
Evaluating the Robustness of
Natural Language Reward
Shaping Models to Spatial

Relations

Antony Yun

This document has been approved by my advisor for distribution to
my committee.

Advisor:
Ray Mooney

Second Reader: Scott Niekum
Third Reader: Robert van de Geijn

Department of Computer Science
University of Texas at Austin

May 2020

Evaluating the Robustness of Natural Language

Reward Shaping Models to Spatial Relations

Antony Yun

May 2020

Abstract

As part of an effort to bridge the gap between using reinforcement
learning in simulation and in the real world, we probe whether current
reward shaping models are able to encode relational data between objects
in the environment. We construct an augmented dataset for controlling a
robotic arm in the Meta-World platform to test whether current models
are able to discriminate between target objects based on their relations.
We found that state of the art models are indeed expressive enough to
achieve performance comparable to the gold standard, so this specific
experiment did not uncover any obvious shortcomings.

1 Introduction

Reinforcement learning (RL) is the science of learning what actions to take
in order to best reach a goal state [Sutton and Barto, 2018]. RL agents are
generally trained by interacting with an environment, simulated or real,
and receiving feedback on the quality of actions based on the signal they
receive from a reward function. The actor uses a policy to evaluate which
action to take at each time step, and it learns the optimal policy through
trial and error over many episodes. These agents often take advantage of
deep learning, which can extract features for use in an RL policy or learn
parameters and value estimates of the policies themselves [François-Lavet
et al., 2018].

In contrast with supervised learning algorithms, the agent does not
have access to a labeled dataset over which it can minimize a loss func-
tion for a static task. Instead, the agent must reach a goal state by
repeatedly interacting with the environment while balancing exploration
and exploitation. For particularly robust environments, executing these
training episodes can be quite computationally expensive while lacking
the embarrassingly parallel nature of many deep learning models. Slow
convergence due to large sample complexity is of the more prominent
limitations of training an RL agent and is the subject of active research
[Kakade et al., 2003].

Training time is influenced by, among many factors, the reward func-
tion used. The most basic possible reward is a sparse binary reward

1

encoding whether or not the goal state was reached in that time step.
Initially, the positive reward is only transferred to the states adjacent to
the goal, but continued iterations propagate it throughout the state space,
subject to a discount factor. Sparse rewards are easy to define but provide
minimal training signal to the agent. In contrast, a dense reward function
provides a stronger learning signal by assigning value to more of the state
transitions, and thus training converges faster. However, dense reward
functions require either careful tuning by a domain expert, or access to
the internals of the environment. These methods can be difficult to set
up and are also specific to the task at hand, generalizing poorly to unseen
environments.

We focus on a line of work that aims to bridge this gap by providing
robust rewards with minimal expert knowledge. In particular, we leverage
reward shaping, in which additional rewards are supplied to the learning
agent in order to guide it towards the true goal [Ng et al., 1999]. We believe
that natural language can richly encode information about tasks, so we
derive additional signal from linguistic annotations of the target tasks.
Our multimodal models combine sequences of visual state information
with human supplied annotations in order to produce an auxiliary reward.

Prior work by Goyal et al. [2019] introduced LEARN, a model that
learns the similarity between prior actions and natural language descrip-
tions within an Atari game. Using the similarity prediction as a shaping
reward improved agent performance on the task.

Goyal et al. [2020] then introduced Pix2R, a model that extends
LEARN and reward shaping to the Meta-World robot manipulation do-
main. They showed that applying intermediate rewards derived from lan-
guage and pixel data yields comparable performance to using an expert-
crafted dense reward function. However, the nature of the environments
and language collected were very simple–each object present in an envi-
ronment was unique from the rest, and so we speculated that the linguistic
model could simply have learned to classify and detect objects. Real world
environments are more complex, as there can often be numerous instances
of the same object class, and objects often exist within the context of their
surroundings.

