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Motivation & Theme

Motivation

Labeled data is sparse in applications like document
categorization and object recognition.
Distribution of data changes across domains or over time.

Theme

Shared low dimensional space for transferring information
across domains
Careful adaptation of the model parameters to fit new data
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Transfer Learning

Transfer Learning

Concurrent knowledge transfer (or multitask learning):
multiple domains learnt simultaneously
Continual knowledge transfer (or sequential knowledge
transfer): models learnt in one domain are carefully adapted to
other domains
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Active Learning

only the most informative examples are queried from the unlabeled pool

Figure: Illustration of Active Learning (Pic Courtesy: Burr Settles)
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Section Outline

Multitask Learning Using Both Supervised and Latent Shared Topics (ECML
2013)

Active Multitask Learning Using Both Supervised and Latent Shared Topics
(NIPS13 Topic Model Workshop, SDM 2014)

Active Multitask Learning with Annotator’s Rationale

Joint Modeling of Network and Documents using Gamma Process Poisson
Factorization (KDD SRS Workshop 2015, ECML 2015)
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Multitask Learning Using Both Supervised and Latent Shared Topics
(ECML 2013)
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Problem Setting

In training corpus each document/image belongs to a known class and has a set
of attributes (supervised topics).

aYahoo – Classes: carriage, centaur, bag, building, donkey, goat, jetski, monkey,
mug, statue, wolf, and zebra; Attributes: “has head”, “has wheel”, “has torso”
and 61 others

ACM Conf. – Classes: ICML, KDD, SIGIR, WWW, ISPD, DAC; Attributes:
keywords

Train models using words, supervised topics and class labels, and classify
completely unlabeled test data (no supervised topic or class label)
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Doubly Supervised Laten Dirichlet Allocation (DSLDA)
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Figure: DSLDA – Supervision at
both topic and category level Figure: Visual Representation

Variational EM used for inference and learning
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Multitask Learning Results: aYahoo

observation: multitask learning method with latent and supervised topics
performs better compared to other methods
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Active Multitask Learning Using Both Supervised and Latent Shared
Topics

(NIPS13 Topic Model Workshop, SDM 2014)
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Problem Setting

Figure: Visual Representation of Active Doubly Supervised Latent Dirichlet
Allocation (Act-DSLDA)

An active MTL framework that can use and query over both attributes and class
labels

Active learning measure: expected error reduction

Batch mode: variational EM, online SVM

Active selection mode: incremental EM, online SVM
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Active Multitask Learning Results: ACM Conf. Query
Distribution

observation: more category labels (e.g. KDD, ICML, ISPD) queried in the initial
phase, more attributes (keywords) queried later on
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Active Multitask Learning Using Annotators’ Rationale
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Problem Setting

An active multitask learning framework that can query over attributes, class
labels and their rationales
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Results for Active Multitask Learning with Rationale: ACM
Conf.

Figure: Query Distribution Figure: Learning Curve

observation: active learning method with rationales and supervised topics
performs much better compared to baselines



Background Concurrent Knowledge Transfer Continual Knowledge Transfer Conclusion Backup

Active Rationale Results: ACM Conf.

Figure: Query Distribution: ACM Conf.

observation: more labels with rationales queried in the initial phase
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Gamma Process Poisson Factorization for Joint Modeling of Network and
Documents

(ECML 2015)
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GPPF for Joint Network and Topic Modeling (J-GPPF)
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Characteristics of J-GPPF

Poisson factorization: Ydw ≥ Pois(È◊d , —w Í), samples latent counts
corresponding to non-zeros only

Joint Poisson factorization for imputing a graph

Hierarchy of Gamma priors for less sensitivity towards initialization

Non-parametric modeling with closed form inference updates
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Negative Binomial Distribution (NB)
Number of heads seen until r number of tails occurs while tossing a biased coin
with probability of head p (or, number of successes before r failures in
successive Bernoulli trials): m ≥ NB(r , p)
m ≥ Poisson(⁄), ⁄ ≥ Gam(r , p) – Gamma-Poisson Construction

m ≥
ÿ̧

t=1

ut , ut ≥ Log(p), ¸ ≥ Poisson(≠r log(1 ≠ p)) – Compound Poisson

Construction

Gamma-Poisson Construction Compound Poisson Construction

Figure: Constructions of Negative Binomial Distribution

Lemma
If m ≥ NB(r , p) is represented under its compound Poisson representation, then the
conditional posterior of ¸ given m and r is given by (¸|m, r) ≥ CRT(m, r), which can
be generated via ¸ =

qm
n=1 zn, zn ≥ Bernoulli(r/(n ≠ 1 + r)).
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Inference of Shape Parameter of Gamma Distribution

xi ≥ Pois(mi r2) ’i œ {1, 2, · · · , N}, r2 ≥ Gam(r1, 1/d),
r1 ≥ Gam(a, 1/b).

