
Facilitating Software Evolution through Natural
Language Comments and Dialogue

Sheena Panthaplackel
Dissertation Defense

Committee: Ray Mooney, Jessy Li, Milos Gligoric, Greg Durrett, Charles Sutton

1

Software Evolution

2

Supporting and Driving Software
Evolution through Natural Language

Problem #1: Developers may unintentionally introduce
vulnerabilities when making code changes

Goal #1: Supporting software evolution by upholding
software quality amidst constant changes

Problem #2: Sheer volume of needed changes and
tight project schedules can delay code changes

Goal #2: Driving software evolution by expediting
critical code changes

Software is constantly evolving as developers…
● Incorporate new functionality
● Refactor the code base
● Fix bugs

Identifying the Characteristics of Vulnerable Code Changes: An Empirical Study [Bosu et al., 2014]
Bug Introducing Changes: A Study with Android [Asaduzzaman et al, 2019]
Will this be Quick? A Case Study of Bug Resolution Times across Industrial Projects [Datta et al., 2015]

3

Natural Language & Software

Developers use natural language in various ways...

Queries for
search

Commit
messages

Bug report
discussions

Source code
comments

4

Natural Language & Software

Developers use natural language in various ways...

Queries for
search

Commit
messages

Bug report
discussions

Source code
comments

Supporting Software
Evolution

5

Driving Software
Evolution

Supporting Software
Evolution

Natural Language & Software

Developers use natural language in various ways...

Queries for
search

Commit
messages

Bug report
discussions

Source code
comments

Supporting Software Evolution
Using Comments

Overview

6

Associating Natural Language Comment and Source Code Entities
Just-In-Time Inconsistency Detection Between Comments and Source Code
Updating Natural Language Comments Based on Code Changes
Combined Detection and Update of Inconsistent Comments

Driving Software Evolution
Using Dialogue

Describing Solutions for Bug Reports Based on Developer Discussions
Using Bug Report Discussions to Guide Automated Bug Fixing

Overview

7

Associating Natural Language Comment and Source Code Entities
Just-In-Time Inconsistency Detection Between Comments and Source Code
Updating Natural Language Comments Based on Code Changes
Combined Detection and Update of Inconsistent Comments

Describing Solutions for Bug Reports Based on Developer Discussions
Using Bug Report Discussions to Guide Automated Bug Fixing

Supporting Software Evolution
Using Comments

Driving Software Evolution
Using Dialogue

Supporting Software Evolution
Using Comments

Overview

8

Associating Natural Language Comment and Source Code Entities
Just-In-Time Inconsistency Detection Between Comments and Source Code
Updating Natural Language Comments Based on Code Changes
Combined Detection and Update of Inconsistent Comments

Describing Solutions for Bug Reports Based on Developer Discussions
Using Bug Report Discussions to Guide Automated Bug Fixing

Driving Software Evolution
Using Dialogue

Inconsistency Detection

9

public int getBestScore() {
return Collections.max(scores);

}

/** Computes the highest value from the list of scores */

Document functionality, usage, implementation, error cases, ...

Inconsistency Detection

10[Tan et al., 2007; Malik et al., 2008; Tan, Zhou, and Padioleau 2011; Tan et al., 2012; Ratol and Robillard 2017;
Zhou et al., 2017; Corazza, Maggio, and Scanniello 2018; Liu et al., 2018; Cimasa et al., 2019; Sadu 2019]

public int getBestScore() {
return Collections.max(scores);

}

public int getBestScore() {
return Collections.min(scores);

}

/** Computes the highest value from the list of scores */

When developers make code changes, they often fail to update comments accordingly.

Leads to time-wasting confusion
and vulnerability to bugs

Old Method

Old Comment

New Method

Post Hoc: (Old Comment, New Method)

Is this comment
inconsistent?

Inconsistency Detection

11

public int getBestScore() {
return Collections.max(scores);

}

public int getBestScore() {
return Collections.min(scores);

}

/** Computes the highest value from the list of scores */

When developers make code changes, they often fail to update comments accordingly.

Leads to time-wasting confusion
and vulnerability to bugs

Old Method

Old Comment

New Method

Post Hoc: (Old Comment, New Method)
Just-In-Time: (Old Comment, New Method, Old Method)

Is this comment
inconsistent?

[Tan et al., 2007; Malik et al., 2008; Tan, Zhou, and Padioleau 2011; Tan et al., 2012; Ratol and Robillard 2017;
Zhou et al., 2017; Corazza, Maggio, and Scanniello 2018; Liu et al., 2018; Cimasa et al., 2019; Sadu 2019]

Architecture

Self-attentionComment encoder
(biGRU)

Code edits encoder Multi-head
attention

Contextualized
comment encoder

(biGRU)

Fully connected layer

Softmax

Inconsistent?

