
Copyright

by

Jordan Guy Voas

2023

1



The Thesis Committee for Jordan Guy Voas
certifies that this is the approved version of the following thesis:

What is the Best Automated Metric for Text to Motion

Generation?

SUPERVISING COMMITTEE:

Raymond Mooney, Supervisor

Qixing Huang

2



What is the Best Automated Metric for Text to Motion

Generation?

by

Jordan Guy Voas

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

The University of Texas at Austin

December 2023

3



Acknowledgments

To everyone who has supported me along my way, thank you very much.

Whether it was my family, a driven educator, or colleague I would not be where I am

if each of you had not been present throughout the journey.

Additionally, this research was partially supported by NSF NRI Grant IIS-

1925082 and NSF IIS-2047677.

4



Abstract

What is the Best Automated Metric for Text to Motion

Generation?

Jordan Guy Voas, MSCompSci
The University of Texas at Austin, 2023

SUPERVISOR: Raymond Mooney

There is growing interest in generating skeleton-based human motions from

natural language descriptions. While most efforts have focused on developing better

neural architectures for this task, there has been no significant work on determining

the proper evaluation metric. Human evaluation is the ultimate accuracy measure for

this task, and automated metrics should correlate well with human quality judgments.

Since descriptions are compatible with many motions, determining the right metric is

critical for evaluating and designing meaningful training losses for supervising gener-

ative models. This paper systematically studies which metrics best align with human

evaluations and proposes new metrics that align even better. Our findings indicate

that none of the metrics currently used for this task show even a moderate correla-

tion with human judgments on a sample level. However, for assessing average model

performance, commonly used metrics such as R-Precision and rarely used coordinate

errors show strong correlations. Several recently developed metrics are not recom-

mended due to their low correlation compared to alternatives. Additionally, multiple

novel metrics which exhibiting improved correlation and potential for future use.
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Chapter 1: Introduction

High-quality human motion generation in animation has a wide range of ap-

plications, from creating realistic CGI in cinema to enabling context-aware character

movement in video games. The increasing interest in generating human motions from

natural language descriptions (text-to-motion) is evident Lin et al. (2018); Ahuja and

Morency (2019); Punnakkal et al. (2021); Ghosh et al. (2021); Zhang et al. (2022);

Guo et al. (2022b); Delmas et al. (2022). Natural language offers a convenient and

expressive means for controlling generative models, similar to image Ramesh et al.

(2022) and video Singer et al. (2022) generation. Users can specify the desired ac-

tions or poses they want the motion to exhibit, such as global transitions like running,

jumping, and walking, or localized actions like throwing or kicking. They may also

indicate concurrent sub-motions or sequential motions with fluid or distinct transi-

tions. The generated motion sequence should accurately match the prompt while

appearing natural.

Determining the best automated metric for human motion generation from

natural language prompts is crucial for developing effective models. Although hu-

man judgment is considered the gold standard, comparing large sample sizes is time-

consuming and expensive. Stochasticity in recent models adds to this challenge,

necessitating extensive repetitions for accurate results.

1.1 Research Statement

Our objective is to identify the best automated metric for evaluating language-

conditioned human motion generations, with ”best” referring to the metric most

closely correlated with human judgments. While various automated metrics have been

proposed Ahuja and Morency (2019); Ghosh et al. (2021); Guo et al. (2022a) and some

works have conducted comparative human evaluations Guo et al. (2022a); Petrovich
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et al. (2022), none have directly addressed this question. Developing appropriate

automated metrics correlated with human judgments has been vital in fields such as

machine translation Papineni et al. (2002); Zhang et al. (2019), and we believe it is

essential for advancing text-to-motion methods.

To complement existing metrics, we propose novel ones that improve corre-

lation with human judgment. Some of these metrics are differentiable and could

enhance optimization when integrated into training losses.

Multiple distinct aspects should be considered when assessing the quality of

generated human motions. We evaluate human motion quality by focusing on the

following:

• Naturalness: How realistic is the motion to a human viewer? Unnatural

motions exhibit inhuman or improbable poses and transitions or display global

transitions without appropriate actions.

• Faithfulness: How well does the generated motion align with the natural lan-

guage prompt? Unfaithful motions will omit key components or include irrele-

vant ones.

1.2 Contributions

Our main contributions are:

• A dataset of motion-text pairs with human ratings of Naturalness and Faith-

fulness for evaluating automated metrics.

• A critical evaluation of existing text-to-motion automated metrics based on

correlation with human judgments.

• The development of several high-performing automated metrics for future ar-

chitecture comparison and development.
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Chapter 2: Related Work

We review prior research on human motion generation, which includes both

unconditioned and conditioned generation, and discuss the evaluation metrics used

in previous studies.

2.1 Human Motion Generation

Early unconditioned human motion generation approaches employed statis-

tical generative models Ikemoto et al. (2009); Mukai and Kuriyama (2005), while

more recent models have adopted deep learning techniques. Some studies have ap-

plied Variational Autoencoder (VAE) models Kingma and Welling (2013) for motion

forecasting based on historical fragments Tulyakov et al. (2017); Aliakbarian et al.

(2020); Ling et al. (2020); Rempe et al. (2021). Others have used Generative Adver-

sarial Networks (GAN) Goodfellow et al. (2014) to enhance the quality of generated

motion Barsoum et al. (2017). Normalization Flow Networks have also been explored

Henter et al. (2020). The majority of these methods employ joint-based frameworks,

utilizing variants of the SMPL Loper et al. (2015b) body model, which represents the

body as a kinematic tree of connected skeletal segments.

2.1.1 Conditioned Human Motion Generation

For conditioned motion generation, various types of conditioning exist. Some

studies have conditioned on fixed action categories, which simplifies the task com-

pared to natural language conditioning but limits diversity and controllability. Ac-

tion2Motion Guo et al. (2020) employs a recurrent category conditional VAE, while

ACTOR Petrovich et al. (2021) uses a category-conditioned VAE with Transformers

Vaswani et al. (2017).

Natural language conditioning allows for fine-grained motion control, enabling

14



temporal descriptions and specifying actions for different body parts. Early efforts

utilized a Seq2Seq approach Lin et al. (2018). Other studies learned a joint embed-

ding space projection for both modalities Ahuja and Morency (2019); Ghosh et al.

(2021) and generated motions using a decoder. Some research applied auto-regressive

methods Guo et al. (2022a), encoding text and generating motion frames sequentially.

Recent approaches, such as TEMOS Petrovich et al. (2022), use stochastic generation

to produce diverse outputs. The most recent works employed diffusion-based models

like FLAME Kim et al. (2022), MotionDiffuse Zhang et al. (2022), or MDM Tevet

et al. (2022) and achieved top performance on current evaluation metrics.

