Dialog Policy Learning for Joint Clarification and Active Learning Queries

Aishwarya Padmakumar2, Raymond J. Mooney1

1Department of Computer Science, The University of Texas at Austin
2Amazon
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Learn a dialog policy for a task oriented dialog system that trades off

• Model Improvement
• Clarification and task completion
Outline

• Introduction
• Task Setup
• User Simulator
• Dialog Policy Model
• Experiments
Outline

- Introduction
- Task Setup
- User Simulator
- Dialog Policy Model
- Experiments
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Learn a dialog policy for a task oriented dialog system that trades off

- Model Improvement
- Clarification and task completion
Task Oriented Dialog Systems

A Polka Dot Chiffon Blouse

What can I help you find?

Yes

Would you like one which is black?

Yes

Is this what you were searching for?
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Learn a dialog policy for a task oriented dialog system that trades off

- Model Improvement
- Clarification and task completion
A Polka Dot Chiffon Blouse

What can I help you find?

Would you like one which is black?

Yes

Is this what you were searching for?

Yes
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Learn a dialog policy for a task oriented dialog system that trades off

• Model Improvement
• Clarification and task completion
Task Oriented Dialog Systems

What can I help you find?

A Polka Dot Chiffon Blouse

Black?
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Learn a dialog policy for a task oriented dialog system that trades off

- **Model Improvement**
- Clarification and task completion
Standard
Supervised Learning Pipeline

Collect Sample Dialogs

Train Model

Test Model
Handling a Changing Inventory

Dresses

Tops
Handling a Changing Inventory
Opportunistic Active Learning
(Thomason et al., CoRL 2017)

Bring the blue mug from Alice’s office

Would you use the word “blue” to refer to this object?

Yes
Opportunistic Active Learning

• A framework for incorporating active learning queries into test time interactions.
• Agent asks locally convenient questions during an interactive task to collect labeled examples for supervised learning.
• Questions may not be useful for the current interaction but expected to help future tasks.
Opportunistic Active Learning

Bring the **blue mug** from Alice’s office

Would you use the word “**tall**” to refer to this object?

Yes
Learning a Policy for Opportunistic Active Learning

Padmakumar et. al., EMNLP 2018

Learns to trade-off between executing an interpreted user command and using opportunistic active learning to improve the underlying models used to understand the command.
Previous Work

Bring the blue mug from Alice’s office

`bring(👨‍❤️‍👨, 3502)`

Heavy?

Tall?
This Work

What can I help you find?

A Polka Dot Chiffon Blouse

Sleeveless?

Chiffon?
Dialog Policy Learning for Joint Clarification and Active Learning Queries
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Learn a dialog policy for a task oriented dialog system that trades off

- **Model Improvement**: Model improvement using opportunistic active learning to better understand future commands
- **Clarification and task completion**: Obtain additional information needed; clarify the completed command; execute a system action
Outline

• Introduction
• Task Setup
• User Simulator
• Dialog Policy Model
• Experiments
Task Setup

• Motivated by an online shopping application
• Use clarifications to help refine search queries
• Use active learning to improve the model that retrieves products based on search queries.
Attribute Based Clarification

- Attribute - any property that can be used to describe a product - categories, colors, shapes, domain specific properties.
- A clarification action corresponds to selecting an attribute.
- Provide ground truth answers to questions for training in simulation.
Outline

• Introduction
• Task Setup
• User Simulator
• Dialog Policy Model
• Experiments
Dataset

- We simulate dialogs using the iMaterialist Fashion Attribute dataset.
- Images have associated product titles and are annotated with binary labels for 228 attributes.
- Attributes: Dress, Shirt, Red, Blue, V-Neck, Pleats, ...
Sample Interaction

Active Training Set

Active Test Set
Sample Interaction

Active Training Set

Active Test Set

Target Image
Sample Interaction

What can I help you find?

A Polka Dot Chiffon Blouse

Simulated User Query: Product title of target image
Sample Interaction

Possible System Actions

• Clarification
• Label Query
• Example Query
• Guess
Sample Interaction

Possible System Actions

• Clarification
• Label Query
• Example Query
• Guess
Sample Interaction

What can I help you find?

A Polka Dot Chiffon Blouse

Would you like one which is black?

Yes

Clarification: Does selected attribute apply to target image?
Sample Interaction

What can I help you find?

A Polka Dot Chiffon Blouse

Would you like one which is **black**?

Yes

Yes/No Response: From attribute labels of target image
Sample Interaction

Possible System Actions

• Clarification
• Label Query
• Example Query
• Guess
Sample Interaction

Active Training Set

Select image for label query

Active Test Set
Sample Interaction

What can I help you find? A Polka Dot Chiffon Blouse

Would you describe this as sleeveless? Yes

Label Query: Does selected attribute apply to selected image?
Sample Interaction

A Polka Dot Chiffon Blouse

What can I help you find?

Would you describe this as sleeveless?

