence of inputs that have been
observed up to that step. The cell is modulated by gates which are all sigmoidal,
having range [0, 1], and are applied multiplicatively. The gates determine whether
the LSTM keeps the incoming value from the gate (if the layer evaluates to 1) or
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Figure 2.3: The RNN and LSTM units (replicated from Donahue et al. (2015)). The
memory cell is at the core of the LSTM unit and it is modulated by the input, output
and forget gates controlling how much knowledge is transferred at each time step.

discards it (if it evaluates to 0). The three gates – input gate (i) controlling whether
the LSTM considers its current input (xt), the forget gate (f ) allowing the LSTM
to forget its previous memory (ct−1), and the output gate (o) deciding how much
of the memory to transfer to the hidden state (ht), all enable the LSTM to learn
complex long-term dependencies. The recurrences for the LSTM are then defined
as:

it = σ(Wxixt +Whiht−1) (2.3)

ft = σ(Wxfxt +Whfht−1) (2.4)

ot = σ(Wxoxt +Whoht−1) (2.5)

ct = ft � ct−1 + it � φ(Wxcxt +Whcht−1) (2.6)

ht = ot � φ(ct) (2.7)

where σ is the sigmoidal non-linearity, φ is the hyperbolic tangent non-linearity,
� represents the product with the gate value, and the weight matrices denoted by
Wij are the trained parameters.

Thus, the gates in the LSTM allow it represent a sequence by learning long-
term dependencies. Hence, LSTM RNNs can “encode” a sequence of inputs to a
vector, and also “decode” the vector to produce a sequence of outputs. The next
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chapter presents a model that employs the LSTM RNN to “decode" a visual feature
vector representing the video to generate textual output. Following that, Chapter 4
describes models where LSTM networks are used to both encode a sequence of
video frames to generate a visual feature vector, and decode that vector to generate
a description.

12



Chapter 3

Video Description with Deep Recurrent Neural Networks

This chapter presents the first model that uses deep recurrent neural net-
works based on Long Short Term Memory (LSTM, Hochreiter and Schmidhuber
(1997)) to generate video descriptions1. Unlike, early image and video description
models seen in Chapter 2, our LSTM based model learns what to describe directly
from video and sentence pairs without having to explicitly identify domain specific
objects, actions, and scenes and build classifiers for each. Our models take inspira-
tion from recent breakthroughs in machine translation (Sutskever et al., 2014) and
image-captioning (Donahue et al., 2015), and treats the input video as another “lan-
guage” and translates the visual input to a sequence of words. First, I describe how
we can use LSTMs to decode a vector to a sequence of outputs. Next, I present an
LSTM based video description model, and also show how we can transfer knowl-
edge from the data rich auxiliary task of image captioning to generate descriptions
for short video clips.

3.1 Modeling sequences with LSTMs

Our framework is based on deep image description models in Donahue et
al. (2015) and Vinyals et al. (2015) and extends them to generate sentences describ-
ing events in videos. These models work by first applying a feature transformation
on an image to generate a fixed dimensional vector representation. They then use
a sequence model, specifically a Recurrent Neural Network (RNN), to “decode”
the vector into a sentence (i.e. a sequence of words). In this work, we apply the
same principle of “translating” a visual vector into an English sentence and show
that it works well for describing dynamic videos as well as static images.

We identify the most likely description for a given video by training a model
to maximize the log likelihood of the sentence S, given the corresponding video V

1Based on work published in Venugopalan et al. (2015b). All work in this chapter constitutes
original contributions.
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and the model parameters θ,

θ∗ = argmax
θ

∑
(V,S)

log p(S|V ; θ) (3.1)

Assuming a generative model of S that produces each word in the sequence
in order, the log probability of the sentence is given by the sum of the log proba-
bilities over the words and can be expressed as:

log p(S|V ) =
N∑
t=0

log p(Swt|V, Sw1 , . . . , Swt−1) (3.2)

where Swi
represents the ith word in the sentence and N is the total number of

words. Note that we have dropped θ for convenience.
A sequence model would be apt to model p(Swt|V, Sw1 , . . . , Swt−1), and we

choose an RNN. An RNN, parameterized by θ, maps an input xt, and the previ-
ously seen words expressed as a hidden state or memory, ht−1 to an output zt and
an updated state ht using a non-linear function f :

ht = fθ(xt, ht−1) (3.3)

where (h0 = 0). In this work we use the highly successful Long Short-Term Mem-
ory (LSTM) network (from Section 2.4.2) as the sequence model, since it has shown
superior performance on tasks such as speech recognition (Graves and Jaitly, 2014),
machine translation (Sutskever et al., 2014, Cho et al., 2014) and also the more
related task of generating sentence descriptions of images (Donahue et al., 2015,
Vinyals et al., 2015). Note here that we use LSTM RNNs to specifically decode a
vector representation of the video (xt in Eqn. 3.3) to a sentence. However, we first
need to convert videos to a fixed length representation (input xt), and for this we
use a Convolutional Neural Network (CNN). The following sections presents this
in greater detail.
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3.2 Translating Videos to Natural Language using LSTMs

In this section we build a model to translate from video pixels to natural
language with a single deep neural network. Our models have been inspired by
the use of LSTM RNNs in machine translation (MT) (Sutskever et al., 2014, Bah-
danau et al., 2014) where they use one LSTM to encode a sequence of French tokens
and another LSTM to decode that encoded representation to a sequence of English
words. In contrast to sequence models in traditional statistical MT (Koehn, 2010),
RNNs naturally combine with all vector-based representations, such as even those
based on images and video. Donahue et al. (2015) and Vinyals et al. (2015) simulta-
neously proposed a multimodal analog of the model in Sutskever et al. (2014), with
an architecture which uses a visual CNN/convnet to encode an image into a deep
state vector, and an LSTM to decode the vector into a sentence. Our model takes
inspiration from both these approaches, and adapts their techniques for video de-
scription.

Deep NNs can learn powerful features (Donahue et al., 2014, Zeiler and
Fergus, 2014), but require a lot of supervised training data. However, annotated
video data with descriptions is scarce. We address this problem by transferring
knowledge from auxiliary tasks at different levels in the network. Each frame of
the video is modeled by a convolutional (spatially-invariant) network pre-trained
on 1.2M+ images with category labels (Krizhevsky et al., 2012). The meaning state
and sequence of words is modeled by a recurrent (temporally invariant) deep net-
work pre-trained on 100K+ Flickr (Hodosh et al., 2014) and COCO (Lin et al., 2014)
images with associated sentence captions. We show that such knowledge transfer
significantly improves performance on the task of video description.

Our approach has several important advantages over existing video de-
scription work. The LSTM network effectively models the sequence generation
task without requiring the use of fixed sentence templates as in previous work (Kr-
ishnamoorthy et al., 2013, Guadarrama et al., 2013a, Thomason et al., 2014). Pre-
training on image and text data naturally exploits related data to supplement the
limited amount of descriptive video currently available. Finally, the use of a deep
CNN (Krizhevsky et al., 2012), the winner of the ILSVRC2012 (Russakovsky et al.,
2015) image classification competition, provides a strong visual representation of
objects, actions and scenes depicted in the video. The main contributions of this
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Figure 3.1: The structure of our video description network. We extract visual fea-
tures from a CNN for each frame, mean pool the features across the entire video
and input this at every time step to the LSTM network. The LSTM outputs one
word at each time step, based on the video features (and the previous word) until
it picks the end-of-sentence tag.

approach are:

• It is the first end-to-end deep model for video-to-text generation.

• It leverages still image classification and caption data, and transfers knowl-
edge learned on such data to the video description task.

• We provide a detailed evaluation of our model on a collection of YouTube
videos Chen and Dolan (2011) and demonstrate that it significantly improves
over previous state of the art approaches discussed in Chapter 2.

3.3 CNN-LSTMs for video description

Figure 3.1 depicts our model for sentence generation from videos. We choose
a two layer LSTM model for the video description task. Our choice on the number
and size of layers are based on experiments in (Donahue et al., 2017) comparing
different architectures for image captioning. We employ the LSTM to “decode" a
visual feature vector representing the video to generate textual output. The first
step in this process is to generate a fixed-length visual input that effectively sum-
marizes a short video. For this we use a CNN, specifically the publicly available
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Caffe reference model (Jia et al., 2014), a minor variant of AlexNet (Krizhevsky et
al., 2012). The net is pre-trained on the 1.2M image ILSVRC-2012 object classifica-
tion subset of the ImageNet dataset (Russakovsky et al., 2015) and hence provides
a robust initialization for recognizing objects and thereby expedites training. We
sample frames in the video (1 in every 10 frames) and extract the activations from
the fully connected layer (fc7) just prior to the classification layer; and perform a
mean pooling over the frames to generate a single 4,096 dimension vector for each
video. The resulting visual feature vector forms the input to the first LSTM layer.
We stack another LSTM layer on top as in Figure 3.1, and the hidden state of the
LSTM in the first layer is the input to the LSTM unit in the second layer. A word
from the sentence forms the target of the output LSTM unit. In this work, we repre-
sent words using “one-hot" vectors (i.e 1-of-N coding, where is N is the vocabulary
size).

3.3.1 Training and Inference

The two-layer LSTM model is trained to predict the next word Swt in the
sentence given the visual features and the previous t−1 words, p(Swt|V, Sw1 , . . . , Swt−1).
During training the visual feature, sentence pair (V, S) is provided to the model,
which then optimizes the log-likelihood (Equation (7.5)) over the entire training
dataset using stochastic gradient descent. At each time step, the input xt is fed
to the LSTM along with the previous time step’s hidden state ht−1 and the LSTM
emits the next hidden state vector ht (and a word). For the first layer of the LSTM,
the input xt is the concatenation of the visual feature vector and the previous en-
coded word (Swt−1 , the ground truth word during training and the predicted word
during test time). For the second layer of the LSTM, the input xt is the value of zt
from the first layer. Accordingly, inference must also be performed sequentially in
the order h1 = fW (x1, 0), h2 = fW (x2, h1), until the model emits the end-of-sentence
(EOS) token at the final step T . In our model the output (ht = zt) of the second layer
LSTM unit is used to obtain the emitted word. We apply the Softmax function, to
get a probability distribution over the words w in the vocabulary D.

p(w|zt) =
exp(Wwzt)∑

w′∈D exp(Ww′zt)
(3.4)
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where Ww is a learnt embedding vector for word w. At test time, we choose the
word ŵ with the maximum probability for each time step t until we obtain the EOS
token.

3.3.2 Architecture and Optimization

In this work, the CNN architecture was based on AlexNet Krizhevsky et
al. (2012). We used the activations from the fc − 7 layer (the penultimate fully-
connected layer) of the network. This results in a 4096 dimension feature vector
which forms the visual encoding for each frame. Additionally, for each video, we
sampled frames at the rate of 3 frames per second. We extract features for the sam-
pled frames which are then averaged (mean-pooled) to form the video encoding.
Regarding the LSTM decoder, we use two LSTM layers. Each LSTM layer is un-
rolled to 20 time-steps, and the hidden dimension of the LSTM is 1000 units. The
entire network is trained using stochastic gradient descent with a momentum of
0.9. In addition, we use gradient clipping (set to 5).

3.4 Transfer Learning from Captioned Images

Since the training data available for video description is quite limited (de-
scribed in Section 3.5), we also leverage much larger datasets available for image
captioning to train our LSTM model and then fine tune it on the video dataset. Our
LSTM model for images is the same as the one described above for single video
frames (in Section 2.4.2, and Section 3.3). As with videos, we extract fc7 layer fea-
tures (4096 dimensional vector) from the network (Section 3.3) for the images. This
forms the visual feature that is input to the 2-layer LSTM description model. The
vocabulary is the combined set of words in the video and image datasets. After the
model is trained on the image dataset, we use the weights of the trained model to
initialize the LSTM model for the video description task. Additionally, we reduce
the learning rate on our LSTM model to allow it to tune to the video dataset. This
speeds up training and allows exploiting knowledge previously learned for image
description.
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3.5 Evaluation

Video dataset. We perform all our experiments on the Microsoft Research Video
Description Corpus (MSVD) (Chen and Dolan, 2011). This video corpus is a col-
lection of 1970 YouTube snippets. The duration of each clip is between 10 seconds
to 25 seconds, typically depicting a single activity or a short sequence. The dataset
comes with several human generated descriptions in a number of languages; we
use the roughly 40 available English descriptions per video. This dataset (or por-
tions of it) have been used in several prior works (Motwani and Mooney, 2012,
Krishnamoorthy et al., 2013, Guadarrama et al., 2013a, Thomason et al., 2014, Xu et
al., 2015c) on action recognition and video description tasks. For our task we pick
1200 videos to be used as training data, 100 videos for validation and 670 videos
for testing, as used by the prior works on video description (Guadarrama et al.,
2013a, Thomason et al., 2014, Xu et al., 2015c).

Domain adaptation, image description datasets. Since the number of videos for
the description task is quite small when compared to the size of the datasets used
by LSTM models in other tasks such as translation (Sutskever et al., 2014) (12M
sentences), we use data from the Flickr30k and COCO2014 datasets for training
and learn to adapt to the video dataset by fine-tuning the image description mod-
els. The Flickr30k (Hodosh et al., 2014) dataset has about 30,000 images, each with
5 or more descriptions. We hold out 1000 images at random for validation and
use the remaining for training. In addition to this, we use the recent COCO2014
(Lin et al., 2014) image description dataset consisting of 82,783 training images and
40,504 validation images, each with 5 or more sentence descriptions. We perform
ablation experiments by training models on each dataset individually, and on the
combination and report results on the YouTube video test dataset.

Models for Comparison

We compare our models against the previous state-of-the-art factor graph
model (FGM) proposed in Thomason et al. (2014) (Section 2.3).
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Our LSTM models We present four main models. LSTM-YT is our base two-
layer LSTM model trained on just the YouTube video dataset. LSTM-YTflickr is
the model trained on the Flickr30k (Hodosh et al., 2014) dataset, and fine tuned
on the YouTube dataset as desrcibed in Section 3.4. LSTM-YTcoco is first trained on
the COCO2014 Lin et al. (2014) dataset and then fine-tuned on the video dataset.
Our final model, LSTM-YTcocoflickr is trained on the combined data of both the
Flickr and COCO models and is tuned on YouTube. The models trained on image
datasets alone, without being tuned on the video corpus, perform rather poorly.
The results of these can be found in the paper by Venugopalan et al. (2015b).

3.5.1 SVO Accuracy

Earlier works (Krishnamoorthy et al., 2013, Guadarrama et al., 2013a) that re-
ported results on the YouTube dataset compared their method based on how well
their model could predict the subject, verb, and object (SVO) depicted in the video.
Since these models first predicted the content (SVO triples) and then generated the
sentences, the S,V,O accuracy captured the quality of the content generated by the
models. However, in our case the sequential LSTM directly outputs the sentence,
so we extract the S,V,O from the dependency parse of the generated sentence. We
present, in Table 3.1 and Table 3.2, the accuracy of S,V,O words comparing the per-
formance of our model against any valid ground truth triple and the most frequent
triple found in human description for each video. The latter evaluation was also
reported by Xu et al. (2015c), so we include it here for comparison.

3.5.2 Sentence Generation

To evaluate the generated sentences we use automated Machine Translation
metrics BLEU (Papineni et al., 2002) and METEOR (Denkowski and Lavie, 2014)
and compare the predicted sentences against all ground truth sentences. BLEU
and METEOR scores are computed based on the alignment between a given hy-
pothesis sentence and a set of candidate reference sentences. BLEU only checks
for exact matches of n-grams in the predicted and groundtruth reference. Whereas
METEOR computes the alignment by comparing exact token matches, stemmed
tokens, paraphrase matches, as well as semantically similar matches using Word-
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Model S% V% O%
HVC (Thomason et al., 2014) 86.87 38.66 22.09
FGM (Thomason et al., 2014) 88.27 37.16 24.63
LSTMflickr 79.95 15.47 13.94
LSTMcoco 56.30 06.90 14.86
LSTM-YT 79.40 35.52 20.59
LSTM-YTflickr 84.92 38.66 21.64
LSTM-YTcoco 86.58 42.23 26.69
LSTM-YTcoco+flickr 87.27 42.79 24.23

Table 3.1: SVO accuracy: Binary SVO accuracy compared against any valid S,V,O
triples in the ground truth descriptions. We extract S,V,O values from sentences
output by our model using a dependency parser. The model is correct if it identifies
S,V, or O mentioned in any one of the multiple human descriptions.

Model S% V% O%
HVC (Thomason et al., 2014) 76.57 22.24 11.94
FGM (Thomason et al., 2014) 76.42 21.34 12.39
JointEmbed2(Xu et al., 2015c) 78.25 24.45 11.95
LSTMflickr 70.80 10.02 07.84
LSTMcoco 47.44 02.85 07.05
LSTM-YT 71.19 19.40 09.70
LSTM-YTflickr 75.37 21.94 10.74
LSTM-YTcoco 76.01 23.38 14.03
LSTM-YTcoco+flickr 75.61 25.31 12.42

Table 3.2: SVO accuracy: Binary SVO accuracy compared against most frequent
S,V,O triple in the ground truth descriptions. We extract S,V,O values from parses
of sentences output by our model using a dependency parser. The model is cor-
rect only if it outputs the most frequently mentioned S, V, O among the human
descriptions.

Net synonyms. Image description literature often use BLEU for evaluation, but
a more recent study (Elliott and Keller, 2014) has shown METEOR to be a bet-
ter evaluation metric. However, since both metrics have been shown to corre-
late well with human evaluations, we compare the generated sentences using both
and present our results in Table 3.3. We also present qualitative examples in Fig-
ure 3.2 Samples of videos clips with the model’s predictions can be found at https:
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Model BLEU METEOR

FGM (Thomason et al., 2014) 13.68 23.90
LSTM-YT 31.19 26.87
LSTM-YTflickr 32.03 27.87
LSTM-YTcoco 33.29 29.07
LSTM-YTcoco+flickr 33.29 28.88

Table 3.3: Scores for BLEU at 4 (combined n-gram 1-4), and METEOR scores from
automated evaluation metrics comparing the quality of the generation. All values
are reported as percentage (%).

//www.youtube.com/watch?v=IGaAoW8bA4c.

3.5.3 Training on Individual Frames

Additionally, in order to evaluate the effectiveness of mean pooling, we per-
formed experiments to train and test the model on individual frames from the
video. These are presented in Table 3.4. First, we evaluate how well the image de-
scription models (i.e. those trained only on images) performed on a randomly sam-
pled frame in the video. These models are denoted as LSTM-YTflickr and LSTM-
YTcoco in Table 3.4. Next, we used image description models (trained on Flickr30k,
COCO or a combination of both) and fine-tuned them on individual frames in the
video by picking a different frame for each description in the YouTube dataset.
These models, denoted by LSTM-YT-frameflickr, LSTM-YT-framecoco, LSTM-YT-
framecoco+flickr were tested on a random frame from the test video. The overall
trends in the results were similar to those seen in Table 3.3. It is also quite evident
that the models trained and evaluated on individual frames perform much worse.

3.5.4 Human Evaluation

We used Amazon Mechanical Turk to also collect human judgements. We
created a task which employed three Turk workers to watch each video, and rank
sentences generated by the different models from “Most Relevant" (5) to “Least
Relevant" (1). No two sentences could have the same rank unless they were identi-
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Model (individual frames) BLEU METEOR

LSTMflickr 08.62 18.56
LSTMcoco 11.39 20.03
LSTM-YT-frameflickr 26.75 26.51
LSTM-YT-framecoco 30.77 27.66
LSTM-YT-framecoco+flickr 29.72 27.65

Table 3.4: Scores for BLEU at 4 (combined n-gram 1-4), and METEOR scores com-
paring the quality of sentence generation by the models trained on Flickr30k and
COCO and tested on a random frame from the video. LSTM-YT-frame models
were fine tuned on individual frames from the Youtube video dataset. All values
are reported as percentage (%).

