The University of Texas at Austin

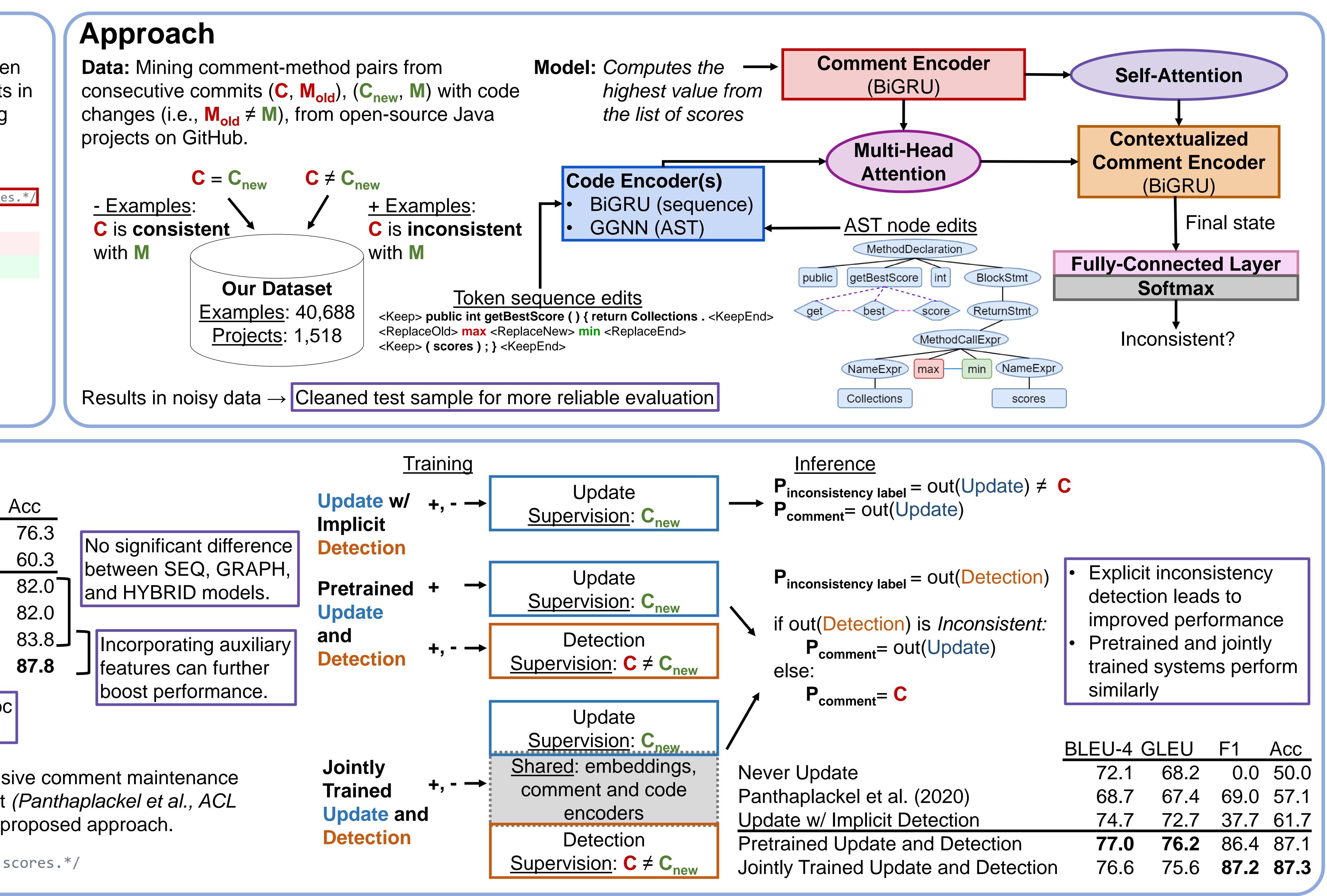
## Problem

When developers make code changes, they often fail to update comments accordingly. This results in inconsistent comments that lead to time-wasting confusion and vulnerability to bugs.

| <pre>/**Computes the highest value from the</pre> | list | of | score |
|---------------------------------------------------|------|----|-------|
| <pre>public int getBestScore() {</pre>            |      |    |       |
| <pre>return Collections.max(scores);</pre>        |      |    |       |
| <pre>return Collections.min(scores);</pre>        |      |    |       |
| }                                                 |      |    |       |

**Goal:** Determine whether a comment is inconsistent, just-in-time, i.e. right before code changes are merged into a code base.

## **Evaluation**


| Intrinsic Evaluation           | F1   |
|--------------------------------|------|
| Liu et al. (2018)              | 75.8 |
| Post Hoc SEQ                   | 63.0 |
| Just-In-Time SEQ               | 81.5 |
| Just-In-Time GRAPH             | 81.4 |
| Just-In-Time HYBRID            | 83.1 |
| Just-In-Time HYBRID + features | 87.1 |

Just-In-Time approaches outperform post hoc and baseline models.

**Extrinsic Evaluation:** Evaluating a comprehensive comment maintenance system which automatically updates a comment (Panthaplackel et al., ACL 2020) if inconsistency is detected by our newly proposed approach.

/\*\*Computes the highest value from the list of scores.\*/

## **Deep Just-In-Time Inconsistency Detection Between Comments and Source Code** Sheena Panthaplackel (spantha@cs.utexas.edu), Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney



## The University of Texas at Austin

| <sub>el</sub> = out(Update) ≠ | С |
|-------------------------------|---|
| Update)                       |   |

| BLEU-4 | GLEU                                | F1                                            | Acc  |
|--------|-------------------------------------|-----------------------------------------------|------|
| 72.1   | 68.2                                | 0.0                                           | 50.0 |
| 68.7   | 67.4                                | 69.0                                          | 57.1 |
| 74.7   | 72.7                                | 37.7                                          | 61.7 |
| 77.0   | 76.2                                | 86.4                                          | 87.1 |
| 76.6   | 75.6                                | 87.2                                          | 87.3 |
|        | 72.1<br>68.7<br>74.7<br><b>77.0</b> | 72.1 68.2   68.7 67.4   74.7 72.7   77.0 76.2 |      |