# Continually Improving Grounded Natural Language Understanding through Human-Robot Dialog



# Jesse Thomason University of Texas at Austin Ph.D. Defense



### Human-Robot Dialog



# Human-Robot Dialog



"alert me if her heart rate decreases" "bring me his chart" "go and get the family" "scalpel"





"text me when the speaker arrives" "grab the empty, green bottle" "lead him to alice's office" "get out of the way"









# Robot Dialog has Multiple Low-Resource Problems

- My work:
  - Develop algorithms for human-robot understanding that overcome sparse training data.
  - Use dialog to correctly perform user requests and better understand future requests.









### **Dialog for Robots**



### **Dialog for Robots**



### Natural Language Understanding



#### **Semantic Parser**

- The parser can be initialized with low annotator effort.
  - In our experiments, we annotate five sentences.
  - Satisfies the low-resource constraints of human-robot dialog.
- But, more training data will improve performance.

#### [Thomason et al., IJCAI'15; Artzi and Zettlemoyer, EMNLP'11]

# Inducing New Training Examples from Dialog

#### TASK TO COMPLETE

Dave Daniel wants the item in slot 5.

| ROBOT      | How can I help?                                            |
|------------|------------------------------------------------------------|
| YOU        | please bring the item in slot 5 to dave daniel             |
| ROBOT      | What should I bring to dave daniel?                        |
| YOU        | a calander                                                 |
| ROBOT      | I'm sorry, but I couldn't pinpoint what you meant by that. |
| ROBOT      | What should I bring to dave daniel?                        |
| YOU        | a day planner                                              |
| ROBOT      | I'm sorry, but I couldn't pinpoint what you meant by that. |
| ROBOT      | What should I bring to dave daniel?                        |
| YOU        | calendar                                                   |
| ROBOT      | You want me to bring calendar to dave daniel?              |
| YOU        | yes                                                        |
| ROBOT      | I thought so                                               |
| ROBOT      | Happy to help                                              |
| YOU        |                                                            |
| Final Task |                                                            |

Items available to robot:



# Inducing New Training Examples from Dialog

#### TASK TO COMPLETE

Dave Daniel wants the item in slot 5.

| ROBOT      | How can I holp?                                            |  |
|------------|------------------------------------------------------------|--|
| YOU        | please bring the item in slot 5 to dave daniel             |  |
| ROBOT      | What should I bring to days daniel?                        |  |
| YOU        | a calander                                                 |  |
| ROBOT      | I'm sorry, but I couldn't pinpoint what you meant by that. |  |
| ROBOT      | What should I bring to dave daniel?                        |  |
| YOU        | a day planner                                              |  |
| ROBOT      | I'm sorry, but I couldn't pinpoint what you meant by that. |  |
| ROBOT      | What should I bring to dave daniel?                        |  |
| YOU        | calendar                                                   |  |
| ROBOT      | You want me to bring calendar to dave daniel?              |  |
| YOU        | yes                                                        |  |
| ROBOT      | I thought so                                               |  |
| ROBOT      | Happy to help                                              |  |
| YOU        |                                                            |  |
| Final Task |                                                            |  |

Items available to robot:



# Inducing New Training Examples from Dialog

#### TASK TO COMPLETE

Dave Daniel wants the item in slot 5.

| ROBOT      | How can I help?                                            |
|------------|------------------------------------------------------------|
| YOU        | please bring the item in slot 5 to dave daniel             |
| ROBOT      | What should I bring to dave daniel?                        |
| YOU        | a calander                                                 |
| ROBOT      | I'm corry, but I couldn't pinpoint what you meant by that. |
| ROBOT      | What should I bring to dave daniel?                        |
| YOU        | a day planner                                              |
| ROBOT      | I'm sony, but I couldn't pinpoint what you meant by that.  |
| ROBOT      | What should I hring to dave daniel?                        |
| YOU        | calendar                                                   |
| ROBOT      | You want me to bring calendar to dave daniel?              |
| YOU        | yes                                                        |
| ROBOT      | I thought so                                               |
| ROBOT      | Happy to help                                              |
| YOU        |                                                            |
| Final Task |                                                            |

