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Motivation & Theme

@ Motivation

o Labeled data is sparse in applications like document
categorization and object recognition.
o Distribution of data changes across domains or over time.

@ Theme

o Shared low dimensional space for transferring information
across domains
o Careful adaptation of the model parameters to fit new data
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Transfer Learning

@ Transfer Learning

o Concurrent knowledge transfer (or multitask learning):
multiple domains learnt simultaneously

o Continual knowledge transfer (or sequential knowledge
transfer): models learnt in one domain are carefully adapted to
other domains
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Active Learning

@ only the most informative examples are queried from the unlabeled pool
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Figure: Illustration of Active Learning (Pic Courtesy: Burr Settles)
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Section Outline

Multitask Active Multitask - .
Learning using Learning using II\-chve'Mulllt.a SK
Both Supervised Both Supervised g B e:,:::;g;f‘;-'g
and Shared and Shared Latent Rationale
Latent Topics jonts

Joint Gamma
Process Poisson
Factorization of

Network and

Documents

@ Multitask Learning Using Both Supervised and Latent Shared Topics (ECML
2013)

@ Active Multitask Learning Using Both Supervised and Latent Shared Topics
(NIPS13 Topic Model Workshop, SDM 2014)

@ Active Multitask Learning with Annotator's Rationale

@ Joint Modeling of Network and Documents using Gamma Process Poisson
Factorization (KDD SRS Workshop 2015, ECML 2015)
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Multitask Learning Using Both Supervised and Latent Shared Topics
(ECML 2013)
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Problem Setting

@ |In training corpus each document/image belongs to a known class and has a set
of attributes (supervised topics).

@ aYahoo — Classes: carriage, centaur, bag, building, donkey, goat, jetski, monkey,
mug, statue, wolf, and zebra; Attributes: “has head”, “has wheel”, “has torso”
and 61 others

@ ACM Conf. — Classes: ICML, KDD, SIGIR, WWW, ISPD, DAC; Attributes:
keywords

@ Train models using words, supervised topics and class labels, and classify
completely unlabeled test data (no supervised topic or class label)

Attributes:
B “has wheel?” Yes.
4 ® “has wood?” Yes.
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Doubly Supervised Laten Dirichlet Allocation (DSLDA)

S, oc Tasks
‘ o Latent features
M, K + Attributes
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r 4 J O @ ) Features

Figure: DSLDA - Supervision at
both topic and category level Figure: Visual Representation

@ Variational EM used for inference and learning
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Multitask Learning Results: aYahoo
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@ observation: multitask learning method with latent and supervised topics
performs better compared to other methods
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Active Multitask Learning Using Both Supervised and Latent Shared
Topics
(NIPS13 Topic Model Workshop, SDM 2014)
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Problem Setting

Tasks
(active query)

Latent
features

Attributes
(active query)

Figure: Visual Representation of Active Doubly Supervised Latent Dirichlet
Allocation (Act-DSLDA)

@ An active MTL framework that can use and query over both attributes and class
labels

@ Active learning measure: expected error reduction
@ Batch mode: variational EM, online SVM

@ Active selection mode: incremental EM, online SVM
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Active Multitask Learning Results: ACM Conf. Query

Distribution
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@ observation: more category labels (e.g. KDD, ICML, ISPD) queried in the initial
phase, more attributes (keywords) queried later on
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Active Multitask Learning Using Annotators’ Rationale J
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Problem Setting

@ An active multitask learning framework that can query over attributes, class
labels and their rationales

Annotation for Rationale

Instructic

« Please click and drag on the image within the
black border to select a region (as a bounding
box) that you belicve accounts for the
following label:

"Snout"

« To deselect a bounding box, just click once
outside the bounding box on the image.