Model Relevance Grammar

FGM (Thomason et al., 2014) 2.26 3.99
LSTM-YT 2.74 3.84
LSTM-YTcoco 2.93 3.46
LSTM-YTcoco+flickr 2.83 3.64
GroundTruth 4.65 4.61

Table 3.5: Human evaluation mean scores. Sentences were uniquely ranked be-
tween 1 to 5 based on their relevance to a given video. Sentences were rated be-
tween 1 to 5 for grammatical correctness. Higher values are better.

cal. We also evaluate sentences on grammatical correctness. We created a different
task which required workers to rate sentences based on grammar. This task dis-
played only the sentences and did not show any video. Here, workers had to
choose a rating between 1-5 for each sentence. Multiple sentences could have the
same rating. We discard responses from workers who fail gold-standard items and
report the mean ranking/rating for each of the evaluated models in Table 3.5.
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Figure 3.2: Examples to demonstrate effectiveness of transferring from the image
description domain. YT refer to the LSTM-YT, YTcoco to the LSTM-YTcoco, and YT-
cocoflickr to the LSTM-YTcoco+flickr models. GT is a random human description in
the ground truth. Sentences in bold highlight the most accurate description for the
video amongst the models. Bottom two examples on the right show how trans-
fer can overfit. Thus, while base LSTM-YT model detects water and monkey, the
LSTM-YTcoco and LSTM-YTcocoflickr models fail to describe the event completely.
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3.6 Discussion

From the results in Table 3.3 and the human evaluations in Table 3.5, it is ev-
ident that our LSTM based approach significantly outperforms the previous state-
of-art (FGM). We also observe that learning from the image description data im-
proves the performance of the model in terms of both METEOR and BLEU. The
model that was pre-trained on COCO2014 shows a larger performance improve-
ment, indicating that our model can effectively leverage a large auxiliary source of
training data to improve its object and verb predictions. The model pre-trained on
the combined data of Flickr30k and COCO2014 shows only a marginal improve-
ment, perhaps due to overfitting. Also, from Table 3.4 we can see that training on
just individual frames in the video is far less effective than mean-pooling frame
features across the entire video.

The code and pre-trained models presented in this chapter are made avail-
able in the caffe framework and can be downloaded from github3.

3https://github.com/vsubhashini/caffe/tree/recurrent/examples/youtube
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Chapter 4

Sequence to Sequence – Video to Text

In this chapter, we propose a novel end-to-end sequence-to-sequence model
to generate captions for videos1. While the model presented in Chapter 3 only used
LSTM based RNNs to decode a visual feature to generate a sentence description,
this chapter presents a model that uses an LSTM to both encode a sequence of
video frames and decode to generate a sequence of words. A major limitation of
our model in Venugopalan et al. (2015b) in the previous chapter is that it fails to
exploit any of the temporal information in the video, treating the video as a “bag
of image frames” and simply mean-pooling the results from individual frames to
generate a deep-network encoding of the video. To address this shortcoming we
develop, S2VT (Venugopalan et al., 2015a), a variant of our LSTM model that is
sensitive to temporal structure and allows both input (sequence of frames) and
output (sequence of words) of variable length.

4.1 Modeling a sequence of visual inputs

Figure 4.1 depicts our model S2VT. A stacked LSTM first encodes the frames
one by one, taking as input the output of a Convolutional Neural Network (CNN)
applied to each input frame’s intensity values. It sequentially processes video
frames, incrementally building up a hidden-layer semantic representation in the
LSTM that effectively encodes the underlying activity. Once all frames are read,
the model generates a sentence word by word. The encoding and decoding of
the frame and word representations are learned jointly from a parallel corpus. To
model the temporal aspects of activities typically shown in videos, we also com-
pute the optical flow (Brox et al., 2004) between pairs of consecutive frames. The
flow images are also passed through a CNN and provided as input to the LSTM.
Flow CNN models have been shown to be beneficial for activity recognition (Si-
monyan and Zisserman, 2014a, Donahue et al., 2015).

To our knowledge, this is the first approach to video description that uses a

1Based on work published in Venugopalan et al. (2015a). All work in this chapter constitutes
original contributions.
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Figure 4.1: S2VT consists of a stack of two LSTMs that learn a representation
of a sequence of frames in order to decode it into a sentence that describes the
event in the video. The top LSTM layer (colored red) models visual feature inputs
(from RGB or optical flow frames). The second LSTM layer (colored green) models
language given the text input and the hidden representation of the video sequence.
We use <BOS> to indicate begin-of-sentence and <EOS> for the end-of-sentence
tag. Since we use the same LSTM layers for both encoding and decoding, zeros are
used as a <pad> when there is no input at the time step.

general sequence to sequence model. This allows our model to (a) handle a vari-
able number of input frames, (b) learn and use the temporal structure of the video
and (c) learn a language model to generate natural, grammatical sentences. Our
model is learned jointly and end-to-end, incorporating both intensity and optical
flow inputs, and does not require an explicit attention model. We demonstrate that
S2VT achieves state-of-the-art performance on three diverse datasets, a standard
YouTube corpus (MSVD) (Chen and Dolan, 2011) and two large movie description
corpora namely, Montreal Video Annotation Dataset (M-VAD) (Torabi et al., 2015)
and MPII Movie Description Dataset (MPII-MD) (Rohrbach et al., 2015b) datasets.
We also make our implementation (based on the Caffe (Jia et al., 2014) deep learning
framework) available on github2.

4.2 LSTMs for modeling visual and text sequences

Our model uses a stack of two LSTMs with 1000 hidden units each. Fig-
ure 4.1 shows the LSTM stack unrolled over time. When two LSTMs are stacked

2 https://github.com/vsubhashini/caffe/tree/recurrent/examples/s2vt
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together, as in our case, the hidden representation (ht) from the first LSTM layer
(colored red) is provided as the input (xt) to the second LSTM (colored green). The
top LSTM layer in our architecture is used to model the visual frame sequence, and
the next layer is used to model the output word sequence.

Training and Inference In the first several time steps, the top LSTM layer
(colored red in Figure 4.1) receives a sequence of frames and encodes them while
the second LSTM layer receives the hidden representation (ht) and concatenates it
with the input padding words (zeros), which it then encodes. There is no loss dur-
ing this stage when the LSTMs are encoding. After all the frames in the video clip
are exhausted, the second LSTM layer is fed the beginning-of-sentence (<BOS>)
tag, which prompts it to start decoding its current hidden representation to a se-
quence of words. While training in the decoding stage, the model maximizes for
the log-likelihood of the predicted output sentence given the hidden representa-
tion of the visual frame sequence, and the previous words it has seen. For a model
with parameters θ and output sequence Y = (y1, . . . , ym), this is formulated as:

θ∗ = argmax
θ

m∑
t=1

log p(yt|hn+t−1, yt−1; θ) (4.1)

This log-likelihood is optimized over the entire training dataset using stochas-
tic gradient descent. The loss is computed only when the LSTM is learning to de-
code. Since this loss is propagated back in time, the LSTM learns to generate an
appropriate hidden state representation (hn) of the input sequence. The output (zt)
of the second LSTM layer is used to obtain the emitted word (y). We apply a soft-
max function to get the probability distribution over the words y′ in the vocabulary
V :

p(y|zt) =
exp(Wyzt)∑

y′∈V exp(Wy′zt)
(4.2)

We note that, during the decoding phase, the visual frame representation for the
first LSTM layer is simply a vector of zeros that acts as padding input. We require
an explicit end-of-sentence tag (<EOS>) to terminate each sentence since this en-
ables the model to define a distribution over sequences of varying lengths. At test
time, during each decoding step we choose the word yt with the maximum proba-
bility after the softmax (from Equation (4.2)) until we obtain the <EOS> token.
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4.3 Video and text representation

RGB frames. Similar to previous LSTM-based image captioning efforts (Donahue
et al., 2015, Vinyals et al., 2015) and our video description approach (Venugopalan et
al., 2015b), we forward propagate the input images through a convolutional neural
network (CNN) and provide the activations of the penultimate layer as input to the
LSTM unit. In this work, we report results using the output of the fc7 layer (after
applying the ReLU non-linearity) on the Caffe Reference Net (a variant of AlexNet)
and also the 16-layer VGG model (Simonyan and Zisserman, 2014b). We use CNNs
that are pre-trained on the 1.2M image ILSVRC-2012 object classification subset of
the ImageNet dataset (Russakovsky et al., 2015) and made available publicly via
the Caffe ModelZoo.3 Each input video frame is scaled to 256x256, and is cropped
down to a random 227x227 region. It is then processed by the CNN. We remove the
original last fully-connected classification layer and learn a new linear embedding
of the features to a 500 dimensional space. The lower dimension features form the
input (xt) to the first LSTM layer. The weights of the embedding are learned in
combination with the LSTM layers during training.
Optical Flow. In addition to CNN outputs from raw image (RGB) frames, we also
incorporate optical flow measures as input sequences to our architecture. Others
(Ng et al., 2015, Donahue et al., 2015) have shown that incorporating optical flow in-
formation to LSTMs improves activity classification. As many of our descriptions
are activity centered, we explore this option for video description as well. We fol-
low the approach in Donahue et al. (2015) and Gkioxari and Malik (2015) and first
extract classical variational optical flow features (Brox et al., 2004). We then create
flow images Gkioxari and Malik (2015), by centering x and y flow values around
128 and multiplying by a scalar such that flow values fall between 0 and 255. We
also calculate the flow magnitude and add it as a third channel to the flow image.
We then use a CNN (Gkioxari and Malik, 2015) initialized with weights trained on
the UCF101 video dataset (Soomro et al., 2012) to classify optical flow images into
101 activity classes. The fc6 layer activations of the CNN are embedded in a lower
500 dimensional space which is then given as input to the LSTM. The rest of the
LSTM architecture remains unchanged for flow inputs.

3https://github.com/BVLC/caffe/wiki/Model-Zoo
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Combining RGB and Flow. In our models that combine RGB and Flow in-
put representations of the video, we first train independent S2VT models trained
on RGB inputs and Flow inputs. To obtain a combined model, we use a shallow
fusion technique to integrate flow and RGB features. At each time step of the de-
coding phase, the model proposes a set of candidate words. We then re-score these
hypotheses with the weighted sum of the scores by the flow and RGB networks,
where we only need to recompute the score of each new word p(yt = y′) as:

α · prgb(yt = y′) + (1− α) · pflow(yt = y′)

the hyper-parameter α is tuned on the validation set.
Text input. The target output sequence of words are represented using one-

hot vector encoding (1-of-N coding, where N is the size of the vocabulary). Similar
to the treatment of frame features, we embed words to a lower 500 dimensional
space by applying a linear transformation to the input data and learning it’s pa-
rameters via back propagation. The embedded word vector concatenated with
the output (ht) of the first LSTM layer forms the input to the second LSTM layer
(marked green in Figure 4.1). When considering the output of the LSTM we apply
a softmax over the complete vocabulary as in Equation (4.2).

4.4 Evaluation

In the following we describe how we evaluate our approach. We first de-
scribe the datasets we use, then the evaluation protocol, and then the details of our
models.

4.4.1 Datasets

In addition to the Microsoft Video Description corpus (MSVD) (Chen and
Dolan, 2011) (Section 3.5), we also evaluate our approach on two large movie cor-
pora, namely, the MPII Movie Description Corpus (MPII-MD) (Rohrbach et al.,
2015b), and the Montreal Video Annotation Dataset (M-VAD) (Torabi et al., 2015).
Statistics of each corpus is presented in Table 7.1.
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MSVD MPII-MD MVAD

#-sentences 80,827 68,375 56,634
#-tokens 567,874 679,157 568,408
vocab 12,594 21,700 18,092
#-videos 1,970 68,337 46,009
avg. length 10.2s 3.9s 6.2s
#-sents per video ≈41 1 1-2

Table 4.1: Corpus Statistics. While the number of tokens (words+punctuation) in
all datasets are comparable, but MSVD has fewer videos with more sentences per
video and both the movie corpora (MPII-MD and MVAD) have a large number of
clips with a single description per clip. Thus, the number of video, sentence pairs
in all three datasets are comparable.

MPII Movie Description Dataset (MPII-MD) MPII-MD (Rohrbach et al., 2015b)
contains around 68,000 video clips extracted from 94 Hollywood movies. Each clip
is accompanied with a single sentence description which is sourced from movie
scripts and audio description (AD) data. The AD or Descriptive Video Service
(DVS) track is an additional audio track that is added to the movies to describe
explicit visual elements in a movie for the visually impaired. Although the movie
snippets are manually aligned to the descriptions, the data is very challenging due
to the high diversity of visual and textual content. Typically most snippets only
have single reference sentence. We use the training/validation/test split provided
by the authors and extract every fifth frame (videos are shorter than MSVD, aver-
aging 94 frames).

Montreal Video Annotation Dataset (M-VAD) The M-VAD movie description
corpus (Torabi et al., 2015) is another recent collection of about 49,000 short video
clips from 92 movies. It is similar to MPII-MD, but only contains AD data and only
provides automatic alignment. We use the same setup as for MPII-MD.

4.4.2 Evaluation Metrics

Quantitative evaluation of the models are performed using the METEOR
(Denkowski and Lavie, 2014) metric which was originally proposed to evaluate
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machine translation results. METEOR is the most appropriate metric for our data
since the movie description corpora have just 1 ground truth reference each. (Vedan-
tam et al., 2015) showed that METEOR is always better than other MT metrics such
as BLEU when the number of references is small. We use the code4 released with
the Microsoft COCO Evaluation Server (Chen et al., 2015) to obtain the scores for
all our models reported in this section.

4.4.3 Comparisons

We compare our sequence to sequence models against the factor graph model
(FGM) in Thomason et al. (2014) (Section 2.3), the mean-pooled models (Mean-
Pool) in Venugopalan et al. (2015b) from the previous chapter and the Soft-Attention
models of Yao et al. (2015).

The Soft-Attention model in Yao et al. (2015) is a contemporaneous LSTM
based approach. It is a combination of weighted attention over a fixed set of video
frames with input features from GoogleNet (Szegedy et al., 2015) and a 3D-convnet
trained on Histogram of Gradients (HoG), Histogram of Flow (HoF) and Motion
Boundary Histograms (MBH) features from an activity classification model.

4.5 Discussion: MSVD dataset

Table 4.2 shows the results on the MSVD dataset. The upper part shows
results of related approaches and the lower part different variants of our S2VT
approach.

Our basic S2VT AlexNet model on RGB video frames (line 8 in Table 4.2)
achieves 27.9% METEOR and improves over the basic mean pooled model pro-
posed in Venugopalan et al. (2015b) (line 2, 26.9%) as well as VGG mean pooled
model (line 3, 27.7%). This suggests that our sequence to sequence model even
with the less powerful AlexNet features is able to encode video frames well. When
the model is trained with the input frame sequence randomly ordered (line 10
in Table 4.2) the score is considerably lower and comparable to the mean pooled

4https://github.com/tylin/coco-caption
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Model METEOR

FGM (Thomason et al., 2014) 23.9 (1)
Mean pool
- AlexNet (Venugopalan et al., 2015b) 26.9 (2)
- VGG 27.7 (3)
- AlexNet COCO pre-trained (Venugopalan et al., 2015b) 29.1 (4)
- GNet (Yao et al., 2015) 28.7 (5)

Soft-attention
- GoogleNet (Yao et al., 2015) 29.0 (6)
- GoogleNet + 3D-CNN (Yao et al., 2015) 29.6 (7)

S2VT (ours)
- Flow (AlexNet) 24.3 (8)
- RGB (AlexNet) 27.9 (9)
- RGB (VGG) random frame order 27.9 (10)
- RGB (VGG) 29.2 (11)
- RGB (VGG) + Flow (AlexNet) 29.8 (12)

Table 4.2: MSVD dataset (METEOR in %, higher is better).

approach (line 3) indicating that the model does exploit temporal structure when
available.

Our S2VT model which uses flow images (line 9) achieves only 24.3% ME-
TEOR but improves the performance of our VGG model from 29.2% (line 11) to
29.8% (line 12), when combined. Our ensemble using both RGB and Flow achieves
a score comparable and slightly better than the best model proposed in Yao et al.
(2015), Soft-attention with GoogleNet + 3D-CNN (line 7). The edge that our model
has is only modest, this is likely due to the much stronger 3D-CNN features (as
the difference to GoogleNet alone, line 6, suggest). Thus, the closest comparison
between the Soft Attention Model (Yao et al., 2015) and our S2VT is arguably ours
with VGG (line 10) vs. their GoogleNet only model (line 6).

Figure 4.2 shows descriptions generated by our model on some of the videos
in the MSVD YouTube video dataset. To compare the originality in generation,
we compute the Levenshtein distance of the predicted sentences with those in the
training set. From Table 4.3, for the MSVD corpus, only 42.9% of the predictions
are identical to some training sentence, and another 38.3% can be obtained by in-
serting, deleting or substituting one word from some sentence in the training cor-
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Edit-Distance k = 0 k <= 1 k <= 2 k <= 3

MSVD 42.9 81.2 93.6 96.6
MPII-MD 17.7 43.1 51.4 60.1
MVAD 03.0 38.9 43.9 60.1

Table 4.3: Percentage of generated sentences which match a sentence of the train-
ing set with an edit (Levenshtein) distance of less than 4. All values reported in
percentage (%).

pus.

Examples showing errors. Figure 4.2 also presents examples where the model
makes erroneous predictions. In most cases where there is an error, the model fails
to recognize the object or the primary action in the video. Especially if it has never
seen such objects or actions during training or has seen them very infrequently.
The model also tends to makes grammatical errors such as repeating phrases (on
occasion) or spelling mistakes which are actually from misspelled words in the
training data.

4.6 Discussion: Movie Corpora

For the more challenging MPII-MD and M-VAD datasets we use our single
best model, namely S2VT trained on RGB frames and VGG. One of the primary
reasons the movie data is far more challenging than the Youtube data is because
there is just a single reference translation for each clip. Thus, there is a wider vari-
ety of events represented in these clips and far less training data proportional to the
variety. This makes both training and evaluation challenging. To avoid over-fitting
on the movie corpora we employ drop-out which has proved to be beneficial on
these datasets (Rohrbach et al., 2015a). We found it was best to use dropout at the
inputs and outputs of both LSTM layers. Further, we used ADAM (Kingma and
Ba, 2015) for optimization with a first momentum coefficient of 0.9 and a second
momentum coefficient of 0.999. The overall scores on the movie corpora are also
much lower due to just a single reference caption during evaluation.

For MPII-MD, reported in Table 4.4, we improve over the SMT approach
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Approach (MPII-MD) METEOR

SMT (best variant) (Rohrbach et al., 2015b) 5.6
Visual-Labels (Rohrbach et al., 2015a) 7.0
Mean pool (VGG) 6.7
S2VT: RGB (VGG), ours 7.1

Table 4.4: MPII-MD dataset (METEOR in %, higher is better).

Approach METEOR

Visual-Labels (Rohrbach et al., 2015a) 6.3
Temporal attention (Yao et al., 2015) 5.7
Mean pool (VGG) 6.1
S2VT: RGB (VGG), ours 6.7

Table 4.5: M-VAD dataset (METEOR in %, higher is better).

from Rohrbach et al. (2015b) from 5.6% to 7.1% METEOR and over Mean pooling
(Venugopalan et al., 2015b) by 0.4%. Our performance is similar to Visual-Labels
(Rohrbach et al., 2015a), a contemporaneous LSTM-based approach which uses no
temporal encoding, but more diverse visual features, namely object detectors, as
well as activity and scene classifiers.

On M-VAD we achieve 6.7% METEOR which significantly outperforms the
temporal attention model (Yao et al., 2015) (5.7%) and Mean pooling (6.1%). On
this dataset we also outperform Visual-Labels (Rohrbach et al., 2015a) (6.3%).For
the more challenging MPII-MD and M-VAD datasets we use our single best model,
namely S2VT trained on RGB frames and VGG.

In Figure 4.3 we present descriptions generated by our model on some sam-
ple clips from the M-VAD dataset.

Discussion on errors. Similar to the errors seen on the Youtube corpus in Fig-
ure 4.2, the S2VT model also makes errors on the movie corpora. Looking at some
of the descriptions in Figure 4.3, we can notice that while the S2VT model does
tend to describe objects/actions in the clip, it doesn’t always describe the most
salient or important event in the sequence. Comparing descriptions across clips,
since the S2VT model describes each clip independently, it does not have any con-
text on the events represented by the previous clips. Hence, it tends to focus on
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the same event (“driving” in this example) in multiple clips. In Chapter 7 we hope
to address these issues by building a model that can describe longer videos taking
context into account.

Correct descriptions. Relevant but incorrect 
descriptions.

Irrelevant descriptions.

(a) (b) (c)

Figure 4.2: Qualitative results on MSVD YouTube dataset from our S2VT model
(RGB on VGG net). (a) Correct descriptions involving different objects and actions
for several videos. (b) Relevant but incorrect descriptions. (c) Descriptions that are
irrelevant to the event in the video.

4.7 Summary

Chapters 3 and 4 presented two deep models for video description that used
convolutional and recurrent networks, in particular LSTMs to translate from video
pixels to sentences. Chapter 3 presented techniques to take advantage of large
image description datasets, and transfer knowledge from the image captioning
task to the video captioning task. We then developed a sequence to sequence video
description model, where frames are first read sequentially and then words are
generated sequentially. This allows us to handle variable-length input and output
while simultaneously modeling the temporal structure. Our model out-performs
all previous works on Youtube clips from the MSVD dataset, and the DVS movie

36



(1) (2) (3) (4) (5)
S2VT (Ours): (1) Now, the van pulls out a window and a 
tall brick facade of tall trees . a figure stands at a curb.
(2) Someone drives off the passenger car and drives off. 
(3) They drive off the street. 
(4) They drive off a suburban road and parks in a dirt 
neighborhood. 
(5) They drive off a suburban road and parks on a street.
(6) Someone sits in the doorway and stares at her 
with a furrowed brow.

