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Abstract 
 

Similarity search leveraging distance-based index 
structures is increasingly being used for both 
multimedia and biological database applications.  We 
consider distance-based indexing for three important 
biological data types, protein k-mers with the metric 
PAM model, DNA k-mers with Hamming distance and 
peptide fragmentation spectra with a pseudo-metric 
derived from cosine distance.  To date, the primary 
driver of this research has been multimedia 
applications, where similarity functions are often 
Euclidean norms on high dimensional feature vectors.  
We develop results showing that the character of these 
biological workloads is different from multimedia 
workloads. In particular, they are not intrinsically very 
high dimensional, and deserving different optimization 
heuristics.  Based on MVP-trees, we develop a pivot 
selection heuristic seeking centers and show it 
outperforms the most widely used corner seeking 
heuristic.  Similarly, we develop a data partitioning 
approach sensitive to the actual data distribution in 
lieu of median splits. 
 

1. Introduction 
 

Distance-based indexing exploits the relative 
distance among data objects to support similarity 
search [9, 17].  The goal of the approach is the creation 
of general-purpose data structures that support fast 
scalable retrieval of complex data types. The primary 
requirement is that the distance function be a metric.  
That is, the distances are positive, symmetric, and 

satisfy the triangle inequality.  Many domain-specific 
index structures have been developed for biological 
applications, such as suffix trees [15] and suffix arrays 
[23].  However, they are limited by their domains and 
are therefore not discussed in the paper.  The active 
application of distance-based indexing began with 
multimedia applications (images and sound) [3, 12].   

Increasingly, in the face of hyper-exponentially 
growing biological databases, biological applications 
of distance-based indexes are also being investigated 
[25, 33, 35]. A data structure, the index, is initialized 
off-line.  On-line data retrieval based on proximity, 
either k nearest-neighbor or range search may exploit 
the triangle inequality, amortizing the off-line cost of 
creating the index and promising scalable performance. 
In addition, the use of tree-based data structures offers 
seamless integration with object-relational database 
management systems (e.g. DB2, Oracle, Postgres) [16]. 

In multimedia applications, each object is often 
associated with a long description vector. For example, 
an image might be described by frequency and/or 
texture histograms [3, 9, 17]. The similarity of a pair of 
objects is defined as the Euclidean norm of their 
feature vectors. A primary benefit of distance-based 
approaches is the casting of the similarity of a pair of 
high dimension descriptors to a single number.   

We have determined that several established results 
in distance-based indexing, well founded in 
anticipation of multimedia applications, are not 
applicable to biological workloads. A primary concern 
is the impact of the curse of dimensionality. Informally, 
the curse of dimensionality states that similarity search 
algorithms have an exponential dependency on the 
dimension of the space.  Analytic results concerning 
the indexability of very high-dimensional uniform data 
have shown that any indexing scheme will degrade as 
the number of dimensions increase, and, given the 
overhead of indexing schemes, at some point a simple 
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linear scan will outperform any indexing scheme as the 
dimension of the problem increases. A distance 
function may cast a high dimensional problem to a 
single number, but the curse of dimensionality speaks 
to intrinsic properties of the data.  Simple changes in 
representation do not overcome these intrinsic 
properties. 

In biological applications a primary advantage of 
distance-based methods is that they may be used to 
capture similarity of data that is not naturally described 
by a point in a Euclidean space. For example, the 
similarity of biological sequences concerns 
evolutionary distance, often modeled by weighted-edit 
distance or Hamming distance.   Our work in matching 
peptide fragmentation mass-spectra is derived from 
cosine distance. 

We have concluded that the intrinsic dimensionality 
of three important biological workloads is not very 
high.  For instance, the intrinsic dimensionality of 5-
mers (overlapping fragments of length 5) from a yeast 
protein database under the mPAM weighted edit-
distance model is roughly 2.7 or 20.5, depending on the 
measure.  Similarly, Hamming distance on 
Arabidopsis’ genomic sequences of length 18 (a length 
suitable for identifying highly conserved genomic 
sequences across species as well as identifying small 
RNA coding genes [35]) has an intrinsic dimensionality 
of 2.2 or 23.  The intrinsic dimensionality of our third 
application workload, a database of analytically 
determined peptide mass fragmentation spectra, is 130 
or 300, 2 orders of magnitude less than the number of 
resolvable peaks (approximately 40,000).  See Section 
3. 