Related tasks have also been investigated, such as Music-to-Dance Li et al.

(2020) and EDGE Tseng et al. (2022), which conditions motion generation on music.

Some models treat the task as reversible, captioning motions and generating them

from language prompts Guo et al. (2022b). Others generate stylized character meshes

to pair with the generated motions, conditioned on language prompt pairs Youwang

et al. (2022); Hong et al. (2022).

2.2 Metrics for Automated Evaluation of Human Motions

Various metrics have been used to evaluate text-to-motion. Language2Pose

Ahuja and Morency (2019) employed Average Position Error (APE) and pioneered the

practice of dividing joints into sub-groups for different versions of APE. Ghosh et al.

(2021) introduced Average Variance Error and also considered versions dependent

on which joints (root versus all) are being used and whether global trajectories are

included. TEMOS Petrovich et al. (2022) and FLAME Kim et al. (2022) adopted

similar methods, but recent works have moved away from these metrics despite no

study establishing them as poor performers.

Guo et al. (2022a) developed a series of metrics based on their previous work for

category-conditioned motion generation, advocating for Frechet Inception Distance

(FID) Heusel et al. (2017), which is commonly used in image generation and measures
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output distribution differences between datasets. Guo et al. (2022a) also included R

Precision, a metric based on retrieval rates of samples from batches using embedded

distances, metrics to evaluate diversity, as well as one measuring the distance of co-

embedding in each modality. These metrics have become standard, used by multiple

works Guo et al. (2022b); Tevet et al. (2022); Kim et al. (2022); Zhang et al. (2022).

The metrics established by Guo et al. (2022a) rely on a text and motion

co-encoder and depend on the quality of the embedding space. Thus, proving the

effectiveness of the embedding space is crucial for these metrics if they are to be used

for judging competitive model performance.

The GENEA Challenge Kucherenko et al. (2021) provides a collective assess-

ment of co-speech motion generation methods through standardized human evalua-

tions. It divides human judgments into Human-likeness and Appropriateness, corre-

sponding to our Naturalness and Faithfulness. Recent findings by the challenge Yoon

et al. (2022) indicate that current methods generate natural motions at or above

rates for baseline captures but underperform in faithfulness. While not directly ap-

plicable to text-to-motion, this research provides valuable data for understanding the

performance of current methods and guiding future work in the area, including novel

metrics.
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Chapter 3: Dataset Collection

3.1 Baseline Models Evaluated

We evaluate four implementations to assess a range of motion qualities and

focus on issues relevant to top-performing models: Guo et al. (2022a), TM2T Guo

et al. (2022b), MotionDiffuse Zhang et al. (2022), and MDMTevet et al. (2022). These

models, trained on the HumanML3D dataset Guo et al. (2022a), support generating

22 joint SMPL body models Loper et al. (2015a), enabling consistent animation

methods for human ratings. We also include reference motions from HumanML3D as

a baseline for non-reference-based evaluation metrics.

Although our results provide comparative evaluations of these models, drawing

conclusions should be done cautiously, as detailed below. Our aim is not to establish

a state-of-the-art system.

3.1.1 Baseline Model Selection

In selecting the text-conditioned motion generation models to include in our

study, our primary focus was to obtain a diverse sampling of motions, as each model

may be prone to its own distributional differences. However, we also imposed addi-

tional constraints on the models studied to ensure their relevance.

Although several older models exist that could potentially increase the di-

versity of our motion samples, we excluded them due to their subpar performance,

which renders the diversity less valuable for future models. Studying these less effec-

tive models might be interesting, but their inclusion could compromise our findings

by reducing the number of samples we could incorporate for better-performing models

and possibly leading to a false impression of which metric is most suitable for them.

The models included in our study were also required to be compatible with

and have pretrained weights available for motion generation using 22 joint SMPL
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body models. Some models that might have performed well enough to be considered

relevant for our study cannot use 22 joint SMPL body models and would, therefore,

be unsuitable for scoring against 22 joint reference motions or with 22 joint-based

motion encoders.

3.2 Motion Prompt Sample Collection

We sourced motion prompts from the HumanML3D test set. To ensure diverse

and representative prompts, we encoded them using the RoBERTa language model’s

CLS outputs Liu et al. (2019), projected the embeddings onto a low-dimensional

space, and randomly sampled from the normal distribution, obtaining 400 unique

sample prompts. We discarded duplicates and very short motions.

These prompts generated a dataset of 2000 motions, with 400 motions for each

of the five baseline models (including HumanML3D). For models generating fixed-

length motions, we used a length of 120 motion frames. All models were generated

at the 20 Hz frequency used in HumanML3D.

3.3 Motion Visualization

Recent studies Guo et al. (2022a); Petrovich et al. (2022) utilized stick fig-

ure renderings for evaluation, but this approach has limitations. Evaluating motion

Naturalness using stick figures can be challenging, as they may not be relatable to

human observers. Moreover, they often lacked realistic environments, such as walls,

floors, lighting, and textures.

To address these limitations, we created high-quality renders using Blender

Community (2018), focusing on environmental details and controlled camera move-

ments for smooth and natural motion perception. See Figure 3.1 for examples.

We collected human quality ratings using Amazon Mechanical Turk and a

custom UI (Figures 3.2, 3.3, 3.4). To ensure quality, we implemented qualification re-
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Figure 3.1: Sampled motion frames with paired descriptions, as used in our human
evaluations. Our rendering framework generates pseudo-realistic environments with
skin, wall, and floor textures as well as environment lighting and steady camera
motions.

quirements, in-tool checks, and post-quality criteria. We hand-picked 25 motion-text

pairs from the 2000 motion samples we generated and used them as gold test ques-

tions. The remaining annotations were divided into 20-pair batches, each containing

five randomly placed gold test samples. We collected three ratings per sample and

discarded batches that failed qualification checks.

3.4 Human Quality Ratings Collection

Ratings were presented as natural language descriptions corresponding to Lik-

ert Scale ratings (0 to 4). Annotators had access to a tooltip with detailed descriptions

during the task. Naturalness descriptions, as provided to the annotators, were:

• Very Unnatural: Does not maintain a human body shape. Majorly glides

without taking any appropriate actions such as walking or jumping. Possess

very jerky movements.
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Figure 3.2: Instructions for raters in human judgment evaluations.

• Unnatural: Maintains a mostly human body shape but moves unnaturally.

Glides moderately without taking any appropriate actions such as walking or

jumping. Possess some jerky movements.

• Neutral: Possess some amount of gliding without taking appropriate actions

such as walking or jumping. Moves its limbs or body in ways that are not

humanly likely but are possible.