(6a) (6b)
Temporal Attention (GNet+3D-conv

att
): 

(1) At night , SOMEONE and SOMEONE 
step into the parking lot. 
(2) Now the van drives away.
(3) They drive away.
(4) They drive off.
(5) They drive off.
(6) At the end of the street , SOMEONE 
sits with his eyes closed. 

DVS: (1) Now , at night , our view glides over a highway , 
its lanes glittering from the lights of traffic below. 
(2) Someone's suv cruises down a quiet road. 
(3) Then turn into a parking lot . 
(4) A neon palm tree glows on a sign that reads 
oasis motel.
(5) Someone parks his suv in front of some rooms.
(6) He climbs out with his briefcase , sweeping his 
cautious gaze around the area.

Figure 4.3: M-VAD Movie corpus: Representative frame from 6 contiguous clips
from the movie “Big Mommas: Like Father, Like Son”. From left: Temporal Atten-
tion (GoogleNet+3D-CNN) (Yao et al., 2015), S2VT (in blue) trained on the M-VAD
dataset, and DVS: ground truth.

description datasets.
More example video clips, generated sentences, as well as code and models

are publicly available5.

5http://vsubhashini.github.io/s2vt.html
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Chapter 5

External Knowledge to improve LSTM-based Video Description

While the previous couple of chapters introduced deep recurrent neural net-
work based video description models, this chapter and the next present techniques
to improve deep video and image captioning models with knowledge from exter-
nal sources. This chapter investigates how linguistic knowledge mined from large
text corpora can aid the generation of natural language descriptions of videos1.
Specifically, we integrate both a neural language model and distributional seman-
tics trained on large text corpora into the S2VT video description architecture de-
scribed previously in Chapter 4. We evaluate our approach on a collection of
Youtube videos (the MSVD dataset) as well as the two large movie description
datasets MPII-MD and M-VAD showing significant improvements in grammati-
cality while modestly improving descriptive quality.

5.1 Improving LSTM-based video description with linguistic knowl-

edge mined from text

Deep learning methods such as RNNs need large training corpora; however,
there is a lack of high-quality paired video-sentence data. In contrast, raw text
corpora are widely available and exhibit rich linguistic structure that can aid video
description. Most work in statistical MT utilizes both a language model trained on
a large corpus of monolingual target language data as well as a translation model
trained on more limited parallel bilingual data. This chapter presents work from
Venugopalan et al. (2016) which explores methods to incorporate knowledge from
language corpora to capture general linguistic regularities to aid video description.

Specifically, this chapter integrates linguistic information into the video-
captioning model based on LSTM RNNs from Chapter 4 which have shown state-
of-the-art performance on the task. Notably, one of the reason that LSTMs have
been successful at captioning is because they are quite effective as language models

1Based on work published in Venugopalan et al. (2016). All work in this chapter constitutes
original contributions.
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Knowledge from 
Text Corpora

cat
dog

car

Figure 5.1: The S2VT architecture encodes a sequence of frames and decodes them
to a sentence. We propose to add knowledge from text corpora to enhance the
quality of video description.

(LMs) (Sundermeyer et al., 2012). Here, we present three approaches to integrate
LSTM language models with video captioning models. Our first approach (early
fusion) is to pre-train the video description network on plain text before training
on parallel video-text corpora. Our next two approaches, inspired by recent MT
work (Gulcehre et al., 2015), integrate an LSTM LM with an already trained video-
to-text model. Furthermore, we also explore replacing the standard one-hot word
encoding of the input words (Section 3.3) with distributional vectors trained on
external corpora.

We present detailed comparisons between the approaches, evaluating them
on the standard Youtube corpus (Chen and Dolan, 2011) and the two large movie
description datasets. The results demonstrate significant improvements in gram-
maticality of the descriptions (as determined by crowdsourced human evalua-
tions) and more modest improvements in descriptive quality (as determined by
both crowdsourced human judgements and standard automated comparison to
human-generated descriptions). Our main contributions are

• multiple ways to incorporate knowledge from external text into an existing
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captioning model,

• extensive experiments comparing the methods on three large video-caption
datasets, and

• human judgements to show that external linguistic knowledge has a signifi-
cant impact on grammar.

5.2 Approaches

Existing visual captioning models (Vinyals et al., 2015, Donahue et al., 2015)
are trained solely on text from the caption datasets and tend to exhibit some lin-
guistic irregularities associated with a restricted language model and a small vo-
cabulary. Here, we investigate several techniques to integrate prior linguistic knowl-
edge into a CNN/LSTM-based network for video to text (S2VT) and evaluate their
effectiveness at improving the overall description.

5.2.1 Early Fusion

Our first approach (early fusion), is to pre-train portions of the network mod-
eling language on large corpora of raw NL text and then continue “fine-tuning”
the parameters on the paired video-text corpus. An LSTM model learns to esti-
mate the probability of an output sequence given an input sequence. To learn a
language model, we train the LSTM layer to predict the next word given the previ-
ous words. Following the S2VT architecture, we embed one-hot encoded words in
lower dimensional vectors. The network is trained on web-scale text corpora and
the parameters are learned through backpropagation using stochastic gradient de-
scent.2 The weights from this network are then used to initialize the embedding
and weights of the LSTM layers of S2VT, which is then trained on video-text data.
This trained LM is also used as the LSTM LM in the late and deep fusion models.

2The LM was trained to achieve a perplexity of 120
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5.2.2 Late Fusion

Our late fusion approach is similar to how neural machine translation mod-
els incorporate a trained language model during decoding. At each step of sen-
tence generation, the video caption model proposes a distribution over the vocab-
ulary. We then use the language model to re-score the final output by considering
the weighted average of the sum of scores proposed by the LM as well as the S2VT
video-description model (VM). More specifically, if yt denotes the output at time
step t, and if pVM and pLM denote the proposal distributions of the video caption-
ing model, and the language models respectively, then for all words y′ ∈ V in the
vocabulary we can recompute the score of each new word, p(yt = y′) as:

α · pVM(yt = y′) + (1− α) · pLM(yt = y′) (5.1)

Hyper-parameter α is tuned on the validation set.

5.2.3 Deep Fusion

In the deep fusion approach (Fig. 5.2), we integrate the LM a step deeper
in the generation process by concatenating the hidden state of the language model
LSTM (hLMt ) with the hidden state of the S2VT video description model (hVMt ) and
use the combined latent vector to predict the output word. This is similar to the
technique proposed by Gulcehre et al. (2015) for incorporating language models
trained on monolingual corpora for machine translation. However, our approach
differs in two key ways: (1) we only concatenate the hidden states of the S2VT
LSTM and language LSTM and do not use any additional context information, (2)
we fix the weights of the LSTM language model but train the full video captioning
network. In this case, the probability of the predicted word at time step t is:

p(yt|~y<t, ~x) ∝ exp(Wf(hVMt , hLMt ) + b) (5.2)

where ~x is the visual feature input, W is the weight matrix, and b the biases. We
note that, following the same approach by Gulcehre et al. (2015) i.e. tuning the
LSTM LM, leads to a model that’s very similar to the early fusion approach. Hence
unlike Gulcehre et al. (2015), we avoid tuning the LSTM LM to prevent overwriting
already learned weights of a strong language model. However, we do train the full
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Figure 5.2: Illustration of our late and deep fusion approaches to integrate an
independently trained LM to aid video captioning. The deep fusion model learns
jointly from the hidden representations of the LM and S2VT video-to-text model
(Vid-LSTM), whereas the late fusion re-scores the softmax output of the video-to-
text model.

video caption model so that it learns to incorporate the LM outputs while training
on the caption data from the paired video-caption domain.

5.2.4 Distributional Word Representations

The S2VT network, like most image and video captioning models, repre-
sents words using a 1-of-N (one hot) encoding. During training, the model learns
to embed “one-hot” words into a lower 500d space by applying a linear transfor-
mation. However, the embedding is learned only from the limited and possibly
noisy text in the caption data. There are many approaches (Mikolov et al., 2013,
Pennington et al., 2014) that use large text corpora to learn vector-space represen-
tations of words that capture fine-grained semantic and syntactic regularities. We
propose to take advantage of these to aid video description. Specifically, we re-
place the embedding matrix from one-hot vectors and instead use 300-dimensional
GloVe vectors (Pennington et al., 2014) pre-trained on 6B tokens from Gigaword
and Wikipedia 2014. In addition to using the distributional vectors for the in-
put, we also explore variations where the model predicts both the one-hot word
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(trained on the softmax loss), as well as predicting the distributional vector from
the LSTM hidden state using Euclidean loss as the objective. Here the output vec-
tor (yt) is computed as yt = (Wght + bg), and the loss is given by:

L(yt, wglove) = ‖(Wght + bg)− wglove‖2 (5.3)

where ht is the LSTM output, wglove is the word’s GloVe embedding and W , b are
weights and biases. The network then essentially becomes a multi-task model with
two loss functions. However, we use this loss only to influence the weights learned
by the network, the predicted word embedding is not used.

5.2.5 Ensembling

The overall loss function of the video-caption network is non-convex, and
difficult to optimize. In practice, using an ensemble of networks trained slightly
differently can improve performance (Hansen and Salamon, 1990). In our work
we also present results of an ensemble by averaging the predictions of the best
performing models.

5.2.6 Architecture and Optimization

As in Chapter 4, we used the VGG-16 CNN architecture Simonyan and Zis-
serman (2014b) to encode visual features. With regard to the language model, we
used the 300 dimension GloVe embeddings Pennington et al. (2014) which form the
input to the LSTM network. The language model consisted of a single LSTM layer
with a hidden dimension of 1024 units. The video description LSTM consisted
of two LSTM layers with a hidden dimension of 1024. The network was trained
using the ADAM optimizer Kingma and Ba (2015) with α = 0.9 and β = 0.999.
Additionally, we clip gradients over a value of 10.

5.3 Experiments

Datasets. Our language model was trained on sentences from Gigaword, BNC,
UkWaC, and Wikipedia. The vocabulary consisted of 72,700 most frequent tokens
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also containing GloVe embeddings. Following the evaluation in Venugopalan et al.
(2015a), we compare our models on the collection of Youtube videos in the MSVD
dataset (Chen and Dolan, 2011), as well as the two large movie description corpora:
MPII-MD (Rohrbach et al., 2015b) and M-VAD (Torabi et al., 2015) described in the
previous chapter (Section 4.4.1).

Evaluation Metrics. We evaluate performance using machine translation (MT)
metrics METEOR (Denkowski and Lavie, 2014) and BLEU (Papineni et al., 2002)
to compare the machine-generated descriptions to human ones. For the movie
corpora which have just a single description we use only METEOR which is more
robust.

Human Evaluation. We also obtain human judgements using Amazon Turk on
a random subset of 200 video clips for each dataset. Each sentence was rated by 3
workers on a Likert scale of 1 to 5 (higher is better) for relevance and grammar. No
video was provided during grammar evaluation. For movies, due to copyright,
we only evaluate on grammar.

5.3.1 MSVD Dataset Results

On the MSVD dataset, comparison of the proposed techniques in Table 5.1
shows that Deep Fusion performs well on both METEOR and BLEU; incorporat-
ing Glove embeddings substantially increases METEOR, and combining them both
does best. Our final model is an ensemble (weighted average) of the Glove, and the
two Glove+Deep Fusion models trained on the external and in-domain COCO (Lin
et al., 2014) sentences. We note here that the state-of-the-art on this dataset is
achieved by HRNE (Pan et al., 2016) (METEOR 33.1) which proposes a superior
visual processing pipeline using attention to encode the video.

Human ratings also correlate well with the METEOR scores, confirming that
our methods give a modest improvement in descriptive quality. However, incor-
porating linguistic knowledge significantly3 improves the grammaticality of the
results, making them more comprehensible to human users.

3Using the Wilcoxon Signed-Rank test, results were significant with p < 0.02 on relevance and
p < 0.001 on grammar.
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Model METEOR B-4 Relevance Grammar

S2VT 29.2 37.0 2.06 3.76
Early Fusion 29.6 37.6 - -
Late Fusion 29.4 37.2 - -
Deep Fusion 29.6 39.3 - -
Glove 30.0 37.0 - -

Glove+Deep
- Web Corpus 30.3 38.1 2.12 4.05*
- In-Domain 30.3 38.8 2.21* 4.17*
Ensemble 31.4 42.1 2.24* 4.20*

Human - - 4.52 4.47

Table 5.1: MSVD dataset: METEOR and BLEU@4 in %, and human ratings (1-5)
on relevance and grammar. Best results in bold, * indicates significant over S2VT.

Model MPII-MD M-VAD
METEOR Grammar METEOR Grammar

S2VT† 6.5 2.6 6.6 2.2
Early Fusion 6.7 - 6.8 -
Late Fusion 6.5 - 6.7 -
Deep Fusion 6.8 - 6.8 -
Glove 6.7 3.9* 6.7 3.1*
Glove+Deep 6.8 4.1* 6.7 3.3*

Table 5.2: Movie Corpora: METEOR (%) and human grammar ratings (1-5, higher is
better). Best results in bold, * indicates significant over S2VT.

Embedding Influence. We experimented multiple ways to incorporate word em-
beddings: (1) GloVe input: Replacing one-hot vectors with GloVe on the LSTM
input performed best. (2) Fine-tuning: Initializing with GloVe and subsequently
fine-tuning the embedding matrix reduced validation results by 0.4 METEOR. (3)
Input and Predict: Training the LSTM to accept and predict GloVe vectors, as de-
scribed in Section 5.2.4, performed similar to (1). All scores reported in Tables 5.1
and 5.2 correspond to the setting in (1) with GloVe embeddings used only as input.
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Figure 5.3: Two frames from a clip. Models generate visually relevant sentences but differ
from groundtruth (GT).

5.3.2 Movie Description Results

Results on the movie corpora are presented in Table 5.2. Both MPII-MD and
M-VAD have only a single ground truth description for each video, which makes
both learning and evaluation very challenging (E.g. Fig.5.3). METEOR scores are
fairly low on both datasets since generated sentences are compared to a single
reference translation. S2VT† is a re-implementation of the base S2VT model with
the new vocabulary and architecture (embedding dimension). We observe that
the ability of external linguistic knowledge to improve METEOR scores on these
challenging datasets is small but consistent. Again, human evaluations show sig-
nificant (with p < 0.0001) improvement in grammatical quality. Figure 5.4 presents
more qualitative examples from some movies in the dataset.

5.4 Conclusion

This chapter investigated multiple techniques to incorporate linguistic knowl-
edge from text corpora to aid video captioning. We empirically evaluate our ap-
proaches on Youtube clips as well as two movie description corpora. Our results
show significant improvements on human evaluations of grammar while mod-
estly improving the overall descriptive quality of sentences on all datasets. While
the proposed techniques are evaluated on a specific video-caption network, they
are generic and can be applied to other video and image captioning models as we
shall see in the next chapter. The code and models from this chapter are shared on
http://vsubhashini.github.io/language_fusion.html.

46

http://vsubhashini.github.io/language_fusion.html
http://vsubhashini.github.io/language_fusion.html


Figure 5.4: Representative frames from clips in the movie description corpora.
S2VT is the baseline model, Glove indicates the model trained with input Glove
vectors, and Glove+Deep uses input Glove vectors with the Deep Fusion approach.
GT indicates groundtruth sentence.
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Chapter 6

External Knowledge for Captioning Novel Objects in Images

Deep captioning models such as the ones presented in the previous chap-
ters are limited in their ability to scale and describe concepts unseen in paired
image/video-text corpora. This chapter presents the Novel Object Captioner (NOC),
a deep visual semantic captioning model that can describe a large number of object
categories not present in existing image-caption datasets1. In this chapter, the ap-
plication of external knowledge is studied with reference to the image-captioning
task since labeled images are more widely available (compared to videos) pro-
viding us with better scope for training and evaluating our methods. Here, our
model takes advantage of external sources – labeled images from object recognition
datasets, and semantic knowledge extracted from unannotated text. We propose
minimizing a joint objective which can learn from these diverse data sources and
leverage distributional semantic embeddings (seen in the previous chapter), en-
abling the model to generalize and describe novel objects outside of image-caption
datasets. We demonstrate that our model exploits semantic information to gener-
ate captions for hundreds of object categories in the ImageNet object recognition
dataset (Russakovsky et al., 2015) that are not observed in MSCOCO image-caption
training data (Lin et al., 2014), as well as many categories that are observed very
rarely. Both automatic evaluations and human judgements show that our model
considerably outperforms prior work in being able to describe many more cate-
gories of objects.

6.1 Captioning images with diverse objects

Modern visual classifiers (He et al., 2016, Simonyan and Zisserman, 2014b)
can recognize thousands of object categories, some of which are basic or entry-level
(e.g. television), and others that are fine-grained and task specific (e.g. dial-phone,
cell-phone). However, recent state-of-the-art visual captioning systems (Donahue
et al., 2015, Fang et al., 2015, Karpathy and Fei-Fei, 2015, Kiros et al., 2015, Mao

1Based on work published in Venugopalan et al. (2017). All work in this chapter constitutes
original contributions.
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Figure 6.1: We propose a model that learns simultaneously from multiple data
sources with auxiliary objectives to describe a variety of objects unseen in paired
image-caption data.

et al., 2014, Vinyals et al., 2015) that learn directly from images and descriptions,
rely solely on paired image-caption data for supervision and fail in their ability
to generalize and describe this vast set of recognizable objects in context. While
such systems could be scaled by building larger image/video description datasets,
obtaining such captioned data would be expensive and laborious. Furthermore,
visual description is challenging because models have to not only correctly identify
visual concepts contained in an image, but must also compose these concepts into
a coherent sentence.

Recent work (Hendricks et al., 2016) shows that, to incorporate the vast
knowledge of current visual recognition networks without explicit paired caption
training data, caption models can learn from external sources and learn to compose
sentences about visual concepts which are infrequent or non-existent in image-
description corpora. However, the pioneering DCC model from Hendricks et al.
(2016) is unwieldy in the sense that the model requires explicit transfer (“copying”)
of learned parameters from previously seen categories to novel categories. This
not only prevents it from describing rare categories and limits the model’s ability
to cover a wider variety of objects but also makes it unable to be trained end-to-
end. We instead propose the Novel Object Captioner (NOC), a network that can
be trained end-to-end using a joint training strategy to integrate knowledge from
external visual recognition datasets as well as semantic information from indepen-
dent unannotated text corpora to generate captions for a diverse range of rare and
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novel objects (as in Fig. 6.1).
Specifically, we introduce auxiliary objectives which allow our network to

learn a captioning model on image-caption pairs simultaneously with a deep lan-
guage model and visual recognition system on unannotated text and labeled im-
ages. Unlike previous work, the auxiliary objectives allow the NOC model to
learn relevant information from multiple data sources simultaneously in an end-
to-end fashion. Furthermore, NOC implicitly leverages pre-trained distributional
word embeddings enabling it to describe unseen and rare object categories. The
main contributions of our work are 1) an end-to-end model to describe objects not
present in paired image-caption data, 2) auxiliary/joint training of the visual and
language models on multiple data sources, and 3) incorporating pre-trained se-
mantic embeddings for the task. We demonstrate the effectiveness of our model
by performing extensive experiments on objects held out from MSCOCO (Lin et
al., 2014) as well as hundreds of objects from ImageNet (Russakovsky et al., 2015)
unseen in caption datasets. Our model substantially outperforms previous work
(Hendricks et al., 2016) on both automated as well as human evaluations.

6.2 Novel Object Captioner (NOC) Model

Our NOC model is illustrated in Fig. 6.2. It consists of a language model that
leverages distributional semantic embeddings trained on unannotated text and in-
tegrates it with a visual recognition model. We introduce auxiliary loss functions
(objectives) and jointly train different components on multiple data sources, to cre-
ate a visual description model which simultaneously learns an independent object
recognition model, as well as a language model.