As part of an effort to bridge the gap between using reinforcement
learning in simulation and in the real world, we probe whether current
reward shaping models are able to encode relational data between objects
in the environment. We augment the dataset from Goyal et al. [2020]
with environments that contain duplicate objects and with annotations
that identify the goal states using more descriptive relational language.
A task from the initial dataset that required pressing the button while
ignoring the door would now require identifying which of two buttons
to press while still avoiding the door. Our goal is to create a challenge
dataset that either reinforces the robustness of state of the art models, or
induces the development of new architectures that are expressive enough
to ground complex language used for RL tasks.

We found that state of the art models were capable of learning the
relational scenarios that we generated. In fact, even agents using models
trained on the original dataset performed comparably to the dense reward
agents on the challenge dataset. While these results do not reveal any

2

immediate room for improvement in reward shaping model architecture,
they pave the road for future work on improving the challenge dataset to
further investigate model performance in various conditions.

2 Background

2.1 Neural Networks

Both LEARN and Pix2R use deep neural networks to encode the input
features and produce an output prediction. These networks are used to
solve supervised learning problems, in which a model tries to optimize an
objective function over a labeled training dataset. The network weights
are adjusted through gradient descent and backpropagation, which deter-
mine the direction in which each parameter should be updated to increase
the objective (or reduce a loss) [LeCun et al., 2015].

The most basic neural network building block is the fully-connected
layer. Fully-connected layers project vectors from one hidden size to an-
other using matrix multiplication followed by a nonlinear function. Each
component of the output vector of a layer is a linear combination of all
components of the input vector. Fully-connected networks are sufficient
to approximate arbitrary functions [Cybenko, 1989], but other types of
units have been introduced to encourage the network to model specific
types of behavior.

A convolutional neural network (CNN) uses a fixed size kernel that
applies a fully-connected transform on a local region of the input, strid-
ing across the entire length of each dimension [LeCun et al., 2015]. In
the context of images, a 2-dimensional convolution iterates over each 3x3
region, for example, and produces a single output with multiple channels
located at the center of the region. CNNs are especially powerful for im-
age processing, and are the basis for most recent advances in classification,
segmentation, and many other tasks.

A recurrent neural network (RNN) encodes temporal information by
keeping a hidden state that is preserved and updated across timesteps. For
example, the Long Short-Term Memory (LSTM) constructs a memory cell
out of multiplicative gate units that control updates to two latent states
[Hochreiter and Schmidhuber, 1997]. These networks can be unrolled and
updated using backpropagation through time. RNN’s are commonly used
to produce representations of sequences with arbitrary length, such as
natural language sentences.

2.2 Markov Decision Process

Reinforcement learning problems are often paramaterized by Markov De-
cision Processes (MDPs), which are a 〈S,A, T,R, γ〉 tuple that represent
an agent interacting with its environment [Sutton and Barto, 2018]. S
is the set of states, A is the set of actions, T : S × A × S → [0, 1] is a
transition function for the environment that describes the probability of
being in state s′ after taking action a from state s, R : S ×A→ R is the
reward function that determines the reward received by taking action a

3

from state s, and γ ∈ [0, 1] is a discount factor that decays the influence
of rewards to be obtained far in the future.

An RL agent will act upon a learned policy in order to maximize its
expected future reward Gt:

Gt =

T∑
t=0

γtRt

At each timestep, the agent will decide to take an action based on
its policy and its observed state. The environment will transition to a
new state sampled from the transition function, and the agent will gain a
reward for taking the action.

Goyal et al. [2019] introduce the notion of a language-augmented MDP,
or an MDP+L. This adds a natural language instruction L that describes
the entire task to obtain the tuple 〈S,A, T,R, γ, L〉.

2.3 Proximal Policy Optimization

Policy gradient methods are a common approach for learning the optimal
policy under an MDP. These methods act on a parameterized policy and
try to find the optimal values of the parameters by roughly approximating
a gradient-ascent process. Each parameter is updated in the direction of
an estimate of the gradient of performance with respect to that parameter
[Sutton and Barto, 2018].

Proximal Policy Optimization (PPO) is a policy gradient method that
uses a clipped surrogate objective function Schulman et al. [2017]. In
short, the clipped surrogate objective is an improved method of modeling
how well a given policy selects the optimal action that penalizes large
policy updates.

The models used in this paper are not specific to any particular al-
gorithm for solving MDPs, so we use PPO due to its popularity and
effectiveness.

