
On Optimizing Distance-Based Similarity Search for Biological Databases

Rui Mao, Weijia Xu, Smriti Ramakrishnan, Glen Nuckolls, Daniel P. Miranker
Department of Computer Sciences

Center for Computational Biology and Bioinformatics
University of Texas at Austin

1 University Station C0500, Austin, TX 78712-0233 USA
{rmao, xwj, smriti, nuckolls, miranker}@cs.utexas.edu

Abstract

Similarity search leveraging distance-based index
structures is increasingly being used for both
multimedia and biological database applications. We
consider distance-based indexing for three important
biological data types, protein k-mers with the metric
PAM model, DNA k-mers with Hamming distance and
peptide fragmentation spectra with a pseudo-metric
derived from cosine distance. To date, the primary
driver of this research has been multimedia
applications, where similarity functions are often
Euclidean norms on high dimensional feature vectors.
We develop results showing that the character of these
biological workloads is different from multimedia
workloads. In particular, they are not intrinsically very
high dimensional, and deserving different optimization
heuristics. Based on MVP-trees, we develop a pivot
selection heuristic seeking centers and show it
outperforms the most widely used corner seeking
heuristic. Similarly, we develop a data partitioning
approach sensitive to the actual data distribution in
lieu of median splits.

1. Introduction

Distance-based indexing exploits the relative
distance among data objects to support similarity
search [9, 17]. The goal of the approach is the creation
of general-purpose data structures that support fast
scalable retrieval of complex data types. The primary
requirement is that the distance function be a metric.
That is, the distances are positive, symmetric, and

satisfy the triangle inequality. Many domain-specific
index structures have been developed for biological
applications, such as suffix trees [15] and suffix arrays
[23]. However, they are limited by their domains and
are therefore not discussed in the paper. The active
application of distance-based indexing began with
multimedia applications (images and sound) [3, 12].

Increasingly, in the face of hyper-exponentially
growing biological databases, biological applications
of distance-based indexes are also being investigated
[25, 33, 35]. A data structure, the index, is initialized
off-line. On-line data retrieval based on proximity,
either k nearest-neighbor or range search may exploit
the triangle inequality, amortizing the off-line cost of
creating the index and promising scalable performance.
In addition, the use of tree-based data structures offers
seamless integration with object-relational database
management systems (e.g. DB2, Oracle, Postgres) [16].

In multimedia applications, each object is often
associated with a long description vector. For example,
an image might be described by frequency and/or
texture histograms [3, 9, 17]. The similarity of a pair of
objects is defined as the Euclidean norm of their
feature vectors. A primary benefit of distance-based
approaches is the casting of the similarity of a pair of
high dimension descriptors to a single number.

We have determined that several established results
in distance-based indexing, well founded in
anticipation of multimedia applications, are not
applicable to biological workloads. A primary concern
is the impact of the curse of dimensionality. Informally,
the curse of dimensionality states that similarity search
algorithms have an exponential dependency on the
dimension of the space. Analytic results concerning
the indexability of very high-dimensional uniform data
have shown that any indexing scheme will degrade as
the number of dimensions increase, and, given the
overhead of indexing schemes, at some point a simple

This research was supported by grants from the Texas Higher
Education Coordinating Board and the National Science
Foundation contract DBI-0241180, IIS-0325116, EIA-
0121680, EF-0331453

linear scan will outperform any indexing scheme as the
dimension of the problem increases. A distance
function may cast a high dimensional problem to a
single number, but the curse of dimensionality speaks
to intrinsic properties of the data. Simple changes in
representation do not overcome these intrinsic
properties.

In biological applications a primary advantage of
distance-based methods is that they may be used to
capture similarity of data that is not naturally described
by a point in a Euclidean space. For example, the
similarity of biological sequences concerns
evolutionary distance, often modeled by weighted-edit
distance or Hamming distance. Our work in matching
peptide fragmentation mass-spectra is derived from
cosine distance.

We have concluded that the intrinsic dimensionality
of three important biological workloads is not very
high. For instance, the intrinsic dimensionality of 5-
mers (overlapping fragments of length 5) from a yeast
protein database under the mPAM weighted edit-
distance model is roughly 2.7 or 20.5, depending on the
measure. Similarly, Hamming distance on
Arabidopsis’ genomic sequences of length 18 (a length
suitable for identifying highly conserved genomic
sequences across species as well as identifying small
RNA coding genes [35]) has an intrinsic dimensionality
of 2.2 or 23. The intrinsic dimensionality of our third
application workload, a database of analytically
determined peptide mass fragmentation spectra, is 130
or 300, 2 orders of magnitude less than the number of
resolvable peaks (approximately 40,000). See Section
3.