In previous work, we determined that of the three 
major classes of distance-based indexing methods, M-
trees [10], generalized hyper-plane trees [36] and 
vantage-point trees [36, 39], the vantage-point tree 
suits our biological workloads best.  In a vantage-point 
method, a metric space is partitioned into disjoint 
regions recursively to form a hierarchical structure.  At 
each step a vantage-point, also known as a pivot, is 
selected. The distance of each point to the pivot is 
computed.  The distance d to the pivot establishes a 
bipartition, with half the points inside a bounding 
sphere of radius d centered on the pivot and half the 
points outside that sphere.  The method has been 
generalized for large disk-resident databases by 
considering multiple vantage-points at each level, and a 
higher degree of partitioning (>2 partitions).  This data 
structure is known as a multiple vantage point tree, or 
MVP-tree.  The result resembles a k-d tree [2].  The 
pivot-selection and data partition heuristics are critical 
to search performance [4, 39]. 

For pivot selection we revisit the “corner-pivot” 
heuristic first suggested by Yianilos. Yianilos’ informal 
argument assumes a Euclidean space and uniform data 
distribution, which don’t hold for biological workloads.  
We develop a “center-pivot” heuristic.  Empirical 
results on synthetic uniform Euclidean data and each of 
the biological workloads agree with our analysis.   

Independent of algorithmic approach or the intrinsic 
dimension of the data, an important heuristic with 
respect to the success of distance-based indexing 
speaks to the data intrinsically entailing a hierarchical 
clustering and the ability of the initialization algorithm 
to reflect that hierarchy [6, 24].  To determine more 
effective data partitions we apply a clustering algorithm 
to the distances from the data points to the pivots.  We 
set the partitioning surfaces according to those clusters.  
Although our heuristics can lead to unbalanced index 
trees, empirical results show that they outperform the 
canonical heuristics that traditionally favor balanced 
trees. 

Ultimately we show that MVP-trees can be 
effectively optimized for biological workloads and that 
specific optimizations to the character of biological 
workloads can amount to up to a 50% performance 
improvement over heuristics developed primarily for 
multimedia applications.  

The rest of the paper is organized as follows. The 
biological workloads are summarized in Section 2.  In 
Section 3, we discuss intrinsic dimensionality.  The 
MVP-tree and the bulkload heuristics are discussed in 
Section 4.  Section 5 consists of empirical results, 
followed by conclusions and future work in Section 6. 
 

2. Biological workloads 
 

In the context of a large project aiming to build 
general purpose metric-space extensions to an object-
relational database management system, we have 
developed applications in comparative genomics and 
proteomics [24, 25, 26, 37].  These applications have 
necessitated the creation of the three workloads we 
consider here, the amino-acid sequences of the yeast 
proteome, the DNA sequences of the Arabidopsis 
genomes, and analytically determined peptide 
fragmentation spectra of human and E. coli proteins. 

Similarity retrieval of k-mers is an important 
component of many biological applications [14, 27].  
The similarity between two biological sequences are 
often measured based on their optimal local alignment.  
One general approach for finding useful optimal local 
alignments is to divide the sequences in a sequence 
database and the query sequence into k-mers. The 
evolutionary closed k-mers were identified and then 



used to determine a local alignment. Similar 
approaches were adopted by popular sequence 
searching tools, such as FASTA and BLAST [1, 31]. 

The similarity or distance between two k-mers is 
often measured by their global alignment score whose 
computation is often based on a substitution matrix 
[11]. 

The yeast protein database is organized as 5-mers, 
overlapping substrings of length 5.  The similarity 
function is weighted-edit distance based on the recently 
developed metric PAM substitution matrix, mPAM 
[38].  In mPAM the distance between amino acids 
forms a metric.  It follows that mPAM weighted-edit 
distance on sequences also forms a metric [34].  The 
protein sequence dataset was downloaded from 
Genbank in July 2003 [29]. The dataset contains 
FASTA formatted amino acid translations extracted 
from GenBank/EMBL/DDBJ records that are 
annotated with one or more CDS features.  

The DNA sequence database contains the 
Arabidopsis thaliana genome organized as 18-mers.  
The similarity function used is simple Hamming 
distance.  This choice of k-mer length was central to an 
analysis that compared the Arabidopsis and Rice 
genomes to identify candidate DNA regions that would 
be universally primerable and amplifiable for all 
flowering plants [37]. The data was downloaded from 
ftp://ftp.arabidopsis.org/home/tair/ in March 2003. 