2.4 Reward Shaping

Ng et al. [1999] introduce the concept of reward shaping, which is the
process of adding an arbitrary auxiliary reward to an agent’s existing
reward in order to guide policy training. In other words, you can replace
your initial reward R with R′ = R+F , where F is any real valued function.
They prove that R′ is guaranteed to converge to the same optimal policy
as R as long as F is a potential-based function, which must satisfy the
following condition for consecutive states s and s′ and discount factor γ:

F (s, a, s′) = γφ(s′)− φ(s)

Intuitively, this formulation prevents the agent from repeatedly acting
in cycles to gain net positive shaping-reward and exploit the nature of the
reward function–returning to the same state does not yield any additional
reward when using difference of potentials. We take advantage of this
property by predicting a similarity score as the potential function, and
then constructing a reward using difference of potentials.

4

Figure 1: The LanguagE-Action Reward Network (LEARN) uses action fre-
quency vectors and a natural language description to produce a relatedness
score. This prediction is used as a shaping reward for a standard RL agent.

2.5 LEARN

The LanguagE Action Reward Network (LEARN) [Goyal et al., 2019] is
the first framework to compute shaping rewards based using free-form
natural language instructions and action histories. The framework was
tested on the Montezuma’s Revenge game from the Atari Learning Envi-
ronment. The agent must decide which discretized action to take, such as
moving left or jumping, based on the sequence of past actions and a natu-
ral language description of the task. The framework, depicted in Figure 1,
consists of a supervised learning phase followed by an RL phase.

LEARN is a neural network that predicts whether a given language
and trajectory are related. The trajectory is encoded as an action fre-
quency vector, which is a vector whose elements are the frequencies of a
particular type of action being taken in the history. Language instructions
are encoded using pretrained embeddings and RNNs [LeCun et al., 2015]
to produce a final vector. The action frequency vector is passed through
fully-connected layers, concatenated with the language vector, and then
passed through more fully-connected layers to predict the probability of
relatedness.

Agents then learn a policy using a sparse binary reward for reaching
the goal that is shaped by the output of the LEARN model. This policy
completes the task 60% more often on average than the sparse reward
alone, laying the foundation for further research on natural language re-
ward shaping.

5

2.6 Pix2R

Pix2R extends the LEARN model to use visual input instead of using
frequencies of discrete actions [Goyal et al., 2020]. Pix2R is used to ma-
nipulate a robot arm to complete tasks in the Meta-World environment.
At a high level, the model is mostly similar to the LEARN model, replac-
ing the fully-connected action frequency branch CNN [LeCun et al., 2015]
feature extractors followed by an LSTM [LeCun et al., 2015]. We use
Pix2R as the baseline model for our work, so the details will be described
in further sections.

3 Dataset

3.1 Meta-World

Meta-World is a simulated benchmark platform for RL that supports vari-
ous robot manipulation tasks [Yu et al., 2019]. Each of these tasks involves
moving a Sawyer robot arm to interact with an everyday object, such as a
button, door, or coffee machine. These interactions move the object from
an initial state to a goal state. Since the platform focuses on creating a
benchmark suite for evaluating RL meta-learning techniques, it prioritizes
the dynamics of the objects over their appearances, which are approxi-
mated by colored shapes. The action space consists of four dimensions -
3D movement of the end-effector of the robot arm, and a force applied
to the gripper. The observation space consists of 3D Cartesian positions
of the end-effector, object, and goal position. The benchmark defines the
dense reward as a sum of multiple component rewards for reaching, grasp-
ing, placing, and pushing tasks. Based on the type of task being perfomed,
the reward function is either defined as R = Rreach + Rgrasp + Rplace, or
R = Rreach+Rpush. These component rewards are complex, expert crafted
expressions that measure the success of a task based on the geometries of
the observations. For example, the reaching reward Rreach = −||h − o||2
measures the distance between the hand and the object.