In previous work, we determined that of the three
major classes of distance-based indexing methods, M-
trees [10], generalized hyper-plane trees [36] and
vantage-point trees [36, 39], the vantage-point tree
suits our biological workloads best. In a vantage-point
method, a metric space is partitioned into disjoint
regions recursively to form a hierarchical structure. At
each step a vantage-point, also known as a pivot, is
selected. The distance of each point to the pivot is
computed. The distance d to the pivot establishes a
bipartition, with half the points inside a bounding
sphere of radius d centered on the pivot and half the
points outside that sphere. The method has been
generalized for large disk-resident databases by
considering multiple vantage-points at each level, and a
higher degree of partitioning (>2 partitions). This data
structure is known as a multiple vantage point tree, or
MVP-tree. The result resembles a k-d tree [2]. The
pivot-selection and data partition heuristics are critical
to search performance [4, 39].

For pivot selection we revisit the “corner-pivot”
heuristic first suggested by Yianilos. Yianilos’ informal
argument assumes a Euclidean space and uniform data
distribution, which don’t hold for biological workloads.
We develop a “center-pivot” heuristic. Empirical
results on synthetic uniform Euclidean data and each of
the biological workloads agree with our analysis.

Independent of algorithmic approach or the intrinsic
dimension of the data, an important heuristic with
respect to the success of distance-based indexing
speaks to the data intrinsically entailing a hierarchical
clustering and the ability of the initialization algorithm
to reflect that hierarchy [6, 24]. To determine more
effective data partitions we apply a clustering algorithm
to the distances from the data points to the pivots. We
set the partitioning surfaces according to those clusters.
Although our heuristics can lead to unbalanced index
trees, empirical results show that they outperform the
canonical heuristics that traditionally favor balanced
trees.

Ultimately we show that MVP-trees can be
effectively optimized for biological workloads and that
specific optimizations to the character of biological
workloads can amount to up to a 50% performance
improvement over heuristics developed primarily for
multimedia applications.

The rest of the paper is organized as follows. The
biological workloads are summarized in Section 2. In
Section 3, we discuss intrinsic dimensionality. The
MVP-tree and the bulkload heuristics are discussed in
Section 4. Section 5 consists of empirical results,
followed by conclusions and future work in Section 6.

2. Biological workloads

In the context of a large project aiming to build
general purpose metric-space extensions to an object-
relational database management system, we have
developed applications in comparative genomics and
proteomics [24, 25, 26, 37]. These applications have
necessitated the creation of the three workloads we
consider here, the amino-acid sequences of the yeast
proteome, the DNA sequences of the Arabidopsis
genomes, and analytically determined peptide
fragmentation spectra of human and E. coli proteins.

Similarity retrieval of k-mers is an important
component of many biological applications [14, 27].
The similarity between two biological sequences are
often measured based on their optimal local alignment.
One general approach for finding useful optimal local
alignments is to divide the sequences in a sequence
database and the query sequence into k-mers. The
evolutionary closed k-mers were identified and then

used to determine a local alignment. Similar
approaches were adopted by popular sequence
searching tools, such as FASTA and BLAST [1, 31].

The similarity or distance between two k-mers is
often measured by their global alignment score whose
computation is often based on a substitution matrix
[11].

The yeast protein database is organized as 5-mers,
overlapping substrings of length 5. The similarity
function is weighted-edit distance based on the recently
developed metric PAM substitution matrix, mPAM
[38]. In mPAM the distance between amino acids
forms a metric. It follows that mPAM weighted-edit
distance on sequences also forms a metric [34]. The
protein sequence dataset was downloaded from
Genbank in July 2003 [29]. The dataset contains
FASTA formatted amino acid translations extracted
from GenBank/EMBL/DDBJ records that are
annotated with one or more CDS features.

The DNA sequence database contains the
Arabidopsis thaliana genome organized as 18-mers.
The similarity function used is simple Hamming
distance. This choice of k-mer length was central to an
analysis that compared the Arabidopsis and Rice
genomes to identify candidate DNA regions that would
be universally primerable and amplifiable for all
flowering plants [37]. The data was downloaded from
ftp://ftp.arabidopsis.org/home/tair/ in March 2003.