A peptide fragmentation spectrum or tandem MS 
spectrum is a histogram of mass over charge (m/z) 
ratios, or peaks.  It is generated by collision-induced 
fragmentation of peptides that are in turn derived from 
the enzymatic digestion of a protein.  Our mass spectra 
dataset consists of 653,882 predicted fragmentation 
spectra of peptide of E. coli and human proteins 
derived from the REFSEQ protein sequence database, 
which is available online [28].  Given a sample mass 
range of 4000 Da (Daltons), and resolution of 
representation 0.1 Da, we can visualize each spectrum 
as a binary vector in a space of approximately 40,000 
dimensions.  In practice, these spectra are stored as 
variable length real valued vectors. 

Our distance function is a ‘fuzzy’ measure of the 
shared peaks count (SPC) [35].  It can be interpreted as 
a modified form of cosine distance [12, 13], and 
overcomes some of the drawbacks of SPC.  Two peaks 
are marked as being equal if the absolute difference of 
their m/z values lies within certain tolerance.  Based on 
cosine distance interpretation, the distance between two 
data points is the angle between their vector 
representations. 

The biological workloads are summarized in Table 
1 in next section.  The intrinsic dimensionality listed in 
the table will be discussed in next section. 

 

3. Intrinsic dimensionality 
 

For clarity we will refer to the domain and range of 
the distance function separately.  The distinction 
between these is often blurred in studies which assume 
data is randomly and uniformly distributed in some 
well-formed metric-space, such as Euclidean space or 
Hamming space.  It is often convenient to map a 
biological domain to a well-formed domain.  But 
biological data tends to be very highly structured 
and/or stylized such that the properties of the domain 
of the model may provide a very misleading 
characterization of the range of the data.  

Consider, for example, the databases of analytically 
determined Maldi mass-spectra, used to interpret 
proteomic mass-spectroscopy experiments. Depending 
on the machine, a Maldi mass-spectrometer may be 
able to resolve 40,000 to 100,000 peaks.  Thus, using 
the vector-space model, the domain of the distance 
function will have 40,000 to 100,000 dimensions.  
Analytically determined monoisotopic peptide 
fragment spectra typically average 10 to 50 peaks, 
independent of resolution.  Further, since there is no 
quantitative information, peak intensity information 
may be disregarded, and each dimension of the vector-
space is just a binary value, peak/no-peak.  Thus, 
measured against the domain, the range of a mass-
spectra database contains vast regions of empty space.  

Due to the curse of dimensionality, the dimension of 
the data space dominates the efficiency of the search 
algorithms. The practical impact of the curse of 
dimensionality on an algorithm stems from the 
requirement that the algorithm form largely disjoint 
subsets of the data that may be pruned during search. 
The higher the dimension of the space, the more 
difficult it is to use distance to distinguish the subsets 
(i.e. the higher the dimension, the more data that have 
the same distance to a reference data point, and are thus 
not distinguishable for the view of the reference point). 

Distance-based indexing methods only consider 
relative distance between data objects without 
interpretation to coordinate systems, but the density of 
the data remains an intrinsic property.  The actual 
performance of a distance based index is dependent on 
the actual density and distribution of the data (the 
range), and not the formal definition of the legal points 
in the space (the domain). In many applications, the 
range of high dimensional data domains may have 
much lower intrinsic dimensionality. 



Therefore, the intrinsic dimensionality of a metric 
space is a way to quantify a characteristic of the range 
of a distance function.   

Two methods of measuring intrinsic dimensionality 
have been proposed.  We will consider them both on 
each of three biological workloads.  The first 
measurement is due to Chavez et al. [9]. 

Definition 1: the intrinsic dimensionality of a metric 
space is defined as ρ = µ2/2σ2, where µ and σ2 are the 
mean and variance of the distribution of the pair-wise 
distances among the data points in the space. 

Using Yianillos’ asymptotic results for mean and 
variance [40], this measure produces the expected 
result, θ(d), for d-dimensional Lp spaces with random 
and uniform data. The hidden constants in these results 
make the measure more useful asymptotically than for a 
single data set. In fact, the constants in the definition 
were chosen for technical convenience.  

Another way to destermine the intrinsic 
dimensionality is to measure how the volume of a 
hyper-ball, that is, the number of points contained in it, 
changes with respect to the radius.  This measure 
agrees with the standard measure in d-dimensional 
Euclidean space with random and uniform data, since 
the ball with radius c∗r has cd times the volume of the 
ball with radius r.  Thus if the data is uniformly 
distributed, the number of data points in the hyper-ball 
will be proportional to rd. 

