Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Active Multitask Learning Using Both Supervised and Latent Shared Topics

Ayan Acharya, Raymond J. Mooney, Joydeep Ghosh

UT Austin, Dept. of ECE & CS

April 24, 2014

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

Outline

- Background
- Act-DSLDA and Act-NPDSLDA
- Datasets & Empirical Results
- References

Motivation

- Multitask Learning: data from multiple tasks are collected and models are learnt simultaneously
- Active Learning: only the most informative examples are queried from the unlabeled pool
- Unify both of these approaches

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Problem Setting

- In training corpus each document/image belongs to a known class and has a set of attributes (supervised topics).
- Classes from aYahoo data: carriage, centaur, bag, building, donkey, goat, jetski, monkey, mug, statue, wolf, and zebra
- Attributes: "has head", "has wheel", "has torso" and 61 others
- Train models using words, supervised topics and class labels
- An active MTL framework that can use and query over both attributes and class labels

Background 00●000000 Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Transfer with Shared Supervised Attributes

• Train to infer attributes from visual features

• Train to infer categories from attributes [Lampert et al., 2009]

Background 000●00000 Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Multitask Learning with Shared Latent Features

Reference: [Caruana, 1997]

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Transfer with Shared Supervised and Latent Attributes

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Topic Models: LDA

Figure : LDA

Figure : Visual Representation

Background 000000●00 Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Topic Models: LLDA

Figure : LLDA

Figure : Visual Representation

Background 0000000●0 Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Topic Models: MedLDA

Figure : MedLDA

Figure : Visual Representation

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Topic Models: DSLDA

- Doubly Supervised LDA [Acharya et al., 2013]
- $\alpha^{(1)}, \alpha^{(2)}$: priors over supervised and latent topics

Figure : Visual Representation

Figure : DSLDA

Act-DSLDA & Act-NPDSLDA •000 Datasets & Empirical Results

References 000

Active DSLDA (Act-DSLDA)

- r₁ : weights for multiclass SVM
- r₂ : weights for binary SVMs

Figure : Act-DSLDA

Figure : Visual Representation

References 000

Active NPDSLDA (Act-NPDSLDA)

• Non-parametric Doubly Supervised LDA [Acharya et al., 2013]

Figure : NPDSLDA

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Active NPDSLDA (Act-NPDSLDA)

• Non-parametric Doubly Supervised LDA [Acharya et al., 2013]

Figure : NPDSLDA

Figure : Act-NPDSLDA

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Visual Representation of Act-NPDSLDA

Figure : Visual Representation of Act-NPDSLDA

Background Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Inference and Learning

- Active learning measure: expected error reduction [Nigam et al., 1998]
- Batch mode: variational EM with completely factorized approximation to posterior, online SVM [Bordes et al., 2007]
- Active selection mode: incremental EM [Neal and Hinton, 1999], online SVM

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Description of Dataset: ACM Conference

- **Classes:** Conference names: WWW, SIGIR, KDD, ICML, ISPD, DAC; abstracts of papers are treated as documents
- Supervised topics: keywords provided by the authors

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Experimental Methodology

- Multitask training that evaluates benefits of sharing information among classes on the predictive accuracy of all classes
- $\bullet\,$ Start with a completely labeled dataset ${\cal L}$ consisting of 300 documents
- In every active iteration, 50 labels (class labels or supervised topics) are queried for.

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Compared Models

Model	Supervised Topics	Latent Topics	Class Labels
Act-DSLDA	present & queried	shared	queried
Act-NPDSLDA	present & queried	shared	queried
R-MedLDA-MTL	absent	shared	random selection
R-DSLDA	present & random selection	shared & random selection	random selection
Act-MedLDA-OVA	absent	not shared	queried
Act-MedLDA-MTL	absent	shared	queried
Act-DSLDA-OSST	present & queried	absent	queried
Act-DSLDA-NSLT	present & queried	not shared	queried

- Random MedLDA-MTL (R-MedLDA-MTL)
- Pandom DSLDA (R-DSLDA)
- Octive Learning in MedLDA with one-vs-all classification (Act-MedLDA-OVA)
- 4 Active Learning in MedLDA with multitask learning (Act-MedLDA-MTL)
- Act-DSLDA with only shared supervised topics (Act-DSLDA-OSST)
- 6 Act-DSLDA with no shared latent topics (Act-DSLDA-NSLT)

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Random MedLDA-MTL (R-MedLDA-MTL)

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Random DSLDA (R-DSLDA)

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Active Learning in MedLDA with one-vs-all classification (Act-MedLDA-OVA)

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Active Learning in MedLDA with Multitask Learning (Act-MedLDA-MTL)

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Act-DSLDA with Only Shared Supervised Topics (Act-DSLDA-OSST)

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

Act-DSLDA with No Shared Latent Topics (Act-DSLDA-NSLT)

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

aYahoo Learning Curves

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

aYahoo Query Distribution

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

ACM Conference Learning Curves

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 000

ACM Conference Query Distribution

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

Conclusion and Future Work

- Experimental results demonstrate the utility of integrating active and multitask learning in one framework that also unifies latent and supervised shared topics.
- Better approximation techniques for active selection with large scale learning
- Active query with annotators' rationales

Background 000000000	Act-DSLDA & Act-NPDSLDA 0000	Datasets & Empirical Results 000000000000	References 0●0		
References					
	Acharya, A., Rawal, A., Mooney, R. J., and Using both supervised and latent shared to In ECML PKDD, Part II, LNAI 8189, page	ppics for multitask learning.			
	Bordes, A., Bottou, L., Gallinari, P., and Weston, J. (2007). Solving multiclass support vector machines with larank. In <i>Proc. of ICML</i> , pages 89–96.				
	Caruana, R. (1997). Multitask learning. <i>Machine Learning</i> , 28:41–75.				
	Lampert, C. H., Nickisch, H., and Harmeli Learning to detect unseen object classes by In <i>Proc. of CVPR</i> , pages 951–958.				
	Neal, R. M. and Hinton, G. E. (1999). A view of the EM algorithm that justifies i	ncremental, sparse, and other varia	ants.		
	Nigam, K., McCallum, A., Thrun, S., and Learning to classify text from labeled and In <i>Proceedings of the Fifteenth National C</i> pages 792–799. AAAI Press.	unlabeled documents.	,		

Act-DSLDA & Act-NPDSLDA

Datasets & Empirical Results

References 00●

Questions?