3.2 Pix2R dataset

Goyal et al. [2020] construct the dataset used for the Pix2R paper by
selecting 13 of the 50 Meta-World tasks featuring 9 different objects. Ex-
ample tasks include pressing the button on a coffee maker, turning a door
handle counter clockwise, and opening a window. They generated envi-
ronments for a particular task by placing its relevant object at a random
position on the table, and then repeatedly sampling new positions to place
one of the remaining objects until a collision occurred. The dataset con-
tained 100 scenarios for each of the tasks, for a total of 1300 scenarios.

The Pix2R architecture uses a neural network to predict a similarity
score for a sequence of observations and a linguistic description of the
task. Training this model requires pairs of videos and captions of a robot
accurately performing the task. These videos are generated by training
an agent with access to the dense reward function defined in the Meta-
World paper. Intuitively, this dense reward acts as a scaffold to generate

6

Figure 2: List of objects used by Goyal et al. [2020].

“ground-truth” data for the model to train on and mimic. At evaluation
time, the model can learn a policy without access to a dense reward.
These techniques can especially benefit domains with an abundance of
demonstrations and layperson descriptions but no expert reward function.

The agent learns a policy for each of the scenarios using PPO [Schul-
man et al., 2017] and then uses that policy to record videos of a successful
episode. Three videos are recorded from center, left, and right viewpoints
for resilience to occlusions.

The corresponding annotations for these videos were collected through
Amazon Mechanical Turk (AMT). The AMT workers were provided with
5 videos from distinct scenarios and asked to provide natural language
instructions to the robot for completing each task.

Several methods were used for improving data quality. First, the work-
ers were shown Figure 2, which depicts a mapping of abstract simulated
objects to more realistic images. Images were used rather than assigning
names to the objects in order to avoid priming the workers to certain words
and to collect a more diverse vocabulary. Providing this table helped to
some extent, but many annotations still used generic terminology such as
‘blue box’ and ‘red peg’. Workers were asked to provide an instruction
spoken to the robot, rather than a narration describing what the robot
did. In order to validate this, workers could only proceed by selecting one
of four sample descriptions for a video that used both the correct meaning
and the correct voice. Further validation included filtering out short or
meaningless descriptions.

Goyal et al. [2020] note that most of the descriptions for the original
dataset only referenced the target objects, so training pairs could be gen-
erated by pairing a video with any description for that target object. As
such, they were able to collect only 520 descriptions for the 1300 sets of
videos.

7

Figure 3: A simulated robot completing a task in the Meta-World domain.
Scenarios from Goyal et al. [2020] (left) have at most one object from each
class, while ours (right) include two instances of the target object class.

The dataset is split into 79 training scenarios, 18 validation, and 3
testing. The language is split into 5 validation, 3 testing, and the remain-
ing for training. They generated positive examples by randomly pairing a
scenario with an annotation within a given task class, and they generated
negative examples for training by selecting a description associated with
one of the other objects in the scene.

3.3 Our Dataset

The goal of our work was to create a dataset with more complex lan-
guage, particularly with regards to describing relations between objects.
We based our dataset on that used by Pix2R – we started by using the
same methodologies and altered them accordingly when necessary. Our
dataset is meant to be fully compatible with that of Pix2R, in that it can
either be combined with the original, used for fine tuning, or used sepa-
rately. As such, we maintain the format of 〈trajectory, language〉 pairs,
where trajectories are three different video perspectives of a simulated
environment, and the language is a human annotation.

We modified the video collection script to generate scenarios that
would encourage more robust descriptions. We first guaranteed that ev-
ery environment would have two objects of the target class, as shown in
Figure 3. Descriptions in the original dataset were often simple sentences
instructing the robot to move towards the target object, so we decided to
introduce ambiguity that would force the annotator to use more specific
language.

We generated videos by training PPO until 5 consecutive successes
on a specific scenario for a task for up to 2000 episodes. If the agent
was unable to learn a policy, we would regenerate the environment and
repeat until success. We noticed that certain tasks trained substantially
quicker than others; perhaps the some of the larger or more difficult to
manipulate objects interfered with each other, especially since our en-
vironments were more crowded than the original ones. We used 5 sce-
narios for each of the 6 tasks that we were able to train to completion,

8

for a total of 30 scenarios. These tasks were button top, button side,
coffee button, handle press top, door lock, and door unlock. The
button tasks involved pressing a button attached to a box or a coffee
machine, handle press top involved pressing down on the handle of a
toaster, and the door tasks required the agent to rotate a door handle
clockwise or counterclockwise.