12
GRU [Cho et al., 2014]; Multi-head attention [Vaswani et al., 2017]; GGNN [Li et al., 2016]

/** Computes the highest value from the list of scores */

GRAPH (Encoded with GGNN)
AST node edits as a graph structure

SEQ (Encoded with biGRU)
Code edits as a sequence of tokens
<Keep> public int getBestScore(){ return Collections. <KeepEnd>
<ReplaceOld> max <ReplaceNew> min <ReplaceEnd>
<Keep> (scores);} <KeepEnd>

HYBRID
SEQ + GRAPH

13

Data Collection

s.t. Old Method ≠ New Method

(Old Comment, Old Method,
New Method)

Inconsistent

Consistent
Balanced dataset with ~41K examples
from ~1.5K projects

Comment types:
@return, @param, summary comments

Com
m

it 1
Com

m
it 2

…

 Com
m

it N
-1

Com
m

it N

…

Commit History

Old Comment
Old Method

New Comment
New Method

Old Comment ≠ New Comment

Old Comment = New Comment Our Dataset

Results

14

● Our Just-In-Time approaches
can outperform baseline and
post hoc models

Just-In-Time RF baseline [Liu et al., 2018]
Post Hoc SEQ

Just-In-Time SEQ
Just-In-Time GRAPH
Just-In-Time HYBRID

70.0

66.3

77.1 76.9 77.7

72.6

62.8

78.0 77.6 78.5

50

80

F1 Accuracy

60

70

Results

15

e.g., lexical overlap, is Java keyword
Associating Natural Language Comment and
Source Code Entities [Chapter 3]

● Our Just-In-Time approaches
can outperform baseline and
post hoc models

Just-In-Time RF baseline [Liu et al., 2018]
Post Hoc SEQ

Just-In-Time SEQ
Just-In-Time GRAPH
Just-In-Time HYBRID

Just-In-Time HYBRID + features

70.0

66.3

77.1 76.9 77.7
79.6

72.6

62.8

78.0 77.6 78.5
81.5

50

80

F1 Accuracy

60

70

Results

16

e.g., lexical overlap, is Java keyword
Associating Natural Language Comment and
Source Code Entities [Chapter 3]

● Our Just-In-Time approaches
can outperform baseline and
post hoc models

● Incorporating auxiliary features
can further boost performance

Just-In-Time RF baseline [Liu et al., 2018]
Post Hoc SEQ

Just-In-Time SEQ
Just-In-Time GRAPH
Just-In-Time HYBRID

Just-In-Time HYBRID + features

70.0

66.3

77.1 76.9 77.7
79.6

72.6

62.8

78.0 77.6 78.5
81.5

50

80

F1 Accuracy

60

70

Supporting Software Evolution
Using Comments

Overview

17

Associating Natural Language Comment and Source Code Entities
Just-In-Time Inconsistency Detection Between Comments and Source Code
Updating Natural Language Comments Based on Code Changes
Combined Detection and Update of Inconsistent Comments

Describing Solutions for Bug Reports Based on Developer Discussions
Using Bug Report Discussions to Guide Automated Bug Fixing

Driving Software Evolution
Using Dialogue

Updating Comments Based on Code Changes

18

public int getBestScore() {
return Collections.max(scores);

}

public int getBestScore() {
return Collections.min(scores);

}

/** Computes the highest value from the list of scores */

Old Method New Method
Is this comment
inconsistent?

Old Comment

Updating Comments Based on Code Changes

19

Generate an updated comment (New Comment) that is consistent
with the new version of the code (New Method).

public int getBestScore() {
return Collections.max(scores);

}

public int getBestScore() {
return Collections.min(scores);

}

/** Computes the highest value from the list of scores */

Old Method New Method
Is this comment
inconsistent?

Old Comment
New Comment

lowest

Code Summarization/Comment Generation

20
[Iyer et al., 2016; Yao et al., 2018; Yin et al., 2018; Allamanis et al., 2016, Xu et al., 2019, Alon et al., 2019;
Fernandes et al., 2019; Sridhara et al., 2011; Movshovitz-Attias and Cohen 2013; Hu et al., 2018; Liang
and Zhu 2018; LeClair et al., 2019; Fernandes et al., 2019; Ahmad et al., 2020; Yu et al., 2020]

● Ignores rich context from Old Comment and code changes between Old Method and New Method
● Deviates from how developers update comments

We studied…
Learning to edit Old Comment → New Comment rather than generate New Comment from scratch.

Code summarization and
Comment generation

Given a body of code (New Method), generate a NL
summary/comment (New Comment).

+ features

Edit Model

Comment encoder
(biGRU)

Code edits encoder
(biGRU)

Code Edits
<Keep> public int getBestScore () {
return Collections . <KeepEnd>
<ReplaceOld> max
<ReplaceNew> min
<ReplaceEnd>
<Keep> (scores) ; } <KeepEnd>

Comment edit decoder
(GRU)

NL Edits
<ReplaceOld> highest
<ReplaceNew> lowest
<ReplaceEnd>

+ features

21

/** Computes the highest value from the list of scores
*/

Post Processing

Step #2: Rerank
● Beam score
● Similarity to Old Comment with METEOR
● Likelihood from comment generation model

Old Comment

+ features

Edit Model

Comment encoder
(biGRU)

Code edits encoder
(biGRU)

Code Edits
<Keep> public int getBestScore () {
return Collections . <KeepEnd>
<ReplaceOld> max
<ReplaceNew> min
<ReplaceEnd>
<Keep> (scores) ; } <KeepEnd>

Comment edit decoder
(GRU)