Similar to the language model (LM) seen in the previous chapter (Chap-
ter 5) we start by first training a LSTM-based LM (Sundermeyer et al., 2012) for
sentence generation. Again as in Chapter 5 our LM incorporates dense representa-
tions for words from distributional embeddings (GloVe, (Pennington et al., 2014))
pre-trained on external text corpora. Simultaneously, we also train a state-of-the-
art visual recognition network to provide confidences over words in the vocabu-
lary given an image. This decomposes our model into discrete textual and visual
pipelines which can be trained exclusively using unpaired text and unpaired im-
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Figure 6.2: Our NOC image caption network. During training, the visual recogni-
tion network (left), the LSTM-based language model (right), and the caption model
(center) are trained simultaneously on different sources with different objectives
but with shared parameters, thus enabling novel object captioning.

age data (networks on left and right of Fig. 6.2). To generate descriptions condi-
tioned on image content, we combine the predictions of our language and visual
recognition networks by summing (element-wise) textual and visual confidences
over the vocabulary of words. During training, we introduce auxiliary image-
specific (LIM), and text-specific (LLM) objectives along with the paired image-
caption (LCM) loss. These loss functions, when trained jointly, influence our model
to not only produce reasonable image descriptions, but also predict visual con-
cepts as well as generate cohesive text (language modeling). We first discuss the
auxiliary objectives and the joint training, and then discuss how we leverage em-
beddings trained with external text to compose descriptions about novel objects.

6.2.1 Auxiliary Training Objectives

Our motivation for introducing auxiliary objectives is to learn how to de-
scribe images without losing the ability to recognize more objects. Typically, image-
captioning models incorporate a visual classifier pre-trained on a source domain
(e.g. ImageNet dataset) and then tune it to the target domain (the image-caption
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dataset). However, important information from the source dataset can be sup-
pressed if similar information is not present when fine-tuning, leading the network
to forget (over-write weights) for objects not present in the target domain. This
is problematic in our scenario in which the model relies on the source datasets
to learn a large variety of visual concepts not present in the target dataset. How-
ever, with pre-training as well as the complementary auxiliary objectives the model
maintains its ability to recognize a wider variety of objects and is encouraged to
describe objects which are not present in the target dataset at test time. For the
ease of exposition, we abstract away the details of the language and the visual
models and first describe the joint training objectives of the complete model, i.e.
the text-specific loss, the image-specific loss, and the image-caption loss. We will
then describe the language and the visual models.

Image-specific Loss

Our visual recognition model (Fig. 6.2, left) is a neural network parametrized
by θI and is trained on object recognition datasets. Unlike typical visual recogni-
tion models that are trained with a single label on a classification task, for the task
of image captioning an image model that has high confidence over multiple visual
concepts occurring in an image simultaneously would be preferable. Hence, we
choose to train our model using multiple labels (more in Sec. 6.4.2) with a multi-
label loss. If l denotes a label and zl denotes the binary ground-truth value for
the label, then the objective for the visual model is given by the cross-entropy loss
(LIM ):

LIM(I; θI) = −
∑
l

[
zl log(Sl(fIM(I; θI)))

+ (1− zl) log(1− Sl(fIM(I; θI)))
] (6.1)

where Si(x) is the output of a softmax function over index i and input x, and fIM ,
is the activation of the final layer of the visual recognition network.
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Text-specific Loss

Our language model (Fig. 6.2, right) is based on LSTM Recurrent Neural
Networks. We denote the parameters of this network by θL, and the activation of
the final layer of this network by fLM . The language model is trained to predict
the next word wt in a given sequence of words w0, ..., wt−1. This is optimized using
the softmax loss LLM which is equivalent to the maximum-likelihood:

LLM(w0, ..., wt−1; θL) =

−
∑
t

log(Swt(fLM(w0, ..., wt−1; θL)))
(6.2)

Image-caption Loss

The goal of the image captioning model (Fig. 6.2, center) is to generate a
sentence conditioned on an image (I). NOC predicts the next word in a sequence,
wt, conditioned on previously generated words (w0, ..., wt−1) and an image (I), by
summing activations from the deep language model, which operates over previous
words, and the deep image model, which operates over an image. We denote these
final (summed) activations by fCM . Then, the probability of predicting the next
word is given by, P (wt|w0, ..., wt−1, I)

=Swt(fCM(w0, ..., wt−1, I; θ))

=Swt(fLM(w0, ..., wt−1; θL) + fIM(I; θI))
(6.3)

Given pairs of images and descriptions, the caption model optimizes the param-
eters of the underlying language model (θL) and image model (θI) by minimizing
the caption model loss LCM : LCM(w0, ., wt−1, I; θL, θI)

= −
∑
t

log(Swt(fCM(w0, ., wt−1, I; θL, θI))) (6.4)

Joint Training with Auxiliary Losses

While many previous approaches have been successful on image caption-
ing by pre-training the image and language models and tuning the caption model
alone (Eqn. 6.4), this is insufficent to generate descriptions for objects outside of

53



the image-caption dataset since the model tends to “forget” (over-write weights)
for objects only seen in external data sources. To remedy this, we propose to train
the image model, language model, and caption model simultaneously on different
data sources. The NOC model’s final objective simultaneously minimizes the three
individual complementary objectives:

L = LCM + LIM + LLM (6.5)

By sharing the weights of the caption model’s network with the image network
and the language network (as depicted in Fig. 6.2 (a)), the model can be trained
simultaneously on independent image-only data, unannotated text data, as well as
paired image-caption data. Consequently, co-optimizing different objectives aids
the model in recognizing categories outside of the paired image-sentence data.

6.2.2 Language Model with Semantic Embeddings

Our language model here differs in a key aspect compared to the one seen in
Chapter 5. Specifically, our language model here consists of the following compo-
nents: a continuous lower dimensional embedding space for words (Wglove), a sin-
gle recurrent (LSTM) hidden layer (512 dim), and two linear transformation layers
where the second layer (W T

glove) maps the vectors to the size of the vocabulary. And
the key difference of including a second transformation layer (W T

glove) compared to
what we saw in Chapter 5 is particularly crucial for being able to describe novel
and unseen object categories as we explain shortly. Finally a softmax activation
function is used on the output layer to produce a normalized probability distri-
bution. The cross-entropy loss which is equivalent to the maximum-likelihood is
used as the training objective.

In addition to our joint objective (Eqn.6.5), we also employ semantic em-
beddings in our language model like Venugopalan et al. (2016) to help generate
sentences when describing novel objects. Specifically, the initial input embed-
ding space (Wglove) is used to represent the input (one-hot) words into semanti-
cally meaningful dense fixed-length vectors. While the final transformation layer
(W T

glove) reverses the mapping (Mao et al., 2014) of a dense vector back to the full
vocabulary with the help of a softmax activation function. These distributional
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embeddings (Mikolov et al., 2013, Pennington et al., 2014) share the property that
words that are semantically similar have similar vector representations. The intu-
itive reason for using these embeddings in the input and output transformation
layers is to help the language model treat words unseen in the image-text corpus
to (semantically) similar words that have previously been seen so as to encourage
compositional sentence generation i.e. encourage it to use new/rare word in a
sentence description based on the visual confidence.

6.2.3 Visual Classifier

The other main component of our model is the visual classifier. Identical
to previous work (Hendricks et al., 2016), we employ the VGG-16 (Simonyan and
Zisserman, 2014b) convolutional network as the visual recognition network. We
modify the final layers of the network to incorporate the multi-label loss (Eqn. 6.1)
to predict visual confidence over multiple labels in the full vocabulary. The rest of
the classification network remains unchanged.

Finally, we take an elementwise-sum of the visual and language outputs,
one can think of this as the language model producing a smooth probability distri-
bution over words (based on GloVe parameter sharing) and then the image signal
“selecting” among these based on the visual evidence when summed with the lan-
guage model beliefs.

6.3 Datasets

In this section we describe the image description dataset as well as the ex-
ternal text and image datasets used in our experiments.

External Text Corpus (WebCorpus) Our external text corpus used to train the
language model is identical to the one used in the previous chapter Section 5.3.

Image Caption data To empirically evaluate the ability of NOC to describe new
objects we use the training and test set from Hendricks et al. (2016). This dataset is
created from MSCOCO (Lin et al., 2014) by clustering the main 80 object categories
using cosine distance on word2vec (of the object label) and selecting one object
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from each cluster to hold out from training. The training set holds out images
and sentences of 8 objects (bottle, bus, couch, microwave, pizza, racket, suitcase,
zebra), which constitute about 10% of the training image and caption pairs in the
MSCOCO dataset. Our model is evaluated on how well it can generate descrip-
tions about images containing the eight held-out objects.

Image data We also evaluate sentences generated by NOC on approximately 700
different ImageNet (Russakovsky et al., 2015) objects which are not present in the
MSCOCO dataset. We choose this set by identifying objects that are present in both
ImageNet and our language corpus (vocabulary), but not present in MSCOCO.
Chosen words span a variety of categories including fine-grained categories (e.g.,
“bloodhound” and “chrysanthemum”), adjectives (e.g., “chiffon”, “woollen”), and
entry level words (e.g., “toad”).

6.4 Evaluation

We empirically evaluate the ability of our proposed model to describe novel
objects by following the experimental setup of Hendricks et al. (2016). We first
evaluate our model on the set of held out objects from the MSCOCO dataset as de-
scribed in Section 6.3. To demonstrate scalability, we also evaluate on the ImageNet
dataset (Deng et al., 2009b). We perform several additional experiments with dif-
ferent ablations of the models, as well as comparisons with training on in-domain
and out-of-domain data, and evaluations on objects that are infrequent/rare in
image-caption data, these results can be found in the original paper (Venugopalan
et al., 2017).

6.4.1 Evaluation on MSCOCO

We perform the following experiments to compare NOC’s performance with
previous work (Hendricks et al., 2016): 1. We evaluate the model’s ability to caption
objects that are held out from MSCOCO during training (Sec. 6.4.2). 2. To study the
effect of the data source on training, we report performance of NOC when the im-
age and language networks are trained on in-domain and out-of-domain sources
(Sec. 6.4.3). In addition to these, to understand our model better: 3. We perform
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ablations to study how much each component of our model (such as word embed-
dings, auxiliary objective, etc.) contributes to the performance (Sec. 6.4.4). 4. We
also study if the model’s performance remains consistent when holding out a dif-
ferent subset of objects from MSCOCO (Sec. 6.4.5).

6.4.2 Captioning held-out objects

Following the setup in Hendricks et al. (2016), we evaluate our model’s abil-
ity to caption objects that are held out from MSCOCO during training. We opti-
mize each loss in our model with the following datasets: the caption model, which
jointly learns the parameters θL and θI , is trained only on the subset of MSCOCO
without the 8 objects (see section 6.3), the image model, which updates parame-
ters θI , is optimized using labeled images, and the language model which updates
parameters θL, is trained using the corresponding descriptions. When training the
visual network on images from COCO, we obtain multiple labels for each image
by considering all words in the associated captions as labels after removing stop
words. We use the METEOR metric (Denkowski and Lavie, 2014) to evaluate de-
scription quality. However, METEOR only captures fluency and does not account
for the mention (or lack) of specific words. Hence, we also use F1 to ascertain that
the model mentions the object name in the description of the images containing
the object. Thus, the metrics measure if the model can both identify the object and
use it fluently in a sentence.

Metric Model bottle bus couch microwave pizza racket suitcase zebra Avg.

F1 DCC 4.63 29.79 45.87 28.09 64.59 52.x24 13.16 79.88 39.78
NOC 17.78 68.79 25.55 24.72 69.33 55.31 39.86 89.02 48.79

MET. DCC 18.1 21.6 23.1 22.1 22.2 20.3 18.3 22.3 21.00
NOC 21.2 20.4 21.4 21.5 21.8 24.6 18.0 21.8 21.32

Table 6.1: MSCOCO Captioning: F1 and METEOR (denoted MET.) scores (in %)
of NOC (our model) and DCC (Hendricks et al., 2016) on held-out objects not seen
jointly during image-caption training, along with the average scores of the gener-
ated captions across images containing these objects.

COCO heldout objects. Table 6.1 compares the F1 score achieved by NOC
to the previous best method, DCC (Hendricks et al., 2016) on the 8 held-out COCO
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Figure 6.3: COCO Captioning: Examples comparing captions by NOC (ours) and
DCC (Hendricks et al., 2016) on held out objects from MSCOCO.

objects. NOC outperforms DCC (by 10% F1 on average) on all objects except
“couch” and “microwave”. The higher F1 and METEOR demonstrate that NOC
is able to correctly recognize many more instances of the unseen objects and also
integrate the words into fluent descriptions. Figure 6.3 presents some qualitative
examples comparing the two models.

6.4.3 Training data source

To study the effect of different data sources, we also evaluate our model
in an out-of-domain setting where classifiers for held out objects are trained with
images from ImageNet and the language model is trained on text mined from ex-
ternal corpora. Table 6.2 reports average scores across the eight held-out objects.
We compare our NOC model to results from Hendricks et al. (2016) (DCC), as well
as a competitive image captioning model - LRCN (Donahue et al., 2015) trained
on the same split. In the out-of-domain setting (line 2), for the chosen set of 8 ob-
jects, NOC performs slightly better on F1 and a bit lower on METEOR compared
to DCC. However, as previously mentioned, DCC needs to explicitly identify a set
of “seen” object classes to transfer weights to the novel classes whereas NOC can
be used for inference directly. DCC’s transfer mechanism also leads to peculiar
descriptions. E.g., Racket in Fig. 6.3.
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Image Text Model METEOR F1

1
Baseline LRCN 19.33 0

(no transfer) DCC 19.90 0

2
Image Web DCC 20.66 34.94

Net Corpus NOC 17.56 36.50

3 COCO
Web

NOC 19.18 41.74
Corpus

4 COCO COCO
DCC 21.00 39.78
NOC 21.32 48.79

Table 6.2: Comparison with different training data sources on 8 held-out COCO objects.
Having in-domain data helps both the DCC (Hendricks et al., 2016) and our NOC model
caption novel objects.

With COCO image training (line 3), F1 scores of NOC improves consider-
ably even with the Web Corpus LM training. Finally in the in-domain setting (line
4) NOC outperforms DCC on F1 by around 10 points while also improving ME-
TEOR slightly. This suggests that NOC is able to associate the objects with captions
better with in-domain training, and the auxiliary objectives and embedding help
the model to generalize and describe novel objects.

6.4.4 Ablations

Table 6.3 compares how different aspects of training impact the overall per-
formance. Tuned Vision contribution: The model that does not incorporate Glove
or LM pre-training has poor performance (METEOR 15.78, F1 14.41); this ablation
shows the contribution of the vision model alone in recognizing and describing the
held out objects. LM & Glove contribution: The model trained without the auxiliary
objective, performs better with F1 of 25.38 and METEOR of 19.80; this improve-
ment comes largely from the GloVe embeddings which help in captioning novel
object classes. LM & Pre-trained Vision: It’s interesting to note that when we fix
classifier’s weights (pre-trained on all objects), before tuning the LM on the image-
caption COCO subset, the F1 increases substantially to 39.70 suggesting that the
visual model recognizes many objects but can “forget” objects learned by the clas-
sifier when fine-tuned on the image-caption data (without the 8 objects). Auxiliary
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Contributing factor Glove LM Tuned Auxiliary
METEOR F1pretrain CNN Objective

Tuned Vision - - X X 15.78 14.41
LM & Embedding X X X - 19.80 25.38

LM & Pre-trained Vision X X Fixed - 18.91 39.70
Auxiliary Objective X - X X 19.69 47.02

All X X X X 21.32 48.79

Table 6.3: Ablations comparing the contributions of the Glove embedding, LM pre-
training, and auxiliary objectives, of the NOC model. Our auxiliary objective along
with Glove have the largest impact in captioning novel objects.

Objective: Incorporating the auxiliary objectives, F1 improves remarkably to 47.02.
We note here that by virtue of including auxiliary objectives the visual network is
tuned on all images thus retaining it’s ability to classify/recognize a wide range
of objects. Finally, incorporating all aspects gives NOC the best performance (F1
48.79, METEOR 21.32), significantly outperforming DCC.

6.4.5 Validating on a different subset of COCO

To show that our model is consistent across objects, we create a different
training/test split by holding out a different set of eight objects from COCO. The
objects we hold out are: bed, book, carrot, elephant, spoon, toilet, truck and um-
brella. Images and sentences from these eight objects again constitute about 10%
of the MSCOCO training dataset. Table 6.4 presents the performance of the model
on this subset. We observe that the F1 and METEOR scores, although a bit lower,
are consistent with numbers observed in Table 6.1 confirming that our model is
able to generalize to different subsets of objects.

6.4.6 Scaling to ImageNet

To demonstrate the scalability of NOC, we describe objects in ImageNet for
which no paired image-sentence data exists. Our experiments are performed on
two subsets of ImageNet, (i) Novel Objects: A set of 638 objects which are present
in ImageNet as well as the model’s vocabulary but are not mentioned in MSCOCO.
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Model bed book carrot elephant spoon toilet truck umbrella Av. F1 M.

NOC 53.31 18.58 20.69 85.35 02.70 73.61 57.90 54.23 45.80 20.04

Table 6.4: MSCOCO Captioning: F1 scores (in %) of NOC (our model) on a differ-
ent subset of the held-out objects not seen jointly during image-caption training,
along with the average F1 and METEOR scores (denoted M.) of the generated cap-
tions across images containing these objects. NOC is consistently able to caption
different subsets of unseen object categories in MSCOCO.

(ii) Rare Objects: A set of 52 objects which are in ImageNet as well as the MSCOCO
vocabulary but are mentioned infrequently in the MSCOCO captions (median of 27
mentions). For quantitative evaluation, (i) we measure the percentage of objects for
which the model is able to describe at least one image of the object (using the object
label), (ii) we also report accuracy and F1 scores to compare across the entire set of
images and objects the model is able to describe. Furthermore, we obtain human
evaluations comparing our model with previous work on whether the model is
able to incorporate the object label meaningfully in the description together with
how well it describes the image.

6.4.7 Describing Novel Objects

Table 6.5 compares models on 638 novel object categories (identical to Hen-
dricks et al. (2016)) using the following metrics: (i) Describing novel objects (%)
refers to the percentage of the selected ImageNet objects mentioned in descrip-
tions, i.e. for each novel word (e.g., “otter”) the model should incorporate the word
(“otter”) into at least one description about an ImageNet image of the object (ot-
ter). While DCC is able to recognize and describe 56.85% (363) of the selected Ima-
geNet objects in descriptions, NOC recognizes several more objects and is capable
of describing 91.27% (582 of 638) ImageNet objects. (ii) Accuracy refers to the per-
centage of images from each category where the model is able to correctly identify
and describe the category. We report the average accuracy across all categories.
DCC incorporates a new word correctly 11.08% of the time, in comparison, NOC
improves this appreciably to 24.74%. (iii) F1 score is computed based on precision
and recall of mentioning the object in the description. Again, NOC outperforms
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Model Desc. Novel (%) Acc (%) F1 (%)
DCC 56.85 11.08 14.47
NOC 91.27 24.74 33.76

Table 6.5: ImageNet: Comparing our model against DCC (Hendricks et al., 2016)
on % of novel classes described, average accuracy of mentioning the class in the
description, and mean F1 scores for object mentions.

with average F1 33.76% to DCC’s 14.47%.
Although NOC and DCC (Hendricks et al., 2016) use the same CNN, NOC

is both able to describe more categories, and correctly integrate new words into de-
scriptions more frequently. DCC (Hendricks et al., 2016) can fail either with respect
to finding a suitable object that is both semantically and syntactically similar to the
novel object, or with regard to their language model composing a sentence using
the object name, in NOC the former never occurs (i.e. we don’t need to explicitly
identify similar objects), reducing the overall sources of error. Qualitative exam-
ples of images and sentences generated by the models are presented in Figure 6.5.

Fig. 6.5 and Fig. 6.4 (column 3) show examples where NOC describes a large
variety of objects from ImageNet. Fig. 6.5 compares our model with DCC. Fig. 6.6
and Fig. 6.4 (right) outline some errors. Failing to describe a new object is one
common error for NOC. E.g. Fig. 6.4 (top right), NOC incorrectly describes a man
holding a “sitar” as a man holding a “baseball bat”. Other common errors include
generating non-grammatical or nonsensical phrases (example with “gladiator”,
“aardvark”) and repeating a specific object (“A barracuda ... with a barracuda”,
“trifle cake”).

6.4.8 Describing Rare Objects/Words

In order to understand if including additional data enables NOC to better
generate sentences about rare words, we select 52 objects which are in ImageNet as
well as the MSCOCO vocabulary. The selected rare words occur with varying fre-
quency in the MSCOCO training set, with about 52 mentions on average (median
27) across all training sentences. For example, words such as “bonsai” only ap-
pear 5 times,“whisk” (11 annotations), “teapot” (30 annotations), and others such
as pumpkin appears 58 times, “swan” (60 annotations), and on the higher side
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Tennis player preparing 

to hit the ball with a 

racket.

 A white and red 
cockatoo standing in a 

field.

A woodpecker sitting 
on a tree branch in the 

woods.

A otter is sitting on a 
rock in the sun.

A man holding a 
baseball bat standing in 

front of a building

A cat is laying inside of 
a small white 

aardvark.

A barracuda on a blue 
ocean with a barracuda. 