• Realistic: Possess very slight amounts of gliding without taking appropriate

actions such as walking or jumping. Moves its limbs or body in a slightly rigid

fashion.

• Very Realistic: Always moves in a human like way. Does not move without

taking appropriate actions such as walking or jumping.

Faithfulness descriptions were:

• Dose Not Describe: Completely different motion which corresponds in no

way to the given description.

• Slightly Describes: Has very slight resemblance to the given description (such

as standing up when its describing walking) but otherwise does not correspond

with the given description

20



Figure 3.3: UI motion viewing section, situated below the instructions and above the
rating selection.

• Moderately Describes: Follows the description moderately, but deviates from

it in significant ways such as adding major actions or leaving out a portion of

the description.

• Greatly Describes: Leaves out minor details of the description or includes

minor unmentioned actions. For example, the person may be walking as men-

tioned in the description but also doing actions with their hands that were

unmentioned.

• Perfectly Describes: Perfectly described by the description, with no actions

left out or incorrectly included.
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Figure 3.4: Rating selection UI, located below the motion viewing section. Detailed
descriptions for each rating option were provided as tooltips upon hovering.

Ratings were rejected if more than two of the five gold test questions deviated

by more than one from the ”correct” answer. This leniency allowed for subjectivity,

missed details on either our or their side, and slight rating scale understanding dif-

ferences. Random guessing would pass a single question forty to sixty percent of the

time, but over the ten independent ratings would be detected with a high likelihood.

Significant deviations in rating scale understanding would also be flagged and filtered

out with this approach.

We removed samples with less than three ratings for each of the five model

types, resulting in 1400 rated motion-text pairs (280 distinct motion prompts for

each baseline model). Averaging the three independent ratings provided overall Nat-

uralness and Faithfulness values. Figure 3.5 displays the dataset’s distribution to be

generally normal, while Table 3.1 shows high inter-annotator agreement (Krippen-

dorff’s Alpha) was obtained.

In-tool quality checks required watching the entire video before progressing,

capped the rate of progression to 12 seconds per sample, and ensured all ratings were

entered. These measures aimed to prevent rushing and encourage thoughtfulness.

Qualification requirements included residing in the U.S., completing over 1000 hits,
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Figure 3.5: Human judgment distribution for all samples. Averages from three anno-
tations are shown with a KDE smoothing filter (bandwidth 0.85) applied. Pearson’s
correlation between metrics is found to be 0.63 at the sample level.

and a minimum 98% acceptance rate.

3.4.1 Ethics and Compensation

Quality checks were disclosed in the task instructions (Figure 3.2). We paid

$1.25 per HIT, equating to at least $12 per hour, considering 25 samples per HIT and

a 15-second expected per sample completion rate.

3.5 Model Level Comparisons

The primary goal of this study was not to compare the performance differ-

ences between the baseline models included. Consequently, we did not take measures

to ensure that our collected data would constitute a suitably valid sample set for
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IAA (Krippendorff’s Alpha)

Naturalness Faithfulness
0.647 0.701

Table 3.1: Inter-annotator agreement across all replicated MTurk samples. Results
indicate substantial but non-perfect agreement.

assessing the overall performance of each model. This is due to two main reasons:

insufficient sample size and inadequate repetitions per sample. To make our study

comparable, at the model level, to the evaluations conducted in each work’s indepen-

dent studies, we would need to evaluate the entire HumanML3D test set. Moreover,

we would need to execute multiple (typically 10) generation repetitions per sample

for models with stochastic generative properties. However, our study did not fulfill

these requirements.

Keeping these caveats in mind, we present the mean distributions of human

judgments for each of the baseline models in Figure 3.6. As anticipated, the ground-

truth motions in the HumanML3D dataset exhibit a clear advantage in terms of

Naturalness. Their lead in Faithfulness is less pronounced when compared to the

best-performing generative baselines, Guo et al. (2022b) and MotionDiffuse Zhang

et al. (2022). This might indicate quality limitations in the ground-truth descriptions

of the HumanML3D dataset, which were human-annotated, and qualitative analysis

by the authors revealed some poor descriptions.

Another intriguing observation is the minimal observed performance difference

between the two leading generative baseline models Guo et al. (2022b) and MotionDif-

fuse Zhang et al. (2022), despite MotionDiffuse reporting gains in R-Precision, FID,

and Multimodal Distance over Guo et al. (2022b). These findings may stem from the

model coverage limitations we discussed earlier. Alternatively, they could arise from

noise in our human judgment ratings or be indicative of the imperfect correlation of

these metrics observed in our study.
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Figure 3.6: Mean rating scores from human judgment for each model utilized (includ-
ing ground truth). As expected, ground truth achieves a slight lead. Note that these
results are not conclusive for evaluating the capabilities of these models, as the sample
sizes are relatively small and do not accurately account for stochastic generation.

3.6 Data Availability

We provide all collected human motion judgments for both Naturalness and

Faithfulness as supplemental data to this work. Additionally, we include the prompts

used to generate each motion sample and the motion generations themselves. Our

data zip files contain the following files and formats:

• ratings and captions.csv: A comma-separated file with each line containing, in

order; restricted sample index, model name, original sample index, the mean

value for the sample for human judgment of Naturalness, the mean value for the

sample for human judgment of Faithfulness, and the lowercase textual prompt

it corresponds with/was generated from. The model names are either Hu-

manML3D, MotionDiffuse, text2motion, TM2T, or MDM. The original sample

index is the index from a larger superset of 400 samples for each model, which

were initially included in the human annotation collection. After quality control
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and restricting to samples with valid judgments across all baseline models, this

number was reduced to 280 samples per model, as indicated by the restricted

sample index.

• AMASS motion ModelName SampleIndex.npy: The motion sequences utilized

in this study, each in AMASS format for a 22 Joint SMPL body model. All

other joints have zeroed out values. The value SampleIndex in the file name cor-

responds with the original sample index value from the ratings and captions.csv

file.

We anticipate that this data will be valuable for reproducing our results and

facilitating future testing of innovative text-conditioned motion generation metrics.
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Chapter 4: Evaluated Metrics

We incorporate most automated metrics from recent works as well as several

new ones. We assess each metric’s correlation with samples on both individual and

model levels, whenever possible. Sample level correlations are computed on individual

sample scores across baselines, reflecting the metric’s capability to evaluate single

generations. Model level correlations are determined using the mean metric score for

all samples generated by a specific baseline model, which are then correlated with

the mean human rating for the corresponding baseline model. This assesses how well

the metric can judge model performance ranking. These levels can be distinct since

metrics with outlier failures may negatively impact sample level evaluation but have

reduced effects when averaged over many samples. Ideal metrics should excel at both

levels.