Lemma
If xi ≥ Pois(mi r2) ’i , r2 ≥ Gam(r1, 1/d), r1 ≥ Gam(a, 1/b), then
(r1|≠) ≥ Gam(a + ¸, 1/(b ≠ log(1 ≠ p))) where
(¸|{xi}i , r1) ≥ CRT(

q
i xi , r1), p =

q
i mi/(d +

q
i mi).
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J-GPPF Results: Real-world Data

Figure: (a) AUC on NIPS, (b) AUC on Twitter, (c) MAP on NIPS, (d) MAP on
Twitter
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Section Outline

Bayesian Combination of Classification and Clustering Ensembles (SDM 2013)

Nonparametric Dynamic Models

Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices
(AISTATS 2015)
Nonparametric Dynamic Relational Model (KDD MiLeTs Workshop 2015)
Nonparametric Dynamic Count Matrix Factorization
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Bayesian Combination of Classifier and Clustering Ensemble
(SDM 2013)
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Bayesian Combination of Classifier and Clustering
Ensemble

w

(1)
1 w

(1)
2 · · · w

(1)
r1

x1 2 3 · · · 1
x2 1 3 · · · 1
· · · · · · · · · · · · · · ·
xN 2 3 · · · 3

Table: From Classifiers

w

(2)
1 w

(2)
2 · · · w

(2)
r2

x1 4 5 · · · 4
x2 2 4 · · · 4
· · · · · · · · · · · · · · ·
xN 2 4 · · · 2

Table: From Clusterings

Prior Work – C3E: An Optimization Framework for Combining Ensembles of
Classifiers and Clusterers with Applications to Nontransductive Semisupervised
Learning and Transfer Learning (Acharya et. al., 2014), Appeared in ACM
Transaction on KDD
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Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices
(AISTATS 2015)
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Gamma Poisson Autoregressive Model

◊t ≥ Gam(◊(t≠1), 1/c), nt ≥ Pois(◊t).

Gamma-Gamma construction breaks conjugacy
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Inference in Gamma Poisson Autoregressive Model

◊(T≠2) ◊(T≠1)

n(T≠2) n(T≠1)

nT
Gamma

Poisson Poisson

NB

use Gamma-Poisson construction of NB

nT ≥ NB(◊(T≠1), 1/(c + 1)).
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Inference in Gamma Poisson Autoregressive Model

◊(T≠2) ◊(T≠1)

n(T≠2) n(T≠1)

nT

LT

Gamma

Poisson Poisson

NB

CRT CRT

nT ≥ NB(◊(T≠1), 1/(c + 1)). Augment LT ≥ CRT(nT , ◊(T≠1)).
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Inference in Gamma Poisson Autoregressive Model

◊(T≠2) ◊(T≠1) LT

n(T≠2) n(T≠1) nT

Gamma Poisson

Poisson Poisson SumLog

use compound poisson construction of NB

nT ≥
LTÿ

t=1

Log(1/(c + 1)), LT ≥ Poisson(◊(T≠1) log((c + 1)/c)).

Gamma-Poisson construction facilitates closed form Gibbs sampling.
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Gibbs Sampling in Gamma Poisson Autoregressive Model

Backward sampling of augmented variables from t = T to 1,

Lt ≥ CRT(nt , ◊(t≠1)).

Forward sampling of latent rates for t = 1 to T ,

◊t ≥ Gam(◊(t≠1) + nÕ
t , pt),

pt = 1/(1 + c ≠ log(p(t≠1))), nÕ
t = nt + L(t+1).
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Gamma Process Dynamic Poisson Factor Analysis
(GPDPFA)

nwt =
q

k nwtk , nwtk ≥ Pois(⁄k„wk◊tk).

⁄k ≥ Gam(r0/K , 1/c), „k ≥ Dir(÷1, · · · , ÷V ), ◊tk ≥ Gam(◊(t≠1)k , 1/ct).
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Results from Gamma Process Dynamic Poisson Factor Analysis

(a) (b) (c)
Figure: (a) Correlation of original vectors, (b) Correlation in the latent space, (c)
Correlation between original and derived vectors
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Nonparametric Dynamic Relational Model
(KDD MiLeTs Workshop 2015)
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Gamma Process Poisson Factorization for Dynamic
Network Modeling (D-NGPPF)

btnm = I{xtnmØ1}, xtnm =
q

k xtnmk , xtnmk ≥ Pois(rtk„nk„mk).

rtk ≥ Gam(r(t≠1)k/K , 1/c), c ≥ Gam(g0, 1/h0), r0k ≥ Gam(“0, 1/f0).