Items available to robot:



# Inducing New Training Examples from Dialog











# Dialogs that Clarify Meaning and Provide Supervision

| <b>Agent Belief</b><br>( <i>task, goal, item, person</i> ) | Request | Question                                                       |
|------------------------------------------------------------|---------|----------------------------------------------------------------|
| (?, ?, ?, ?)                                               | all     | "How can I help?" /<br>"Can you reword your original request?" |
| (navigate, ?, _, _)                                        | goal    | "Where should I walk?"                                         |
| (deliver, _, ?, p)                                         | item    | "What should I bring to p?"                                    |
| (navigate, r, _, _)                                        | confirm | "You want me to walk to r?"                                    |
| •••                                                        |         |                                                                |

# Dialogs that Clarify Meaning and Provide Supervision

| <b>Agent Belief</b><br>( <i>task, goal, item, person</i> ) | Request | Question                                                       |
|------------------------------------------------------------|---------|----------------------------------------------------------------|
| (?, ?, ?, ?)                                               | all     | "How can I help?" /<br>"Can you reword your original request?" |
| (navigate, ?, _, _)                                        | goal    | "Where should I walk?"                                         |
| (deliver, _, ?, p)                                         | item    | "What should I bring to p?"                                    |
| (navigate, r, _, _)                                        | confirm | "You want me to walk to r?"                                    |
| • • •                                                      |         |                                                                |

# Dialogs that Clarify Meaning and Provide Supervision

#### TASK TO COMPLETE

Dave Daniel wants the item in slot 5.

| ROBOT      | How can I help?                                            | Expect whole command   |
|------------|------------------------------------------------------------|------------------------|
| YOU        | please bring the item in slot 5 to dave daniel             |                        |
| ROBOT      | What should I bring to dave daniel?                        |                        |
| YOU        | a calander                                                 | Expect <i>item</i>     |
| ROBOT      | I'm sorry, but I couldn't pinpoint what you meant by that. |                        |
| ROBOT      | What should I bring to dave daniel?                        | Export itom            |
| YOU        | a day planner                                              | Expect iterii          |
| ROBOT      | I'm sorry, but I couldn't pinpoint what you meant by that. |                        |
| ROBOT      | What should I bring to dave daniel?                        | Export item            |
| YOU        | calendar                                                   | Expect <i>itern</i>    |
| ROBOT      | You want me to bring calendar to dave daniel?              |                        |
| YOU        | yes                                                        |                        |
| ROBOT      | I thought so                                               | <b>task:</b> deliver   |
| ROBOT      | Happy to help                                              | <i>item</i> : calendar |
| YOU        |                                                            |                        |
| Final Task |                                                            | person. dave_daniel    |

#### **Technical Contributions**

 Design a dialog policy that allows us to pair human language with latent meaning representations.

 Improve semantic parsing given very little initial in-domain data.

#### TASK TO COMPLETE

Dave Daniel wants the item in slot 5.

| OBOT       | Ham and I hale 0                                           |
|------------|------------------------------------------------------------|
| OU<br>OBOT | please bring the item in slot 5 to dave daniel             |
| OU         | a calander                                                 |
| OBOT       | I'm sorry, but I couldn't pinpoint what you meant by that. |
| OBOT       | What should I bring to dave daniel?                        |
| OU         | a day planner                                              |
| OBOT       | I'm sorry, but I couldn't pinpoint what you meant by that. |
| OBOT       | What should I bring to dave daniel?                        |
| OU         | an landar                                                  |
| OBOT       | You want me to bring calendar to dave daniel?              |
| OU         |                                                            |
| OBOT       | I thought so                                               |
| OBOT       | Happy to help                                              |
| OU         |                                                            |
| inal Task  |                                                            |

#### Experiments via Amazon Mechanical Turk

#### TASK TO COMPLETE



### Navigation Dialog Turns

Navigation task average Turker Turns for success



### **Navigation Dialog Turns**

Navigation task average Turker Turns for success



Robot: How can I help? Human: go

. . .

Human: go to dave daniel's office



### **Delivery Dialog Turns**

Delivery task average Turker turns for success



- Statistically significant decrease.
- More arguments:

harder to understand, so more to

gain from parser training.