NL Edits
<ReplaceOld> highest
<ReplaceNew> lowest
<ReplaceEnd>

+ features

22

/** Computes the highest value from the list of scores
*/

Post Processing

Step #1: Align predicted NL edits with Old Comment

Step #2: Rerank
● Beam score
● Similarity to Old Comment with METEOR
● Likelihood from comment generation model

/** Computes the lowest value from the list of scores
*/

Old Comment

+ features

Edit Model

Comment encoder
(biGRU)

Code edits encoder
(biGRU)

Code Edits
<Keep> public int getBestScore () {
return Collections . <KeepEnd>
<ReplaceOld> max
<ReplaceNew> min
<ReplaceEnd>
<Keep> (scores) ; } <KeepEnd>

Comment edit decoder
(GRU)

NL Edits
<ReplaceOld> highest
<ReplaceNew> lowest
<ReplaceEnd>

+ features

23
METEOR [Banerjee and Lavie 2005]

/** Computes the highest value from the list of scores
*/

Post Processing

Step #1: Align predicted NL edits with Old Comment

Step #2: Rerank
● Beam score
● Similarity to Old Comment with METEOR
● Likelihood from comment generation model

/** Computes the lowest value from the list of scores
*/

Old Comment

24

Data Collection

s.t. Old Method ≠ New Method

(Old Comment, Old Method,
New Comment, New Method)

Inconsistent

Consistent

Com
m

it 1
Com

m
it 2

…

 Com
m

it N
-1

Com
m

it N

…

Commit History

Old Comment
Old Method

New Comment
New Method

Old Comment ≠ New Comment

Old Comment = New Comment Our Dataset

Balanced dataset with ~41K examples
from ~1.5K projects

Comment types:
@return, @param, summary comments

25

Results: Human Evaluation

Task: Given Old Comment and code diff:
● Select the most suitable comment
● Select None if all options are bad or if Old

Comment does not need to be updated

Percent of times each model’s prediction is
selected (10 annotators, 500 examples)

● Our edit model outperforms pure
generation and rule-based baselines

● Annotators selected None 55% of the time

Not all code changes warrant a comment update

Generation
Baseline

Rule-Based
Baseline

Ours

12.4
18.4

30.2

%

Combined Detection and Update of
Inconsistent Comments [Chapter 6]

Overview

26

Associating Natural Language Comment and Source Code Entities
Just-In-Time Inconsistency Detection Between Comments and Source Code
Updating Natural Language Comments Based on Code Changes
Combined Detection and Update of Inconsistent Comments

Driving Software Evolution
Using Dialogue

Describing Solutions for Bug Reports Based on Developer Discussions
Using Bug Report Discussions to Guide Automated Bug Fixing

Supporting Software Evolution
Using Comments

Bug Report Discussions

27

When a bug is reported, developers
engage in a dialogue to collaboratively
understand it and ultimately resolve it.

1) User reports bug

2) Developers engage in the discussion
(understand problem, diagnose cause, propose solution)

3) Bug is resolved with code changes

Title: Incorrect distance

devC added a commit that referenced this issue

devA (Utterance #1)
Seeing negative distance when using 1D grid.

devB (Utterance #2)
Probably a bug in getL1Distance(int x1, int x2).

devC (Utterance #3)
We do x1 - x2, which will be negative if x1 < x2.

devB (Utterance #4)
We should compute its absolute value.

Bug Report Discussions

28

Solution is often formulated in discussion
but buried under large amount of text.

Title: Incorrect distance

devC added a commit that referenced this issue

devA (Utterance #1)
Seeing negative distance when using 1D grid.

devB (Utterance #2)
Probably a bug in getL1Distance(int x1, int x2).

devC (Utterance #3)
We do x1 - x2, which will be negative if x1 < x2.

devB (Utterance #4)
We should compute its absolute value.

Bug Report Discussions

29

Solution is often formulated in discussion
but buried under large amount of text.

Title: Incorrect distance

NL Solution Description
Compute absolute value of x1 - x2 in getL1Distance

Task: Generate concise natural language description of the
solution by synthesizing relevant content in the discussion
when it emerges in real-time

devC added a commit that referenced this issue

devA (Utterance #1)
Seeing negative distance when using 1D grid.

devB (Utterance #2)
Probably a bug in getL1Distance(int x1, int x2).

devC (Utterance #3)
We do x1 - x2, which will be negative if x1 < x2.

devB (Utterance #4)
We should compute its absolute value.

Bug Report Discussions

30

Solution is often formulated in discussion
but buried under large amount of text.

Title: Incorrect distance

NL Solution Description
Compute absolute value of x1 - x2 in getL1Distance

Task: Generate concise natural language description of the
solution by synthesizing relevant content in the discussion
when it emerges in real-time

devC added a commit that referenced this issue

devA (Utterance #1)
Seeing negative distance when using 1D grid.

devB (Utterance #2)
Probably a bug in getL1Distance(int x1, int x2).

devC (Utterance #3)
We do x1 - x2, which will be negative if x1 < x2.

devB (Utterance #4)
We should compute its absolute value.

Bug Report Discussions

31

Solution is often formulated in discussion
but buried under large amount of text.