A peptide fragmentation spectrum or tandem MS
spectrum is a histogram of mass over charge (m/z)
ratios, or peaks. It is generated by collision-induced
fragmentation of peptides that are in turn derived from
the enzymatic digestion of a protein. Our mass spectra
dataset consists of 653,882 predicted fragmentation
spectra of peptide of E. coli and human proteins
derived from the REFSEQ protein sequence database,
which is available online [28]. Given a sample mass
range of 4000 Da (Daltons), and resolution of
representation 0.1 Da, we can visualize each spectrum
as a binary vector in a space of approximately 40,000
dimensions. In practice, these spectra are stored as
variable length real valued vectors.

Our distance function is a ‘fuzzy’ measure of the
shared peaks count (SPC) [35]. It can be interpreted as
a modified form of cosine distance [12, 13], and
overcomes some of the drawbacks of SPC. Two peaks
are marked as being equal if the absolute difference of
their m/z values lies within certain tolerance. Based on
cosine distance interpretation, the distance between two
data points is the angle between their vector
representations.

The biological workloads are summarized in Table
1 in next section. The intrinsic dimensionality listed in
the table will be discussed in next section.

3. Intrinsic dimensionality

For clarity we will refer to the domain and range of
the distance function separately. The distinction
between these is often blurred in studies which assume
data is randomly and uniformly distributed in some
well-formed metric-space, such as Euclidean space or
Hamming space. It is often convenient to map a
biological domain to a well-formed domain. But
biological data tends to be very highly structured
and/or stylized such that the properties of the domain
of the model may provide a very misleading
characterization of the range of the data.

Consider, for example, the databases of analytically
determined Maldi mass-spectra, used to interpret
proteomic mass-spectroscopy experiments. Depending
on the machine, a Maldi mass-spectrometer may be
able to resolve 40,000 to 100,000 peaks. Thus, using
the vector-space model, the domain of the distance
function will have 40,000 to 100,000 dimensions.
Analytically determined monoisotopic peptide
fragment spectra typically average 10 to 50 peaks,
independent of resolution. Further, since there is no
quantitative information, peak intensity information
may be disregarded, and each dimension of the vector-
space is just a binary value, peak/no-peak. Thus,
measured against the domain, the range of a mass-
spectra database contains vast regions of empty space.

Due to the curse of dimensionality, the dimension of
the data space dominates the efficiency of the search
algorithms. The practical impact of the curse of
dimensionality on an algorithm stems from the
requirement that the algorithm form largely disjoint
subsets of the data that may be pruned during search.
The higher the dimension of the space, the more
difficult it is to use distance to distinguish the subsets
(i.e. the higher the dimension, the more data that have
the same distance to a reference data point, and are thus
not distinguishable for the view of the reference point).

Distance-based indexing methods only consider
relative distance between data objects without
interpretation to coordinate systems, but the density of
the data remains an intrinsic property. The actual
performance of a distance based index is dependent on
the actual density and distribution of the data (the
range), and not the formal definition of the legal points
in the space (the domain). In many applications, the
range of high dimensional data domains may have
much lower intrinsic dimensionality.

Therefore, the intrinsic dimensionality of a metric
space is a way to quantify a characteristic of the range
of a distance function.

Two methods of measuring intrinsic dimensionality
have been proposed. We will consider them both on
each of three biological workloads. The first
measurement is due to Chavez et al. [9].

Definition 1: the intrinsic dimensionality of a metric
space is defined as ρ = µ2/2σ2, where µ and σ2 are the
mean and variance of the distribution of the pair-wise
distances among the data points in the space.

Using Yianillos’ asymptotic results for mean and
variance [40], this measure produces the expected
result, θ(d), for d-dimensional Lp spaces with random
and uniform data. The hidden constants in these results
make the measure more useful asymptotically than for a
single data set. In fact, the constants in the definition
were chosen for technical convenience.

Another way to destermine the intrinsic
dimensionality is to measure how the volume of a
hyper-ball, that is, the number of points contained in it,
changes with respect to the radius. This measure
agrees with the standard measure in d-dimensional
Euclidean space with random and uniform data, since
the ball with radius c∗r has cd times the volume of the
ball with radius r. Thus if the data is uniformly
distributed, the number of data points in the hyper-ball
will be proportional to rd.

Definition 2: Let r be the radius of range queries,
and n be the average number of results of range queries
with radius r. The intrinsic dimension is determined as
the slope coefficient of the linear regression of log(n)
vs. log(r).

We avoid queries that incur a reduced volume due
to boundary effects.

Except for the protein data set, we measured the
dimension based on query points that were in the data
domain but not necessarily in the data set. DNA
queries on the Arabidopsis thaliana genome were
drawn randomly from the rice DNA data and the mass
spectra queries were from other source (Section 5).