„k ≥
rN

n=1 Gam(a0, 1/cn), cn ≥ Gam(c0, 1/d0).
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Results from Dynamic Network Modeling: Synthetic Data

Figure: Results from dynamic model (left) and non-dynamic model (right)
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Results from Dynamic Network Modeling: Real-world Data

DSBM: Dynamic stochastic block model

N-GPPF: Gamma Process Poisson factorization for networks

MMSB: Mixed membership stochastic block model

Figure: AUC Results

Method D-NGPPF DSBM N-GPPF MMSB
Complexity O((S + N + T )K) O(N2KT ) O((S + N)KT ) O(N2KT )
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Nonparametric Dynamic Count Matrix Factorization



Background Concurrent Knowledge Transfer Continual Knowledge Transfer Conclusion Backup

Gamma Process Poisson Factorization for Dynamic Count
Matrix Factorization (D-CGPPF)

ytdw =
q

k ytdwk , ytdwk ≥ Pois(rtk◊dk—wk).

rtk ≥ Gam(r(t≠1)k/K , 1/c), ◊k ≥
DŸ

d=1

Gam(a0, 1/cd ), —k ≥
VŸ

w=1

Gam(b0, 1/cw ).
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Results from Dynamic Count Matrix Factorization
BPTF: Bayesian probabilistic tensor factorization
C-GPPF: Gamma Process Poisson factorization for modeling count matrix

Figure: Precision@top-50%

Figure: NDCG@top-50%

Method D-CGPPF BPTF C-GPPF
Complexity O((S + D + V + T )K ) O(DVK 2 + (D + V + T )K 3) O((S + D + V )KT )
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Conclusion and Future Works
Conclusion:

Future Works:

Dynamic Topic Model

Dynamic Tensor Factorization for analysis of EHR data

Distributed Poisson Factorization
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Questions?
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Baselines: Multitask learning experiments

Figure: MedLDA-OVA Figure: MedLDA-MTL

Figure: DSLDA-OSST Figure: DSLDA-NSLT
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Baselines: Active multitask learning experiments

Figure: Random MedLDA-MTL
(R-MedLDA-MTL)

Figure: Random DSLDA
(R-DSLDA)

Figure: Active MedLDA-OVA
(Act-MedLDA-OVA)

Figure: Active MedLDA-MTL
(Act-MedLDA-MTL)
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Active multitask learning results: ACM Conf. learning
curves

observation: active learning method with both latent and supervised topics
performs much better than other baselines which do not use active learning
and/or two di�erent sets of topics
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Gamma Process (GP)

Figure: Illustration of Gamma Process

The Gamma Process G ≥ �P(G0, c) is a completely random measure defined on
the product space R+ ◊ � with concentration parameter c and a finite and
continuous base measure G0 over a complete separable metric space �, such
that G(Ai ) ≥ Gam(G0(Ai ), 1/c) are independent gamma random variables for
disjoint partition {Ai }i of �.

G =
qŒ

k=1 rk”Êk , (rk , Êk) iid≥ r≠1e≠cr drG0(dÊ).

Finite approximation of �P:

G =
Kÿ

k=1

rk”Êk , (rk , Êk) iid≥ r (“0/K≠1)e≠cr drG0(dÊ), “0 = G0(Ê).
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Gamma Process (GP)

Figure: Illustration of Gamma Process

The Gamma Process G ≥ �P(G0, c) is a completely random measure defined on
the product space R+ ◊ � with concentration parameter c and a finite and
continuous base measure G0 over a complete separable metric space �, such
that G(Ai ) ≥ Gam(G0(Ai ), 1/c) are independent gamma random variables for
disjoint partition {Ai }i of �.

G =
qŒ

k=1 rk”Êk , (rk , Êk) iid≥ r≠1e≠cr drG0(dÊ).

Finite approximation of �P:

G =
Kÿ

k=1

rk”Êk , (rk , Êk) iid≥ r (“0/K≠1)e≠cr drG0(dÊ), “0 = G0(Ê).
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Gamma Process (GP)

Figure: Illustration of Gamma Process

The Gamma Process G ≥ �P(G0, c) is a completely random measure defined on
the product space R+ ◊ � with concentration parameter c and a finite and
continuous base measure G0 over a complete separable metric space �, such
that G(Ai ) ≥ Gam(G0(Ai ), 1/c) are independent gamma random variables for
disjoint partition {Ai }i of �.

G =
qŒ

k=1 rk”Êk , (rk , Êk) iid≥ r≠1e≠cr drG0(dÊ).