You can specify only onc region. If there arc
‘multiple regions, please sclect one randomly.
Just press the submit button if you don't find
any relevant region or leave a feedback.
« Annotate as many images as possible. :-)

Position of the bounding box:

X "o Xy 162 Width: 11
Yy a9 Yar 404 Height: s
Any feedback? (optional)

Please click here if you don't want to continue
further.
Submit Your Response
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Results for Active Multitask Learning with Rationale: ACM

Conf.
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Figure: Query Distribution Figure: Learning Curve

@ observation: active learning method with rationales and supervised topics
performs much better compared to baselines
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Active Rationale Results: ACM Co

[ Only Class Labels M Class Labels with Rationale
i Only Supervised Topics M Supervised Topics with Rationale

30
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Figure: Query Distribution: ACM Conf.

@ observation: more labels with rationales queried in the initial phase
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Gamma Process Poisson Factorization for Joint Modeling of Network and
Documents
(ECML 2015)
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GPPF for Joint Network and Topic Modeling (J-GPPF)
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Characteristics of J-GPPF

@ Poisson factorization: Yy, ~ Pois({f4,8,)), samples latent counts
corresponding to non-zeros only

@ Joint Poisson factorization for imputing a graph
@ Hierarchy of Gamma priors for less sensitivity towards initialization

Non-parametric modeling with closed form inference updates
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Negative Binomial Distribution (NB)

@ Number of heads seen until r number of tails occurs while tossing a biased coin
with probability of head p (or, number of successes before r failures in
successive Bernoulli trials): m ~ NB(r, p)

@ m ~ Poisson(A), A ~ Gam(r, p) — Gamma-Poisson Construction
4
@ m~ Z ut, ur ~ Log(p), € ~ Poisson(—rlog(1 — p)) — Compound Poisson

t=1
Construction

() (D)
00 Q%’

Gamma-Poisson Construction Compound Poisson Construction

Figure: Constructions of Negative Binomial Distribution

If m ~ NB(r, p) is represented under its compound Poisson representation, then the
conditional posterior of £ given m and r is given by (¢|m,r) ~ CRT(m, r), which can

be generated via ¢ = Zm Zn, zn ~ Bernoulli(r/(n — 1+ r)).

n=1
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Inference of Shape Parameter of Gamma Distribution

o x; ~ Pois(m;r) Vi€ {1,2,--- | N}, rn ~ Gam(r,1/d),
rp ~ Gam(a, 1/b).

If x; ~ Pois(m;ry) Yi, ry ~ Gam(ry,1/d), n ~ Gam(a,1/b), then
(rn|=) ~ Gam(a+£,1/(b — log(1 — p))) where
(xi}isn) ~ CRT(Y xi, 1), p = 32, mi/(d + 3, my).
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J-GPPF Results: Real-world Data
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Figure: (a) AUC on NIPS, (b) AUC on Twitter, (c) MAP on NIPS, (d) MAP on
Twitter
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Section Outline

Bayesian
Combination of
Classifier and
Clustering
Ensemble

Nonparametric Nonparametric Nonparametric
Po_lsst}n Poisson Poisson
Factorization for Factorization for Factorization for
Dynamic Count Dynamic Dynamic Count
Vectors Networks Matrices

@ Bayesian Combination of Classification and Clustering Ensembles (SDM 2013)

@ Nonparametric Dynamic Models

@ Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices
(AISTATS 2015)

@ Nonparametric Dynamic Relational Model (KDD MilLeTs Workshop 2015)

@ Nonparametric Dynamic Count Matrix Factorization
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Bayesian Combination of Classifier and Clustering Ensemble
(SDM 2013)
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Bayesian Combination of Classifier and Clustering

Ensemble

Target Data

Classifier(s)
(mew unlabeled data {x,.})

Class Labels

Cluster
Ensemble

Cluster Labels

[Foo —

2
wV ng) wg) wg ) wg V. WS )
X1 2 3 1 X1 4 5 4
X2 1 3 1 X2 2 4 4
XN 2 3 3 XN 2 4 2

Table: From Classifiers Table: From Clusterings

@ Prior Work — C3E: An Optimization Framework for Combining Ensembles of
Classifiers and Clusterers with Applications to Nontransductive Semisupervised
Learning and Transfer Learning (Acharya et. al., 2014), Appeared in ACM
Transaction on KDD
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Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices
(AISTATS 2015)
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Gamma Poisson Autoregressive Model

Gams fo ) G

br—2) (T-1) o7

* * é Poisson Poisson Poisson

@ 0: ~ Gam(0(;_1),1/c), ne ~ Pois(6:).