Title: Incorrect distance

NL Solution Description
Compute absolute value of x1 - x2 in getL1Distance

Task: Generate concise natural language description of the
solution by synthesizing relevant content in the discussion
when it emerges in real-time

Data: 12K bug reports reports for open-source
Java projects from GitHub Issues which are
linked to a commit/PR

Commit
message/PR title

Time step of commit/PR

devC added a commit that referenced this issue

devA (Utterance #1)
Seeing negative distance when using 1D grid.

devB (Utterance #2)
Probably a bug in getL1Distance(int x1, int x2).

devC (Utterance #3)
We do x1 - x2, which will be negative if x1 < x2.

devB (Utterance #4)
We should compute its absolute value.

32

Benchmarking Models: Generating Solution Descriptions
Copy Title: Brief description of problem (e.g., Incorrect Distance)

Transformer
(randomly initialized)

[Figure from Vaswani et al., 2017]

PLBART [Ahmad et al., 2021]
Pretrained as a denoising autoencoder
on technical text and source code

[Figure from Lewis et al., 2020]

PLBART [Ahmad et al., 2021]
2002]; ROUGE [Lin et al. 2004]METEOR [Banerjee and Lavie 2005]; BLEU-4 [Papineni et al., 2002]; ROUGE [Lin et al., 2004]

33

Results: Generating Solution Descriptions

Automated metrics Human evaluation
(8 annotators, 160 examples)
“Select the most informative

generated description(s)”
Based on automated metrics and human
evaluation, PLBART outperforms baselines.

Bug Report Discussions

34

Solution is often formulated in discussion
but buried under large amount of text.

Title: Incorrect distance

NL Solution Description
Compute absolute value of x1 - x2 in getL1Distance

Task: Generate concise natural language description of the
solution by synthesizing relevant content in the discussion
when it emerges in real-time

Data: 12K bug reports reports for open-source
Java projects from GitHub Issues which are
linked to a commit/PR

Commit
message/PR title

Time step of commit/PR

devC added a commit that referenced this issue

devA (Utterance #1)
Seeing negative distance when using 1D grid.

devB (Utterance #2)
Probably a bug in getL1Distance(int x1, int x2).

devC (Utterance #3)
We do x1 - x2, which will be negative if x1 < x2.

devB (Utterance #4)
We should compute its absolute value.

Generating Solution Descriptions in Real-Time

35

PLBART
Encoder

Classification
Head

Trained Model
for Generating

Solution
DescriptionsTitle and

Utterances
#1…k

Enough context to
generate at time step

Generated
solution

description

Pipelined System

Generating Solution Descriptions in Real-Time

36

PLBART
Encoder

Classification
Head

Trained Model
for Generating

Solution
DescriptionsTitle and

Utterances
#1…k

Enough context to
generate at time step

Generated
solution

description

Pipelined System

Jointly Trained
System PLBART

Decoder Final decoder state @ tk
Capture informativeness of generated description

Final decoder state @tk-1 Has the level of informativeness improved?

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Results: Generating Solution Descriptions in Real-Time

37

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Results: Generating Solution Descriptions in Real-Time

38

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

Scenario #1: System generates at time step k 64.6% 63.6%

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Results: Generating Solution Descriptions in Real-Time

39

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

Scenario #1: System generates at time step k 64.6% 63.6%

Is there sufficient context about the solution at time step k? 39.0% 33.8%

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Results: Generating Solution Descriptions in Real-Time

40

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

Scenario #1: System generates at time step k 64.6% 63.6%

Is there sufficient context about the solution at time step k? 39.0% 33.8%

Rate the informativeness of the generated description:
1 - Incomprehensible, completely incorrect, irrelevant
2 - Generic, rephrasing the problem
3 - Includes some useful information but does not capture the solution
4 - Partially captures solution
5- Completely captures solution

3.3 3.3 When sufficient context is
available, system output

is useful.

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Results: Generating Solution Descriptions in Real-Time

41

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

Scenario #1: System generates at time step k 64.6% 63.6%

Is there sufficient context about the solution at time step k? 39.0% 33.8%

Rate the informativeness of the generated description:
1 - Incomprehensible, completely incorrect, irrelevant
2 - Generic, rephrasing the problem
3 - Includes some useful information but does not capture the solution
4 - Partially captures solution
5- Completely captures solution

3.3 3.3

Scenario #2: System refrains from generating 35.4% 36.4%

When sufficient context is
available, system output

is useful.

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Results: Generating Solution Descriptions in Real-Time

42

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

Scenario #1: System generates at time step k 64.6% 63.6%

Is there sufficient context about the solution at time step k? 39.0% 33.8%

Rate the informativeness of the generated description:
1 - Incomprehensible, completely incorrect, irrelevant
2 - Generic, rephrasing the problem
3 - Includes some useful information but does not capture the solution
4 - Partially captures solution
5- Completely captures solution

3.3 3.3

Scenario #2: System refrains from generating 35.4% 36.4%

Is there sufficient context about the solution at any point in the discussion? 34.2% 37.0%

When sufficient context is
available, system output

is useful.

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Results: Generating Solution Descriptions in Real-Time

43

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

Scenario #1: System generates at time step k 64.6% 63.6%

Is there sufficient context about the solution at time step k? 39.0% 33.8%

Rate the informativeness of the generated description:
1 - Incomprehensible, completely incorrect, irrelevant
2 - Generic, rephrasing the problem
3 - Includes some useful information but does not capture the solution
4 - Partially captures solution
5- Completely captures solution

3.3 3.3

Scenario #2: System refrains from generating 35.4% 36.4%

Is there sufficient context about the solution at any point in the discussion? 34.2% 37.0%

When sufficient context is
available, system output

is useful.