4.1 Coordinate Error (CE) Metrics

Average Error (AE), also known as Average Position Error (APE) when ap-

plied to joint positions Ahuja and Morency (2019), and Average Variance Error (AVE)

Ghosh et al. (2021) are reference-based metrics employed in early works but have be-

come less common recently. They calculate the mean L2 errors between reference and

generated values, either absolute or as variance across frames, for each joint in the

motion. We refer to these as coordinate error (CE) metrics, defined as:

AE =
1

JT

∑
j∈J

∑
t∈T

∥Xt[j]− X̂t[j]∥2 (4.1)

σ[j] =
1

T − 1

∑
t∈T

(Xt[j]− X̂t[j])
2 (4.2)

AV E =
1

J

∑
j∈J

∥σ[j]− σ̂t[j]∥2 (4.3)
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Where j represents a joint from all 22 joints J , and t denotes a motion frame from the

motion sequence T . We matched frame lengths for reference and generated motions

by clipping the longer one.

We investigated CE metrics on positional values and their variations on po-

sitional derivatives, such as velocity and acceleration, calculated using frame-wise

differences. Additionally, we evaluated these metrics on combinations of position and

its derivatives. Similar to Ghosh et al. (2021), we examined three joint groupings

for CE metrics: root only, all joints excluding the root (Joint), and all joints (Pose).

Prior works Ghosh et al. (2021); Ahuja and Morency (2019) suggested that AE on

the root joint best aligns with human judgments.

We hypothesized that this effect might stem from scaling issues when the root

translations are included in combined calculations with other joints, causing their

errors to dominate the metric. To test this, we explored potential root joint scaling

factors, altering their transitions contribution to the metric’s final score for the mean.

We also examined the impact of scaling factors on each component when calculating

combined position-velocity (PV) or position-velocity-acceleration (PVA) CE. These

methods act as a weighted average, with scaling factors increasing or decreasing the

root joint or component errors.

4.2 Fréchet Inception Distance (FID)

The Fréchet Inception Distance (FID) Heusel et al. (2017) is a widely used

metric for generative tasks, which measures the alignment between two distributions.

To compute FID, one must first obtain the mean and variance of each distribution

from a large sample size. In generative tasks, these typically correspond to the refer-

ence samples (a valid distribution) and the generative model samples. A lower FID

indicates better alignment between the generative and reference distributions. FID

is calculated as follows for distributions D1 and D2:
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FID(D1, D2) = |µ1 − µ2|+ tr(Σ1 + Σ2 − 2(Σ1Σ2)
1
2 ) (4.4)

As FID is only accurate with large sample sizes, we report correlations for FID

at the model level only and do not report correlation scores for individual samples.

4.3 R-Precision

R-Precision is a distance-based metric that measures the rate of correct motion-

prompt pair matchings from a batch of random samples. Both motions and prompts

are projected into a co-embedding space, and Euclidean Distance calculations are

used to rank pair alignments. Scores of one are received if the correct matching is

made within a rank threshold (Retrieval Allowance), and zero otherwise. Averaged

over numerous samples, this provides a precision of retrieval metric.

Higher Retrieval Allowance thresholds yield higher R-Precision scores, as they

are more forgiving of imperfect embedding spaces and account for multiple motions

described by the same prompt randomly being included in the batch. R-Precision

scores for thresholds of 1-3 are commonly reported. We analyze the correlation for

R-Precision scores with thresholds of 1-20 and hold the batch size to 32, following

common practice Guo et al. (2022a).

4.4 Multimodal Distance

This metric measures the distance between the generated motion embedding

and the co-embedding of the prompt used for generation. When the two encoders

(text and motion) are well-aligned in the embedding space, low scores suggest mo-

tions closely matching the prompt, while high scores indicate significant deviations

in features Guo et al. (2022a).
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4.5 Nearest Neighbor Captioning Methods

Our novel metric, Nearest Neighbor Captioning (NNC), retrieves the closest

motions in a reference dataset based on Euclidean Distance in a motion embedding

space. By identifying the nearest motions in the reference dataset to those produced

by the generative model, we can evaluate these nearest neighbor captions using a

language similarity metric, comparing them to the original prompt. The general

workflow of these metrics is shown in Figure 4.1 and an example operation can be

seen in Figure 4.2.

Figure 4.1: General operation of NNC metrics. Yellow items are given as input, greys
are operations or models used, and tan is the intermediate results of the process.

NNC offers several key benefits. It leverages well-established text-to-text eval-

uation methods, which have been more extensively studied than motion-to-motion

evaluation metrics. Furthermore, it creates a virtuous cycle of opportunities for fu-

ture advancements, such as advanced motion encoders, expanded reference datasets,

and improved text-to-text scoring methods. While direct motion-to-motion compar-

isons may seem logical, they are hindered by under-specification in the generative

prompt. A single motion can correspond to multiple captions, and a single caption
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Figure 4.2: A small scale NNC example from our evaluation set. In this case, Match
Distance was used, so low scores indicate improved feature alignment.

can correspond to multiple motions. By retrieving a set of nearest neighbor captions

from the reference dataset, NNC metrics can mitigate under-specification effects using

min, max, or averaging operations across the scores of the motions in the set.

We explore high-performing text-to-text scoring methods, such as BERTScore

(Recall) Zhang et al. (2019) and BLEURT Sellam et al. (2020), and examine scoring

based on the Euclidean distance of text embeddings from CLIP Radford et al. (2021)

or the aligned text encoder developed with the Standard motion encoder (described

below), termed Match Distance.

Our reference dataset is the training split of HumanML3D. Since all sample

prompts are drawn from the test set, there are no exact matches between the evalu-

ation samples and NNC references.
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4.6 Encoders Used

To calculate FID, R-Precision, and NNC, we first project motion features

into an embedding space using an encoder model. The standard encoder commonly

used was developed by Guo et al. (2022a) and exhibits some correlation with human

judgments from prior studies. We refer to its embedding space as the Standard

Embedding Space (Std. Emb.). We also investigate alternative encoders, testing the

motion encoder from the Guo et al. (2022a) generative model. This encoder produces

a high-dimensional output of R49×512, so we examine embeddings reduced to R512

via min, max, and average operations, or by using the last index of the 49. These

spaces are called T2M Emb., with Min, Max, Avg, or Lst as suffixes indicating the

dimensionality-reduction operation used.

4.7 Metrics for Motion Diversity

The increasing popularity of FID, Multimodal Distance, and R-Precision met-

rics has led to a growing interest in the metric of Diversity, proposed alongside them.