Finite approximation of �P:

G =
Kÿ

k=1

rk”Êk , (rk , Êk) iid≥ r (“0/K≠1)e≠cr drG0(dÊ), “0 = G0(Ê).
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Chinese Restaurant Table Distribution (CRT)
Chinese Restaurant Process: occupy an empty table w.p. “0 or occupy a table
w.p. proportional to the number of customers in that table
m : number of data points (number of customers)
K : number of distinct atoms (number of tables)

Pr(K = l |m, “0) = �(“0)
�(m + “0)

|s(m, l)|“ l
0, l = 0, 1, · · · , m,

where, s(m, l) is the Stirling number of the first kind

Figure: Illustration of Chinese Restaurant Table Distribution

Lemma
If m ≥ NB(r , p) is represented under its compound Poisson representation, then the
conditional posterior of ¸ given m and r is given by (¸|m, r) ≥ CRT(m, r), which can
be generated via ¸ =

qm
n=1 zn, zn ≥ Bernoulli(r/(n ≠ 1 + r)).
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GPPF for Joint Network and Topic Modeling (J-GPPF)

bnm = I{xnmØ1}, xnm ≥ Pois(
qK1

kB=1 flkB „nkB „mkB ), flkB ≥ Gam(“B/KB , 1/cB),

„kB ≥
rN

n=1 Gam(aB , 1/‡n).

ydw ≥ Pois(
qK2

kY =1 rkY ◊dkY —wkY + ‘
qK1

kB=1 flkB (
q

n Znd „nkB )ÂwkB ),

rkY ≥ Gam(“Y /KY , 1/cY ), ◊kY ≥
rD

d=1 Gam(aY , 1/Îd ),
—kY ≥

rV
w=1 Gam(›Y , 1/÷w ), ÂkB ≥

rV
w=1 Gam(›B , 1/’w ), ‘ ≥ Gam(f0, 1/g0).

“B ≥ Gam(eB , 1/fB), “Y ≥ Gam(eY , 1/fY ).



Background Concurrent Knowledge Transfer Continual Knowledge Transfer Conclusion Backup

GPPF for Joint Network and Topic Modeling (J-GPPF)
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GPPF for Joint Network and Topic Modeling (J-GPPF)
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BC3E: Problem Setting

w

(1)
1 w

(1)
2 · · · w

(1)
r1

x1 2 3 · · · 1
x2 1 3 · · · 1
· · · · · · · · · · · · · · ·
xN 2 3 · · · 3

Table: From Classifiers

w

(2)
1 w

(2)
2 · · · w

(2)
r2

x1 4 5 · · · 4
x2 2 4 · · · 4
· · · · · · · · · · · · · · ·
xN 2 4 · · · 2

Table: From Clusterings

N

r1 r2

◊y

z

w(2)w(1) —

”2µ, ‡2

r2 ◊ k

Figure: Graphical Model of BC

3

E
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Dataset from eBay Inc.

39 top level nodes called meta-categories and 20K+ bottom level nodes called leaf categories.
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Transfer learning on text data from eBay Inc.

Group ID |X | k-NN BGCM LWE C3E-Ideal BC3E
42 1299 64.90 73.78 (± 0.94) 76.86 (± 1.01) 83.99 (± 0.41) 83.68 (± 1.09)
84 611 63.67 69.23 (± 0.17) 75.24 (± 0.26) 81.18 (± 0.16) 76.27 (± 1.31)
86 2381 77.66 84.33 (± 2.74) 83.29 (± 1.02) 92.78 (± 0.35) 87.20 (± 0.91)
67 789 72.75 72.75 (± 0.07) 78.03 (± 0.72) 82.64 (± 0.82) 81.75 (± 1.37)
52 1076 76.95 77.01 (± 1.18) 77.49 (± 1.41) 88.38 (± 0.22) 85.04 (± 2.14)
99 827 84.04 85.12 (± 0.52) 86.90 (± 0.92) 91.54 (± 0.27) 91.17 (± 0.82)
48 3445 86.33 86.19 (± 0.25) 90.38 (± 1.03) 92.71 (± 0.31) 92.71 (± 1.16)
94 440 79.32 81.08 (± 0.73) 82.52 (± 0.83) 85.45 (± 0.09) 85.45 (± 0.79)
35 4907 82.41 82.10 (± 0.37) 85.08 (± 1.39) 88.16 (± 0.17) 88.22 (± 1.21)
45 1952 74.80 73.12 (± 0.81) 73.64 (± 1.68) 84.32 (± 0.23) 77.97 (± 0.47)

Table: Performance of BC

3

E on text classification data — Avg.
Accuracies ±(Standard Deviations).
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