We believe it is reasonable and useful to base the
dimensionality measure in part on the intended
application. Thus Definition 2 in this case is preferred
since the ability to prune in distance based indexing
depends on properties of the domain and the query
workload, both of which are reflected in the regression
based measure.

The intrinsic dimensionalities of the biological
workloads estimated by the two methods are listed in
Table 1. For the protein 5-mers, its ρ-value of
dimension, by Definition 1, is 20.5, but is just 2.7 by
regression of Definition 2. For the DNA 18-mers, its

ρ-value of dimension is 23 but is just 2.2 by regression.
Similarly, for mass-spectra with fussy cosine distance,
its ρ-value of dimensionality is 300 while 130 by
regression, much less than the dimension of their
domain, a 40,000 dimensional binary vector
representation.

Table 1. Summary of biological workloads

Intrinsic
Dimen-
sionality

Biological
workloads

Size Distance
function

Domain
dimen-

sionality
Def. 1 Def. 2

Protein
5-mer

up to
200

million

Global
alignment 5 20.5 2.7

DNA
18-mer

up to 30
million

Hamming
distance 18 23 2.2

Mass-
spectra 653,882

Cosine
distance

40,000 300 130

To further reduce the dimensionality, we design a

semi-metric distance function and modify the MVP tree
search algorithm [35], similar to the work done in [21,
33]. The semi-metric distance between two spectra
data is defined as the sum of the fuzzy cosine distance,
and the absolute difference between the precursor
masses of the two peptides. Precursor mass difference
is defined to be zero if it is less than a given tolerance
[35]. The semi-metric function looses the triangle
inequality by a constant, k, i.e. d(x,y) + d(y,z) ≤ d(x,z)
+ k. We modify the pruning criterion of the MVP
search algorithm for semi-metric search. Given a pivot
p, query q and radius r, a metric-distance search would
prune all points u where |d(u, p) – d(q,p)| > r, while a
semi-metric search prunes all points u where |d(u, p) –
d(q,p)| > r+k [35]. With the semi-metric, the intrinsic
dimensionality of mass spectra is reduced to
approximately 1, as shown in the last column of Table
1. Since the intrinsic dimension is dramatically
reduced using the semi-metric, we only consider the
semi-metric in the rest of this paper.

4. Multi-vantage point trees

In anticipation of large-scale disk resident
databases, we consider the paginated version of MVP-
trees, i.e., MVP-trees whose internal nodes and leaves
are sized to fit onto a disk page. For the internal nodes
this is accomplished by choosing a combination of the
number of vantage-points and the number of partitions
per vantage point such that the memory required to
store the partitioning information and the surrogates
(disk related addresses serving as pointers to children)
approaches the size of a disk-page, which is usually 4

Kbytes. The number of data items stored in a leaf is
inversely proportional to the size of the data objects.

The topological parameterization of an MVP-index
is denoted by the triple (v, s, m), where v represents the
number of pivots in each node, s is the number of
subsets into which a dataset is partitioned based on the
distances to one pivot, and m is the maximum number
of data points in a leaf node. For internal nodes,
starting with the first pivot p1, the data is partitioned
into s disjoint intervals, (d1,i-min, d1,i-max), each of
which defines a range predicate, i.e., for any data point
x in the ith subset, d1,i-min <= d(p1,x) <= d1,i-max.
Within the node, the process repeats recursively for p2,
…, pv. The fanout of a node is thus sv. Figure 1
illustrates the four partitions of a (2,2,m) internal node.
VP1 and d11 split the data into 2 partitions. VP2 and d21
and d22, in turn split the 2 partitions into 4.

The bulkload algorithm is detailed in Figure 2. It is

a divide and conquer algorithm. The function

bulkLoad() takes the data set and the number of pivots
as arguments, and it returns the root node of the index
(sub)tree. If the data point array is small enough to fit
onto a disk page, bulkLoad() just creates a leaf node.
Otherwise, pivots are selected, the range of distances
for each partition is determined and then recorded to
form an internal index node. The data is divided and a
recursive call to bulkLoad() is invoked for each
partition.

Optimal pivot selection would require solving NP-
hard clustering problems. Thus the quality of the index
is determined by the choice of heuristic algorithm [4,
5]. Here we reconsider Yianilos’ corner selection
heuristic for pivots. We explicitly introduce a
clustering algorithm as the basis of identifying
partitions

4.1 Corner vs. center pivot selection

The Hochbaum-Schmoy’s k-center clustering

algorithm, also known as the farthest-first-traversal
algorithm, is a fast, convenient way to identify pivots.
Farthest-first-traversal gives a 2-approximation to
minimizing the maximum cluster diameter [18]. Its
time and space complexities are both O(n), where the
number of farthest points is considered as a constant.