However, in this study, we did not examine Diversity for several reasons. Measuring

diversity necessitates a distinct experimental setup compared to other metrics, as

multiple generations for a single prompt are required. Furthermore, there is currently

no well-defined method for assessing diversity from a human perspective. Present

metrics evaluate the diversity of embedded representations, but it remains unclear

how annotators should be instructed to measure diversity. A separate study should

investigate measures of diversity, their alignment with human judgments, and the im-

pact of enhancing a model’s diversity of outputs on its Faithfulness and Naturalness

judgments.
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4.8 Hyperparameters

Our evaluation involved several hyperparameters, which are listed here. When-

ever possible, we utilized pre-existing code, such as the evaluation script that im-

plements FID, R-Precision, and Multimodal Distance from Tevet et al. (2022). R-

Precision employed the standard batch size of 32. In our proposed NNC metrics

search, we considered up to 32 nearest neighbors. For CE metrics, we searched root

scalings ranging from 2−15 to 214 in factors of 2. When combining position, velocity,

and acceleration components for CE metrics, we performed a grid search to explore

all possible combinations of component scalings from 20 to 29.
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Chapter 5: Results Analysis

This section highlights the key findings from our evaluation. Due to the large

number of values obtained from grid testing root and component scaling factors for CE

metrics and neighbor counts for NNC metrics, we cannot display all results. Instead,

we focus on commonly used metrics or those that yield the best results.

We employed Pearson’s Correlation Coefficient Sedgwick (2012) to correlate

metrics with human judgments, measuring rank ordering and relative distance be-

tween metrics as most of our data is interval rather than ordinal. We present model

and sample level correlations between Faithfulness and Naturalness in Table 5.1.

We present the uncorrected correlation values for all metrics. Negative correla-

tions are expected for certain metrics, such as FID or CE, since our human judgment

ratings suggest better outcomes with opposing directions. High P-values are observed

in many reported correlation values, which is anticipated as they were calculated (for

model level results) based on only five samples. Our high performing metrics achieved

P-Values near 0.05 at the model level, while our best performing sample level metrics

a (Pearson’s of 0.2 or above) had very low P-Values.

5.1 Coordinate Error Metrics Results

CE metric results are presented in Figures 5.2 and 5.1. Despite relying on only

a single reference, CE metrics show weak correlations with human judgments for both

Faithfulness and Naturalness at the sample level. Performance largely depends on

non-Root transitions, with Joint POS AE and Joint POS AVE outperforming pure

Root-based metrics. Root scaling cannot surpass Joint metrics, and our derivative-

based methods do not match positional ones. Combining components only achieves

results comparable to Joint POS-based metrics. Notably, AE performs better than

AVE at the sample level with a significant margin (0.1 Pearson’s).
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Pearson’s Correlation

Sample Level Model Level
0.62 0.83

Table 5.1: Correlation between Naturalness and Faithfulness.

At the model level, CE-based metrics strongly correlate with human judg-

ments. Root-only traditional AE metrics achieve nearly 0.75 Pearson’s, while Root

AVE metrics surpass AE with approximately 0.91 Pearson’s. Interestingly, Joint

versions are unreliable on their own at the model level, suggesting that the main

components of model evaluation can be derived from Root transitions alone. This

supports claims by Ghosh et al. (2021). Root scaling enhances both metrics, with

AVE nearing perfect correlation. Utilizing velocity derivatives benefits AE at the

model level, and combining positions, velocity, and acceleration for both AVE and

AE yields versions with greater than 0.99 Pearson’s.

5.1.1 Root Scaling Exploration

We provide visualizations with scaling factors in Figures 5.3 and 5.4 to in-

vestigate the effects of root scaling on Pose CE metrics. Consistent with previous

observations, model-level correlations improve (i.e., more negatively correlated) when

additional weight is placed on Root transitions, except for PV and PVA AE versions.

Alternatively, overemphasizing Root transitions significantly degrades performance

at the sample level.

5.2 FID, R-Precision, and Multimodal Distance Results

We examine FID, R-Precision, and Multimodal Distance only at the model

level for various reasons. FID cannot be calculated at the sample level as it requires

distributional statistics over multiple samples. R-Precision provides binary values at

the sample level, making it poorly suited for comparison with Likert Scale ratings. It

becomes fine-grained only when averaged over samples. Multimodal Distance exhibits
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Pearson’s Correlation (Multimodal Distance)

Naturalness Faithfulness
-0.300 -0.211

Table 5.2: Multimodal Distance correlation with human judgments.

near-zero correlation at the sample level.

Focusing on model-level results, we present FID in Figure 5.5. It achieves

acceptable results for Faithfulness with 0.71 Pearson’s but significantly underperforms

for Naturalness. Given the low correlation with Naturalness and model-level-only

comparison, P-Values are notably high. Our samples may provide an unfavorable

setting for FID, or it may improve with larger sample sizes.

R-Precision, shown in Figure 5.6 for various Retrieval Thresholds, demon-

strates substantial correlations for both human quality judgments, approaching 0.8

in the typically tested range. Our results suggest current Retrieval Thresholds are

suboptimally set, with thresholds of 4 and 5 yielding marginally better outcomes.

Performance declines at higher thresholds. Since R-Precision and FID share an em-

bedding space, strong R-Precision results may indicate that FID’s poor performance

is not due to sample selection. Multimodal Distance, presented in Table 5.2, displays

weak correlations for both human quality judgments.

The results indicate that R-Precision, and possibly FID, are suitably corre-

lated with human judgments. However, these metrics are less correlated than the

CE metrics they replaced, and they preclude single-sample analysis, relying on many

samples. Even if these metrics improved with larger sample sizes, an uncertain pos-

sibility, they would require substantial enhancements to match even traditional CE

metrics such as Root POS AVE.
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5.3 Nearest Neighbor Captioning Metrics

We evaluated various accumulation operations, natural-language scorers, and

motion encoders for NNC, and present all results in Tables 5.3 - 5.8. Our focus was

on model averages, as sample level correlations were close to zero.

Some NCC metric versions show a strong correlation with human judgments,

matching or exceeding R-Precision. Despite variable results across neighbor counts

for many, several strong performers demonstrate stable performance across all values,

as shown in Figure 5.7. We tested mean values across sub-ranges of neighbor counts

for stability (1-10, 11-20, and 21-30), which are displayed in the same tables. We

observed many low scoring versions becoming increasingly stable at high neighbor

counts, while high scoring ones remained insensitive to neighbor counts beyond the

moderate range.

NNC Metrics seem more suitable for judging Faithfulness than Naturalness,

in line with theoretical expectations. Our results also show all but one top performer

(bolded in the tables) using either a medium or average accumulation function. Max-

imum and minimum accumulations likely are too sensitive to outliers in the retrieved

neighbors. The standard motion encoder appears less suited for NNC metric than

the T2M encoder versions.