Definition 2: Let r be the radius of range queries, 
and n be the average number of results of range queries 
with radius r.  The intrinsic dimension is determined as 
the slope coefficient of the linear regression of log(n) 
vs. log(r). 

We avoid queries that incur a reduced volume due 
to boundary effects.  

Except for the protein data set, we measured the 
dimension based on query points that were in the data 
domain but not necessarily in the data set.  DNA 
queries on the Arabidopsis thaliana genome were 
drawn randomly from the rice DNA data and the mass 
spectra queries were from other source (Section 5).  

We believe it is reasonable and useful to base the 
dimensionality measure in part on the intended 
application.  Thus Definition 2 in this case is preferred 
since the ability to prune in distance based indexing 
depends on properties of the domain and the query 
workload, both of which are reflected in the regression 
based measure. 

The intrinsic dimensionalities of the biological 
workloads estimated by the two methods are listed in 
Table 1.  For the protein 5-mers, its ρ-value of 
dimension, by Definition 1, is 20.5, but is just 2.7 by 
regression of Definition 2.  For the DNA 18-mers, its 

ρ-value of dimension is 23 but is just 2.2 by regression.  
Similarly, for mass-spectra with fussy cosine distance, 
its ρ-value of dimensionality is 300 while 130 by 
regression, much less than the dimension of their 
domain, a 40,000 dimensional binary vector 
representation. 

 
Table 1. Summary of biological workloads 

Intrinsic 
Dimen-
sionality 

Biological 
workloads

Size Distance 
function 

Domain 
dimen-

sionality 
Def. 1 Def. 2

Protein 
5-mer 

up to 
200 

million 

Global 
alignment 5 20.5 2.7 

DNA 
18-mer 

up to 30 
million 

Hamming 
distance 18 23 2.2 

Mass-
spectra 653,882

Cosine 
distance 

40,000 300 130 

 
To further reduce the dimensionality, we design a 

semi-metric distance function and modify the MVP tree 
search algorithm [35], similar to the work done in [21, 
33].  The semi-metric distance between two spectra 
data is defined as the sum of the fuzzy cosine distance, 
and the absolute difference between the precursor 
masses of the two peptides.  Precursor mass difference 
is defined to be zero if it is less than a given tolerance 
[35].  The semi-metric function looses the triangle 
inequality by a constant, k, i.e. d(x,y) + d(y,z) ≤ d(x,z) 
+ k.  We modify the pruning criterion of the MVP 
search algorithm for semi-metric search.  Given a pivot 
p, query q and radius r, a metric-distance search would 
prune all points u where |d(u, p) – d(q,p)| > r, while a 
semi-metric search prunes all points u where |d(u, p) – 
d(q,p)| > r+k [35].  With the semi-metric, the intrinsic 
dimensionality of mass spectra is reduced to 
approximately 1, as shown in the last column of Table 
1.  Since the intrinsic dimension is dramatically 
reduced using the semi-metric, we only consider the 
semi-metric in the rest of this paper. 
 

4. Multi-vantage point trees  
 

In anticipation of large-scale disk resident 
databases, we consider the paginated version of MVP-
trees, i.e., MVP-trees whose internal nodes and leaves 
are sized to fit onto a disk page. For the internal nodes 
this is accomplished by choosing a combination of the 
number of vantage-points and the number of partitions 
per vantage point such that the memory required to 
store the partitioning information and the surrogates 
(disk related addresses serving as pointers to children) 
approaches the size of a disk-page, which is usually 4 



Kbytes.   The number of data items stored in a leaf is 
inversely proportional to the size of the data objects.  

 

 
 

 
 

The topological parameterization of an MVP-index 
is denoted by the triple (v, s, m), where v represents the 
number of pivots in each node, s is the number of 
subsets into which a dataset is partitioned based on the 
distances to one pivot, and m is the maximum number 
of data points in a leaf node.  For internal nodes, 
starting with the first pivot p1, the data is partitioned 
into s disjoint intervals, (d1,i-min, d1,i-max), each of 
which defines a range predicate, i.e., for any data point 
x in the ith subset, d1,i-min <= d(p1,x) <= d1,i-max.  
Within the node, the process repeats recursively for p2, 
…, pv.  The fanout of a node is thus sv.  Figure 1 
illustrates the four partitions of a (2,2,m) internal node.  
VP1 and d11 split the data into 2 partitions.  VP2 and d21 
and d22, in turn split the 2 partitions into 4. 