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

61.0% 66.2%Is there NOT sufficient context about the solution at time step k?

Results: Generating Solution Descriptions in Real-Time

44

Human Evaluation (60 annotators, 120 examples) Pipelined Joint

Scenario #1: System generates at time step k 64.6% 63.6%

Is there sufficient context about the solution at time step k? 39.0% 33.8%

Rate the informativeness of the generated description:
1 - Incomprehensible, completely incorrect, irrelevant
2 - Generic, rephrasing the problem
3 - Includes some useful information but does not capture the solution
4 - Partially captures solution
5- Completely captures solution

3.3 3.3

Scenario #2: System refrains from generating 35.4% 36.4%

Is there sufficient context about the solution at any point in the discussion? 34.2% 37.0%

Balancing the trade-off between generating too early
and deferring to later time steps is an open challenge.

When sufficient context is
available, system output

is useful.

NOTE: For a given discussion, generation is performed during at most 1 time step k (i.e., once
generation is performed at t=k, classification/generation will not be performed for t > k.

Overview

45

Associating Natural Language Comment and Source Code Entities
Just-In-Time Inconsistency Detection Between Comments and Source Code
Updating Natural Language Comments Based on Code Changes
Combined Detection and Update of Inconsistent Comments

Driving Software Evolution
Using Dialogue

Describing Solutions for Bug Reports Based on Developer Discussions
Using Bug Report Discussions to Guide Automated Bug Fixing

Supporting Software Evolution
Using Comments

Implementing Bug-Fixing Code Changes

46

NL Solution Description
Compute absolute value of x1 - x2 in getL1Distance

Title: Incorrect distance

public int getL1Distance (int x1, int x2) {
- return x1-x2;
+ return Math.abs(x1-x2);
}

Suggested
Bug-Fix

Bug-fixing commit

Bug-fixing code changes

Automated
Bug-Fixing

Model

[Le Goues et al., 2012; Kim et al., 2013; Ke et al., 2015; Le et al., 2017; Tufano et al., 2019; Chen et al., 2019;
Lutellier et al., 2020; Mashhadi and Hemmati, 2021; Allamanis et al., 2021; Chakraborty and Ray, 2021]

devA (Utterance #1)
Seeing negative distance when using 1D grid.

devB (Utterance #2)
Probably a bug in getL1Distance(int x1, int x2).

devC (Utterance #3)
We do x1 - x2, which will be negative if x1 < x2.

devB (Utterance #4)
We should compute its absolute value.

Automated Bug-Fixing Models

47

sb.append("Invalid table definition due to
 empty implicit table name: ")

 .append(table)
 .append("\n");

Buggy Code

Automated
Bug-Fixing

Model

sb.append("Invalid table definition due to
 empty implicit table name: ")

 .append(table);

Fixed Code

● Extremely challenging task with such limited context
● MODIT incorporates two additional sources of input

void emptyImplicitTable(String table, int line) {
 sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table)
 .append("\n");
}

Removed trailing newlines from error messages

Full Buggy Method

Natural Language Context

+

+

MODIT [Chakraborty and Ray, 2021]

Removed trailing newlines from error messages

Sources of Natural Language Context

48

MODIT:
● Requires prompting developers

Burdensome for developers
● Simulated through oracle commit messages

Inaccurately reflect the available context since
they are written after the bug-fixing commits

Is there a source of naturally-occurring natural
language context that is available before the task
is to be performed?

Bug Report Discussions

Utterance #1
Some of the parsing exceptions thrown by toml4j contains trailing
newlines. This is somewhat unusual, and causes empty lines in
log files when the exception messages are logged…

Utterance #2
The idea was to be able to display multiple error messages at
once. However, processing stops as soon as an error is
encountered, so that's not even possible. Removing the newlines
shouldn't be a problem, then.

NL Solution Description
remove trailing newlines from toml4j log messages

Title: Parsing exception messages contain trailing newlines
Natural Language Context

MODIT [Chakraborty and Ray, 2021]

● Last utterance

Deriving NL Context from Bug Report Discussions

49

Utterance #1
Some of the parsing exceptions thrown by toml4j contains trailing
newlines. This is somewhat unusual, and causes empty lines in
log files when the exception messages are logged…

Utterance #2
The idea was to be able to display multiple error messages at
once. However, processing stops as soon as an error is
encountered, so that's not even possible. Removing the newlines
shouldn't be a problem, then.

Title: Parsing exception messages contain trailing newlines

Deriving Context Heuristically

● Title
● Whole discussion

Trained Model for Generating Solution
Descriptions

Deriving Context Algorithmically

Deriving NL Context from Bug Report Discussions

50

Utterance #1
Some of the parsing exceptions thrown by toml4j contains trailing
newlines. This is somewhat unusual, and causes empty lines in
log files when the exception messages are logged…

Utterance #2
The idea was to be able to display multiple error messages at
once. However, processing stops as soon as an error is
encountered, so that's not even possible. Removing the newlines
shouldn't be a problem, then.