5.3.1 Recommendations for NNC Parameters

Based on the results we presented, we recommend two NNC metric versions

with high mean correlation, low standard deviation, and correct scoring function cor-

relation sign: Match CS with T2M Min Encoder and Average Accumulation

Function, or CLIP Dist with T2M Lst Encoder and Average Accumulation

Function. Our recommendations aim to provide reliable performance in evaluat-

ing the naturalness and faithfulness of generated captions. According to Figure 5.7,

neighbor counts of around 20 are optimal for both recommendations. However, users

should choose a range of neighbor counts to indicate stability, similar to R-Precision.
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We suggest reporting values for 10, 20, and 30.

5.3.2 NNC Metrics Parameter Stability

Our results show the inconsistency of many NNC metric versions across differ-

ent neighbor counts, with the standard deviation for Pearson’s correlation of Faithful-

ness typically ranging from 0.05 to 0.3. This indicates that improper hyperparameter

choice could easily result in an NNC version with a high Pearson’s correlation degrad-

ing to levels below R-Precision or FID, negating their usefulness.

Thus, we recommend users report the standard deviation of scores across a

multiple neighbors (e.g., 32). High standard deviations, particularly ones that signif-

icantly alter sample rank order, may indicate poor performance, while low standard

deviations tends to imply strong performance. Additionally, using accumulating func-

tions that are resistant to outliers (average or medium) and scoring functions with

evidence for multiple strong results (CLIP Dist, Match CS, or Match Dist) may pro-

vide stable performance.

However, additional work should be done to improve NNC metrics’ stability

and performance, as they fall behind the simpler CE metrics when even a single

reference is available. Identifying strong and diverse reference datasets, better scoring

functions, or motion encoders will cumulatively benefit NNC metrics and may make

them an valuable metric in cases without reference motions.
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Figure 5.1: Model level correlations of CE metrics with human judgments. ”Best”
metrics use the highest performing settings for root joint or component scaling.
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Figure 5.2: Sample level correlations of CE metrics with human judgments. ”Best”
denotes versions using highest performing settings for scaling root joint or compo-
nents.
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Figure 5.3: Model level examination of root joint scaling effects on CE metrics using
all joints.
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Figure 5.4: Sample level examination of root joint scaling effects on CE using all
joints.
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Figure 5.5: FID correlation with human judgments for various motion encoders.

Figure 5.6: Model level R-Precision correlations with human judgments. Retrieval
Allowance indicates the number of top samples (out of a batch size of 32) considered
successful if the true match is found.
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Match Dist Text-to-Text Scoring Function
Encoder Accum. Naturalness Faithfulness

Mean ρ Std. ρ Mean ρ Std. ρ

Std. Min -0.34 0.43 ↑ -0.43 0.28 ↑
Max -0.18 0.31 ↑ -0.19 0.19 ↑
Avg -0.11 0.27 → -0.19 0.15 ↑
Med -0.07 0.27 ↑ -0.18 0.14 ↑

T2M Min Min 0.14 0.17 ↑ 0.38 0.35 ↓
Max 0.33 0.11 ↑ 0.61 0.05 ↑
Avg 0.35 0.12 ↑ 0.68 0.08 ↑
Med 0.4 0.17 ↓ 0.76 0.13 ↑

T2M Max Min 0.12 0.1 ↑ 0.35 0.03 ↑
Max -0.32 0.11 ↑ 0.06 0.16 ↑
Avg -0.11 0.02 ↑ 0.25 0.07 ↑
Med -0.09 0.09 ↓ 0.27 0.08 ↓

T2M Avg Min 0.18 0.06 ↑ 0.59 0.03 →
Max -0.06 0.09 ↑ 0.43 0.07 ↑
Avg 0.06 0.02 ↑ 0.52 0.02 ↑
Med 0.09 0.02 → 0.54 0.02 ↑

T2M Lst Min 0.49 0.05 ↑ 0.85 0.02 ↓
Max 0.19 0.51 → 0.39 0.72 →
Avg 0.51 0.04 → 0.86 0.01 →
Med 0.51 0.05 ↑ 0.86 0.01 →

Table 5.3: Model level correlation scores of Nearest Neighbor Captioning metrics with
human judgments when using Match Dist scoring. Mean correlation and standard
deviation over all 32 neighbor counts tested. Up, right, and down arrows indicate
best performance at high (21-30), intermediate (11-20), or low (1-10) neighbor counts.
These arrows don’t represent the magnitude of the difference, and several versions
performed similarly across all neighbor counts. Bold metric values indicate high mean
correlation (¿0.75) and low standard deviation (¡0.15) and are recommended for use.
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Match CS Text-to-Text Scoring Function
Encoder Accum. Naturalness Faithfulness

Mean ρ Std. ρ Mean ρ Std. ρ

Std. Min 0.86 0.06 ↑ 0.52 0.09 ↑
Max 0.71 0.05 ↑ 0.23 0.07 ↑
Avg 0.78 0.03 → 0.36 0.03 ↑
Med 0.75 0.06 ↓ 0.33 0.07 ↑

T2M Min Min 0.6 0.14 → 0.61 0.19 ↑
Max 0.78 0.11 ↑ 0.86 0.06 →
Avg 0.8 0.08 → 0.92 0.07 ↓
Med 0.68 0.08 ↑ 0.84 0.09 →

T2M Max Min 0.07 0.06 ↑ -0.37 0.05 ↑
Max 0.03 0.08 → -0.4 0.07 ↑
Avg 0.09 0.05 ↑ -0.36 0.04 ↑
Med 0.13 0.05 ↑ -0.34 0.05 ↑

T2M Avg Min 0.09 0.03 ↑ -0.39 0.03 ↑
Max 0.15 0.02 → -0.32 0.03 →
Avg 0.12 0.02 → -0.37 0.02 →
Med 0.1 0.03 → -0.38 0.03 ↑

T2M Lst Min 0.33 0.07 → -0.17 0.07 →
Max 0.31 0.04 → -0.2 0.04 →
Avg 0.35 0.02 ↑ -0.16 0.02 ↑
Med 0.36 0.03 ↑ -0.14 0.03 ↑

Table 5.4: Model level correlation scores of Nearest Neighbor Captioning metrics with
human judgments when using Match CS scoring. Mean correlation and standard
deviation over all 32 neighbor counts tested. Up, right, and down arrows indicate
best performance at high (21-30), intermediate (11-20), or low (1-10) neighbor counts.
These arrows don’t represent the magnitude of the difference, and several versions
performed similarly across all neighbor counts. Bold metric values indicate high mean
correlation (¿0.75) and low standard deviation (¡0.15) and are recommended for use.
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CLIP Dist Text-to-Text Scoring Function
Encoder Accum. Naturalness Faithfulness