 
The bulkload algorithm is detailed in Figure 2. It is 

a divide and conquer algorithm. The function 

bulkLoad( ) takes the data set and the number of pivots 
as arguments, and it returns the root node of the index 
(sub)tree. If the data point array is small enough to fit 
onto a disk page, bulkLoad( ) just creates a leaf node.   
Otherwise, pivots are selected, the range of distances 
for each partition is determined and then recorded to 
form an internal index node.  The data is divided and a 
recursive call to bulkLoad() is invoked for each 
partition. 

Optimal pivot selection would require solving NP-
hard clustering problems.  Thus the quality of the index 
is determined by the choice of heuristic algorithm [4, 
5].  Here we reconsider Yianilos’ corner selection 
heuristic for pivots.  We explicitly introduce a 
clustering algorithm as the basis of identifying 
partitions 

 
4.1 Corner vs. center pivot selection 

 
The Hochbaum-Schmoy’s k-center clustering 

algorithm, also known as the farthest-first-traversal 
algorithm, is a fast, convenient way to identify pivots. 
Farthest-first-traversal gives a 2-approximation to 
minimizing the maximum cluster diameter [18].  Its 
time and space complexities are both O(n), where the 
number of farthest points is considered as a constant. 

 

 
The algorithm is consistent with a heuristic 

proposed by Yianilos that corners form good pivots 
and is thus commonly used.  Yianilos’ arguments are 
best explained by including his illustration.  See Figure 
3.  

Yianilos considers the distance restricted nearest-
neighbor problem [39].  That is, nearest neighbors 
beyond a certain distance from the query point are of 
no interest.  This retrieval definition is consistent with 

Figure 3 Yianilos’ pivot heuristic. Corners 
minimize the partitioning surface 

IndexNode bulkLoad(Object[] dataset, int 
pivotNumber) { 

if (dataset.length <= maxLeafSzie) { 
create a leaf node and return; 

} 
else {         //build an internal node 

Object [] pivot = selectPivot(dataset, 
pivotNumber); 

Object [] subDataset = partition(dataset, pivot); 
IndexNode [] children; 
for ( each subDataset[i] ) 

children[i]=bulkLoad(subDataset[i], 
pivotNumber); 

Create an internal node with children, and 
return; 

} 
} 
Figure 2. Bulkload algorithm of MVP-Index 

Figure 1. Partitions of a (2,2,m) 
MVP internal node 



our applications.  Yianilos’ algorithm assumes that the 
data consists of uniform points on a 2-d unit square 
with Euclidean distance. 

The crux of Yianilos’ argument is that by 
minimizing the surface of the partitioning sphere, (or 
circle in 2-D), one minimizes the probability that on 
any one retrieval search a neighborhood around the 
query point will intersect with the bounding sphere.  
Such intersections eliminate the opportunity to choose 
to search one partition to the exclusion of the other; i.e. 
to prune.  Yianilos considers a circle, centered at point 
p in the square and with radius r such that the area 
inside and outside the circle are equal. As shown in 
Figure 3, he similarly considers a point on the side, a 
point in the corner and the center.  Of the three, the 
circle defined by the corner pivot has the smallest 
boundary.  This argument holds for a Euclidean 
distance between points in a high-dimensional unit 
hyper-cube.  Empirical results presented in Section 5 
corroborate the benefit of this heuristic for metric-
spaces that fulfill all of Yianilos’ assumptions. 

The biological workloads we consider do not 
involve Euclidean metrics.  Each of the metrics has 
symmetry and a “wrap-around” property that makes 
finding a corner very difficult.  For these workloads, 
one can travel in any direction from a point and 
ultimately return to the same spot.  Thus, with respect 
to the domain, every point in the space is identical and 
simply has no distinguishing geometric features (like a 
corner).   

We agree with Yianilos’ heuristic principle that 
minimizing the surface of the partitioning sphere 
maximizes pruning.  For our biological workloads, that 
means minimizing the diameter of the bounding 
spheres.  Since there is no definition of algebraic 
operations in metric space, a k-means algorithm cannot 
be applied to a metric space directly.  K-center is also 
not applicable because its objective only considers the 
maximum cluster diameter.  Therefore, k-median and 
MSD (Minimize the Sum of cluster Diameter) 
algorithms are our choices.  K-median algorithms try to 
minimize the sum of distances from all data points to 
their cluster centers, while MSD algorithms try to 
minimize the sum of cluster diameters.  Both of these 
are NP-hard problems and there are some primal-dual 
based constant factor approximation algorithms [7, 20].  
However, these algorithms usually have high time 
complexity, which does not make them applicable to 
the case of indexes, where the datasets are large.  For 
MVP-tree indices, we implement an MSD algorithm 
derived from CLARA (Clustering LARge 
Applications) [22]. CLARA is a simple k-median 
algorithm based on sampling and iteration. The time 

complexity of the algorithm is O(n).  Interested readers 
are referred to [22]. 