Title: Parsing exception messages contain trailing newlines

remove trailing newlines from toml4j log messages

● Solution description
● Solution description + title

● Last utterance

Deriving Context Heuristically

● Title
● Whole discussion

Deriving NL Context from Bug Report Discussions

51

Utterance #1
Some of the parsing exceptions thrown by toml4j contains trailing
newlines. This is somewhat unusual, and causes empty lines in
log files when the exception messages are logged…

Utterance #2
The idea was to be able to display multiple error messages at
once. However, processing stops as soon as an error is
encountered, so that's not even possible. Removing the newlines
shouldn't be a problem, then.

Title: Parsing exception messages contain trailing newlines

Deriving Context Algorithmically
● Solution description

Encoder

Decoder

remove trailing newlines from toml4j log messages

● Last utterance

Deriving Context Heuristically

● Title
● Whole discussion

● Solution description + title

Identify the most highly attended input token
during each step of decoding and the
discussion segment to which it belongs

Deriving NL Context from Bug Report Discussions

52

Utterance #1
Some of the parsing exceptions thrown by toml4j contains trailing
newlines. This is somewhat unusual, and causes empty lines in
log files when the exception messages are logged…

Utterance #2
The idea was to be able to display multiple error messages at
once. However, processing stops as soon as an error is
encountered, so that's not even possible. Removing the newlines
shouldn't be a problem, then.

Title: Parsing exception messages contain trailing newlines

Deriving Context Algorithmically
● Solution description

Encoder

Decoder

remove trailing newlines from toml4j log messages

● Last utterance

Deriving Context Heuristically

● Title
● Whole discussion

● Attended segments
● Solution description + title

Identify the most highly attended input token
during each step of decoding and the
discussion segment to which it belongs

Approach

53

sb.append("Invalid table definition due to
 empty implicit table name: ")

 .append(table)
 .append("\n");

Buggy Code

Automated
Bug-Fixing

Model

sb.append("Invalid table definition due to
 empty implicit table name: ")

 .append(table);

Fixed Code

void emptyImplicitTable(String table, int line) {
 sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table)
 .append("\n");
}

Removed trailing newlines from error messages

Full Buggy Method

Natural Language Context

+

+

MODIT [Chakraborty and Ray, 2021]

Approach

54

sb.append("Invalid table definition due to
 empty implicit table name: ")

 .append(table)
 .append("\n");

Buggy Code

PLBART
sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table);

Fixed Code

void emptyImplicitTable(String table, int line) {
 sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table)
 .append("\n");
}

Removed trailing newlines from error messages

Full Buggy Method

Natural Language Context

+

+

MODIT [Chakraborty and Ray, 2021]

Approach

55

sb.append("Invalid table definition due to
 empty implicit table name: ")

 .append(table)
 .append("\n");

Buggy Code

PLBART
sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table);

Fixed Code

void emptyImplicitTable(String table, int line) {
 sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table)
 .append("\n");
}

Removed trailing newlines from error messages

Full Buggy Method

Natural Language Context

+

+
Oracle commit

message
MODIT [Chakraborty and Ray, 2021]

Approach

56

sb.append("Invalid table definition due to
 empty implicit table name: ")

 .append(table)
 .append("\n");

Buggy Code

PLBART
sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table);

Fixed Code

void emptyImplicitTable(String table, int line) {
 sb.append("Invalid table definition due to

 empty implicit table name: ")
 .append(table)
 .append("\n");
}

Removed trailing newlines from error messages

Full Buggy Method

Natural Language Context

+

+
Oracle commit

message

NL Context derived from bug report discussion:
● Whole discussion
● Title
● Last utterance
● Solution description
● Solution description + title
● Attended segments

Data

57

MODIT is built using the Bug-Fix Patches (BFP) datasets [Tufano et al., 2019]

BFP

GitHub Issues

~58.6K projects
~365K issue reports linked
to commits made in time
frame used to collect BFP

BFPsmall (<50 method tokens): ~58.3K
BFPmedium(50-100 method tokens): ~65.4K

Mapping BFP bug-fixing commits to
bug report discussions to form

Discussion-Augmented BFP datasets

Disc-BFP

Not all bug-fixing
commits are linked

to bug reports

Disc-BFPsmall : ~3K
Disc-BFPmedium : ~3.3K

MODIT [Chakraborty and Ray, 2021]

Initializing Model Parameters

58

PLBART Finetune on 3-3.3K examples in Disc-BFP for bug-fixing task

Finetune on 58.3-65.4K examples in BFP for bug-fixing task

MODIT checkpoints

MODIT [Chakraborty and Ray, 2021]

Initializing Model Parameters

59

PLBART Finetune on 3-3.3K examples in Disc-BFP for bug-fixing task

Finetune on 58.3-65.4K examples in BFP for bug-fixing task

MODIT checkpoints

Finetune on 3-3.3K examples in Disc-BFP for bug-fixing task

Our Models + Baselines

● Without NL: buggy + method
● With NL: buggy + method + oracle commit message

MODIT [Chakraborty and Ray, 2021]

Results

60

Ex
ac

t M
at

ch
 (%

)

Without NL
Oracle commit message
Whole discussion
Title
Last utterance
Solution description
Solution description + title
Attended segments