Mean ρ Std. ρ Mean ρ Std. ρ

Std. Min 0.43 0.3 ↑ 0.6 0.39 ↑
Max 0.23 0.25 → 0.48 0.31 →
Avg 0.28 0.32 → 0.57 0.38 →
Med 0.23 0.46 → 0.49 0.48 →

T2M Min Min 0.39 0.3 → 0.65 0.27 →
Max 0.58 0.2 ↑ 0.24 0.23 ↑
Avg 0.66 0.2 ↑ 0.34 0.31 ↑
Med 0.45 0.29 → 0.22 0.36 →

T2M Max Min -0.54 0.37 ↑ -0.48 0.11 →
Max -0.22 0.46 → 0.02 0.41 →
Avg -0.53 0.37 → -0.32 0.4 →
Med -0.19 0.51 → 0.01 0.58 →

T2M Avg Min -0.46 0.29 ↑ -0.25 0.34 ↑
Max -0.46 0.28 ↑ -0.25 0.26 ↑
Avg -0.53 0.26 ↑ -0.35 0.27 ↑
Med -0.13 0.38 → -0.25 0.26 →

T2M Lst Min -0.2 0.32 ↑ -0.57 0.36 ↑
Max -0.45 0.25 ↑ -0.8 0.21 ↑
Avg -0.5 0.1 ↑ -0.87 0.06 →
Med -0.66 0.08 → -0.85 0.07 →

Table 5.5: Model level correlation scores of Nearest Neighbor Captioning metrics with
human judgments when using CLIP Dist scoring. Mean correlation and standard
deviation over all 32 neighbor counts tested. Up, right, and down arrows indicate
best performance at high (21-30), intermediate (11-20), or low (1-10) neighbor counts.
These arrows don’t represent the magnitude of the difference, and several versions
performed similarly across all neighbor counts. Bold metric values indicate high mean
correlation (¿0.75) and low standard deviation (¡0.15) and are recommended for use.
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CLIP CS Text-to-Text Scoring Function
Encoder Accum. Naturalness Faithfulness

Mean ρ Std. ρ Mean ρ Std. ρ

Std. Min -0.26 0.25 → -0.53 0.29 →
Max -0.44 0.32 → -0.51 0.36 →
Avg -0.39 0.3 ↑ -0.64 0.33 →
Med -0.39 0.44 → -0.59 0.43 →

T2M Min Min -0.58 0.18 ↑ -0.4 0.27 →
Max -0.21 0.27 ↑ -0.61 0.16 ↑
Avg -0.55 0.22 ↓ -0.3 0.3 →
Med -0.16 0.41 → 0.1 0.41 ↑

T2M Max Min -0.22 0.41 ↓ -0.27 0.48 →
Max 0.16 0.29 ↑ 0.2 0.23 →
Avg 0.35 0.38 → 0.16 0.36 →
Med -0.07 0.4 ↑ -0.16 0.42 ↑

T2M Avg Min 0.5 0.31 ↑ 0.33 0.27 ↑
Max 0.44 0.33 ↑ 0.22 0.36 ↑
Avg 0.42 0.3 ↑ 0.28 0.28 ↑
Med 0.08 0.4 → 0.11 0.29 ↑

T2M Lst Min -0.37 0.39 ↑ -0.38 0.61 ↑
Max 0.12 0.34 ↑ 0.49 0.36 ↑
Avg -0.09 0.36 ↑ 0.26 0.4 ↑
Med 0.05 0.58 → 0.19 0.75 →

Table 5.6: Model level correlation scores of Nearest Neighbor Captioning metrics
with human judgments when using CLIP CS scoring. Mean correlation and standard
deviation over all 32 neighbor counts tested. Up, right, and down arrows indicate
best performance at high (21-30), intermediate (11-20), or low (1-10) neighbor counts.
These arrows don’t represent the magnitude of the difference, and several versions
performed similarly across all neighbor counts. Bold metric values indicate high mean
correlation (¿0.75) and low standard deviation (¡0.15) and are recommended for use.
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BERTScore R Text-to-Text Scoring Function
Encoder Accum. Naturalness Faithfulness

Mean ρ Std. ρ Mean ρ Std. ρ

Std. Min 0.14 0.4 ↓ 0.09 0.4 ↓
Max -0.11 0.4 ↑ -0.46 0.43 ↑
Avg 0.26 0.33 → 0.26 0.45 →
Med 0.18 0.3 → 0.3 0.36 →

T2M Min Min -0.39 0.33 ↑ -0.32 0.35 ↓
Max -0.25 0.46 ↑ -0.21 0.49 ↑
Avg 0.14 0.39 → 0.04 0.28 →
Med -0.01 0.33 ↑ -0.21 0.27 ↑

T2M Max Min 0.25 0.57 ↑ 0.25 0.46 →
Max 0.13 0.42 ↑ 0.27 0.21 ↑
Avg 0.22 0.56 ↓ 0.22 0.46 ↓
Med 0.19 0.48 ↓ 0.26 0.45 ↓

T2M Avg Min -0.56 0.4 → -0.63 0.35 →
Max -0.19 0.21 ↑ 0.05 0.23 ↑
Avg -0.57 0.16 ↑ -0.36 0.23 ↑
Med -0.64 0.17 ↑ -0.41 0.22 ↑

T2M Lst Min -0.34 0.14 ↑ -0.09 0.15 ↑
Max -0.36 0.28 ↑ -0.28 0.45 ↑
Avg -0.54 0.18 → -0.53 0.26 ↑
Med -0.48 0.23 ↑ -0.6 0.28 →

Table 5.7: Model level correlation scores of Nearest Neighbor Captioning metrics with
human judgments when using BERTScore R scoring. Mean correlation and standard
deviation over all 32 neighbor counts tested. Up, right, and down arrows indicate
best performance at high (21-30), intermediate (11-20), or low (1-10) neighbor counts.
These arrows don’t represent the magnitude of the difference, and several versions
performed similarly across all neighbor counts. Bold metric values indicate high mean
correlation (¿0.75) and low standard deviation (¡0.15) and are recommended for use.
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BLEURT Text-to-Text Scoring Function
Encoder Accum. Naturalness Faithfulness

Mean ρ Std. ρ Mean ρ Std. ρ

Std. Min 0.29 0.35 → 0.5 0.33 →
Avg 0.17 0.43 → 0.24 0.36 →
Med 0.08 0.52 ↓ 0.05 0.5 ↓

T2M Min Min -0.64 0.25 ↑ -0.33 0.31 →
Max 0.55 0.25 → 0.82 0.19 →
Avg 0.21 0.2 → 0.6 0.16 →
Med 0.39 0.14 ↑ 0.64 0.32 →