A man in a red and 
white shirt and a red 
and white octopus.

A red trolley train sits 
on the tracks near a 

building

A close up of a plate of 
food with a spatula.

Rare Words Errors (ImageNet)Novel Objects (ImageNet Images)Novel Objects (COCO)

A bus driving down a 
busy street with people 

standing around.

A cat sitting on a 
suitcase next to a bag.

A man is standing on a 
field with a caddie.

A woman is holding a 
large megaphone in 

her hand.

A orca is riding a small 
wave in the water.

A table with a plate of 
sashimi and vegetables.

A saucepan full of soup 
and a pot on a stove.

A large flounder is 
resting on a rock

Figure 6.4: Descriptions produced by NOC on a variety of objects, including “cad-
die”, “saucepan”, and “flounder”. (Right) NOC makes errors and (top right) fails
to describe the new object (“sitar”).

objects like scarf appear 144 times. When tested on ImageNet images containing
these concepts, a model trained only with MSCOCO paired data incorporates rare
words into sentences 2.93% of the time with an average F1 score of 4.58%. In con-
trast, integrating outside data, our NOC model can incorporate rare words into
descriptions 35.15% of the time with an average F1 score of 47.58%. We do not
compare this to DCC since DCC cannot be applied directly to caption rare objects.

6.4.9 Human Evaluation

ImageNet images do not have accompanying captions and this makes the
task much more challenging to evaluate. To compare the performance of NOC
and DCC we obtain human judgements on captions generated by the models on
several object categories. We select 3 images each from about 580 object categories
that at least one of the two models, NOC and DCC, can describe. (Note that al-
though both models were trained on the same ImageNet object categories, NOC
is able to describe almost all of the object categories that have been described by
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Moussaka (n07872593)
DCC: A white plate topped with a sandwich and a moussaka.
NOC (Ours): A moussaka with cheese and vegetables on a white plate.

Scythe (n04158250)
DCC: A small child is holding a small child on a skateboard.
NOC (Ours): A man is standing on a green field with a scythe.

Caribou (n02433925)
DCC: A caribou is in a field with a small caribou.
NOC (Ours): A caribou that is standing in the grass.

Circuitry (n03034405)
DCC: A large white and black and white photo of a large building.
NOC (Ours): A bunch of different types of circuitry on a table.

Warship (n04552696)
DCC: A warship is sitting on the water.
NOC (Ours): A large warship is on the water.

Newsstand (n03822656)
DCC: A bunch of people are sitting on a newsstand.
NOC (Ours): A extremely large newsstand with many different items on it.

Pharmacy (n03249342) [Both models incorporate the word incorrectly]
DCC: A white refrigerator freezer sitting on top of a pharmacy.
NOC (Ours): A kitchen with a pharmacy and a refrigerator.

Woollen (n04599235)
DCC: A red and white cat sitting on top of a red woollen.
NOC (Ours): A red and blue woollen yarn sitting on a wooden table.

Figure 6.5: ImageNet Captioning: Examples comparing captions by NOC (ours)
and DCC (Hendricks et al., 2016) on objects from ImageNet.

DCC). When selecting the images, for object categories that both models can de-
scribe, we make sure to select at least two images for which both models mention
the object label in the description. Each image is presented to three workers. We
conducted two human studies: Given the image, the ground-truth object category
(and meaning), and the captions generated by the models, we evaluate on:

Word Incorporation: We ask humans to choose which sentence/caption incorpo-
rates the object label meaningfully in the description. The options provided
are: (i) Sentence 1 incorporates the word better, (ii) Sentence 2 incorporates
the word better, (iii) Both sentences incorporate the word equally well, or (iv)
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Gladiator (n10131815)       Error: Semantics
NOC: A man wearing a gladiator wearing a gladiator hat.

Taper (n13902793)           Error: Counting
NOC: A group of three taper sitting on a table.

Trifle (n07613480)             Error: Repetition
NOC: A trifle cake with trifle cake on top of a trifle cake.

 Lory (n01820348)              Error: Recognition
NOC: A bird sitting on a branch with a colorful bird
           sitting on it.

Figure 6.6: ImageNet Captioning: Common types of errors observed in the cap-
tions generated by the NOC model.

Neither of them do well.
Image Description: We also ask humans to pick which of the two sentences de-

scribes the image better.

This allows us to compare both how well a model incorporates the novel object
label in the sentence, as well as how appropriate the description is to the image.
The results are presented in Table 6.6. On the subset of images corresponding to
objects that both models can describe (Intersection), NOC and DCC appear evenly
matched, with NOC only having a slight edge. However, looking at all object
categories (Union), NOC is able to both incorporate the object label in the sentence,
and describe the image better than DCC.

6.5 ImageNet Qualitative Examples

We present additional examples of the NOC model’s descriptions on Ima-
genet images. We first present some examples where the model is able to generate
descriptions of an object in different contexts. Then we present several examples
to demonstrate the diversity of objects that NOC can describe. We then present
examples where the model generates erroneous descriptions and categorize these
errors.
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Word Incorporation Image Description
Objects subset→ Union Intersection Union Intersection

NOC is better 43.78 34.61 59.84 51.04
DCC is better 25.74 34.12 40.16 48.96
Both equally good 6.10 9.35 -
Neither is good 24.37 21.91 -

Table 6.6: ImageNet: Human judgements comparing our NOC model with DCC
(Hendricks et al., 2016) on the ability to meaningfully incorporate the novel object
in the description (Word Incorporation) and describe the image. ‘Union’ and ‘In-
tersection’ refer to the subset of objects where atleast one model, and both models
are able to incorporate the object name in the description. All values in %.

6.5.1 Context

Fig. 6.7 shows images of eight objects, each in two different settings from
ImageNet. Images show objects in different backgrounds (Snowbird on a tree
branch and on a rock, Hyena on a dirt path and near a building); actions (Caribou
sitting vs lying down); and being acted upon differently (Flounder resting and a
person holding the fish, and Lychees in a bowl vs being held by a person). NOC is
able to capture the context information correctly while describing the novel objects
(eartherware, caribou, warship, snowbird, flounder, lychee, verandah, and hyena).

6.5.2 Object Diversity

Fig. 6.8 and Fig. 6.9 present descriptions generated by NOC on a variety of
object categories such as birds, animals, vegetable/fruits, food items, household
objects, kitchen utensils, items of clothing, musical instruments, indoor and out-
door scenes among others. While almost all novel words (nouns in Imagenet) cor-
respond to objects, NOC learns to use some of them more appropriately as adjec-
tives (‘chiffon’ dress in Fig. 6.8, ‘brownstone’ building and ‘tweed’ jacket in Fig. 6.9
as well as ‘woollen’ yarn in Fig. 6.5.

Comparison with prior work. Additionally, for comparison with the DCC model
from Hendricks et al. (2016), Fig. 6.9 presents images of objects that both models
can describe, and captions generated by both DCC and NOC.
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A couple of earthenware sitting on 
top of a wooden table.

E
ar

th
en

w
ar

e

A earthenware sitting on a 
table with a plate of food.

C
ar

ib
ou

A caribou that is 
standing in the grass.

A caribou that is laying 
in the grass.

W
ar

sh
ip

A large warship is on the 

water.

A group of people standing 
around a large white warship.

Sn
ow

bi
rd

A snowbird bird perched 
on a branch of a tree.

A snowbird bird sitting on a rock 
in the middle of a small tree.

Fl
ou

n
de

r

A large flounder is resting 
on a rock

A man is holding a large 
flounder on a beach.

Ly
ch

ee

A bowl filled with lots of 
lychee and lychee.

A man holding a lychee and 
lychee tree.

V
er

an
da

h

A large building with a verandah 
and tropical plants in it.

A table with a verandah 
area and chairs.

H
ye

n
a

A hyena dog walking across 
a dirt road.

A hyena standing on a dirt 

area next to a building.

Figure 6.7: Examples showing descriptions generated by NOC for ImageNet im-
ages of eight objects, each in two different contexts. NOC is often able to generate
descriptions incorporating both the novel object name as well as the background
context correctly.
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B
ird

s

A osprey flying over a 
large grassy area.

O
ut

do
or

s

A large glacier with a 
mountain in the background.

A group of people are 
sitting in a baobab.

A small pheasant is 
standing in a field.

A table with a cauldron 
in the dark.

A man is standing on a 
beach holding a snapper.

A humpback is flying over 
a large body of water.

A woman is posing for a 
picture with a chiffon dress.

W
at

er
 A

ni
m

al
s

M
is

c

Fo
od

K
itc

he
n

A close up of a plate of 
food with a scone.

A large colander with a 
piece of food on it.

A dumpling sitting on 
top of a wooden table

A saucepan and a pot 
of food on a stove top.

Ve
hi

cl
es

In
st

ru
m

en
ts

La
nd

 A
ni

m
al

s

H
ou

se
ho

ld

A large metal candelabra 
next to a wall.

A black and white photo of a 
corkscrew and a corkscrew.

A snowplow truck driving 
down a snowy road.

A group of people standing 
around a large white warship.

A okapi is in the grass 
with a okapi.

A small brown and white 
jackal is standing in a field.

A man holding a banjo 
in a park.

A large chime hanging 
on a metal pole

Er
ro

rs

A chainsaw is sitting on a 
chainsaw near a chainsaw.

A man is sitting on a bike in 
front of a waggon.

A volcano view of a volcano 
in the sun.

A trampoline with a trampoline 
in the middle of it.

Figure 6.8: Examples of sentences generated by our NOC model on ImageNet im-
ages of objects belonging to a diverse variety of categories including food, instru-
ments, outdoor scenes, household equipment, and vehicles. The novel objects are
in bold. The last row highlights common errors where the model tends to repeat
itself or hallucinate objects not present in the image.
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B
ird

s

NOC: A shorebird bird 
standing on a water pond.

O
ut

do
or

s

NOC: A volcano view of a mountain 
with clouds in the background.

NOC: A brownstone building 
with a clock on the side of it.

NOC: A grouse is standing on a 
dirt ground.

NOC: A crocodile floats through 
the water edge of a body of water.

NOC: A swordfish sitting on a 
wooden bench in a city.

W
at

er
 A

ni
m

al
s

Fo
od

NOC: A plate of food with 
hollandaise sauce and vegetables.

NOC: A close up of a plate of 
food with falafel.

Sc
en

es
NOC: A woman standing in front of a 
cabaret with a large discotheque.

NOC: A parlour room with a 
table and chairs.

NOC: A small white and grey 
tarantula is sitting on a hill.

NOC: A dingo dog is laying in the 
grass.

A
ni

m
al

s

DCC: A plate of food with a fork 
and a hollandaise.

DCC: A plate of food with a 
fork and a falafel.

DCC: A woman standing in a room 
with a red and white background.

DCC: A large room with a 
large window and a table.

DCC: A large crocodile in a body 
of water.

DCC: A man is sitting on a bench 
in the water.

DCC: A black and white photo of 
a person on a white surface.

DCC: A dog laying on a wooden 
bench next to a fence.

DCC: A shorebird bird standing 
in the water near a body of water.

DCC: A man is sitting on a bench in 
the middle of a large volcano.

DCC: A red and white 
brownstone in a city street.

DCC: A grouse is standing in the 
middle of a small pond.

Ve
ge
ta
bl
es

NOC: A tree with a bunch of 
papaya hanging on it.

W
at
er

NOC: A steamship boat is sailing in 
the water.

NOC: A man standing on a boat 
holding a snapper in his hand.

NOC: A bunch of yam are laying 
on a table.

NOC: A woman in corset posing 
for a picture.

NOC: A woman standing next to a 
woman holding a boa.

C
lo
th
in
g

M
is
c.

NOC: A abacus sitting on a 
wooden shelf with a abacus.

NOC: A young child is holding a 
drumstick in a kitchen.

M
is
c.

NOC: A copier desk with a copier 
machine on top of it.

NOC: A spectrometer is sitting in 
a spectrometer room.

NOC: A man wearing a hat and  
wearing topcoat.

NOC: A man wearing a suit and tie 
with a tweed jacket.

C
lo
th
in
g

DCC: A abacus with a lot of 
different types of food.

DCC: A little girl is drumstick with 
a toothbrush in the background.

DCC: A laptop copier sitting on 
top of a table.

DCC: A white and white photo of a 
white and black photo of a white.

DCC: A woman holding a red and 
white corset on a woman.

DCC: A man holding a pink 
umbrella in a pink boa.

DCC: A man wearing a suit and 
tie in a suit.

DCC: A man wearing a suit and tie 
in a suit.

DCC: A papaya tree with a 
papaya tree.

DCC: A boat is docked in the water. DCC: A man standing on a boat 
with a man in the background.

DCC: A person holding a knife and 
a knife.

Figure 6.9: Examples comparing sentences generated by DCC (Hendricks et al.,
2016) and our NOC model on ImageNet images of object categories that both mod-
els can describe including food, animals, vegetables/fruits, indoor and outdoor
scenes, and clothing. The novel objects are in bold.
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6.5.3 Categorizing Errors

Fig. 6.10 presents some of the errors that our model makes when caption-
ing Imagenet images. While NOC improves upon existing methods to describe
a variety of object categories, it still makes a lot of errors. The most common er-
ror is when it simply fails to recognize the object in the image (e.g. image with
‘python’) or describes it with a more generic hyponym word (e.g. describing a bird
species such as ‘wren’ or ‘warbler’ in Fig. 6.10 as just ‘bird’). For objects that the
model is able to recognize, the most common errors are when the model tends to
repeat words or phrases (e.g. descriptions of images with ‘balaclava’, ‘mousse’ and
‘cashew’), or just hallucinate other objects in the context that may not be present
in the image (e.g. images with ‘butte’, ‘caldera’, ‘lama’, ‘timber’). Sometimes,
the model does get confused between images of other similar looking objects (e.g.
it confuses ‘levee’ with ‘train’). Apart from these the model does make mistakes
when identifying gender of people (e.g. ‘gymnast’), or just fails to create a coherent
correct description even when it identifies the object and the context (e.g. images
of ‘sunglass’ and ‘cougar’).

Relevant but Minor Errors. Fig. 6.11 presents more examples where NOC gen-
erates very relevant descriptions but makes some minor errors with respect to
counting (e.g. images of ‘vulture’ and ‘aardvark’), age (e.g. refers to boy wearing
‘snorkel’ as ‘man’), confusing the main object category (e.g. ‘macaque’ with ‘bear’
and person as ‘teddy bear’) or makes minor word repetitions, and grammatical
errors.
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Figure 6.10: Examples of images where the model makes errors when generating
descriptions. The novel object is in bold and the errors are underlined. NOC often
tends to repeat words in its description, or hallucinate objects not present in the
image. The model sometime misidentifies gender, misrepresents the semantics of
the novel object, or just makes grammatical errors when composing the sentence.
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Figure 6.11: Some examples where NOC makes minor errors when describing
the image. The novel object is in bold and the word or segment corresponding
to the error is underlined. Counting, repetitions, confusing object categories (e.g.
‘macaque’, ‘bear’), grammatical errors, and hallucinating objects that are absent
are some common errors that the model makes. However, the generated descrip-
tion is still meaningful and relevant.
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6.6 Conclusion

We presented an end-to-end trainable architecture that used knowledge
from external sources to generate descriptions for object classes unseen in paired
image-caption data. Notably, NOC’s architecture and training strategy enables the
visual recognition network to retain its ability to recognize several hundred cate-
gories of objects even as it learns to generate captions on a different set of images
and objects. We demonstrate our model’s captioning capabilities on a held-out set
of MSCOCO objects as well as several hundred ImageNet objects. Both human
evaluations and quantitative assessments show that our model is able to describe
many more novel objects compared to previous work while also maintaining or
improving descriptive quality.

Code and generated sentences for this model along with additional exam-
ples and details about the human evaluations are available at the following link:
https://vsubhashini.github.io/noc.html
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Chapter 7

Segmenting and Describing Longer Videos

This chapter introduces the task of temporal segmentation and description,
where a vision system needs to localize and caption events worth describing in
movie-length videos. As seen in Chapter 4, existing video captioning systems fo-
cus on describing a single event in a very short video segment; in contrast, the
temporal segmentation and description task requires identifying salient events in
a long clip and describing them in context. To address the task, we propose a
novel framework which processes a video generating foreground proposals com-
prising noteworthy segments and later refines those segments to generate textual
descriptions. We combine a scene change predictor for temporal segmentation
with an architecture that uses both a convolutional network and a bi-directional
recurrent neural network encoder to select foreground proposals. Foreground fea-
tures from the encoder are then provided as an input to a recurrent language model
decoder to generate descriptions. We present and evaluate our network on two
large movie datasets which consist of over 350 hours of video from 186 movies
with over 120,000 segments.

7.1 Temporal Segmentation Networks for Localization and De-

scription of Videos

As mentioned previously, the ability to identify events in long videos and
describe them is an important step towards video understanding. For most hu-
mans recognizing key events in videos, and describing the narrative to varying
degrees of detail comes easily. However, this remains extremely challenging for
modern visual recognition systems. Research in computer vision has made sig-
nificant advances on different aspects of the problem, foremost among these are
recognizing objects in images (Krizhevsky et al., 2012, He et al., 2016), and catego-
rizing activities in videos (Gorban et al., 2015). In this thesis we have seen several
research works on the expressive task of describing visual content in natural lan-
guage. Chapter 2 discussed some of the recent progresses in image captioning
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Someone strides through the 
foyer and approaches a lift.

The staff member 
waits for another lift.

She pulls off her 
designer shades.

Someone’s running 
to meet her.

A woman is running down a corridor. Runningbackground background

(a) Temporal Segmentation and Description (Ours)

(b) Video Captioning (c) Activity Localization

Figure 7.1: (a) We address the task of temporal segmentation and description of
movies. This task extends both (c) event localization and (b) video captioning,
performing them jointly for longer movie clips.

(Donahue et al., 2015, Vinyals et al., 2015), and Chapters 3 to 5 presented progress
in video captioning (Venugopalan et al., 2015b;a; 2016).

However, despite the growing interest in video captioning, recent research
including those discussed in Chapters 3 to 5 have focused predominantly on de-
scribing single events or activities in short clips. Progress has been made in im-
proving the visual representation to better capture temporal information during
captioning (Venugopalan et al., 2015a, Yao et al., 2015, Pan et al., 2016), but these
still target single events. Orthogonally, there has also been work on activity local-
ization, which is the task of recognizing and identifying the boundaries of a single
activity in an untrimmed video (Shou et al., 2016, Singh et al., 2016, Escorcia et al.,
2016, Yeung et al., 2016, Ma et al., 2016). But progress in this area has lagged con-
siderably, compared to the analogous task of object detection in images, due to
scarcity of annotated video data. The next key research challenge that we address
in this work is joint detection and captioning of activities. In real world applica-
tions such as human-robot interaction, surveillance, or describing movies for the
blind, there is a long, continuous stream of video from which one needs to identify
segments or salient events before describing them. Hence, it is important to de-
velop models that can both identify and localize interesting events in long videos,
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and generate descriptions for them.
In this work, we take a step towards this direction. We introduce the joint

temporal-segmentation and description task motivated by generating descriptions
of movies for the visually impaired. As depicted in Fig.7.1, the goal is to predict
a set of descriptions across segments of a clip from a movie for the purpose of
movie description. However, defining “events and activities worth describing” in
generic videos can be quite challenging in itself. This thesis defines “events worth
describing” in the context of generating DVS (descriptive video service), a separate
audio track for the visually impaired describing the visual elements on screen. In
video captioning DVS can be viewed as a text modality that our model needs to
output1. By tying our definition of “events” to DVS descriptions, the eventual goal
of the model is to take context into account in order to generate useful descriptions
for the visually impaired.

For this task, we utilize and adapt the annotations from the two large movie
description corpora seen in Chapters 4 and 5, namely the MPII Movie Descrip-
tion (MPII-MD) dataset (Rohrbach et al., 2015b) and Montreal Video Annotation
Dataset (MVAD) (Torabi et al., 2015). More precisely, we use the annotations from
the Large Sacle Movie Description Challenge (LSMDC 2016) (Rohrbach et al., 2017)
which are manually aligned to the exact short segment of the movie clip where
the described event appears. As opposed to the data in MPII-MD and MVAD,
which only provide short 4-6 second snippets corresponding to DVS segments in
the movies, our adapted datasets consist of minute-long clips encompassing al-
most the complete movie along with annotations for the segment boundaries, as
well as the manually aligned DVS descriptions from the original datasets. Our
clips cover over 325 hrs of video from 186 movies, and contain 124,806 segments
with DVS descriptions.