Yes

Yes/No Response: From attribute labels of selected image
Sample Interaction

Possible System Actions

• Clarification
• Label Query
• Example Query
• Guess
Sample Interaction

What can I help you find?

A Polka Dot Chiffon Blouse

Can you show me something you would describe as chiffon?

Example Query: Request positive example for selected attribute
Sample Interaction

What can I help you find?

A Polka Dot Chiffon Blouse

Can you show me something you would describe as chiffon?

Example Image: From active training set, selected using attribute labels
Sample Interaction

Active Training Set

Active learning queries reference images in the active training set so that the system is forced to learn generalizable classifiers.

Active Test Set
Sample Interaction

Possible System Actions

• Clarification
• Label Query
• Example Query
• Guess
Sample Interaction

What can I help you find?

A Polka Dot Chiffon Blouse

Is this what you were searching for?

Yes

Guess: Selects image from active test set
Sample Interaction

What can I help you find?

A Polka Dot Chiffon Blouse

Is this what you were searching for? 🙋

Yes

0/1 Success: Compare guessed image with target image
What can I help you find?

A Polka Dot Chiffon Blouse

Would you like one which is black?

Yes

Would you describe this as sleeveless?

Yes

Can you show me something you would describe as chiffon?

Yes

Is this what you were searching for?
System Goal

• Maximize fraction of successful dialogs.
• Keep dialogs as short as possible.
Outline

• Introduction
• Task Setup
• User Simulator
• Dialog Policy Model
• Experiments
Visual Attribute Classifier

Inception-V3 → FC Layer → $\phi(i)$ → $\psi(i)$ → $\psi'(i)$ → Temperature Correction → Elementwise Sigmoid → $p'(i)$

Elementwise Sigmoid → $p(i)$
Visual Attribute Classifier
Visual Attribute Classifier

Probability of attributes being positive
• Imbalanced dataset: Most attributes are negative for most images
• Two branch architecture to up-weight positive examples - more effective than standard up-weighting
Visual Attribute Classifier
Visual Attribute Classifier
Visual Attribute Classifier
Visual Attribute Classifier

\[L = (1 - \lambda) \sum_{i} y_i \log p(i) + (1 - y_i) \log (1 - p(i)) + \lambda \sum_{i} y_i \log p'(i) \]

Cross Entropy Loss Over All Examples
Visual Attribute Classifier
Visual Attribute Classifier

\[L = (1 - \lambda) \sum y_i \log p(i) + (1 - y_i) \log(1 - p(i)) + \lambda \sum y_i \log p'(i) \]

Cross Entropy Loss Over Positive Labels
Grounding Model

A Polka Dot Chiffon Blouse \Rightarrow \{Polka Dot, Chiffon, Blouse\}
Grounding Model

A Polka Dot Chiffon Blouse \rightarrow \{Polka Dot, Chiffon, Blouse\}

Belief: $b(i) = \prod_{w \in W_d} p_w(i)$

Attributes Mentioned in Description
Grounding Model

A Polka Dot Chiffon Blouse \rightarrow \{Polka Dot, Chiffon, Blouse\}

Belief:\[b(i) = \prod_{w \in W_d} p_w(i) \]

- Classifier probability that attribute w is positive for image i
- w-th value in classifier output for image i
Grounding Model

Agent: Would you like one which is black?
User: Yes

Belief: \[b(i) = \prod_{w \in W_d} p_w(i) \prod_{w \in W_p} p_w(i) \]

Clarifications that get the answer “Yes”
Grounding Model

Agent: Would you like one which is black?
User: No

Belief: \(b(i) = \prod_{w \in W_d} p_w(i) \prod_{w \in W_p} p_w(i) \prod_{w \in W_n} (1 - p_w(i)) \)

Clarifications that get the answer “No”
Grounding Model

Best guess: Image in active test set with maximum belief $b(i)$
Dialog as MDP

Reward: Max correct guesses with short dialogs

State:
- Target description
- Active train and test objects
- Agent’s perceptual classifiers

Action:
- Clarifications
- Label queries
- Example queries
- Guess

Dialog Agent

User
Policy Learning

- Hierarchical Dialog Policy -
 - Clarification policy - chooses best clarification
 - Active learning policy - chooses best active learning query
 - Decision Policy - chooses between guess, best clarification and best active learning query
- Featurize state-action pairs
- Q-Learning and A3C for policy learning
Policy Features

- Clarification Policy Features - Metrics about current beliefs, information gain estimated from classifier probabilities
- Active Learning Policy Features - Margin, Fraction of previous uses and successes
- Decision Policy Features - Metrics about current beliefs, information gain, margin, dialog length
Outline

• Introduction
• Task Setup
• User Simulator
• Dialog Policy Model
• Experiments
Static Baseline

• Clarification: Choose query with maximum estimated information gain
• Active Learning: Uncertainty Sampling
• Decision Policy
 – Fixed dialog length
 – Dialog split equally between clarification and active learning
 – Heuristic checks to ensure usefulness of queries
Experiment Phases