**Qualitative**: One user wrote "the robot even fixed my typo when I mispelled calendar!"

## **Other Findings**



- Users rate system more understanding and less frustrating.
- Results replicable on physical platform.





### We do not yet handle perception information



### We need to perform *language grounding*


### Language Grounding





[Harnad, Physica D'90]

## Language Grounding



- Symbol grounding problem.
- Historically use visual space.
  - We use more than vision.

## Language Grounding



*Haptic* sensors from arm give force information.

*Audio* signals from mic give sound information.

[Sinapov et al., IJCAI'16; Thomason et al., IJCAI'16; Simonyan and Zisserman, CoRR'14]

## **Perceptual Grounding**



## **Building Perceptual Classifiers**

# $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$

p: squishy



Few labeled examples, but SVMs can operate on this sparse data.

## **Building Perceptual Classifiers**

# $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$

$$d(p,o) = sgn\left(\sum_{c \in C} w_{p,c} \mathbf{G}_{p,c}(o)\right)$$

Decision

## **Building Perceptual Classifiers**

# $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$

$$d(p, o) = sgn\left(\sum_{c \in C} w_{p,c} \mathbf{G}_{p,c}(o)\right)$$

Decision Sensorimotor Contexts

## **Building Perceptual Classifiers**

# $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$

$$d(p,o) = sgn\left(\sum_{c \in C} w_{p,c} \mathbf{G}_{p,c}(o)\right)$$

DecisionSensorimotorContextContextsSVM result

## **Building Perceptual Classifiers**

# $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$

$$d(p,o) = sgn\left(\sum_{c \in C} w_{p,c} \mathbf{G}_{p,c}(o)\right)$$

DecisionSensorimotorReliabilityContextContextsWeightSVM result

## **Building Perceptual Classifiers**

# $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$

$$d(p, o) = sgn\left(\sum_{c \in C} w_{p,c} \mathbf{G}_{p,c}(o)\right)$$

## Reliability weights estimated from xval

| squishy              |           |  |
|----------------------|-----------|--|
| sensorimotor context | $w_{p,c}$ |  |
| press-haptics        | 0.5       |  |
| grasp-haptics        | 0.3       |  |
|                      |           |  |
| look-VGG             | 0.01      |  |

## **Building Perceptual Classifiers**

## $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$



## Reliability weights estimated from xval

| squishy              |           |  |
|----------------------|-----------|--|
| sensorimotor context | $w_{p,c}$ |  |
| press-haptics        | 0.5       |  |
| grasp-haptics        | 0.3       |  |
|                      |           |  |
| look-VGG             | 0.01      |  |

## **Building Perceptual Classifiers**

## $\mathbf{G}_{p,c}(o) \quad \begin{array}{l} \mathsf{SVM} \text{ trained for predicate } p \text{ and} \\ \mathsf{sensorimotor context } c \text{ result on object } o \end{array}$



## Reliability weights estimated from xval

| squishy              |           |  |
|----------------------|-----------|--|
| sensorimotor context | $w_{p,c}$ |  |
| press-haptics        | 0.5       |  |
| grasp-haptics        | 0.3       |  |
|                      |           |  |
| look-VGG             | 0.01      |  |

## **Technical Contributions**

 Ensemble SVMs over multi-modal object features to perform

language grounding.

Get language labels from natural
 language game with human users







### Human Turn

Initially, the robot has no training data and randomly guesses objects.

## Experiments Playing I Spy



## Experiments Playing I Spy

four rounds of training.



Bold: Lower than fold 0 average. \*: Lower than vision only baseline

## Problematic I Spy Object



**Future**: Be mindful of object *novelty* both for the learning algorithm and for human users.





## **Unsupervised Word Synset Induction**



### "chinese grapefruit"





"kiwi vine"









## **Unsupervised Word Synset Induction**









### **Exploratory Behaviors**







drop (9.8s)



lift (11.1s)



push (22s)



lower (10.6s)



press (22s)

104s to explore an object once. +hold (5.7s) 520s to explore an object five

times.

+look

(0.8s)

4.5 **hours** to fully explore 32 objects.