Empirical results show that using centers as pivots is 
comparable to and in most cases outperforms the use of 
corners. 

 
4.2 Data partition 

 
It has been argued, most notably by Brin, that the 

effectiveness of a metric-space index depends on the 
algorithm’s ability to capture the intrinsic hierarchical 
structure of the data [6].  Note that this is consistent 
with the heuristic goal of minimizing the diameter of 
the partitioning spheres [24].  Furthermore, numerous 
bioinformatic studies use hierarchical clustering to 
make important biological discoveries, suggesting that 
as an application domain, biological data is well suited 
to this approach.  

We must begin by recognizing the differences 
between the application of hierarchical clustering to 
data mining and to initializing a database index.  
Differences include the size of the data set and the 
semantic quality of the results. In data mining, an 
important goal of clustering is  
to extract semantic relationships from the data with 
high confidence, and the dataset is relatively small and 
manageable.  O(n2) algorithms are common.  
Introducing small but semantically effective 
improvements in the clustering even at large 
computational expense is desirable.  When managing a 
database one must assume that the amount of data is 
arbitrarily large.  Even O(nlogn) algorithms may be 
prohibitive.  The semantic quality of the clustering is of 
secondary concern.  The primary concern is 
discovering spatially distinguishable disjoint data sets 
that improve the pruning decisions during search.  

Toward this end, given a pivot, we consider a 
clustering method to locate partitions rather than 
organizing the partitions by balancing their cardinality.  
When the data distribution displays structure, a 
histogram of the distances from the pivot to each of the 
data point will show peaks (dense regions) and valleys 
(sparse regions).  Assuming query distribution is 
similar to the data distribution, we can decrease the 
probability that a neighborhood around a query will 
intersect with the partition boundary by placing the 
partition boundaries in the sparse regions, enabling 
successful pruning.  Consequently, an index tree 
structure consistent with the intrinsic clustering of the 
data is apt to outperform an index that is inconsistent 
with that structure. 

The use of clustering to locate partitions in lieu of 
balancing the cardinality of the partitions may lead to 



unbalanced trees.  Our algorithm ameliorates but does 
not solve this.  Even so, we show empirically that the 
clustering method improves average retrieval times.  
Our application domain is not concerned with real-time 
transactions, and the concomitant criteria of consistent 
response times for concurrent users.  These databases 
are intended to support large-scale data analysis.  
Minimizing the average search time is more important 
than minimizing the standard deviation of the response 
times.  

 

 
 

An outline of the algorithm is as follows.  Pivots are 
selected by some methods beforehand.  For each pivot, 
a one-dimensional k-means algorithm is run with 
respect to the distance from the pivot to each of the 
data points.  In an effort to maintain a balanced tree 
structure, if there is more than one pivot, the variance 
of the size of the clusters for each pivot is computed.  
The pivots are sorted by increasing variance in the size 
of the clusters, and the MVP partitions situated on 
cluster boundaries.  In the next step, each sub-dataset 
and the remaining pivots are considered similarly.  The 
algorithm is detailed in Figure 4.  One can prove that 
the time complexity of this algorithm is O(n), but the 
constants are large and one must  assume the  k-means 
clustering converges quickly. 

Several research efforts relate to this approach. 
Chavez et al. proposed the distance-balanced partition 
algorithm [8].  In their approach the range of the 

distance function is partitioned into k equal size 
intervals, independent of the cardinality of the 
partitions.  The time to build the tree is very fast, as the 
consideration of the actual data is minimal.  This 
construction also leads to unbalanced trees, but without 
the benefits of considering the actual data distribution.  
Brin’s GNAT-trees, which build upon the general 
hyper-plane methods of building metric-index trees, 
use data sampling to instill the structure of real data 
into the tree.  Furthermore, the trees are kept balanced 
in height by varying the fanout of the internal nodes, 
e.g., internal nodes receiving larger than average 
partitions introduce additional partitions at the next 
level.  In our own efforts, we developed a bidirectional 
bulkload algorithm of M-trees whose primary goal was 
to minimize the diameter of partitioning sphere through 
a better cluster merging step [24].  To our knowledge, 
this is the first effort to introduce an initialization step 
into MVP-trees that improves the ability of the MVP-
tree to capture the intrinsic hierarchical clustering of 
the data. 