To address this task, we propose a novel Temporal Segmentation and De-
scription Network (TSDN) that aims to jointly segment a long video in time and
describe segments of interest. Our model architecture, as seen in the previous
chapters, consists of both a Convolutional Neural Network (CNN) and a Recur-
rent Neural Network (RNN), i.e. CNN-LSTM based models in video (Chapter 3)

1The task of generating the actual audio track itself is out of scope of this thesis since it involves
several more components including interleaving of the generated description into the existing au-
dio track at appropriate locations.
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and image captioning (Vinyals et al., 2015, Donahue et al., 2015, Johnson et al., 2016).
We build on the S2VT encoder-decoder architecture from Chapter 4 by incorporat-
ing a bi-directional LSTM encoder as well as a novel temporal segmentation layer
in order to predict salient DVS segments. As we report below, our TSDN method
performs considerably better than naive baselines which tile the video into con-
tiguous clips or segments using conventional change detection algorithms, and
describe each segment.

7.2 Temporal Segmentation Description Network

Overview. Our goal is to jointly segment multiple salient events in a video
while also describing them. As with previous video captioning work, we employ
a CNN-LSTM style model; however the key distinguishing factor in our model
is being able to generate descriptions for multiple segments and not just a single
sentence describing the complete input. More importantly, we want to first tem-
porally segment the video to identify coherent events. Additionally, we want the
captioning module to have a local context from the segmentation module as well
as a global context of the event within the clip. We address these constraints by
drawing elements from recent works in video summarization (Potapov et al., 2014,
Zhang et al., 2016, Baraldi et al., 2016), and video captioning (Venugopalan et al.,
2015a, Yao et al., 2015).

We first use an unsupervised technique to find change points indicating
coherent video segments. We then learn a supervised bi-directional LSTM model
to predict foreground and background segments. Finally, the features from the bi-
directional LSTM are used with an LSTM language model to generate descriptions.
The full architecture of our model is described in the following subsections and is
also illustrated in Figure 7.2.

7.2.1 Convolutional Network

To model visual inputs, we use the VGG-16 architecture (Simonyan and
Zisserman, 2014b) as it has strong object-recognition performance. This also helps
make a consistent comparison with the S2VT model discussed in Chapter 4. In
particular, as seen in prior work, we use the activations from the penultimate layer
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Someone is running to meet her.
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      1. Unsupervised Segment Boundaries 
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      3. Supervised Foreground Prediction

      2. Bi-LSTM Segment Features 

She removes her shades.

LSTM

She enters the lift.

LSTM

Figure 7.2: Overview: We use an unsupervised segmentation algorithm to first obtain
non-overlapping intervals in the video. We then use a CNN and a bi-directional LSTM en-
coder to process frames in the video. The outputs from the forward and backward LSTMs
are combined to generate segment features for each of the non-overlapping intervals. The
model is trained to predict foreground and background segments from the encoder’s seg-
ment features and then generate a description for each foreground segment using an LSTM
decoder.

(with reLu applied after the fully-connected layer before classification) while keep-
ing the rest of the network fixed. This provides a 4096 dimension vector which is
then embedded to a lower 512 dimension vector with another fully connected layer
and provided as input to the Bi-LSTM encoder.

7.2.2 Bi-directional Temporal Processing

We use the sequence-to-sequence encoder-decoder framework seen in S2VT
and other recent end-to-end video description networks (Yao et al., 2015, Pan et
al., 2016, Yu et al., 2016). However, unlike previous methods that process frames
in a single sequential order using recurrent neural networks to encode the video,
we use a bi-directional LSTM network (Schuster and Paliwal, 1997) for modeling
stronger sequential information from both the past and the future. Modeling the
video from both directions is particularly relevant in our case, since we not only
want a representation of the video for description, but we also need information
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to temporally select segment belonging to foreground events. The bi-directional
LSTM helps us achieve this.

Recall from Equation (2.7), the set of recurrences in the LSTM encoder, and
Equation (3.2) which represents the log probability of the generated sentence. Es-
sentially, in the encoding phase, given an input sequence X (x1, . . . , xn), the LSTM
computes a sequence of hidden states (h1, . . . , hn). During decoding it defines a
distribution over the output sequence Y (y1, . . . , ym) given the input sequence X as
p(Y |X) is

p(y1, . . . , ym|x1, . . . , xn) =
m∏
t=1

p(yt|hn+t−1, yt−1) (7.1)

where the distribution of p(yt|hn+t) is given by a softmax over all of the words in the
vocabulary. In LSTMs seen in earlier chapters, the first hidden state of the decoder,
hn+t, is obtained from the last state and prediction of the encoder, hn+t−1, yt−1,
based on the recursion in Equation (2.7). In a bi-directional LSTM (Bi-LSTM), the
encoder computes two sets of recurrent state variables, one in the forward direc-
tion, and one in the backward direction. This model is depicted in Fig. 7.2; note
that the forward and the backward chains do not directly interact. We combine the
information in those two chains by concatenating them and embedding them.

ht = f(hforwardt , hbackwardt )

The combined state thus contains information about both past and future events
in the sequence.

7.2.3 Temporal Segmentation

For temporal segmentation, we use both an unsupervised change detec-
tion algorithm to obtain segment boundaries as well as a supervised bi-directional
LSTM to predict foreground segments. To predict segments in a supervised man-
ner, we extract the output activations from the Bi-LSTM for each segment and learn
to predict foreground and background content based on the presence of a descrip-
tion for the event segment. The presence of DVS description provides supervision
for foreground prediction. We first explain the unsupervised temporal segmenta-

79



tion method and then the supervised fore ground prediction approach.
We first employ an unsupervised kernel-based change point detection al-

gorithm Kernel Temporal Segmentation (KTS) (Potapov et al., 2014) to identify
changes in the underlying visual signal (sequence of visual features in our case).
While simple shot-boundary detection algorithms focus primarily on video transi-
tions, in order to effectively identify relevant foreground events and in particular
signal change-points our model needs to look at the full signal across a longer
sequence of frames. We accomplish this by using a bi-directional LSTM in con-
junction with the Kernel Temporal Segmentation algorithm.

To identify signal change-points with KTS, similar to our prior CNN-LSTM
models, we start with a CNN’s (specifically VGG16’s (Simonyan and Zisserman,
2014b)) fully connected layer descriptors/features to form the frame similarity ma-
trix or positive definite kernel. Stating this more precisely, for the sequence of
video descriptors xi ∈ X, i = 0, . . . , n − 1, let K : X × X → R be a kernel func-
tion between descriptors. Let H be the feature space of the kernel K(·, ·). Denote
φ : X → H the associated feature map, and ‖ · ‖H the norm in the feature spaceH.
We use a slight modification of KTS that minimizes the following objective,

Min
m;t0,...,tm−1

m∑
i=0

vti−1,ti (7.2)

where vti−1,ti is the within-segment kernel variance:

vti,ti+i
=

ti+1−1∑
t=ti

‖ φ(xt)− µi ‖2H (7.3)

µi =
Σ
ti+1−1
t=ti φ(xt)

ti+1 − ti
(7.4)

and µi denotes the segment mean.

Algorithm. First the kernel is computed for each pair of descriptors in the se-
quence, here it’s the Gram matrix or inner product of all pairs of descriptors. Then
for each possible starting point t and segment duration d, the segment variances
are computed. This can be done efficiently by precomputing the cumulative sums
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of the matrix (Potapov et al., 2014). Then the objective in Equation (7.2) is min-
imized using a dynamic programming (DP) algorithm. The DP algorithm itera-
tively computes the best objective value for the first j descriptors and i change
points. Finally, the optimal segmentation is reconstructed by backtracking. This
generates non-overlapping disjoint segments of the video clip.

7.2.4 Supervised Foregound Selection

Segment Features. For each of the segments obtained from KTS, based on the
predicted start and end, we select the output of the bidirectional LSTM on the full
clip at both the beginning and end of the segment, as well as the mean-pooled
descriptor as features for the proposed segment. This generates a fixed length
feature vector for each segment. These fixed length feature vectors form the input
for both the segment foreground prediction layer as well as the input to an LSTM
sequence model decoder for description as described next.

Foreground prediction. We add a fully-connected layer and a binary classifica-
tion softmax layer to predict each unsupervised segment as either foreground or
background. The groundtruth data for supervision is obtained based on overlap
and presence of DVS annotation. Specifically, we identify all KTS segments which
have an Intersection Over Union (IOU) of greater than 0.5 with any groundtruth
DVS segments and treat them as positive, and all segments with IOU less than
0.2 as negative. As seen in object detection models (Girshick et al., 2014, Ren et
al., 2015b), segments with IOU value between 0.2 and 0.5 are ignored. The bi-
directional LSTM takes the sequence of frame features, the unsupervised segment
end-points, and the segment labels as input, generating a batch of segment features
and learns to predict each segment as either foreground are background.

7.2.5 LSTM decoder for Description

Our final description model follows previous video captioning encoder-
decoder works (Chapters 3 to 5) by using an LSTM recurrent neural network for
the language model. For language generation, we use a forward uni-directional
LSTM network. First, the word tokens in the captions are embedded to a dense
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representation to produce vectors (x1, . . . , xm). Then the LSTM model is given the
segment features as input i.e. the output from the Bi-LSTM encoder embedded to a
lower dimension, then the mean-pooled segment descriptors embedded to a lower
dimension, as well as a special beginning of sentence <BOS> token in that order.
The LSTM computes a sequence of hidden states (ht) and output vectors (yt) for
each word/item in the input sequence using the recurrence ht, yt = fLSTM(ht−1, xt),
where fLSTM refers to the LSTM recurrence in Equation 2.7. If the LSTM model is
parametrized by θ, the model is trained to predict the caption using the cross-
entropy loss to optimize the following log-likelihood equation (similar to Equa-
tion (7.5))

θ∗ = argmax
θ

m∑
t=1

log p(yt|xseg, yt−1; θ) (7.5)

xseg refers to the features of the segment, and for simplicity we overload the out-
put yt to be outputs after the softmax function is applied to the LSTM output. The
model predicts one word at a time until it outputs the end-of-sequence (EOS) to-
ken.

We note here that for language generation, we train an independent bidirec-
tional LSTM encoder and decoder models i.e., the segment foreground prediction
bi-directional LSTM encoder does not share any of it’s parameters with the encoder
used for segment description

7.2.6 Training and Optimization

We embed activations from the convolutional network to a lower 512 di-
mensional vector. Our LSTMs, both the bi-directional encoders as well as the
language decoder use hidden layers of 512 dimensions. Our bi-directional LSTM
encoders were unrolled to a maximum of 150 steps, and the captioning LSTM de-
coder was unrolled to 20 steps. For KTS, we chose the expected number of change
points to be 12 based on the average number of segments per clip on both datasets.
For segment foreground prediction, we trained 32 clips per batch where each clip
contained 12 segments. Each batch had roughly 40% positive segments and re-
maining negative. In order to train the captioning model on segments, we used a
batch size of 16 clips per batch (training for a single segment per clip). The clips
themselves were pre-processed at the rate of 2 frames per second to generate about
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120-150 frames per clip. For clips that had fewer than 150 frames, the LSTM inputs
were padded with 0s. We use ADAM with a learning rate 1e-4 for optimization.

7.3 Datasets

We make available two large movie description datasets for the task. Specif-
ically, we expand on existing MPII-MD (Rohrbach et al., 2015b) and MVAD (Torabi
et al., 2015) movie description datasets and adapt them for the task of segmenta-
tion and captioning. MPII-MD and MVAD datasets contain short 4-6s segments
from 94 and 92 movies respectively. Each segment is annotated with a one or two
sentence DVS description explicitly describing what appears on the screen. In this
work, our goal is to segment and describe longer videos and not just single seg-
ments. Hence we look at the original full length movies used to create the MPII-
MD and MVAD datasets, and obtain the time-stamped DVS annotations from the
LSMDC16 (Rohrbach et al., 2017) challenge.

We pre-process the full length movies and cut them into roughly 1 minute
clips ensuring that DVS segments are not split across clips. This pre-processing
helps in multiple ways, 1) it makes the bi-directional LSTM encoder computation
reasonably sized (150 steps) during training, 2) it creates sufficient number of clips
for training and evaluation of LSTM models (20,349 clips altogether), and 3) it
ensures that most clips have a reasonable number of segments in each (about 6
segments on average). Collectively the clips have a total duration of over 325hrs,
and there are roughly 6 DVS segments per clip (actual number of segments varies
between 1 to at most 18). We retain the set of movies in the train, validation, and
test splits of the original data sources. More detailed comparison of the data for
temporal segmentation and description and the original datasets are provided in
Table 7.1.

We note here that although we pre-process the movies to obtain shorter
clips, this process is only necessary for training our models. At test time it is pos-
sible to use the proposed methods to generate descriptions for full movies e.g.,
KTS segmentation can be first applied to cut the test movies at longer 1-2 minute
intervals before processing. However, this can make evaluation considerably chal-
lenging. Hence we pre-process test movies as well.
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Our dataset MPII-MD MVAD

Number of Movies 94 92
Number of Clips 11,560 8,789
Avg. clip length 57s 58s
Total duration of clips 184h,46m 141h,42m
Avg. segments per clip 6 6

Segments - LSMDC16 challenge

Number of segments 68,375 56,431
Total duration of segments 68hrs 97hrs
Avg. segment length 3.9s 6.2s

Table 7.1: Corpus Statistics of the two adapted movie datasets introduced in this
work.

7.4 Experiments

Our model takes a single video clip as input and predicts temporal seg-
ments with corresponding confidence scores and captions. Our goal is to evaluate
performance on the ability of the model to identify segments worth describing
and generating the description. We first describe the evaluation metrics and then
present the results of the models.

7.4.1 Evaluation Metrics

Since the temporal segmentation and description task involves both local-
ization as well as captioning we evaluate on each of the tasks independently. Our
metrics for evaluation are similar to the ones used for dense-captioning (Johnson
et al., 2016).

Localization To evaluate the segmentation localization ability alone for the meth-
ods, we use intersection over union (IOU) across different thresholds t = {0.4, 0.5,
0.6}. More concretely, we measure the IOU of the proposed segments against the
ground-truth segments to cover all ground-truth segments i.e., for each groundtruth
segment we identify a distinct predicted segment which has the highest overlap
and consider the extent of overlap (IOU) when applying the threshold. E.g., if a
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groundtruth segment is covered best by a predicted segment with an IOU of 0.55,
then at a t = 0.5 the prediction is considered positive, but at t ≥ 0.6 it is considered
negative. We then evaluate recall and precision at each value of the threshold, re-
porting recall at t, and precision at t for each value of t. We also report the F1 score
at t = 0.5 (i.e., IOU=0.5 or greater).

Captioning For captioning, as seen in previous Chapters 4 and 5 for DVS we
use the automated machine translation metrics described in Chapter 3: METEOR
(Denkowski and Lavie, 2014), BLEU (Papineni et al., 2002) and Rouge-L (Lin, 2004).
We consider evaluating the generated captions in two ways: 1) without localiza-
tion, and 2) with localization. To evaluate just the captioning performance alone
(without taking localization into account), for each clip we combine the ground
truth captions for all segments within the clip to create a bag of reference captions
for the clip. We then evaluate the predicted captions against the ground-truth ref-
erences to determine the METEOR scores for the predictions. We report the aver-
age METEOR scores across all predicted captions. This evaluation is based on the
image captioning work in Johnson et al. (2016). To evaluate captions when consid-
ering localization, for each groundtruth segment we find the predicted segment
with the highest overlap, and then measure the METEOR score of the predicted
segment’s caption against the single groundtruth reference caption. This allows us
to evaluate the overall quality of the description more precisely.

We note that it is necessary to consider both of these metrics, F1 localization
and METEOR captioning score, in conjunction when determining the performance
of a model. Neither metric can individually capture a model’s joint ability to local-
ize and describe content.

7.4.2 Methods for Comparisons

We present and compare our approach against multiple segmentation and
captioning approaches. We describe the individual temporal segmentation and
captioning approaches before presenting our results.
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Segmentation

We compare 5 different approaches to generate the temporal segments: scene-
subshots, uniform segments, KTS segments, frame-level foreground and back-
ground predictions (FGBG), and the segments generated by our TSDN model.

Scene-Subshot. As an initial baseline, we use a scene subshot detection algo-
rithm that examines the absolute differences in pixels (Richardson, 2004) between
each consecutive pair of frames. We determine a frame as the beginning of a new
segment if there is more than 40% change between two subsequent frames in the
video. Scene subshot algorithms, are particularly good at capturing video transi-
tions such as fade-ins and shot changes. So each of the subshots represent tempo-
ral coherence from the perspective of individual pixel differences. We consider all
subshots to be foreground segments.

Uniform. We also compare against a baseline that segments the video at uniform
intervals based on the average segment duration in the training datasets. For MPII-
MD we select segments at every 4.5s interval, and for MVAD at every 8s interval.
Similar to scene-subshots, we again consider all segments/intervals to be in the
foreground hence these segments cover the entire clip/movie.

KTS. The next method we use is the Kernel Temporal Segmentation (KTS) model’s
change point detection (Potapov et al., 2014). As described in Sec.7.2.3, KTS iden-
tifies change points corresponding to the boundaries of temporal segments based
on the similarity between all pairs of frames. As in the previous cases we consider
all segments to be in the foreground so as to cover as much of the video.

FGBG. In addition to the above methods, we present a bidirectional-LSTM based
approach that predicts each frame as foreground and background content (referred
to as FGBG). This approach is similar to the work by Zhang et al. (2016) for video
summarization where they train a bi-directional LSTM to predict a confidence
score for whether each frame belongs to the foreground. In our case we train a
binary classifier based on the bi-LSTM output for each frame. During training, all
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Recall Precision F1
Models @0.4 @0.5 @0.6 @0.4 @0.5 @0.6 @0.5

Scene Subshot 11.9 08.9 05.8 13.9 10.1 06.6 09.5
KTS (Potapov et al., 2014) 54.6 42.9 26.8 26.2 19.6 12.1 26.9
FGBG (Zhang et al., 2016) 43.9 32.3 19.0 24.7 17.2 10.0 22.5
Uniform 42.5 26.2 13.6 27.6 16.8 08.7 20.5
TSDN (Ours) 46.2 37.7 24.4 32.2 26.3 17.0 31.0

TSDN Oracle 65.9 53.1 34.2 79.2 63.8 41.0 58.0

Table 7.2: Dataset: MPII-MD. Recall and Precision @ different thresholds of IOU
for the predicted segments, and F1@IOU≥ 0.5. Values in percentage (%), higher is
better.

frames that correspond to a groundtruth DVS segment are considered positive and
the rest negative.

TSDN TSDN denotes our own approach from Figure 7.1 that trains a bi-LSTM
on KTS intervals to predict foreground segments.

TSDN Oracle. This denotes the upper bound on segmentation based on our
TSDN approach. Recall that during training of the TSDN model, we select groundtruth
foreground segments as those KTS segments with an IOU threshold of 0.5 or greater
to be positive, and the those with lesser than IOU 0.2 as negative. The results for
the oracle are based on considering all the positive segments as foreground. This
provides an upper bound for the TSDN approach.

7.4.3 Results

Localization. We first compare different segmentation approaches on the MPII-
MD dataset in Table 7.2 and MVAD dataset in Table 7.3. On the MPII-MD dataset,
the KTS approach has good recall at different thresholds, however although TSDN
has a lower recall it has a much higher precision and hence a significantly better F1
score. On the MVAD dataset however, just generating uniform segments gives a
very high recall, and precision comparable to that of the KTS method. Our TSDN
achieves a higher precision at all thresholds and hence a higher F1 overall. Viewing
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Recall Precision F1
Models @0.4 @0.5 @0.6 @0.4 @0.5 @0.6 @0.5

Scene Subshot 18.9 15.4 10.5 26.8 20.8 13.9 17.7
KTS (Potapov et al., 2014) 59.4 49.5 33.6 37.1 29.6 19.8 36.7
FGBG (Zhang et al., 2016) 47.2 36.2 21.7 34.1 24.8 14.6 29.5
Uniform 75.6 60.4 39.0 36.1 28.9 18.6 39.1
TSDN (Ours) 40.2 34.7 24.6 56.9 49.2 34.8 40.7

TSDN Oracle 70.8 60.0 41.7 84.2 71.4 49.6 65.2

Table 7.3: Dataset: M-VAD. Recall and Precision @ different thresholds of IOU
for the predicted segments, and F1@IOU≥ 0.5. Values in percentage (%), higher is
better.

the segmentation methods collectively, scene subshot has the worst performance,
hence simple scene change indication is not a good segmentation approach. FGBG
method that makes frame-wise foreground and background prediction has a worse
performance compared to KTS. While KTS performs consistently on both datasets,
Uniform segmentation does quite poorly on the MPII-MD dataset but surprisingly
well on the M-VAD dataset. Our TSDN approach has higher precision and F1
compared to all other segmentation approaches.