We used AMT to collect at least 3 annotations for each scenario. We
used the same experimental design as the original paper, but we encour-
aged the annotators to use more robust descriptions. We specifically asked
them to ‘please ensure that the instruction you provide uniquely identifies
the correct object, for example, by describing it with respect to other ob-
jects around it.’ This guideline encourages them to provide relational
language while giving them freedom to use the types of relations they
deem most appropriate. Even so, we still had to manually filter out re-
sponses that gave insufficient information to uniquely identify the target
object. Within the remaining data, most workers opted to use simple, ab-
solute, directional descriptions, such as “push the left button”, although
some did explicitly relate the target object to its neighbors, as seen in
“push the button near the door”. While more of the latter would make
for a much more challenging dataset as intended, we decided that even the
former relations would still provide some insight into whether the model
was actually reasoning about the world or just detecting object classes.

In contrast to the original dataset, our new annotations were specific
to each particular scenario within a task, and thus could not be reused
across the entire task. Instead, we ensured that we had collected at least
3 annotations per video to avoid overfitting on a specific sentence, and
then selected a different random annotation for a given video during each
epoch. Within each task, we used 3 scenarios for training, 1 for validation,
and 1 for testing. We collected a total of 92 descriptions for training, 21
for validation, and 18 for testing. We manually selected negative language
examples by reviewing similar videos and selecting the annotations that
referred to similar collections of objects but with different relations.

4 Models

We evaluate the framework from Goyal et al. [2020] on our dataset. This
approach uses the Pix2R architecture to maps the pixel representations of
states to rewards given the natural language description of the task. The
mapping is learned through a supervised learning phase, and the rewards
are used in the policy training phase.

4.1 Pix2R: Supervised Learning

4.1.1 Network Architecture

The Pix2R model extends the LEARN model [Goyal et al., 2019] by re-
placing the action frequency vector with a sequence of frames. Three
separate CNNs [LeCun et al., 2015] encode each of the three input per-
spectives. Each CNN encodes a frame into a fixed size lower dimensional

9

Figure 4: Neural network architecture for Pix2R model. Features are extracted
from trajectory images by CNNs and then combined temporally by an LSTM.
Natural language descriptions are passed through an embedding layer followed
by an LSTM. The resulting vectors from each modality are concatenated and
passed through linear layers for regression.

representation, and the results of the three CNNs are concatenated. The
encoded vectors across all timesteps are passed through a two-layer LSTM
[LeCun et al., 2015] to get an encoding of the entire trajectory. Goyal et al.
[2020] also investigated replacing the LSTM with a mean-pooling layer,
but found that the LSTM performed better, as it was able to encode
crucial temporal information. Thus, we only evaluate the LSTM-based
model in this work.

The language description is one-hot encoded and passed through an
embedding layer and then a two-layer LSTM. The outputs of both the
frame network and the language network are concatenated and passed
through two linear layers to output a similarity score, as depicted in Fig-
ure 4.

4.1.2 Data Augmentation

Pix2R is trained using frame dropping, which samples a small fraction
of frames from the entire trajectory. We retain a given frame within our
trajectory with probability 0.1 and drop it with probability 0.9, effectively
creating a subsampled trajectory of about 10% the original length. This
strategy accelerates training and increases robustness to minor variations
in trajectories. For consistency, 1 out of every 10 frames are sampled
when running inference on the Pix2R model during policy training.

During training, we sample one of the frames of the full trajectory
uniformly at random and only consider frames up until that point. Us-

10

Hyperparameter Values
D1 {32, 64, 128, 256}
D2 {64, 128, 256, 512}
D3 {64, 128, 256, 512}
D4 {128, 256, 512, 1024}

learning rate {1E-3, 1E-4, 1E-5}

Table 1: Set of values of hyperparameters experimented with. See Figure 4 for
explanations of parameters Di’s.

ing incomplete trajectories exposes the model to typical inputs it would
receive in the middle of policy training.