## **Guiding Exploratory Behaviors**

rigid:





press?

look?

## **Guiding Exploratory Behaviors**



[Thomason et al., AAAI'18; Mikolov et al., NIPS'13]

## **Guiding Exploratory Behaviors**



## Shared Structure: Embeddings and Features



2D-projection of word embeddings

2D-projection of behavior context features 65

## Guiding Exploratory Behaviors using Embeddings

$$\begin{split} d(p, o) &= sgn\left(\sum_{c \in C} w_{p, c} \mathbf{G}_{p, c}(o)\right) \\ w_{q, c} &\approx \frac{1}{|P_q|} \sum_{p \in P_q} poscos(p, q) w_{p, c} \end{split}$$

Surrogate reliability weights for new classifiers for *q* 

Nearest word-embedding predicates to q Reliability weights for trained neighbor classifiers *p* 66

## **Technical Contributions**

 Reduce exploration time when learning a target new word.

 Use word embeddings and human annotations to guide behaviors.





### Results



(dotted lines show standard error)

## **Other Findings**





- Human annotations help;
  "how would you tell if an object is *tall*?"
- Human annotations + word

embeddings work better

than either alone.





[Thomason et al., CoRL'17]

### Active Learning for Perceptual Questions

$$o_{\min}(p) = \operatorname{argmin}_{o \in O_{tr}}(\kappa(p, o))$$

The object for which the predicate classifier is least sure of the predicted label.


### Active Learning for Perceptual Questions

| empty                   |                  |
|-------------------------|------------------|
| sensorimotor<br>context | W <sub>p,c</sub> |
| lift-haptics            | ?                |
| lift-audio              | ?                |
|                         |                  |
| look-vgg                | ?                |

| bottle                  | bottle           |  |
|-------------------------|------------------|--|
| sensorimotor<br>context | W <sub>p,c</sub> |  |
| look-shape              | 0.6              |  |
| look-vgg                | 0.5              |  |
| •••                     | •••              |  |
| lower-haptics           | 0.02             |  |

### **Active Learning for Perceptual Questions**

$$prob(p) = \frac{1 - \kappa(p, o_{\min}(p))}{\sum_{q \in P \setminus \{p\}} 1 - \kappa(q, o_{\min}(q))}$$

Ask for a label with probability proportional to *un*confidence in least confident training object.

$$p \in \{q : q \in P \land \kappa(q, o_{\min}(q)) = 0\}$$

Ask for a positive label for any predicate we have insufficient data for.

[Thomason et al., CoRL'17]

### Active Learning for Perceptual Questions

"Could you use the word bottle when describing this object?"



Ask for a label with probability proportional to *un*confidence in least confident training object.

# "Can you show me something empty?"

Ask for a positive label for any predicate we have insufficient data for.

[Thomason et al., CoRL'17]



### The human shows an example object. Again, the object is restricted to one on the side tables.

[Thomason et al., CoRL'17]

# **Technical Contributions**

 Introduce an opportunistic active learning strategy for getting high-value labels.

• Show that *off-topic* questions improve performance.



#### [Thomason et al., CoRL'17]

### **Experiments with Object Identification**



### Results



"Would you describe this object as full?"

### **Baseline Agent**

Rated less annoying.



"Show me something red."

### Inquisitive Agent

Correct object more often.

Rated better for real-world use.





### Human-Robot Dialog



### Jointly Improving Parsing and Perception



"Move a rattling container from lounge by the conference room to Bob's office."







### Getting Object/Predicate Labels in Dialog



### Getting Object/Predicate Labels in Dialog





# Inducing New Training Examples from Dialog

| ROBOT | What should I do?                                         |
|-------|-----------------------------------------------------------|
| YOU   | go to the middle lab                                      |
| ROBOT | You want me to go somewhere? (not manipulate any objects) |
| YOU   | yes                                                       |
| ROBOT | Where should I go?                                        |
| YOU   | the lab in the middle                                     |
| ROBOT | You want me to go to here (not manipulate any objects)?   |
| YOU   | yes                                                       |
| YOU   | type your response here                                   |
| Say   |                                                           |

To advance to the next task, click the button below.