Captioning Tables 7.4 and 7.5 present automated caption scores (without taking
localization into account) of the S2VT and Bi-LSTM captioners on the generated
segments. Captioning scores for the segments do not appear to vary quite as much
as the localization scores for a particular captioning method. However, it is easy to
observe that the Bi-LSTM model does considerably better than S2VT on METEOR
on both datasets, as well as on other metrics on M-VAD, but scores on other metrics
for S2VT on the MPII-MD datasets are higher. As noted before, the evaluations
presented in Tables 7.4 and 7.5 overcome the drawback of comparing the generated
sentences against a single groundtruth reference, but they fail to take into account
the effect of localization.

To evaluate the caption quality taking localization into account we evaluate
the captions by selecting the predicted segment closest to the groundtruth DVS
segment. Specifically, for each groundtruth segment, we identify the nearest pre-
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S2VT Bi-LSTM
Models B-2 B-1 Rouge METEOR B-2 B-1 Rouge METEOR

Scene Subshot 7.2 29.6 23.5 11.7 6.0 25.1 21.3 14.1
KTS 2 7.6 32.8 24.7 11.6 6.4 26.9 22.1 14.0
FGBG 3 7.6 33.3 24.7 11.8 6.8 28.2 22.5 14.0
Uniform 7.3 32.1 24.7 12.1 6.7 27.2 22.3 14.2
TSDN (Ours) 7.7 33.5 25.0 11.7 6.3 27.1 22.1 14.1

Groundtruth 10.1 38.6 27.4 12.7 8.4 31.7 24.6 15.1

Table 7.4: Dataset: MPII-MD. Caption evaluation (without localization). BLEU@2
(B-2), BLEU@1 (B-1), ROUGE-L (Rouge) and METEOR scores for generated cap-
tions. Values in percentage (%), higher is better.

dicted segment’s caption and compare with the single groundtruth reference for
that segment. The results are present in Table 7.6. Since we compare against just a
single reference, we use only the METEOR metric which is more robust when there
are fewer reference (Section 4.4.2). The scores here are lower than the ones in Ta-
bles 7.2 and 7.3 because of comparing against just a single reference. As before, the
captioning performance does not appear to differ much across the different seg-
mentation approaches. One reason for this is that aside from our TSDN approach
all other methods generate contiguous segments, hence there is always some pre-
dicted segment that overlaps with the groundtruth segment. The results also show
that the BiLSTM approach considerably outperforms S2VT in captioning on the
METEOR metric.

7.5 Qualitative examples

We present a few qualitative examples in Figures 7.3 and 7.4. Each example
shows a few video frames from a portion of the clip. Below the frames we present
the foreground segmentations generated by our TSDN approach, along with the
groundtruth, uniform and KTS segmentations. We also show the descriptions gen-
erated by our model and the groundtruth descriptions.

2Potapov et al. (2014)
3Zhang et al. (2016)
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S2VT Bi-LSTM
Models B-2 B-1 Rouge METEOR B-2 B-1 Rouge METEOR

Scene Subshot 3.8 22.1 17.0 10.5 5.9 30.5 25.0 15.0
KTS 4 3.0 24.5 17.7 9.1 6.1 31.4 25.0 15.0
FGBG 5 3.7 25.2 18.4 10.0 7.0 32.8 25.8 15.2
Uniform 2.5 23.7 15.7 9.3 6.5 32.1 25.3 15.2
TSDN (Ours) 3.3 27.2 18.5 9.2 7.1 33.7 26.1 15.3

Groundtruth 2.9 26.4 17.9 9.1 8.0 35.7 27.3 16.1

Table 7.5: Dataset: M-VAD. Caption evaluation (without localization). BLEU@2
(B-2), BLEU@1 (B-1), ROUGE-L (Rouge) and METEOR scores for generated cap-
tions. Values in percentage (%), higher is better.

Dataset Model Scene Subshot KTS FGBG Uniform TSDN

MPII-MD S2VT 6.9 6.6 6.5 6.8 6.5
BiLSTM 8.8 8.9 8.8 8.9 8.9

MVAD S2VT 6.9 6.9 6.7 6.9 7.6
BiLSTM 8.5 8.7 8.6 8.7 8.7

Table 7.6: Caption evaluation (with localization): METEOR scores (in %). For each
groundtruth segment we identify the predicted segment with the highest overlap
and evaluate the generated caption against the single groundtruth reference. Since
scene-subshot, KTS, and uniform segmentation proposals do not have any back-
ground segments, they score well on the caption evaluation.

4Potapov et al. (2014)
5Zhang et al. (2016)
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Someone looks at someone, 
who’s standing in the doorway

Someone walks out of the 
room and finds someone

Someone walks into the room 
and finds a small metal grill

The shape moves down the 
stairs, and the lights go out.

Bemused, someone 
gazes at someone.

A worried look on his face, he runs out of the room and 
hurries away down the circular staircase

GT:

Uniform:

KTS:

Someone looks at the phone 
and looks at someone.

Someone, in the car, is looking 
around the window, sees the car, 

and the door is ajar.

Someone’s eyes widen as he 
walks through the kitchen and 

finds a large envelope.

Someone in the doorway, 
watching someone.

They hug. The shades are closed and 
the room is dark.GT:

Uniform:

KTS:

Someone looks at the phone 
and sees someone sitting on 

the bed.

Someone watches the end 
of the last episode of Lost 

on a laptop.
Someone enters.

The car drives off the 
road and parks.Someone 's eyes widen. Someone steps out of the 

room and shuts the door.
 Someone opens the door and finds a 

photo of someone's name on the table.
Now, the sun shines

 on the horizon.

Now, in someone's pink-tiled bathroom, 
someone searches a vanity then picks 

through dirty laundry strewn around the tub.

She finds a bar coaster in a 
pair of jeans.

GT:

Uniform

KTS

Now, on her cell, she 
crosses the 

Verrazano-Narrows Bridge.
He hits the 

disconnect button.

Figure 7.3: Example (foreground) segments and descriptions generated by our model on
the movies from MPII-MD and MVAD. The top rows show input video frames. Imme-
diately below the video frames is the output description and segmentation of our model,
followed by the groundtruth (GT) description and segmentation (in black). The bottom
two rows show the output of the uniform and KTS segmentation approaches (the lighter
and darker shades represent alternate segments).
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Someone walks up to the house, and 
the boys are knocked off.

Someone walks through the trees, 
followed by someone.

Someone looks up at the boy, 
who is still in the distance.

Someone walks through the 
jungle and sees someone.

As the three men go inside, 
the back door opens.GT:

Uniform

KTS

Quickly, they run into the 
forest and observe 

themselves.

Pushing aside a branch, 
Someone stares at herself 

in the past.

Someone walks out of the car 
and walks along the street.

Someone gets out of the car 
and pulls out a gun.

Someone walks through the kitchen 
and finds a metal necklace.

Someone walks out of the room and 
finds someone sitting on the floor.

Having smashed the clock and several empties, he sits down 
on the bed, and, in need of refreshment, drinks from a half-full 

bottle with a cigarette end floating about it in.

A smart convertible pulls up at 
a car valeting serviced by the 

beach.
GT:

Uniform

KTS

The young guy from the 
valet service drives off as 

someone walks over to the 
board.

Figure 7.4: Example (foreground) segments and descriptions generated by our model on
the movies from MPII-MD and MVAD. The top rows show input video frames. Imme-
diately below the video frames is the output description and segmentation of our model,
followed by the groundtruth (GT) description and segmentation (in black). The bottom
two rows show the output of the uniform and KTS segmentation approaches (the lighter
and darker shades represent alternate segments).
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7.5.1 Discussion

We note here that our method can be extended directly to describe full
movie-length videos. Although our TSDN model can only processes 1 to 3 minute
clips at a time, the DVS segments themselves are significantly smaller, just a few
seconds. Hence, we can first apply the unsupervised KTS change-point detection
algorithm to clip the movies at change-points that are one or two minutes apart
producing reasonably sized 1-2 minute long clips. We can then apply our TSDN
approach to identify and describe foreground segments within each of the clips,
to generate descriptions for the entire movie. However, evaluating this approach
on full movies can be tricky since it introduces additional sources of error from
generating 1-2 minute clips.

7.6 Conclusion

In this chapter, we formulated a new and challenging video understand-
ing task, activity description in unsegmented movies. We proposed an approach
for solving this problem based on convolutional and recurrent layers that learns
to segment the video temporally selecting salient activities, and describe them us-
ing an encoder-decoder architecture. As this is a novel task, there are no existing
methods that can be directly applied for comparison, so we compare our model to
several straightforward baselines that use bottom-up segmentation of video and
caption produced segments. Based on extensive evaluations on two large-scale
DVS movie datasets, we demonstrate that our model is able to select and describe
segments in long videos.
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Chapter 8

Related Works

In this chapter we look at related works that can help place this dissertation
in context of the overall progress within the sub-field of image and video descrip-
tion. I will overview relevant research works, many of which were either contem-
poraneous to the approaches presented in this thesis, or subsequently built upon
and improved the architectures and models seen in earlier chapters. We will first
briefly overview approaches to deep image captioning that have formed the basis
of some of the works in this thesis (Chapters 3 and 6). We then look at develop-
ments in video description, in particular different categories of improvements that
build upon models from Chapters 3 and 4 of this thesis. We will also look at works
that incorporate external knowledge to improve image and video description for
specific classes of problems, in particular for describing unseen and novel object
categories and scenes in images and movies. Finally, we look at techniques that
have been developed to handle some of the challenges in understanding longer
videos, including video summarization, activity localization, and description in
longer videos.

8.1 Deep Image Captioning

As mentioned in Chapter 2, two main factors have contributed to the grow-
ing research in image captioning: 1) advances in deep neural networks, and 2) de-
velopment of large corpora of images with text descriptions (Hodosh et al., 2014,
Ordonez et al., 2011, Lin et al., 2014). Deep neural network models have gained
tremendous popularity for both their performance and potential for end-to-end
training in both computer vision and NLP. Deep image captioning approaches
were the first to combine the power of both convolutional neural networks as well
as recurrent neural networks. These captioning models work by first encoding an
image into a fixed length feature vector using a CNN, and then generate a descrip-
tion by either conditioning text generation on image features (Donahue et al., 2015,
Karpathy and Fei-Fei, 2015, Vinyals et al., 2015) or by embedding image features
and previously generated words into a multimodal space (Kiros et al., 2015, Mao
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et al., 2014) before predicting the next word. For caption generation specifically,
RNNs have been a popular choice. While Karpathy and Fei-Fei (2015) and (Mao
et al., 2014) used a simple RNN to generate the description, Donahue et al. (2015),
Kiros et al. (2015) and Vinyals et al. (2015) used LSTMs which outperformed simple
RNNs on the task. However there have also been some works that have favored
log bilinear language models (Kiros et al., 2015) and maximum entropy language
models (Fang et al., 2015) as well.

For the visual representation itself, most models represent images with an
intermediate representation from a convolutional neural network (such as the acti-
vations of the fully-connected layer just before classification), since these features,
although trained for object recognition, generalize well to other tasks. However,
there are a few models that represent images as a vector of confidences over a fixed
number of visual concepts (Fang et al., 2015, Hendricks et al., 2016) and this rep-
resentation can be particularly advantageous if the domain is well specified. In
almost all cases, the parameters of the visual pipeline are initialized with weights
trained on the ImageNet Large Scale Visual Recognition Challenge Russakovsky et
al. (2015), which we also did in all of our models (detailed in Chapter 3, Section 3.3).
A very interesting variation of the visual representation in image captioning has
been the introduction of “attention” (Xu et al., 2015b) where the model doesn’t
just have a single fixed representation of the image, but instead learns a spatially
weighted representation of the image which focuses on different locations in the
image as it is generates each word of the description.

8.1.1 Multiple descriptions

All of the works mentioned previously focus only on generating a single
description for each image. There have also been works that have looked at gen-
erating multiple descriptions for images. These can be categorized broadly into
two related lines of research 1) generating multiple descriptions i.e, more detailed
descriptions, for a single image, and 2) generating descriptions for a sequence of
related images.

Multiple descriptions for an image. Johnson et al. (2016) introduce the task of
dense captioning which aims at describing different regions in the image with a
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phrase or a sentence. They introduce a CNN-LSTM model that detects and de-
scribes different regions of interest within a single image. While “attention” based
image-captioning models (Xu et al., 2015b) are also capable of examining different
regions in the image, they only generate a single description. Whereas, Johnson et
al. (2016) explicitly propose and select regions of interest in the image using object
detection approaches (Girshick et al., 2014, Ren et al., 2015b) and then use an LSTM
decoder to generate descriptions for each region. Our TSDN model in Chapter 7 is
a video analog of the same task since our goal is to identify spatio-temporal regions
of interest in the video and generate descriptions.

Although, the model in Johnson et al. (2016) generates multiple descrip-
tions for an image, these descriptions are independent and do not form a coherent
whole. Krause et al. (2016) addresses the task of generating a coherent paragraph
about a single image by using a hierarchical recurrent neural network decoder
when generating the description. Specifically, they also first identify regions of
interest in the image (Girshick et al., 2014) and they then project and pool these
to generate a compact encoded representation. The first level in their hierarchical
RNN decoder determines how many sentences to generate along with the topic
words for each (conditioned on the visual representation), and a subsequent RNN
(one for each sentence) consumes these topic words to generate sentences.

Describing a sequence of images. This line of research to generate multiple de-
scriptions for images extends directly to the idea of generating or selecting a set of
coherent sentences to describe a sequence of related images. Park and Kim (2015)
addresses this task by introducing an explicit coherence model that combines the
visual representation of images from a CNN encoder and text representation from
a bi-directional RNN to produce sentences that form a coherent description of the
image sequence.

8.2 Deep Video Description

While the goal in describing a sequence of images was to generate mul-
tiple descriptions, with short videos the inherent temporal coherence in frames
represent a single event that needs to be described. Since video description is a
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natural extension of image captioning the developments in deep video description
have been directly influenced by growth in deep image captioning. The model
in Chapter 3 (Venugopalan et al., 2015b) was the first fully deep video captioning
model and it was inspired by the image captioning models in Donahue et al. (2015)
and Vinyals et al. (2015). However, this model simply temporally pooled features
from all frames, ignoring the temporal sequence entirely. While the S2VT model
in Chapter 4 proposed ways of modeling the temporal sequence using LSTM en-
coders and optical flow (Brox et al., 2004), contemporaneous work by Yao et al.
(2015) developed models to focus on relevant temporal segments to generate de-
scriptions. The models by Yao et al. (2015) and subsequent models focused on
generating a better visual representation of the videos. The techniques proposed
by these works fall into two broad classes contributions, 1) “attention” and 2) hier-
archical models. We will review these and few other improvements next.

8.2.1 Attention-based Models

As mentioned in the previous section, the concept of “attending” to differ-
ent regions in the image was proposed by Xu et al. (2015b). This concept can be
extended to videos in two ways, either as just “temporal attention” attending to
select frame sequences (Yao et al., 2015, Pan et al., 2016), or as “spatio-temporal
attention” focusing on different spatio-temporal volumes of the video (Yu et al.,
2016). Yao et al. (2015) proposed a soft-attention mechanism that learns to weight
the frame features in order to create a different representation of the video as it
decodes and generates each word in the description. This in turn allows the model
to focus on different portions of the frame sequence as it describes the video. Ad-
ditionally, they also introduce a 3-D CNN to learn features that can incorporate
both spatial and temporal association in video frames. Yu et al. (2016) also learn to
process spatio-temporal volumes in the video by learning object detectors to focus
on individual spatial regions in the image. They track these regions across frames
attending to different spatio-temporal sections of the video to improve the visual
representation.
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8.2.2 Hierarchical Models

Another way to generate better visual representations is by creating a hier-
archical architecture to encode the video frames (Pan et al., 2016, Yu et al., 2016) as
opposed to processing all items in the input sequence in a similar manner (as seen
in the S2VT model in Chapter 4). The model in Pan et al. (2016) consists of 2 LSTM
layers like S2VT, however, while their first layer processes all frames, their second
layer gets inputs from the first layer at uniform intervals creating a temporal depth
in the network that process the video in chunks to generate a better representation.
Additionally, Pan et al. (2016) also incorporate temporal-attention in their models
to further improve performance. Yu et al. (2016), however, use a hierarchical RNN
when decoding and generating the description.

8.2.3 Different RNN and CNN features

Ballas et al. (2016) explore the use of activation maps from different layers
in the CNN to generate better visual representations for video object and activity
description. Similarly, Xu et al. (2015a) use multi-scale CNN features to recognize
objects of different scales (magnifications) in videos. The models in Yao et al. (2015)
and Ballas et al. (2016) also study the use of Gated Recurrent Unit (GRU) RNNs as
opposed to LSTM RNNs. GRUs are a simpler more memory efficient variant of
LSTMs with just a single update or reset gate that helps address the problem of
vanishing gradients to learn long term dependencies. It’s performance has shown
to be similar to LSTMs in language modeling tasks Chung et al. (2014). Addition-
ally, the models by Yao et al. (2015) and Ballas et al. (2016) which use GRUs have
performed competitively with our own LSTM captioning models in Chapter 4.

8.2.4 Multi-modal Video Captioning

Ramanishka et al. (2016) extends our S2VT approach to incorporate audio
information along with the visual and text modality when generating descriptions.
Specifically, they use the popular audio feature - Mel Frequency Cepstral Coeffi-
cients (MFCC) which have been used widely in various audio processing tasks
such as automatic speech recognition, music transcription, and environment clas-
sification (Hinton et al., 2012, Giannakopoulos, 2015, Beritelli and Grasso, 2008).
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Their model concatenates the audio features along with the visual information and
provides it as input when encoding the video. Their captioning decoder model is
similar to S2VT.

8.3 Use of External Resources for Captioning

Another way to improve visual and textual representations learned by vi-
sual description models is by incorporating external knowledge as seen in Chap-
ters 5 and 6. There have been several works in image and video description that
have used external knowledge to address interesting problems such as, recogniz-
ing or describing rare/unseen objects (Mao et al., 2015, Hendricks et al., 2016), iden-
tifying characters in movies and TV shows from scripts and dialogs (Everingham et
al., 2006, Haurilet et al., 2016), aligning and generating descriptions for movies from
book chapters (Tapaswi et al., 2015, Zhu et al., 2015) or cooking videos Malmaud et
al. (2015) or just for improving descriptive quality (Yang et al., 2011, Thomason et
al., 2014). This section will overview a few approaches that are particularly rele-
vant to our work in Chapters 5 and 6.

8.3.1 Captioning Novel Objects

In Chapter 6 we use external knowledge to describe novel objects in images.
Mao et al. (2015) was one of the first deep captioning models to look at this prob-
lem. They proposed an approach that extends a model’s capability to describe
a small set of novel concepts (e.g. quidditch, samisen) from a few paired training
examples while retaining its ability to describe previously learned concepts. On
the other hand, Hendricks et al. (2016) introduce a model that can describe many
objects already existing in English corpora and object recognition datasets (Ima-
geNet) but not in the caption corpora (e.g. pheasant, otter). Our work in Chapter 6
focused and built on the latter case. Hendricks et al. (2016) integrate information
from external text and visual sources, and explicitly transfer (‘copy’) parameters
from objects seen in image-caption data to unseen ImageNet objects to caption
these novel categories. While this works well for many ImageNet classes it still
limits coverage across diverse categories and cannot be trained end-to-end. Fur-
thermore, their model cannot caption objects for which few paired training ex-
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amples already exist. Our NOC framework (Chapter 6) integrates distributional
semantic embeddings implicitly, obviating the need for any explicit transfer and
making it end-to-end trainable. It also extends directly to caption ImageNet ob-
jects with few or no descriptions.

8.3.2 Describing Scenes in Movies

Our work in Chapter 3 used external image captioning data to aid video
captioning and our model in Chapter 5 used monolingual text data to improve
grammaticality. But even prior to these, Yang et al. (2011), Krishnamoorthy et al.
(2013), Thomason et al. (2014) all used external text sources to improve descriptive
quality for videos. Movie description is another specific sub-domain where the use
of external resources have played an important role in enhancing descriptions as
a whole. Rohrbach et al. (2015a) used scene datasets (Xiao et al., 2010) and action
labels from Wang et al. (2011) to improve descriptions for movies. Tapaswi et al.
(2015), Zhu et al. (2015) both used information from books to align scenes in videos
to book chapters, there by captioning movie scenes with paragraphs from the book.
There have also been works that have used external resources such as movie scripts
to identify character names in TV shows and movies (Everingham et al., 2006).