- Classifier Initialization - Train classifier using paired images and labels
- Policy Initialization - Collect experience using the baseline to initialize the policy.
- Policy Training - Improve the policy from on-policy experience.
- Policy Testing - Policy weights are fixed, and we run a new set of interactions, reset classifiers to the state at the end of classifier initialization, over an independent test set containing novel attributes.
Results

<table>
<thead>
<tr>
<th>Decision Type</th>
<th>Policy Type</th>
<th>Clarification Policy Type</th>
<th>Active Policy Type</th>
<th>Fraction of Successful Dialogs</th>
<th>Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>A3C</td>
<td>0.33</td>
<td>9.40</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Static</td>
<td>0.17</td>
<td>20.00</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Decision Type</th>
<th>Policy Type</th>
<th>Clarification Policy Type</th>
<th>Active Policy Type</th>
<th>Learning Policy Type</th>
<th>Fraction of Successful Dialogs</th>
<th>Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>A3C</td>
<td></td>
<td></td>
<td>0.33</td>
<td>9.40</td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Static</td>
<td></td>
<td></td>
<td>0.17</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Fully learned policy is significantly more successful than the baseline, while also having significantly shorter dialogs on average.
Results

<table>
<thead>
<tr>
<th>Decision Type</th>
<th>Policy Type</th>
<th>Clarification Policy Type</th>
<th>Active Learning Policy Type</th>
<th>Fraction of Successful Dialogs</th>
<th>Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>A3C</td>
<td>0.33</td>
<td>9.40</td>
<td></td>
</tr>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>Static</td>
<td>0.15</td>
<td>14.16</td>
<td></td>
</tr>
<tr>
<td>Q-Learning</td>
<td>Static</td>
<td>A3C</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Static</td>
<td>0.17</td>
<td>20.00</td>
<td></td>
</tr>
</tbody>
</table>

If we replace either the clarification or active learning policies with static policies, we find that the success rate drops considerably.
If we replace only the decision policy with a static policy, we find that it remains more successful than the baseline but is unable to shorten dialogs.
Action Types - Learned Policy

![Chart showing action types and learned policy](chart.png)

- *Clarifications*
- *Active Learning Queries*
Utility of Clarifications

- Red curve: Success rate if the system just guesses based on the initial user request without any further interaction
- Blue curve: Actual success rate at the end of dialog including clarifications
- Each data point corresponds to one test batch after an additional 100 dialogs.
Utility of Clarifications

- Classifier updates happen at the end of each batch of dialogs.
- First point on each curve corresponds to no active learning.
- Subsequent points correspond to increasing amounts of completed active learning.
Utility of Clarifications

Fully static policy
- Not much difference between the curves.
 - Clarification does not improve the success rate.
- Not much difference between various points on the curves.
 - Active learning does not affect success rate.
Utility of Clarifications

Fully learned policy
- First test batch - no difference between curves
 - Without active learning, clarification is unhelpful.
- Final test batch - difference between curves
 - Combination of active learning and clarification results in increased success rate.
Human Evaluation - Experiment Changes

- Descriptions from human users contained far fewer attributes than product titles
- Changes in task setup -
 - Provide one attribute from product title as simulated user request
 - Smaller and easier active test set
The learned policy is considerably more successful in the new simulated setup but is unable to shorten dialogs compared to the baseline.
Human Evaluation Experiment

- All 4 phases run in new simulated setup
 - Classifier Initialization
 - Policy Initialization
 - Policy Training
 - Policy Testing
- Run a single batch of interactions on Amazon Mechanical Turk with final policy and classifiers
Human Evaluation Interface

Describe the product in the image.

Continue

red dress
Human Evaluation Interface
Results - Human Evaluation

<table>
<thead>
<tr>
<th>Policy</th>
<th>Simulation – Fraction of Successful Dialogs</th>
<th>Simulation – Average Dialog Length</th>
<th>AMT – Fraction of Successful Dialogs</th>
<th>AMT – Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>0.23</td>
<td>20.0</td>
<td>0.06</td>
<td>19.16</td>
</tr>
<tr>
<td>Learned</td>
<td>0.65</td>
<td>20.0</td>
<td>0.16</td>
<td>18.86</td>
</tr>
</tbody>
</table>

- The performance of both policies drops in AMT interactions.
- The learned policy is still somewhat more successful (p ≤ 0.1)
Summary

• We train a hierarchical dialog policy to trade off opportunistic active learning, attribute based clarification and task completion in a language based image retrieval task in the shopping domain.
• In simulation, our learned policy is more successful than a static baseline while using fewer dialog turns on average.
• In our task setup, both good clarifications and active learning queries are necessary to improve performance over direct retrieval.
• Neither the static nor the learned policies transfer well during human evaluation but the learned policy remains more successful than the static policy.
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Aishwarya Padmakumar, Raymond J. Mooney

padmakua@amazon.com, mooney@cs.utexas.edu