@ Gamma-Gamma construction breaks conjugacy
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Inference in Gamma Poisson Autoregressive Model

O(T—2)

Gamma 9/-\ NB °
(T—1)

Poisson Poisson

@ use Gamma-Poisson construction of NB

*] nr ~ NB(G(T,].), 1/(C + 1))
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Inference in Gamma Poisson Autoregressive Model

Poisson

@ n7 ~ NB(¢(7_1),1/(c +1)). Augment LT ~ CRT(nT,0(7_1))
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Inference in Gamma Poisson Autoregressive Model

Poisson

Gamma
O(r—1) Lt

O(r—2)

Poisson Poisson SumlLog

@ use compound poisson construction of NB

Lt
@ nr~ Z Log(1/(c +1)), Lt ~ Poisson(8(7_1) log((c + 1)/c)).
t=1

@ Gamma-Poisson construction facilitates closed form Gibbs sampling.
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Gibbs Sampling in Gamma Poisson Autoregressive Model

Backward sampling of augmented variables from t = T to 1,
Lt ~ CRT(nt, 9(,_»,1))
Forward sampling of latent rates for t =1to T,

0: ~ Gam(O(¢_1y + ny, pt),
pr = 1/(1+ c —log(p(t-1))); ny = ne + Lity1)-
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Gamma Process Dynamic Poisson Factor Analysis

(GPDPFA)

N (1+1) N (t+2)

U U U
q) A\ et (I) A\Ie(zﬂ) (I) A\IQ(HZ)

) > >
K K K
9: 0(r+1) ! 9(x+2)
KI Gam(6,,1/¢) X I Gam(@.,11) : I

@ nwt = Zk Nwtks Nwtk ™~ POiS()‘k {}tk)-

@ Ny~ Gam(rO/K’ 1/C)v ~ Dir(ﬁl’ T 777V)r Ok ~ Gam(e(t—l)kv 1/Ct)'
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Results from Gamma Process Dynamic Poisson Factor Analysis

()

Figure: (a) Correlation of original vectors, (b) Correlation in the latent space, (c)
Correlation between original and derived vectors

Data Model MP MR PP

STU | GP-DPFA | 0.223040.0009 | 0.1976+0.0004 | 0.1891+0.0028
DRFM 0.2171+0.0025 | 0.197840.0014 | 0.177340.0104
Baseline 0.10184+0.0216 | 0.132940.0173 | 0.061240.0328
Conf. | GP-DPFA | 0.3020+0.0004 | 0.2681+0.0003 | 0.2412:0.0004
DRFM | 0.3023+0.0005 | 0.2566+0.0006 | 0.2410+0.0006
Baseline 0.124140.0194 | 0.110740.0131 | 0.101440.0370
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Nonparametric Dynamic Relational Model
(KDD MiLeTs Workshop 2015)
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Gamma Process Poisson Factorization for Dynamic

Network Modeling (D-NGPPF)

-
N
U U U

q)r\ @7 \ @7 \ @7
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— > >
K

K K
n Tty | Tten)
I Gam(r,,1/c) . I Gam(r,,,,),1/¢) . I
@ bipm = I{th,,,Zl}v Xtnm = Zk Xtnmk > Xtnmk ™~ POiS(rtk )

@ ry ~ Gam(r;_1)/K,1/c), c ~ Gam(go,1/ho), rox ~ Gam(~o,1/f).