8.4 Long Videos

Our work in Chapter 7 that segments and describes longer videos, builds
on several sub-areas of research within video understanding. In particular, de-
velopments in temporal segmentation (Potapov et al., 2014, Poleg et al., 2014) play
an important role in identifying coherent sequence of frames in long videos and
segmenting them. Additionally, work in video summarization and activity local-
ization Baraldi et al. (2016), Zhang et al. (2016), Escorcia et al. (2016) help building
architectures that can process and recognize salient activities and events in long
videos.
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8.4.1 Video Segmentation and Summarization

In video summarization, the goal is to generate a shorter video that high-
lights important events (Lu and Grauman, 2013) or important objects (Lee and
Grauman, 2015). This involves selecting frames/shots using unsupervised or su-
pervised methods. Most works on video summarization first pre-process videos
by generating temporal segments. In temporal segmentation, the goal is to break
up a long video into meaningful chapters, such as for browsing egocentric video Po-
leg et al. (2014). To temporally segment long cooking videos, Rohrbach et al. (2014)
uses agglomerative clustering based on attribute classifier similarity which con-
sists of object and activity classifiers. An additional background classifier is used
to reject segments which are irrelevant or noisy. While some segmentation meth-
ods rely on shot boundaries, Potapov et al. (2014) proposes to also detect general
change points, including changes within shots, by comparing all pairs of frames.
Once the video is thus segmented, they also classify the segments by their impor-
tance to generate a summary. While Potapov et al. (2014) use a kernel based method
to detect changes, Baraldi et al. (2016) process long TV length shows by training a
siamese architecture to identify sequences of frames that are temporally coherent
and detect changes. They then generate a summary by selecting some frames from
each segment. Zhang et al. (2016) performs video summarization by training a
bi-directional LSTM to predict which frames should be included in the summary.
Our work in Chapter 7 combines approaches from Potapov et al. (2014) and Zhang
et al. (2016) and uses LSTMs to predict foreground/background segments, but our
goal is description rather than visual summarization.

8.4.2 Object and Activity Localization

The task of identifying salient events worth describing is also closely re-
lated to action and object detection in video. While the goal in detection is to
identify salient regions and generate a single label, we are interested in generating
a complete sentence. Research in object detection aims to find object boundaries
while identifying their categories. Recent methods like Faster RCNN (Ren et al.,
2015b) propose object-like regions based on CNN features, and then classify these
foreground proposals to predict labels. The method in Johnson et al. (2016), as
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described before (Section 8.1.1) goes beyond category detection to also describe fo-
cused regions in the image. Our work in Chapter 7 is analogous to this in the sense
that our goal is to localize and describe events but in long videos.

Compared to object detection, activity detection in video is less explored
due to the scarcity of annotated data as well as the complexity of the problem. Re-
cent methods focus on fixed action categories and identify the start and end time
of each action using multi-scale sliding window search (Shou et al., 2016, Singh et
al., 2016), or propose temporal segment end points (Escorcia et al., 2016, Yeung
et al., 2016, Ma et al., 2016). Similar to our work, the latter methods also identify
temporal segment proposals likely to contain actions, but predict only fixed action
categories like “playing hockey” or “wrapping presents.” In contrast, Chapter 7
looks at generating fluent descriptive sentences. Moreover our definition of an
event/activity comes from the domain as DVS as something that is worth describ-
ing for the visually impaired particularly when taking context into account.

8.4.3 Captioning Long Videos

While most existing work on video description has been on generating sin-
gle sentence description, work by Yu et al. (2016) introduced a paragraph-RNN (p-
RNN) model to generate descriptions for longer videos, specifically multi-sentence
paragraph captions. They use a hierarchical RNN model to process visual input
and generate multi-sentence descriptions. However, they do not localize events
in the video, whereas we aim to temporally segment and describe longer videos.
Similar to our work in Chapter 7, Shin et al. (2016) and Baraldi et al. (2017) propose
methods to segment videos and movies and generate descriptions, however, they
use the original short clips from the MPII-MD and M-VAD datasets which only
contain 4-6 second segments, not longer continuous clips with multiple sentences
as we do.

Recent contemporaneous work by Krishna et al. (2017) is the most relevant
to our work in Chapter 7. Krishna et al. (2017) also look at segmenting salient
events in longer videos and describing them. They introduce a new dataset of
annotations for ActivityNet dataset (Caba Heilbron et al., 2015), which is a collec-
tion of Youtube video clips for activity recognition and localization. Similar to our
work, Krishna et al. (2017) also use existing methods to generate segments. While
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we use unsupervised methods (Potapov et al., 2014), they use supervised activity
localization methods (Escorcia et al., 2016). Also, unlike our Bi-LSTM captioning
frame work, they use a hierarchical RNN with attention to generate captions. Our
view of the task also differs slightly in the sense that while Krishna et al. (2017) aim
to describe generic event sequences in videos our work focuses on movie DVS.

8.5 Summary

In summary, there have been several recent works in image and video cap-
tioning that are closely related to the task and methods presented in this disserta-
tion. While some of the research in image captioning have inspired the video and
image description works presented in this thesis, many of the video description
works have built on models introduced here. In particular we discussed related
work that presented improved visual representation using “attention”, hierarchi-
cal approaches, as well as better CNN representation and RNN variants. We also
looked at other methods relevant to our own that used external resources to en-
hance image and video descriptions, particularly movie descriptions. Finally, we
saw several methods for localizing events in longer videos, identifying salient sub-
shots/frames to summarize, as well as methods to generate multiple descriptions
for longer videos.
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Chapter 9

Future Directions

In this chapter we briefly outline some of the future directions in which the
research in this thesis can be extended. While work presented in this dissertation
looked at addressing some of the challenges in video description, specifically de-
scribing open-domain videos, with large vocabularies, variety of objects, scenes
and activities, as well as generating descriptions for events in movies, it is still lim-
ited in ways. Most of the work in this thesis looks at generating descriptions of dis-
tinct and independent events in videos, one immediate direction of extension is to
be able to generate descriptions in context of what has already been described and
also take pragmatics into account when generating descriptions. Another direction
that has potential applications in video retrieval and understanding is generating
textual summaries of long videos. Yet another promising direction is to enhance
movie descriptions. As seen in Chapters 5 and 7, work presented in this thesis is
only a small initial step towards automatically generating DVS descriptions, and
our contributions can be improved in many ways. Here we briefly look at some of
the challenges and sketch steps that one can take to extend work in each of these
directions.

9.1 Describing Video Events in Context

Almost all work in video description has looked primarily at generating de-
scriptions for independent events. With short video captioning, techniques were
built for generating a simple description of the event, and even in case of longer
movie clips, the focus was more on describing a salient event. While this view
of captioning is suitable for some applications like generating descriptions for the
visually impaired, identifying and articulating multiple events in videos can also
enable better methods for video retrieval and potentially video question answer-
ing. However the challenge here is to identify multiple events, and generate coher-
ent descriptions in context. Work presented in Chapter 7 can be extended in two
primary directions to enable this.
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9.1.1 Joint Localization and Description

While our TSDN method proposes segments and generates descriptions,
it has two main drawbacks 1) it does not recognize multiple (potentially concur-
rent/overlapping) events, 2) it does not address these tasks jointly, i.e, the seg-
mentation and captioning module do not interact to learn a jointly useful repre-
sentation. One way to address these in TSDN is to potentially have a multi-task
network where the visual representation is trained based on the loss from both
temporal segmentation as well as description. Specifically, we can introduce a
deep model that proposes temporal segments (similar to Escorcia et al. (2016)) and
share weights of the visual encoding module i.e., the Bi-LSTM encoder, with both
the segment proposal module and the LSTM model for captioning. Such a model
would have two loss functions or objectives, one coming from the segment pro-
posal network and another coming from the caption RNN. The training strategy
for such a model would be quite similar to our Novel Object Captioning approach
in Chapter 6. In this method, although the segment proposal and captioner net-
work don’t directly interact, the loss from both modules will force the model to
learn a better visual representation that informs both tasks.

Another way of addressing this task could be analogous to Johnson et al.
(2016). Johnson et al. (2016) propose a single end-to-end model that is capable of
both jointly identifying regions in the image and generating descriptions for each.
Here the visual representation is used to first generate bounding box proposals
and a confidence score for each proposal. Descriptions are generated for proposals
with high confidence scores. In this case, the key difference between this model
and a multi-task model is that the loss from the captioning model is propagated
back to the visual encoder through the segmentation module. So, the parameters
of the segmentation network are informed by the captioning network.

9.1.2 Coherent Descriptions for Movies

Paragraph descriptions for sequences in video. Yet another direction one can
take for describing events in longer videos is to focus on the language model to
generate coherent descriptions of multiple events. The previous chapter discussed
works that generated coherent descriptions for a single image (Krause et al., 2016),
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for a sequence of images (Park and Kim, 2015) as well as for domain specific events
in video (Yu et al., 2016). Both Krause et al. (2016) and Yu et al. (2016) propose hi-
erarchical models to generate a coherent paragraph based on the visual content.
While Krause et al. (2016) propose to first identify how many sentences to describe
and the topics of each, Yu et al. (2016) focus on describing different temporal se-
quences/events in the video, thus generating descriptions of different events that
form a coherent paragraph. The key novelty of these approaches lies in the hierar-
chical captioning module. Similar hierarchical RNN decoding approaches can be
combined with the temporal segmentation network to generate coherent descrip-
tions in movies.

Inference-driven Pragmatics for context-specific descriptions. Captions gener-
ated by S2VT and the Bi-LSTM models for consecutive clips in the movie datasets
are quite similar and sometimes identical. One can consider generating context-
specific descriptions by combining learned semantics with an inference-driven ap-
proach to pragmatics (Andreas and Klein, 2016, Vedantam et al., 2017). The work
of Andreas and Klein (2016) and Vedantam et al. (2017) look at generating discrim-
inative captions for a given target image presented with context in the form of an-
other image having similar content. The goal in their task is to generate a caption
that can help an observer distinguish (and select) the target image when presented
with both the target and context images. While Andreas and Klein (2016) sample
multiple sentences from the image-caption decoder to produce a caption that can
be discriminative, Vedantam et al. (2017) present a simple approach that modifies
the distribution of the decoder (specifically Equation (3.2)) based on the language
model’s distribution conditioned on the target image as well as the context image
representations. Both of these approaches can be applied to the video description
models presented in this work. In particular, for generating descriptions on the
movie corpora. By using an inference-driven approach and considering the pre-
viously described event/segment as context, the model can focus on generating
a description that can provide new information about the current target event se-
quence.
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9.2 Generating Textual Summaries of Long Videos

Works in video summarization (Lu and Grauman, 2013, Lee and Grauman,
2015, Zhang et al., 2016, Potapov et al., 2014) have focused predominantly on gener-
ating visual summaries of clips given specific constraints on the length of the sum-
mary. These clips could be short 3-5 minute clips from typical events like birthday
parties that need to be reduced to 30 seconds or could be several hour long ego-
centric videos or cooking videos that need to be compressed to contain just key
moments. An interesting variation from the perspective of description would be
to generate textual summaries of long videos.

Recent work by Sah et al. (2017) presents a simple approach building upon
the work in S2VT for this task. Specifically, they first generate a visual summary
of 6-8 hour-long ego-centric videos by ranking and selecting coherent subshots.
They then apply the S2VT captioning approach to generate descriptions for each
subshot in the visual summary. Finally, they use off-the-shelf text summarization
techniques (Landauer, 2006, Erkan and Radev, 2004) to generate a textual sum-
mary of the video.

While the approach in Sah et al. (2017) is simple, the S2VT or the TSDN mod-
els can be modified and extended in several ways to generate both the visual and
textual summary of the video. One variation would be to build a temporal segmen-
tation and summarization network, to generate visual segment representations, as
well as text topics that can be combined with a hierarchical RNN decoder such as
the one from Yu et al. (2016) or Krause et al. (2016) to generate a paragraph sum-
mary of the long video clip. Constraints can be placed both on the visual modules
(restricting video duration) and the text modules (restricting word or character
length) to generate summaries of different lengths. While processing long videos
can be quite challenging recent advances in video summarization (Zhang et al.,
2016, Gygli et al., 2016) and text summarization (Durrett et al., 2016, Nallapati et al.,
2016) can be combined to generate textual summaries of long videos.

9.3 Enhancing Movie Description

We can go beyond generating simplistic sentence descriptions for movies
by developing effective methods for identifying characters in order to generate
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more precise descriptions including character names and associating actions to
characters. Current movie description models (Venugopalan et al., 2015a, Yao et
al., 2015) are trained on sentences where character names are replaced with the
generic noun “Someone”. While this is based on the premise that movies in the
test set are never seen before and hence characters in it are unknown; in practice
however, we have access to additional sources of information such as movie scripts
and subtitles that can help in learning and recognizing characters.

It’s important to note that by itself, neither the script nor the subtitles con-
tain the required information to label the identity of the people in the video. The
subtitles record what is said, but not by whom, whereas the script records who
says what, but lacks timing information. Movie scripts typically include names of
all characters and most movies loosely follow the sequence of events in the orig-
inal script. Both the scripts and the subtitles together can be used to estimate the
presence of a character on the video screen (Everingham et al., 2006, Apostoloff and
Zisserman, 2007). Moreover, movie scripts are readily available and subtitles can
also be easily obtained using automatic speech recognition. In addition, we can
also obtain a few annotations of the characters by clustering similar faces and ac-
tively requesting for annotations on some examples. Then we can use techniques
from Cour et al. (2009; 2011) to learn characters from ambiguously or partially la-
beled images.

9.3.1 Identifying Character Screen Presence from Movie Scripts

There is a body of prior work on identifying characters in video streams,
e.g.,Everingham et al. (2006), Apostoloff and Zisserman (2007), that uses subtitles
and scripts to automatically assign character names to faces in the video frames.
However, these works only recognize the presence of a character in the frame and
do not identify the sequence of actions/events or generate their descriptions. An-
other closely related set of works look at aligning text from the web or books to
appropriate positions in videos (Malmaud et al., 2015, Zhu et al., 2015, Tapaswi et
al., 2015). However, in the description task we are not looking to directly align
existing text, but instead we wish to compose information in these texts (character
names, actions) to generate a description of the event on the screen. One can com-
bine the subtitle and movie script information, to first identify the time intervals
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at which a character is present on screen. Then, given the clips from the movie,
using the time stamp, each shot can be tagged with the characters that are likely to
be present. Then we can use multiple instance learning (MIL) and other methods
to learn character identities from ambiguously and partially labeled images (Cour
et al., 2009; 2011). This can be used to generate more accurate DVS descriptions
by including names of characters even on new test videos. Additionally, scripts
and subtitle dialogues can be used to improve text understanding by supporting
inference of implied information as well as co-reference resolution.

9.3.2 Associating Character Names with Actors

Another technique to get names of characters is by using face recognition to
identify the different actors, and use screen credits to associate actors to their char-
acters on screen. Even without an actor recognition model, we can employ semi-
supervised approaches to identify characters/actors (Cour et al., 2011) in movies by
simply taking advantage of face detection algorithms. An initial approach would
be to run a frontal face detector on frames from the clips. We could then use a
simple clustering algorithm to cluster similar faces, or employ a face tracker such
as the Kanade-Lucas-Tomasi tracker (Tomasi and Kanade, 1991). Clustering and
face tracking can establish correspondence between pairs of faces within the same
shot. Additionally, face-tracking is more robust as it can also establish matches
between faces where the frontal face detector may have missed detection due to
pose variation or expression change. Then, based on the example image for each
character, we can learn a classifier to classify images to any of the characters (or
identify none-of-the-above). This can then be integrated with our existing LSTM
based description models. The final network, will include features from a regu-
lar object classifier as well as the character classifier, and needs to be tuned on a
few sentences containing character names to generate appropriate sentences. A
simpler option would also be to use our Novel Object Captioning approach from
Chapter 6, to incorporate character names into the sentences.

Alternately, we can also employ simple language substitution techniques
to completely avoid annotating some sentences with character names on the test
movies and instead use placeholders. The primary reason for fine-tuning the cap-
tion model on sentences with character names is to update the language model
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within the LSTM network enabling it to generate coherent sentences incorporating
the names. However if we can replace specific placeholders using modification of
neural checklist models (Kiddon et al., 2016) or other RNNs that can copy/replace
words (Gu et al., 2016), these can be used at test time to substitute a place holder
for the actual character name.

9.3.3 Fully-Automating DVS

Recall that DVS is a separate audio track for the visually impaired. Hence,
fully-automating DVS descriptions requires addressing two key challenges: 1) it
is necessary to incorporate multi-modal context specifically, both video as well as
audio (speech and sounds) to capture the entire context during description, ad-
ditionally, 2) we need to be able to insert the generated descriptions interleaving
them with the existing audio track at suitable locations.

Multi-modal context for DVS. In the case of DVS, current video description
models rely exclusively on the visual input for generating captions. Video rep-
resentations that include audio signals along with the video frames can provide
more useful contextual information and also potentially enhance description qual-
ity. A natural extension to the video models in this work would be to consider
multi-modal context from both the audio and the video information when gener-
ating DVS descriptions for movies. This can be accomplished by either 1) applying
speech recognition techniques (Hinton et al., 2012, Graves and Jaitly, 2014) and con-
verting the speech to a text modality or 2) by using the audio signals directly, as
in Ramanishka et al. (2016) to generate audio feature inputs. The advantage of the
latter is that we would allow the model to learn features from raw audio which
can provide more information e.g., background music could be indicative of emo-
tions/mood. The resulting audio representation from either of these approaches
can then be combined to produce a multi-modal representation of the video for
generating DVS.

Interleaving descriptions with audio. While identifying events that are worth
describing to the visually impaired is a major challenge in itself, once we have
identified and generated a description, positioning it appropriately is also a very
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hard problem. To fully-automate DVS it is necessary to insert the generated de-
scription at appropriate locations within the existing audio track of the movie. This
introduces many new constraints such as, (i) the length or duration of the descrip-
tion, (ii) the original location where the event occurs, (iii) identifying an appropri-
ate position in the existing audio track that is free of dialogues in order to insert the
DVS. It might also be necessary to rephrase or potentially shorten descriptions to
fit within a location that is sufficiently close to where the event actually takes place.
Some techniques from video summarization could potentially help in addressing
some of these challenges. To clarify, one could look at modifying summarization
techniques (Lu and Grauman, 2013, Lee and Grauman, 2015, Potapov et al., 2014)
to explicitly identify segments in the video where we can insert the DVS instead of
identifying salient events that need to be included in the summary. Here again, we
need to express the constraints of inserting the DVS into an appropriate formal-
ism to address the task. This could be an interesting and challenging direction of
exploration that could complete this work.
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Chapter 10

Conclusion

Generating natural language descriptions for events in videos enables sev-
eral applications. The last few years have seen a dramatic interest in description
of static images and growing interest in video description. This thesis focused on
developing methods for generating natural language descriptions that capture se-
quences of activities depicted in diverse video corpora, where limited prior work
exists.

Automatic video description techniques should be capable of identifying
salient events worth describing and should be able to appropriately describe a
wide variety of video content with a large number of diverse actions, objects,
scenes and other properties. With these aims in mind this thesis looked to ad-
dress some of the major obstacles in video description, namely, limited training
data, wide diversity of visual and language content, and lack of rich and robust
representations. As a step in addressing these challenges, this dissertation pre-
sented the first fully deep models (Chapters 3 and 4) to generate descriptions of
events depicted in videos. Our model is capable of learning salient entities worth
describing directly from video and sentence pairs. It treats the video domain as
another “language” and takes a machine translation approach to translate videos
to text. We demonstrated the versatility of our approaches by evaluating them on
clips from open-domain Youtube videos as well as clips from commercial movies.

This work also presents several methods to significantly extend research
in this area. Specifically, Chapter 5 presented strategies to generate more diverse
and accurate descriptions by integrating prior linguistic knowledge. In addition,
Chapter 6 introduced an end-to-end deep model to describe novel objects unseen
in paired image-caption data. While previous deep image captioning techniques
were restricted to describing a small set of object categories within existing image-
caption corpora, our proposed method is able to describe hundreds of object cate-
gories that can be identified by modern deep object recognition approaches.

In addition to these, to make video description useful in real world applica-
tions such as generating descriptions for the visually impaired, it is necessary to be
able to process and describe a continuous stream of videos. Chapter 7 takes a step
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in this direction and introduced the task of temporally segmenting and describ-
ing longer videos. Specifically, we presented techniques to process longer multi-
activity videos by learning to segment and describe coherent event sequences in
full-length movies. Our task was aimed at automatically generating DVS descrip-
tions for the visually impaired. In addition to proposing new methods, we pre-
sented appropriate datasets for the task and evaluated our methods on these.

Chapter 8 overviews many relevant and related works placing the contribu-
tions of this thesis in context. Finally, Chapter 9 looked at some of the remaining
challenges and sketched steps to extend the work presented here.

Language and Vision is a rapidly growing area of research. This thesis pre-
sented techniques to address some of the challenges in this emerging field. We
hope that some of the ideas and insights presented here will be useful in future
works.
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