Okay





### Inducing New Training Examples from Dialog



# Inducing New Training Examples from Dialog

### Induced Utterance/Denotation Pairs

"go to the middle lab"
navigate(room\_3)

"the lab in the middle"

room\_3

### Natural Language Understanding



# Inducing New Training Examples from Dialog



[Mikolov et al., NIPS'13; in submission]

### Using Embeddings for Out-of-Vocabulary Words



#### [Mikolov et al., NIPS'13; in submission]

# Using Embeddings to Find Perception Words

| ROBOT | What should I deliver to this person?                                                                          | d2            |
|-------|----------------------------------------------------------------------------------------------------------------|---------------|
| YOU   | a tall metal can                                                                                               | white         |
| ROBOT | I haven't heard the word 'tall' before. Does it refer to properties of things, like a color, shape, or weight? |               |
| YOU   | yes                                                                                                            |               |
| ROBOT | Does 'tall' mean the same thing as 'tower'?                                                                    | tower         |
| YOU   | no                                                                                                             |               |
| ROBOT | Does 'tall' mean the same thing as 'white'?                                                                    | $\theta$ iong |
| YOU   | no                                                                                                             |               |
| ROBOT | Does 'tall' mean the same thing as 'long'?                                                                     |               |
| YOU   | yes                                                                                                            |               |
|       | 7.                                                                                                             |               |

### **Technical Contributions**

 Improve both parsing and perception from conversations.

 Use word embeddings to guide search for synonyms and novel perceptual predicates.





### Metric - Semantic F1

$$T_{U} = \{(\text{action, deliver}), (\text{patient}, o_{2}), (\text{recipient}, p_{1})\},$$

$$T_{G} = \{(\text{action, relocate}), (\text{patient}, o_{2}), (\text{source}, r_{1}), (\text{goal}, r_{3})\};$$

$$\text{precision}(T_{U}, T_{G}) = \frac{|T_{U} \cap T_{G}|}{|T_{U}|} = \frac{1}{3},$$

$$\text{recall}(T_{U}, T_{G}) = \frac{|T_{U} \cap T_{G}|}{|T_{G}|} = \frac{1}{4},$$

$$f(T_{U}, T_{G}) = 2 \cdot \frac{\text{precision}(T_{U}, T_{G}) \cdot \text{recall}(T_{U}, T_{G})}{\text{precision}(T_{U}, T_{G}) + \text{recall}(T_{U}, T_{G})} = 0.286.$$

### **Results - Navigation Task**



### **Results - Delivery Task**



### **Results - Relocation Task**







### **Grounded Predicate Synset Induction**



### **Grounded Predicate Synset Induction**



### **Guided Exploration of New Objects**


### Moving Forward

- The intersection of problems in human-robot dialog is **inherently low-resource**.
- Other parts of NLP, Robotics, and Dialog are not.
- We can **use big data and techniques** from these fields when solving problems in human-robot dialog.

### Moving Forward - Using Big Data Where We Can



[Thomason et al., IJCAI'16; Simonyan and Zisserman, CoRR'14]

### Moving Forward - Using Big Data Where We Can



[Burchfiel et al., RSS'17]