° ~ HnN:1 Gam(ag,1/cn), cn ~ Gam(cp, 1/dp).
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Results from Dynamic Network Modeling: Synthetic Data

Figure: Results from dynamic model (left) and non-dynamic model (right)



Results from Dynamic Network Modeling: Real-world Data

Continual Knowledge Transfer

000000000000 e000

@ DSBM: Dynamic stochastic block model

@ N-GPPF: Gamma Process Poisson factorization for networks

MMSB: Mixed membership stochastic block model

Dataset D-NGPPF DSBM N-GPPF MMSB
NIPS 0.797 +£0.016 | 0.780 £ 0.010 | 0.766 £ 0.012 | 0.740 % 0.009
DBLP | 0.836 +£0.013 | 0.810 £0.013 | 0.756 4= 0.020 | 0.749 £ 0.014
Infocom | 0.907 £ 0.008 | 0.901 £ 0.006 | 0.856 £ 0.011 | 0.831 4 0.006
Figure: AUC Results
Method D-NGPPF DSBM N-GPPF MMSB
Complexity O((S+ N+ T)K) O(N?KT) O((S+ N)KT) O(N?KT)
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Nonparametric Dynamic Count Matrix Factorization J
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Gamma Process Poisson Factorization for Dynamic Count

Matrix Factorization (D-CGPPF)

..
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I Gam(r,,1/c) . I Gam(r,,,,,,1/¢) . I

® Yidw = D, Yedwk: Yedwk ~ Pois(re i 0u).

D v
@ ry ~ Gam(r_1)k/K,1/c), 01 ~ HGam(ao, 1/cq), By ~ H Gam(bo, 1/cw).
d=1 w=1
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Results from Dynamic Count Matrix Factorization

@ BPTF: Bayesian probabilistic tensor factorization

@ C-GPPF: Gamma Process Poisson factorization for modeling count matrix

Dataset D-CGPPF BPTF C-GPPF
Movielens100K | 0.597 £ 0.023 | 0.512 £ 0.010 | 0.238 £ 0.047
MovielensIM | 0.641 £ 0.010 | 0.632 £ 0.008 | 0.521 £ 0.019
Netflix 0.490 £+ 0.008 | 0.418 £ 0.002 | 0.251 £ 0.039

Figure: Precision@top-50%

Dataset D-CGPPF BPTF C-GPPF
Movielens100K | 0.714 +0.016 | 0.703 £ 0.010 | 0.455 & 0.012
MovielensIM | 0.721 £0.013 | 0.725 +0.013 | 0.585 & 0.020
Netflix 0.613 £0.007 | 0.59240.011 | 0.451 £0.018

Figure: NDCG®@top-50%

Method D-CGPPF BPTF C-GPPF
Complexity O((S+ D+ V+ T)K) O(DVKZ+ (D + V + T)K3) O((S + D+ V)KT)
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Conclusion and Future Works

Conclusion:

Multitask Active Multitask
Learning using Ml Learning using
Both Supervised , 4 Both Supervised
and Shared and Shared Latent
Latent Topics Topics

Active Multitask
Learning using

Annotators’
Rationale

Joint Gamma
Process Poisson
Factorization of Concurrent

Network and

Documents

Combination of
Classifier and Continual
Clustering
Ensemble
Nonpa_rametric Nonparametric Nonparametric
P Poisson Poisson
4 Factorization for Factorization for
Dynamic Count ’ Dynamic
Vectors

Dynamic Count
Networks Matrices

Future Works:

@ Dynamic Topic Model

@ Dynamic Tensor Factorization for analysis of EHR data

@ Distributed Poisson Factorization
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Baselines: Multitask learning experiments
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Baselines: Active multitask learning experiments
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Active multitask learning results: ACM Conf. learning

curves

——Act-NPDSLDA
——Act-DSLDA
——Act-DSLDA-OSST : . 4
——Act-DSLDA-NSLT

Act-MedLDA-MTL
—+— Act-MedLDA-OVA
-+-R-MedLDA-MTL
~+-R-DSLDA

S
=]

classification accuracy (in %)
@
3

—F—FEF 3y
50 A
T
40 =
20 i | \ | i i |
Q 100 200 300 400 500 600 700

number of labels queried

@ observation: active learning method with both latent and supervised topics
performs much better than other baselines which do not use active learning
and/or two different sets of topics
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Gamma Process (GP)