4.1.3 Training Objective

Goyal et al. [2020] consider two possible training objectives – binary classi-
fication of RELATED and UNRELATED input pairs, and regression of a [−1, 1]
relatedness score. The regression objective produced statistically signifi-
cantly better results, so we chose to only evaluate the regression objective.

In regression, the output of the network is mapped from real-valued
to [−1, 1] by the tanh() function. For an incomplete trajectory, we use
a ground truth score of s · l

L
, where s = 1 for positive examples, s = 0

for negative examples, l is the length of the incomplete trajectory, and L
is the length of the complete trajectory. This creates a smooth function
that interpolates between +1 for a completed related trajectory and −1
for an completed unrelated trajectory, where the magnitude of the score is
proportional to the completeness of the trajectory. The network is trained
to minimize mean squared error.

4.1.4 Training and Parameters

The network is trained end-to-end using an Adam optimizer. Network
hyperparameters include learning rate, CNN channels, trajectory LSTM
hidden units, language LSTM hidden units, and regression layer width.
Optimal values are chosen by random search of the values in Table 1 and
selecting the combination with the highest Spearman correlation between
predicted and ground truth scores on the validation set. Mean squared
error is an effective training objective, but for validation, the Spearman
correlation assesses whether there’s a monotonic ordering of the variables,
which is more important than matching the ground truth exactly.

4.2 RL Policy Training

During policy training, the agent has access to the natural language de-
scription of the goal, a sequence of images for the trajectory, and a sparse
reward. An intermediate award can be generated through inference with
a trained Pix2R model on the language and trajectories, where related in-
put pairs produce a larger intermediate reward. The new reward function
is a potential-based shaping reward defined as F (st) = γ ·φ(st)−φ(st−1).

11

The potential function φ(st) is simply the output of the Pix2R model
on state st. The use of a potential-based shaping reward ensures that
the model only changes the rate at which it trains without affecting the
optimal policy.

5 Results and Discussion

We used the test split of the challenge dataset to evaluate the performance
of various RL agents. Our goal was to determine whether the relational
data was more challenging than the original data and to identify any room
for improvement. We considered the following baseline and Pix2R agents
trained on various subsets of the data in order to identify these potential
performance gaps and to attempt to attribute them:

• Sparse: PPO with binary goal reward.

• Dense: PPO with dense Meta-World reward.

• Original: PPO using Pix2R trained on original dataset.

• Augmented: PPO using Pix2R trained on augmented dataset.

• Reduced: PPO using Pix2R trained on reduced dataset.

We included the sparse, dense, and original models as baselines from
Goyal et al. [2020]. The augmented model is trained from scratch on
the union of the original and newly collected data. We noticed that the
original dataset already contained several relational descriptions, so we
also trained a model on a reduced dataset, which we created by excluding
descriptions with ‘left’ or ‘right’ from the original dataset.

We first train each supervised model using 8 different combinations of
hyperparameters and select the model with the best validation score.

For a given trial, we use the same experimental setup as Goyal et al.
[2020]. We run policy training for 500,000 timesteps, restricting each
episode to 500 timesteps, and record the number of successful episodes
every 1000 timesteps. We used 6 videos for testing–1 from each task–with
3 descriptions per video, for a total of 30 members of the test set.

For each member of the test set, we ran 5 trials with different random
seeds. This produced a total of 90 trials for each model. We report
the average number of successes across all trials at regular intervals in
Figure 5. While the sparse model performed noticeably worse than all of
the others, the dense model and all Pix2R models followed similar training
curves. In fact, the augmented model performed the worst of the four,
whereas the reduced model performed the best.

When we designed this new dataset, we expected for it to be challeng-
ing enough to where no model based on Pix2R would be able to perform
as well as dense. Furthermore, we expected a model trained on the aug-
mented dataset, or a vanilla model fine-tuned on the challenge data, to
perform better than a vanilla Pix2R model. However, the results showed
otherwise. We hypothesized that the small fraction of directional words
in the original dataset was sufficient to learn relations between objects,
which motivated us to create the reduced model. Since this model also

12

Figure 5: Policy training curves for baselines and Pix2R models. For each model
type, the cumulative number of successes is recorded every 1000 timesteps and
averaged across all 90 trials. All Pix2R reward agents perform comparably to
the dense reward agents, while the sparse reward agents complete substantially
fewer episodes.

performed equally as well, we are less confident in this explanation of our
results.