### Moving Forward - Using Big Data Where We Can



Corpus of Object Representations from Exploratory Behaviors



### Moving Forward - Transfer Learning









### Acknowledgments



Ray Mooney Peter Stone Scott Niekum

Stefanie Tellex

### Acknowledgments



Jivko Sinapov



Harel Yedidsion



Shiqi Zhang



Justin Hart



Aishwarya Padmakumar



Subhashini Venugopalan



Piyush Khandelwal



Yuqian Jiang



Rodolfo Corona



Nick Walker

- Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog.
  Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Nick Walker, Harel Yedidsion, Justin Hart, Peter Stone, Raymond J. Mooney. (*in submission*)
- *Guiding Exploratory Behaviors for Multi-Modal Grounding of Linguistic Descriptions.* **Jesse Thomason**, Jivko Sinapov, Raymond J. Mooney, and Peter Stone. AAAI'18.
- Improving Black-box Speech Recognition using Semantic Parsing.
  Rodolfo Corona, Jesse Thomason, and Raymond J. Mooney. IJCNLP'17.
- Opportunistic Active Learning for Grounding Natural Language Descriptions.
  Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Justin Hart, Peter Stone, and Raymond J. Mooney. CoRL'17.
- *Multi-Modal Word Synset Induction*. **Jesse Thomason** and Raymond J. Mooney. IJCAI'17.
- Integrated Learning of Dialog Strategies and Semantic Parsing. Aishwarya Padmakumar, **Jesse Thomason**, Raymond J. Mooney. EACL'17.
- BWIBots: A platform for bridging the gap between AI and human--robot interaction research. Piyush Khandelwal, Shiqi Zhang, Jivko Sinapov, Matteo Leonetti, Jesse Thomason, Fangkai Yang, Ilaria Gori, Maxwell Svetlik, Priyanka Khante, Vladimir Lifschitz, J. K. Aggarwal, Raymond Mooney, and Peter Stone. IJRR'17.
- Learning Multi-Modal Grounded Linguistic Semantics by Playing "I Spy". Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Peter Stone, and Raymond J. Mooney. IJCAI'16.
- Learning to Interpret Natural Language Commands through Human-Robot Dialog. Jesse Thomason, Shiqi Zhang, Raymond J. Mooney, and Peter Stone. IJCAI'15.

### **Graded Adjectives**

- Think of gradation as a form of polysemy
- Semantic parser can use surrounding context
- Re-ranking of parses, as discussed, can help disambiguate





words

### **Comparative Adjectives**

- E.g. "taller", "heavier"; take two arguments: obj1, obj2
- Train classifier on the feature differences between obj1, obj2
- Can otherwise be handled with existing architecture
- Superlatives: majority winner object in pairwise comparative

[Thomason, IJCAI'15]

### Mechanical Turk Qualitative Results

The robot understood me



### Mechanical Turk Qualitative Results

The robot frustrated me



### **Multi-modal Representation**

[Thomason et al., IJCAI'17; Deerwester et al., 1990; Simonyan and Zisserman, CoRR'14]

• LSA embedding text features; VGG image features

### Bat

"... most of the oldest known, definitely identified bat fossils were already very similar to modern microbats ... "



### Bat

"... about 70% of bat species are insectivores ... "



### Bat

Bat

"... hickory has fallen into disfavor over its greater weight, which slows down bat speed ... "

... a baseball bat is divided

into several regions ..."



[Thomason et al., IJCAI'17]

### **Technical Contributions**

 Perform unsupervised, multi-modal sense induction and synonymy detection

 Create an ImageNet-like resource without manual annotation.



### [Thomason et al., IJCAI'17]

### Results

#### splashboard, washboard



### washboard VII

ImageNet

psaltery, washboard, dulcimer, cithern, headstock





king post, dugout, washboard, catapult, knothole



Text-only

















# **/ision-only**











#### washboard



#### splashboard, washboard









### washboard



127

### Results



### **Results - Correct Object Selected**

**Correct Guess** 



### **Results - Users Feeling Understood**



### **Results - Users Annoyed**

The robot asked too many questions.



### **Results - Viable for Deployment**

I would use a robot like this to get objects for me in another room.



[Liang and Potts, Annual Review of Linguistics'15]

### Learning from Denotations

• Given utterance-denotation pair, find a semantic form that

is plausible for both





### Learning from Denotations

- Use the parser to produce a beam of parses
- Use the grounder to find the denotations of those parses









. . .





N N N

### Learning from Denotations

## "rattling container" the $(\lambda y.(rattling(y) \land container(y)))$



### Learning from Denotations

## "rattling container" the $(\lambda y.(rattling(y) \land container(y)))$



Robot "You want me to move an item from 3516 to 3510?"

### [ongoing]

### **Neural Parsing Methods**

- Recurrent Neural Networks (RNNs) with Attention
- Sequence-to-Tree encoder-decoder networks



[Gao, ICRA'16]

### **Neural Perception Models**

• Compress high-dimensional sensorimotor context

information using Convolutional Neural Networks (CNNs)



### **Embodied Question Answering**

• End-to-end deep model for joint parsing and perception