G(A) ~ Gam(Gy(4)).1/¢)
G(A,) ~ Gam(Gy(A,),1/¢)

G(A;)~ Gam(G,(A,),1/¢)

G(A,) ~Gam(Gy(A,),1/¢)
Figure: lllustration of Gamma Process

@ The Gamma Process G ~ 'P(Gy, c) is a completely random measure defined on
the product space Ry x € with concentration parameter ¢ and a finite and
continuous base measure Gy over a complete separable metric space €2, such
that G(A;) ~ Gam(Gy(A;),1/c) are independent gamma random variables for
disjoint partition {A;}; of Q.
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Gamma Process (GP)

G(A) ~ Gam(Gy(4)).1/¢)
G(A,) ~ Gam(Gy(A,),1/¢)

G(A;)~ Gam(G,(A,),1/¢)

G(A,) ~Gam(Gy(A,),1/¢)
Figure: lllustration of Gamma Process

@ The Gamma Process G ~ 'P(Gy, c) is a completely random measure defined on
the product space Ry x € with concentration parameter ¢ and a finite and
continuous base measure Gy over a complete separable metric space €2, such
that G(A;) ~ Gam(Gy(A;),1/c) are independent gamma random variables for
disjoint partition {A;}; of Q.

o G= Z:‘;l 0wy > (Fis W) i r~le="drGo(dw).
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Gamma Process (GP)

G(A) ~ Gam(G,(A,),1/¢)
G(A,) ~ Gam(Gy(A,),1/¢)

G(A;)~ Gam(G,(A,),1/¢)

G(A,) ~Gam(Gy(A,),1/¢)
Figure: lllustration of Gamma Process

@ The Gamma Process G ~ 'P(Gy, c) is a completely random measure defined on
the product space Ry x € with concentration parameter ¢ and a finite and
continuous base measure Gy over a complete separable metric space €2, such
that G(A;) ~ Gam(Gy(A;),1/c) are independent gamma random variables for
disjoint partition {A;}; of Q.

o G= Z:‘;l 0wy > (Fis W) i r~le= " drGo(dw).
@ Finite approximation of I'P:

K

G= Z B> (P, W) 7 P00/ K1) =" gr Gy (duw), Yo = Go(w).
=
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Chinese Restaurant Table Distribution (CRT)

@ Chinese Restaurant Process: occupy an empty table w.p. 7 or occupy a table
w.p. proportional to the number of customers in that table

@ m: number of data points (number of customers)
@ K : number of distinct atoms (number of tables)
(7o) |
Pr(K = I|m, = ————|s(m,/ ,1=0,1,--- 'm
( Im. 7o) F(m +%)\ (m, Do .
where, s(m, /) is the Stirling number of the first kind

i

Figure: Illustration of Chinese Restaurant Table Distribution

If m ~ NB(r, p) is represented under its compound Poisson representation, then the
conditional posterior of £ given m and r is given by (¢|m,r) ~ CRT(m, r), which can

m
=i

be generated via { = En Zp, zp ~ Bernoulli(r/(n — 1+ r)).
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GPPF for Joint Network and Topic Modeling (J-GPPF)

. K;
Q@ bym = /{XanI},Xnm ~ POIS(Z‘(;:1 Pkg ), Pkg ™~ Gam('yB/KB, 1/63),
N
~ Hn=1 Gam(ag,1/on).
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GPPF for Joint Network and Topic Modeling (J-GPPF)

. K;
Q@ bym = /{XanI},Xnm ~ POIS(Z‘(;:1 Pkg ), Pkg ™~ Gam('yB/KB, 1/63),
N
~ Hn=1 Gam(ag,1/on).