We speculate that the nature of the video generation process could
have skewed the scenarios towards the easier side. If the dense reward
PPO did not succeed 5 consecutive times by 2000 episodes, we aban-
doned the environment and generated a new one. We also experimented
with an early stopping scheme that would recreate the environment after
1000 consecutive failures. The original Meta-World reward is designed
for single-object environments, and thus some of its components greedily
use the distance to the goal object without accounting for obstacles. An
agent using this reward would have difficulties succeeding in relational
environments, such as those where the target object was obstructed by
other objects or in a crowded neighborhood. If the scenarios skew towards
having the goal placed in the front of the scene and far from other objects,
then there is little advantage to using descriptive annotations. In order
to test this hypothesis, we would need to devise a new scheme to generate
videos that avoid this bias.

We also noticed quality issues with the descriptions that we collected
from AMT. Many had to be filtered out for not uniquely identifying the
target object from its duplicate, and even the remaining ones were gram-
matically and descriptively simplistic. We could remedy this by devising a
two-stage AMT task. In the second stage, we would present a worker with
another worker’s description and the initial frames of the video, and we
would only accept the description if the second worker is able to correctly
identify the target object. Another improvement to the data collection
process would be to have each worker provide a description for the both

13

target object and as well as one of the other objects, which would create
negative examples without our manual intervention.

6 Conclusion

This paper proposes a challenge dataset that builds upon previous work on
incorporating natural language into reinforcement learning reward func-
tions. We constructed a robot arm manipulation dataset pairing demon-
strations of complicated scenarios with relational language instructions.
We used this dataset to evaluate the robustness of the Pix2R model, which
produces an auxillary RL reward based on a visual trajectory and a natu-
ral language description of the task. We found that, even when removing
the instructions using relational language from the existing dataset, Pix2R
models trained on the original dataset performed on par with models that
used a dense expert reward, and even Pix2R models trained on the aug-
mented dataset. While we did not find evidence of any shortcomings in
the Pix2R architecture, there is room for further experimentation.

7 Future Work

In this work, we produced an initial version of a relational language
database, but there is still room for improvement of our methodology.
We can improve the quality of the language data by running multi-stage
AMT pipelines that are more carefully designed to filter out malformed
and ambiguous descriptions. Additionally, we can revisit our environment
generation setup to produce more diverse object placement.

Our work sets the stage for creating additional target datasets to probe
the effectiveness of the Pix2R model, as well as other grounded language
models or neural networks in general. Ultimately, our goal is to expose
flaws in current models to inspire more expressive models, such as using
joint visual-language attention within Meta-World tasks.

8 Acknowledgements

I would like to thank my faculty advisor, Ray Mooney, for his guidance
throughout this process. He introduced me into the research community
and provided me with all of the resources and direction that I needed to
succeed.

I also greatly appreciate the help of Prasoon Goyal, who also advised
me throughout this project. He provided extensive assistance with the
LEARN and Pix2R codebases, as well as invaluable feedback on all of my
ideas, implementation, and results.

References

George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of control, signals and systems, 2(4):303–314, 1989.

14

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Belle-
mare, Joelle Pineau, et al. An introduction to deep reinforcement learn-
ing. Foundations and Trends R© in Machine Learning, 11(3-4):219–354,
2018.

Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural
language for reward shaping in reinforcement learning. arXiv preprint
arXiv:1903.02020, 2019.

Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Pix2r: Guiding
reinforcement learning using natural language by mapping pixels to
rewards. In Under Submission, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

Sham Machandranath Kakade et al. On the sample complexity of rein-
forcement learning. PhD thesis, University of London London, England,
2003.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In
ICML, volume 99, pages 278–287, 1999.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman,
Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and eval-
uation for multi-task and meta reinforcement learning. arXiv preprint
arXiv:1910.10897, 2019.

15