 

5. Empirical results  
 
In this section, we present data to compare the 

MVP-tree bulkload heuristics.  The hypotheses are that 
for the biological workloads, center-pivot heuristic 
outperforms corner-pivot, and clustering partition 
outperforms the distance-balanced partition.  We also 
present data to demonstrate scalability.   

 

 
The important measures are algorithmic measures of 

scalability.  We use system-independent measures for 
performance, such as number of distance calculations 
and number of I/O operations.  The results of distance 
calculations and number of I/O are similar in most of 
the cases.  Therefore, only the results of distance 
calculations are presented. 
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ClusteringPartition(D: dataset, pi: a pivot, s: number 
of partitions induced from each pivot ) { 

// each cluster is associated with a set of pivots, 
initially one cluser D is associated with all the 
pivots 

while( there exists a cluster C whose pivots set P is not 
empty) { 

for ( each pi in P) { 
compute the distances to pi; 
find s-1 split values by calling k-means( ); 
compute the sizes of sub-clusters based on 

the split values; 
compute the variance of the sizes of sub-

clusters; 
} 
find p-mv, resulting in the smallest variance; 
split C into s sub-clusters based on the split 

values from p-mv; 
remove p-mv from P;  
copy P as the pivot set for each of the s sub-

clusters; 
remove C; 
} 

return all the clusters; 
} 
Figure 4. Algorithm of Clustering Partition 



5.1 Corner vs. center pivot selection 
 

We first compare the pivot-selection heuristics of 
uniform Euclidean space.  A number of vectors are 
randomly selected as queries from synthetic uniform 
vector datasets of size 10k in 5-d hyper-cube and 
hyper-ball.  The average number of distance 
calculations of range queries with various radii is 
shown in Figure 5.  Clearly, corner-pivot outperforms 
center-pivot, and Yianilos’ argument is supported. 

 

We now consider the biological workloads with 
respect to various combinations of heuristics and 
database sizes. For mass-spectra, the queries were 
experimental peptide fragmentation spectra drawn from 
the Open Proteomics Database [30].  For DNA, the 
query set consists of 18-mers randomly selected from 
rice genome. For protein, data points are randomly 
selected as queries.  Figure 6 shows the average 
number of distance calculations vs. database size with 
various combinations of pivot selection and data 
partition heuristics for fixed range query radius of each 
workload. 

 
Figure 6 (a) and (b) show that for peptide 5-mers 

and DNA 18-mers, center-pivot outperforms corner-
pivot. From Figure 6 (c), we can see that center-pivot is 
outperformed by corner-pivot in 2 cases, but the 
margins are tiny.  Therefore, in comparing the data 
partition heuristics next, we only present data with 
center-pivot to select pivots. 
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Figure 7. scalability on biological 
workloads 

(a) Peptide 5-mers, EDKNN, k = 300, d = 3

(c) Mass-spectra, KBFRS, k = 100, radius = 3
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(b) DNA 18-mer, DKNN, k = 300, d = 3
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Figure 6. Pivot selection and data 
partition of biological workloads

(c) Mass-spectra, radius = 0.5 

(a) Peptide 5-mer, radius = 3 
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(b) DNA 18-mer, radius = 3 

              Center-pivot, clustering partition 

             Center-pivot, cardinality-balanced partition 

             Corner-pivot, cardinality-balanced partition



 
5.2 Data partition 
 

The long dash diamond line in Figure 6 represents 
the data of center-pivot and clustering partition. In all 
three applications the clustering partition outperforms 
cardinality-balanced partition. For the 19M peptide 
database, the number of distance calculations required 
for the center-pivot and clustering partition heuristics, 
is about half of that of the traditionally used corner-
pivot and cardinality-balanced methods. The 
superlinear speed-up for the peptide results is a real 
phenomenon and is explained in next sub-section, for 
Figure 7 (a). 

 
 
5.3 Scalability 
 

Distance restricted k-nearest neighbor (DKNN) 
search is of key interest in many biological applications 
[35, 37].  The distance restriction stipulates a maximum 
distance in a search result, even if that means returning 
fewer than k-nearest neighbors.  The algorithm utilizes 
a priority queue to store all of the index nodes to be 
searched, and another priority queue to rank the search 
results. 