K . K
® Yaw ~ POIS(Zkizl Tky Odky Buky + € Zk;:l Pre (D, Zad Vi) kg ),

(*] Ty ~ Gam('yy/Ky, l/Cy), Hky ~ H5:1 Gam(ay, l/Cd),
1%
By ~ szl Gam(&y, 1/nw), ¥y, ~ H::I Gam(ég,1/¢w), € ~ Gam(fy,1/g0).
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GPPF for Joint Network and Topic Modeling (J-GPPF)

. K
@ bym = /{XanI},Xnm ~ POIS(Z‘(;:1 Pkg ), Pkg ™~ Gam('yB/KB, 1/63),
N
~ Hn=1 Gam(ag,1/on).

K . K
® yaw ~ POIS(Zkizl Ty Oy By + € Zk;:l Pre (D, Zad Vi) kg ),

@ 1, ~ Gam(yy/Ky,1/cy), O, ~ H5:1 Gam(ay, 1/<q),
V
By ~ szl Gam(&y, 1/nw), ¥y, ~ H::I Gam(ég,1/¢w), € ~ Gam(fy,1/g0).

@ g ~ Gam(eg,1/fg), vy ~ Gam(ey,1/fy).



Problem Setting
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T T T 2) @) )
Wg ) Wg ) Wsl) wy wy W
X1 2 3 1 X1 4 5 4
X2 1 3 1 X2 2 4 2
Xy 2 3 3 XN 2 4 2

Table: From Classifiers Table: From Clusterings

uf’
O,

g

Graphical Model of BC3E

5

o OOt

n &) nx

Figure:



Dataset from eBay Inc.
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39 top level nodes called meta-categories and 20K+ bottom level nodes called leaf categories.

Give us a title for your listing (include brand, size, color, material, etc.)

watches for men

The products shown are from this category:

Jewelry & Watches > Watches > Wristwatches [ Change]
Create your listing from one of these similar items

Emporio Armani Sportivo AR5905 Wrist
Watch for Men

Sell one like this

Invicta Subaqua 6564 Wrist Watch for Men

Sell one like this

Switch to advanced tool | Help

Find this

Caslo Edifice EF-550 Wrist Watch for Men

Sell one like this

Casio AQ-160 Wrist Watch for Men

Sell one like this N



Backup
00000000e

Transfer learning on text data from eBay Inc.

Group ID | |X| | k-NN BGCM LWE C3E-Ideal BC3E

2 1299 | 64.90 | 73.78 (£ 0.94) | 76.86 (& 1.01) | 83.99 (£ 0.41) | 83.68 (& 1.09)
84 611 | 63.67 | 69.23 (£ 0.17) | 75.24 (£ 0.26) | 81.18 (£ 0.16) | 76.27 (£ 1.31)
86 2381 | 77.66 | 84.33 (£ 2.74) | 83.29 (£ 1.02) | 92.78 (£ 0.35) | 87.20 (£ 0.91)
67 780 | 72.75 | 72.75 (£ 0.07) | 78.03 (£ 0.72) | 82.64 (£ 0.82) | 81.75 (£ 1.37)
52 1076 | 76.95 | 77.01 (£ 1.18) | 77.49 (£ 1.41) | 88.38 (X 0.22) | 85.04 (& 2.14)
99 827 | 84.04 | 85.12 (£ 0.52) | 86.90 (£ 0.92) | 91.54 (£ 0.27) | 91.17 (£ 0.82)
48 3445 | 86.33 | 86.10 (£ 0.25) | 90.38 (£ 1.03) | 92.71 (£ 0.31) | 92.71 (£ 1.16)
94 440 | 79.32 | 81.08 (£ 0.73) | 8252 (£ 0.83) | 85.45 (£ 0.09) | 85.45 (£ 0.79)
35 4907 | 82.41 | 82.10 (£ 0.37) | 85.08 (£ 1.39) | 88.16 (£ 0.17) | 88.22 (£ 1.21)
45 1052 | 74.80 | 73.12 (£ 0.81) | 73.64 (£ 1.68) | 84.32 (£ 0.23) | 77.97 (& 0.47)

Table: Performance of BC3E on text classification data — Avg.
Accuracies £(Standard Deviations).
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