33.8 33.4 33.1

35.5 35.2
33.8

35.5 36.2 35.5 36.2
34.1

35.2
36.2

33.4

39.2
36.9

20

22

24
26

28
30
32

34
36
38

40

20

22

24
26

28
30
32

34
36
38

40

27.1 27.127.4
25.9

28.9
27.4

25.6

28.0

25.3 25.9 25.6 25.3 25.6
26.5 26.2

24.1

Initializing without NL checkpoint Initializing with NL checkpoint

Initializing without NL checkpoint Initializing with NL checkpoint

Disc-BFPmedium

Disc-BFPsmall

Results

61

Ex
ac

t M
at

ch
 (%

)

Without NL
Oracle commit message
Whole discussion
Title
Last utterance
Solution description
Solution description + title
Attended segments

33.8 33.4 33.1

35.5 35.2
33.8

35.5 36.2 35.5 36.2
34.1

35.2
36.2

33.4

39.2
36.9

20

22

24
26

28
30
32

34
36
38

40

20

22

24
26

28
30
32

34
36
38

40

27.1 27.127.4
25.9

28.9
27.4

25.6

28.0

25.3 25.9 25.6 25.3 25.6
26.5 26.2

24.1

Initializing without NL checkpoint Initializing with NL checkpoint

Initializing without NL checkpoint Initializing with NL checkpoint

Disc-BFPsmall

Disc-BFPmedium

Results

62

Ex
ac

t M
at

ch
 (%

)

Without NL
Oracle commit message
Whole discussion
Title
Last utterance
Solution description
Solution description + title
Attended segments

33.8 33.4 33.1

35.5 35.2
33.8

35.5 36.2 35.5 36.2
34.1

35.2
36.2

33.4

39.2
36.9

20

22

24
26

28
30
32

34
36
38

40

20

22

24
26

28
30
32

34
36
38

40

27.1 27.127.4
25.9

28.9
27.4

25.6

28.0

25.3 25.9 25.6 25.3 25.6
26.5 26.2

24.1

Initializing without NL checkpoint Initializing with NL checkpoint

Initializing without NL checkpoint Initializing with NL checkpoint

Disc-BFPmedium

Disc-BFPsmall

Results

63

Ex
ac

t M
at

ch
 (%

)

Without NL
Oracle commit message
Whole discussion
Title
Last utterance
Solution description
Solution description + title
Attended segments

● NL context from bug report
discussions yields improvement over
baselines without NL

33.8 33.4 33.1

35.5 35.2
33.8

35.5 36.2 35.5 36.2
34.1

35.2
36.2

33.4

39.2
36.9

20

22

24
26

28
30
32

34
36
38

40

20

22

24
26

28
30
32

34
36
38

40

27.1 27.127.4
25.9

28.9
27.4

25.6

28.0

25.3 25.9 25.6 25.3 25.6
26.5 26.2

24.1

Initializing without NL checkpoint Initializing with NL checkpoint

Initializing without NL checkpoint Initializing with NL checkpoint

Disc-BFPmedium

Disc-BFPsmall

Results

64

Ex
ac

t M
at

ch
 (%

)

Without NL
Oracle commit message
Whole discussion
Title
Last utterance
Solution description
Solution description + title
Attended segments

33.8 33.4 33.1

35.5 35.2
33.8

35.5 36.2 35.5 36.2
34.1

35.2
36.2

33.4

39.2
36.9

20

22

24
26

28
30
32

34
36
38

40

20

22

24
26

28
30
32

34
36
38

40

27.1 27.127.4
25.9

28.9
27.4

25.6

28.0

25.3 25.9 25.6 25.3 25.6
26.5 26.2

24.1

Initializing without NL checkpoint Initializing with NL checkpoint

Initializing without NL checkpoint Initializing with NL checkpoint

Disc-BFPmedium

Disc-BFPsmall

● NL context from bug report
discussions yields improvement over
baselines without NL

Solution description + title

Results

65

Ex
ac

t M
at

ch
 (%

)

Without NL
Oracle commit message
Whole discussion
Title
Last utterance
Solution description

Attended segments

33.8 33.4 33.1

35.5 35.2
33.8

35.5 36.2 35.5 36.2
34.1

35.2
36.2

33.4

39.2
36.9

20

22

24
26

28
30
32

34
36
38

40

20

22

24
26

28
30
32

34
36
38

40

27.1 27.127.4
25.9

28.9
27.4

25.6

28.0

25.3 25.9 25.6 25.3 25.6
26.5 26.2

24.1

Initializing without NL checkpoint Initializing with NL checkpoint

Initializing without NL checkpoint Initializing with NL checkpoint

Disc-BFPmedium

Disc-BFPsmall

● NL context from bug report
discussions yields improvement over
baselines without NL

Results

66

Ex
ac

t M
at

ch
 (%

)

Without NL
Oracle commit message
Whole discussion
Title
Last utterance
Solution description
Solution description + title
Attended segments