In addition, we also defined two more aggressive 
algorithms based on the same best-first search strategy: 
extended distance restricted k-nearest neighbor 
(EDKNN) and k best first range search (KBFRS).  
Both aggressive algorithms traverse the index structure 
in the same order as DKNN.  However, they may 
terminate earlier than normal DKNN algorithm.  The 
KBFRS will terminate once k qualified results are 
found.  The EDKNN will terminate after both the 
nearest neighbor and total k qualified results are found.  
If there are no more than k qualified results within the 
distance restriction, all three algorithms will generate 
same results set.  If there are far more than k qualified 
results within the distance restriction, the aggressive 
algorithms will run much faster with the potential loss 
of accuracy.  In practice, we use EDKNN in k-mer 
matching for homology search problem and KBFRS in 
a coarse filter of similar mass-spectra data retrieval. 

Figure7 (a) shows the average number of distance 
calculations of EDKNN queries, with k equals 300 and 
distance restriction d equals 3, of peptide 5-mers with 
various database sizes. 

We see in a number of cases that the number of 
distance calculations decreases as the database size 
increases. This is a real phenomena connected to the 
search properties of k-nearest neighbor. For peptide 5-
mers, the search space is about 30 million, (205).  

Although amino acids are not uniformly distributed, the 
search space is gradually covered as the amount of data 
increases. During the nearest neighbor search, the 
algorithm prioritizes the nodes based on distance from 
the query point to the partition. The highest priority is 
given to nodes that may contain exact matches. As the 
database increases in size, the probability that a 
partition that may contain an exact, or near exact match 
actually contains matching data increases.  The 
probability of search backtracking decreases, indicating 
super-linear speedups.  

Figure7 (b) shows the average number of distance 
calculations of DKNN queries, with k equals 300 and 
distance restriction d equals 3, of DNA 18-mers with 
various database sizes. Clearly, the search scales well. 

Figure 7 (c) shows average number of distance 
calculations of KBFRS queries, with k equals 100 and 
distance restriction d equals 3, of mass-spectra with 
various database sizes.  Obviously, the number 
increases slowly as database size increases.  Note that 
like the depth of a B+ tree in a relational database 
system, the MVP index tree has discontinuous 
increases in height as the database grows.  Thus, the 
search cost increases very slowly, subject to sudden 
increments when the index increases in height (from 
300,000 to 400,000). 
 

6. Conclusions and future work 
 

In this paper, we show that some traditional results 
on optimizing MVP-trees, instigated by multimedia 
applications, should not be applied to biological 
workloads.  The reason is that biological workloads 
usually have low intrinsic dimensionality and the data 
is highly structured.  The distance functions used for 
biological database are not Euclidean norms. 

Initial construction of MVP-indexes is critical to 
their search performance.  Because of the difference 
between Euclidean space vectors and biological 
workloads, the canonical heuristic to select corners as 
pivots does not work well in biological applications.  
As mentioned in [39], “The discrete metric is thus 
excluded along with many other cases”.   

Further investigation of methods whose goals are to 
better capture the intrinsic hierarchical clustering of the 
data is in order.  Our departure from balanced tree-
structures, justified by the fact that the workloads 
comprise large-scale data analysis rather than on-line 
transaction processing, offers flexibility not normally 
considered in database research.   

Another characteristic of biological databases, not 
explored in this paper, is that biological databases are 
usually written-once.  That is, the databases grow, but 



direct updates are not allowed.  If records must be 
updated, this is usually accomplished by adding a new 
version. The implication is that for some databases, the 
frequency of queries compared to material changes in 
the database may justify extraordinary off-line 
computation time to optimize the initialization of the 
index structure.  Consider the following scenario.  
Suppose BLAST searches against Genbank could be 
done in half the time, but only if the sequence contents 
of Genbank were preprocessed using a month of time 
on a supercomputer.  It would only be weeks before 
there would be a net gain in CPU cycles.  The 
productivity of scientists searching Genbank would be 
immediately improved.  We have shown that in some 
cases, our heuristics and preprocesing methods for 
MVP-trees may double their performance.  It would 
benefit biology if this magnitude of improvement could 
be gained consistently. The write-once nature of 
biological databases enables many different avenues.  
For important problems, even methods that may appear 
to be prohibitively expensive may be worth pursuing. 
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