Online Inference-Rule Learning from Natural-Language Extractions Sindhu Raghavan and Raymond Mooney The University of Texas at Austin, Austin, TX 78712, USA Email: <u>sindhu.vijayaraghavan@gmail.com</u>, <u>mooney@cs.utexas.edu</u>

1. Motivation

 Much of the information conveyed in natural language text must be *inferred*

Example - "Barack Obama is the President of the United States of America." Query – "Barack Obama is the citizen of what country?"

3. Online Rule Learner

Example text in training

"Barack Obama is the 44th and the current President of USA. Obama, citizen of USA was born on August 4, 1961 in Hawaii, USA."

- Human readers *read between the lines* to infer implicit facts using
 - Explicitly stated facts
 - Common-sense knowledge
- Information extraction systems cannot perform deeper inference to extract implicit facts

2. Our Approach

- Extract explicitly stated facts using an offthe-shelf information extraction (IE) system
- Learn common sense knowledge in the form of *first-order rules*
- Use Bayesian Logic Programs [Kersting and De

IE extractions nationState(USA) person(BarackObama) isLedBy(USA,BarackObama) hasBirthPlace(BarackObama,USA) hasCitizenship(BarackObama,USA)

Frequency counts for relation predicates isLedBy: 30, hasBirthPlace: 23, hasCitizenship: 20

Raedt, 2007 for inference of additional facts

Running time

ORL – 3.8 mins, LIME -11.23 hours

isLedBy(X,Y) \wedge person(Y) \wedge nationState(X) \rightarrow hasBirthPlace(Y,X)

isLedBy(X,Y) \land person(Y) \land nationState(X) \rightarrow hasCitizenship(Y,X)

hasBirthPlace(X,Y) \land person(X) \land nationState(Y) \rightarrow hasCitizenship(X,Y)

4. Data and Experiments

- DARPA's intelligence community (IC) data set from the Machine Reading Project (MRP)
 - News articles on politics, terrorism, and other international events
- Learned rules for 10 target relations
- Manually evaluated inferences and sorted based on their marginal probabilities