T2M Max Min -0.35 0.35 ↑ -0.23 0.41 ↑
Max 0.5 0.43 ↑ 0.28 0.4 ↑
Avg -0.04 0.34 ↑ -0.08 0.39 ↑
Med -0.08 0.46 → -0.06 0.51 ↓

T2M Avg Min 0.03 0.26 ↑ -0.07 0.32 ↑
Max 0.29 0.43 ↓ 0.31 0.43 ↑
Avg 0.13 0.38 ↑ -0.12 0.54 ↑
Med 0.01 0.46 ↑ -0.27 0.58 ↑

T2M Lst Min 0.33 0.47 ↓ 0.23 0.51 →
Max -0.23 0.37 ↑ 0.05 0.45 ↑
Avg 0.5 0.21 → 0.82 0.15 →
Med 0.6 0.21 → 0.8 0.22 →

Table 5.8: Model level correlation scores of Nearest Neighbor Captioning metrics
with human judgments when using BLEURT scoring. Mean correlation and standard
deviation over all 32 neighbor counts tested. Up, right, and down arrows indicate best
performance at high (21-30), intermediate (11-20), or low (1-10) neighbor counts.
These arrows don’t represent the magnitude of the difference, and several versions
performed similarly across all neighbor counts. Bold metric values indicate high mean
correlation (¿0.75) and low standard deviation (¡0.15) and are recommended for use.
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Figure 5.7: Pearson Correlations with human judgments of Faithfulness for our top
performing NNC metrics.
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Chapter 6: Discussion and Future Work

Our study provides valuable insights into the current state of automated eval-

uation in the text-to-motion domain. We discovered a strong correlation between

R-Precision scores and human judgments, recommending its continued use with an

increased Retrieval Threshold of 5, as our data suggests this as the optimal setting.

FID demonstrated acceptable but inferior correlations with Faithfulness compared to

R-Precision and poor correlation with Naturalness. We advise cautiously using FID,

considering its performance may improve with larger sample sizes, but not prioritiz-

ing its results over better-performing alternatives. We discourage using Multimodal

Distance due to its weak model-level correlations and near-zero sample-level correla-

tions.

Our findings reveal that newer metrics result in a decline in evaluation qual-

ity compared to traditional CE-based metrics. CE-based metrics exhibited strong

model-level performance and were the only metrics to achieve even weak sample-level

correlations. Our novel versions with tuned root and component scaling achieved

near-perfect correlations at the model level. While our samples’ size limits the gen-

eralizability of these correlations, they provide compelling evidence supporting the

continued use and study of CE-based metrics.

Our introduced NCC metrics show potential but exhibit noisy performance

depending on the parameters. Some demonstrated stable high correlation values with

room for improvement through enhanced motion encoders, larger reference datasets,

or advanced text-scoring methods. In contrast, FID, R-Precision, and Multimodal

Distance would benefit only from improved motion encoders. We suggest future

research prioritize the development of superior encoders for both motion generation

and evaluation.

Regarding sample-level correlations, new metrics are needed to reliably assess
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individual samples with better than weak correlations. Current metrics fall short,

with CE metrics outperforming motion encoder-based metrics despite their theoretical

shortcomings due to reliance on a single reference.

We recommend using R-Precision 1-5, FID, and both Pose POS AVE and Pose

ACEL AE when evaluating text-to-motion generation. Optimal root scalings for the

latter two can be determined from Figure 5.3. Better results can be achieved by

combining derivative components, but we do not currently suggest doing so due to

diminishing returns. We propose reporting NNC metrics but refraining from drawing

conclusions based on them for now. Finally, despite these findings, no suitable alter-

native to human evaluation currently exists, and text-to-motion evaluations should

always include human studies when possible.

6.1 Towards an Ideal Metric

None of the studied metrics are ideal. Ignoring low sample-level correlations,

each metric has unique theoretical limitations. FID cannot measure sample-level

correlations, imposes strict assumptions on generated motion embedding spaces, and

disregards the prompt. In contrast, CE metrics rely on a single reference, failing to

represent the task’s one-to-many nature.

NNC metrics come closest to an ideal metric since they can be computed at

the sample level, do not require fitting embedding spaces to normal distributions,

and can capture the one-to-many nature with large reference datasets. However,

they currently underperform in sample-level correlation and exhibit stability issues

in many versions.

Future metrics should:

• Evaluate both sample and model-level performance.

• Not depend on a single reference sample, addressing the task’s one-to-many

nature.
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• Avoid using encoders trained solely on highly natural motions. Evaluation

encoders should excel at encoding both reference and generated motions.

6.2 Loss Functions and Human Judgement Optimization

Certain generative models for human motions employ loss functions that re-

semble the CE metrics we evaluated, such as Pose POS AE. The moderate correlation

with human judgments observed in our study raises questions about the advisability

of this approach. We propose that higher-scoring differentiable metrics, such as Root

POS AE or Pose VEL AE, might be more effective. Even non-differentiable metrics,

like NNC metrics, could be incorporated into the learning process through reinforce-

ment learning. This method could optimize highly-correlated metrics and potentially

lead to improved human-judged performance.
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Chapter 7: Conclusions

In this study, we compiled a dataset of human motions generated by recent

text-to-motion models, accompanied by human quality assessments. By analyzing

existing and newly proposed evaluation metrics, we identified those that best cor-

relate with human judgments. While R-Precision is a reliable metric for evaluating

model quality, both traditional and our novel CE metrics perform equally well or even

better, suggesting that R-Precision should not be the sole metric relied upon. Sev-

eral other metrics that have replaced CE metrics demonstrated suboptimal or even

poor performance. Our novel NCC metrics show significant potential and should be

considered for reporting in future research. However, neither current nor new met-

rics achieve satisfactory correlation at the sample level. Efforts to enhance encoder

quality or develop novel metrics to improve sample-level evaluations are encouraged.

7.1 Limitations

Our dataset, containing 1400 motion annotations, is relatively small compared

to typical automated evaluations and covers only a small fraction of the HumanML3D

test set. Although our study presents strong findings for model-level averages, it

includes only five models, making model-level correlations potentially vulnerable to

chance.

Human annotation introduces noise, and while we achieved a high inter-

annotator agreement (IAA), this does not eliminate annotation noise. We used a

single instruction for annotation, which could introduce bias among annotators; al-

ternative instructions might yield different results.

As motion generation techniques continue to advance, the samples used in

our study may not accurately represent error distributions in future improved mod-

els, potentially affecting the determination of the best metric. Despite the strong
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correlations observed between metrics and human judgments, independent human

evaluations remain crucial for comparing model performance.
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