33.8 33.4 33.1

35.5 35.2
33.8

35.5 36.2 35.5 36.2
34.1

35.2
36.2

33.4

39.2
36.9

20

22

24
26

28
30
32

34
36
38

40

20

22

24
26

28
30
32

34
36
38

40

27.1 27.127.4
25.9

28.9
27.4

25.6

28.0

25.3 25.9 25.6 25.3 25.6
26.5 26.2

24.1

Initializing without NL checkpoint Initializing with NL checkpoint

Initializing without NL checkpoint Initializing with NL checkpoint

Disc-BFPmedium

Disc-BFPsmall

● NL context from bug report
discussions yields improvement over
baselines without NL

● Context from bug report discussions
yields improvement over using the
oracle commit message

Overview

67

Associating Natural Language Comment and Source Code Entities
Just-In-Time Inconsistency Detection Between Comments and Source Code
Updating Natural Language Comments Based on Code Changes
Combined Detection and Update of Inconsistent Comments

Describing Solutions for Bug Reports Based on Developer Discussions
Using Bug Report Discussions to Guide Automated Bug Fixing

Supporting Software Evolution
Using Comments

Driving Software Evolution
Using Dialogue

68

Future Work: Unifying Related Tasks for Supporting Software Evolution

Supporting software evolution by upholding software quality amidst constant changes

public int getBestScore() {
- return Collections.max(scores);
+ return Collections.min(scores);
}

/** Computes the highest value from the list of scores */
lowest

Comment Inconsistency Detection/Update

@Test
public void testGetBestScore() {

…
}

Commit Message Generation
fixed bug in getBestScore() to return min score as best

Release Note Generation
Bug fixes: Best score computation, …

Test Suite Update

Code Edits Encoder Task-Specific Decoder

Commit message generation [Loyola et al., 2017; Xu et al., 2019]; Release note generation [Moreno et al., 2014]; Test suite update [Daniel et al., 2011]

Develop a unified approach for addressing multiple
tasks occurring upon code changes.

PLUR: A Unifying, Graph-Based
View of Program Learning,
Understanding, and Repair
[Chen et al. 2021]

Jointly Learning to Repair Code
and Generate Commit Message
[Bai et al. 2021]

● General framework for multiple tasks
● Joint/multi-task learning
● Few shot learning and prompt engineering

with large pretrained autoregressive models

PaLM: Scaling Language Modeling with Pathways
[Chowdhery et al. 2022]

69

Future Work: Driving Software Evolution

Author
+ log.debug(String.format("(%d)", distance));
+ log.debug(String.format("L1 Distance in 1D (%d)", distance));
}

Reviewer
Please make the log message more descriptive.

Author
Will add in something about it being L1 distance. Anything else that should be included?

Reviewer
Maybe that it’s for the 1D grid?

Can an intelligent agent collaborate
with human developers for more
efficient/effective code review?

By interactively providing…
● PR review comments
● Suggested code changes

Driving software evolution by expediting critical code changes

/** Computes distance as difference between x1 and x2 */
/** Computes distance as magnitude of difference between x1 and x2 */
public int getL1Distance (int x1, int x2) {
- return x1-x2;
+ int distance = Math.abs(x1-x2);
+ log.debug(String.format("(%d)", distance));
+ return distance;
}

70

Can an intelligent agent collaborate
with human developers for more
efficient/effective code review?

By interactively providing…
● PR review comments
● Suggested code changes

Future Work: Driving Software Evolution

Driving software evolution by expediting critical code changes

Author
+ log.debug(String.format("(%d)", distance));
+ log.debug(String.format("L1 Distance in 1D (%d)", distance));
}

Reviewer
Please make the log message more descriptive.

Author
Will add in something about it being L1 distance. Anything else that should be included?

Reviewer
Maybe that it’s for the 1D grid?

/** Computes distance as difference between x1 and x2 */
/** Computes distance as magnitude of difference between x1 and x2 */
public int getL1Distance (int x1, int x2) {
- return x1-x2;
+ int distance = Math.abs(x1-x2);
+ log.debug(String.format("(%d)", distance));
+ return distance;
}

71

Future Work: Driving Software Evolution

Driving software evolution by expediting critical code changes

Author
+ log.debug(String.format("(%d)", distance));
+ log.debug(String.format("L1 Distance in 1D (%d)", distance));
}

Reviewer
Please make the log message more descriptive.

Author
Will add in something about it being L1 distance. Anything else that should be included?

Reviewer
Maybe that it’s for the 1D grid?

/** Computes distance as difference between x1 and x2 */
/** Computes distance as magnitude of difference between x1 and x2 */
public int getL1Distance (int x1, int x2) {
- return x1-x2;
+ int distance = Math.abs(x1-x2);
+ log.debug(String.format("(%d)", distance));
+ return distance;
}

Can an intelligent agent collaborate
with human developers for more
efficient/effective code review?

By interactively providing…
● PR review comments
● Suggested code changeses

72

Future Work: Enhancing Code Representations with Natural Language

"""Computes the distance between two
vertically adjacent points as the L1
distance between their X coordinates."""

def compute_distance(p1, p2):
 return abs(p1.x - p2.x)

FunctionDef

compute_distance Arguments Return

p1 p2 Call

abs BinOp

Attribute Sub Attribute

p1 x p2 x
data flow

parent/child

X coordinates

vertically adjacent
points

L1 Distance

End Task

 Code Representation
Token sequence AST
Control/Data flow Fine-grained relations/types from NL

73

Acknowledgements

