## THE UNIVERSITY OF Semantic Parsing using Distributional Semantics and Probabilistic Logic TEXAS Islam Beltagy, Katrin Erk, Raymond Mooney ——AT AUSTIN —— The University of Texas at Austin

Goal: a semantic parser that is not constrained by a fixed formal ontology and purely logical inferent 1) Formal language: First Order Logic

2) Ontology: use Distributional Semantics to generate the relevant part of a "graded" on-the-fly o 3) Inference: **Probabilistic Logic** inference Tasks:

- 1) Recognizing Textual Entailment (RTE) using Markov Logic Networks (MLNs)
- 2) Semantic Textual Similarity (STS) using Probabilistic Soft Logic (PSL)



-Inference: compute Pr(T|H, RB), Pr(¬T|H, RB)

-Entailment decision = F (Pr(T|H, RB),  $Pr(\neg T|H, RB)$ ) where F is trained

-Computational overhead: reduce size of the ground network by removing unnecessary ground atoms [MLN\_ŇL]

**References** [PSL] S. Bach, M. Broecheler, L. Getoor, D. O'Leary. 2012. Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization. NIPS 2012 [MLN NL] I. Beltagy, K. Erk, R. Mooney. 2014. Efficient Markov Logic Inference for Natural Language Semantics. StarAI 2014

# Abstract

an average, and change the grounding accordingly<sup>[STS\_PSL]</sup> -Inference: compute Pr(S1|S2, RB), Pr(S2|S1, RB) -Similarity score = F (Pr(S1|S2, RB), Pr(S2|S1, RB)) where F is trained

|                            |  | -Given input sentences and the generated ontology                                                                    |
|----------------------------|--|----------------------------------------------------------------------------------------------------------------------|
| ence                       |  | -Standard theorem provers are insufficient because                                                                   |
|                            |  | -Probabilistic logic solves this problem because it a                                                                |
| ontology                   |  | -Given the input sentences, and the rule base, we the answer to the target task                                      |
|                            |  | -A probabilistic Logic program is an evidence set E                                                                  |
|                            |  | -Inference computes Pr(Q E,R)                                                                                        |
|                            |  | -The probabilistic logic frameworks we use are ML                                                                    |
|                            |  | Markov Logic                                                                                                         |
|                            |  | -Given a set of weighted first-order logic formula, N                                                                |
|                            |  | -Weighting the rules is a way of softening them cor                                                                  |
|                            |  | -MLNs define a probability distribution over possibl                                                                 |
|                            |  | exponentially with the total weight of the logical cla                                                               |
|                            |  | Probabilistic                                                                                                        |
| evant part of              |  | -Another probabilistic logic framework, with empha                                                                   |
|                            |  | -Atoms have <b>continuous truth values</b> in interval [                                                             |
| describing<br>rases in the |  | -Logical operators are replaced with Łukasiewicz lo $I(\ell 1 \land \ell 2) = \max \{0, I(\ell 1) + I(\ell 2) - 1\}$ |
|                            |  | -MPE inference is a linear program (100 times fa                                                                     |
|                            |  |                                                                                                                      |
|                            |  |                                                                                                                      |
|                            |  |                                                                                                                      |
|                            |  |                                                                                                                      |

**On-the-fly Ontology (Rule Base RB)** Semantic relations expressed as weighted inference rules

 $\forall x. man(x) \leftrightarrow guy(x)$ synonym(man, guy)  $\forall x. drive(x) \leftrightarrow own(x)$ related(drive, own)  $\forall x. man(x) \rightarrow \exists y. car(y) | contextonym(car, guy)$  $\forall x. \text{ convertible}(x) \rightarrow \text{nice}(x) \land \text{car}(x)$ hyponym(convertible, "nice car")

. . . . .



| Evaluation         |               |                |   |         |
|--------------------|---------------|----------------|---|---------|
| System             | SICK-RTE(acc) | SICK-STS(corr) |   | M<br>n  |
| Distribution-only  | 0.60          | 0.65           |   | C       |
| Logic+Distribution | 0.73          | 0.70           |   | II<br>U |
|                    |               |                | ] |         |

[MLN] M. Richardson and P. Domingos. Markov logic networks. Machine Learning 2006 [STS PSL] I. Beltagy, K. Erk, R. Mooney. 2014. Probabilistic Soft Logic for Semantic Textual Similarity. ACL 2014

### Inference

gy, Inference draws conclusions and answers queries se the **ontology is "graded**" not binary accepts weighted first order logic formulas build a probabilistic logic program whose solution is

E, set of rules R and a query Q

Ns for the RTE task and PSL for the STS task **Networks (MLNs)** 

MLNs construct complex undirected graphical model mpared to hard logical constraints.

le worlds, where a world's probability increases auses that it satisfies.

### Soft Logic (PSL)

asize on efficient inference

[0,1] (in contrast with boolean atoms in MLNs)

 $I(\neg \ell 1) = 1 - I(\ell 1)$ ogic:

 $I(l1 \lor l2) = \min \{1, I(l1) + I(l2)\}$ 

faster than MLN in our experiments)

## Conclusion

Ve propose a Semantic Parser that does ot require a fixed ontology.

Intology is generated from distributional nformation, and tasks are performed sing Probabilistic Logic inference.