The algorithm is consistent with a heuristic

proposed by Yianilos that corners form good pivots
and is thus commonly used. Yianilos’ arguments are
best explained by including his illustration. See Figure
3.

Yianilos considers the distance restricted nearest-
neighbor problem [39]. That is, nearest neighbors
beyond a certain distance from the query point are of
no interest. This retrieval definition is consistent with

Figure 3 Yianilos’ pivot heuristic. Corners
minimize the partitioning surface

IndexNode bulkLoad(Object[] dataset, int
pivotNumber) {

if (dataset.length <= maxLeafSzie) {
create a leaf node and return;

}
else { //build an internal node

Object [] pivot = selectPivot(dataset,
pivotNumber);

Object [] subDataset = partition(dataset, pivot);
IndexNode [] children;
for (each subDataset[i])

children[i]=bulkLoad(subDataset[i],
pivotNumber);

Create an internal node with children, and
return;

}
}
Figure 2. Bulkload algorithm of MVP-Index

Figure 1. Partitions of a (2,2,m)
MVP internal node

our applications. Yianilos’ algorithm assumes that the
data consists of uniform points on a 2-d unit square
with Euclidean distance.

The crux of Yianilos’ argument is that by
minimizing the surface of the partitioning sphere, (or
circle in 2-D), one minimizes the probability that on
any one retrieval search a neighborhood around the
query point will intersect with the bounding sphere.
Such intersections eliminate the opportunity to choose
to search one partition to the exclusion of the other; i.e.
to prune. Yianilos considers a circle, centered at point
p in the square and with radius r such that the area
inside and outside the circle are equal. As shown in
Figure 3, he similarly considers a point on the side, a
point in the corner and the center. Of the three, the
circle defined by the corner pivot has the smallest
boundary. This argument holds for a Euclidean
distance between points in a high-dimensional unit
hyper-cube. Empirical results presented in Section 5
corroborate the benefit of this heuristic for metric-
spaces that fulfill all of Yianilos’ assumptions.

The biological workloads we consider do not
involve Euclidean metrics. Each of the metrics has
symmetry and a “wrap-around” property that makes
finding a corner very difficult. For these workloads,
one can travel in any direction from a point and
ultimately return to the same spot. Thus, with respect
to the domain, every point in the space is identical and
simply has no distinguishing geometric features (like a
corner).

We agree with Yianilos’ heuristic principle that
minimizing the surface of the partitioning sphere
maximizes pruning. For our biological workloads, that
means minimizing the diameter of the bounding
spheres. Since there is no definition of algebraic
operations in metric space, a k-means algorithm cannot
be applied to a metric space directly. K-center is also
not applicable because its objective only considers the
maximum cluster diameter. Therefore, k-median and
MSD (Minimize the Sum of cluster Diameter)
algorithms are our choices. K-median algorithms try to
minimize the sum of distances from all data points to
their cluster centers, while MSD algorithms try to
minimize the sum of cluster diameters. Both of these
are NP-hard problems and there are some primal-dual
based constant factor approximation algorithms [7, 20].
However, these algorithms usually have high time
complexity, which does not make them applicable to
the case of indexes, where the datasets are large. For
MVP-tree indices, we implement an MSD algorithm
derived from CLARA (Clustering LARge
Applications) [22]. CLARA is a simple k-median
algorithm based on sampling and iteration. The time

complexity of the algorithm is O(n). Interested readers
are referred to [22].

Empirical results show that using centers as pivots is
comparable to and in most cases outperforms the use of
corners.

4.2 Data partition

It has been argued, most notably by Brin, that the

effectiveness of a metric-space index depends on the
algorithm’s ability to capture the intrinsic hierarchical
structure of the data [6]. Note that this is consistent
with the heuristic goal of minimizing the diameter of
the partitioning spheres [24]. Furthermore, numerous
bioinformatic studies use hierarchical clustering to
make important biological discoveries, suggesting that
as an application domain, biological data is well suited
to this approach.

We must begin by recognizing the differences
between the application of hierarchical clustering to
data mining and to initializing a database index.
Differences include the size of the data set and the
semantic quality of the results. In data mining, an
important goal of clustering is
to extract semantic relationships from the data with
high confidence, and the dataset is relatively small and
manageable. O(n2) algorithms are common.
Introducing small but semantically effective
improvements in the clustering even at large
computational expense is desirable. When managing a
database one must assume that the amount of data is
arbitrarily large. Even O(nlogn) algorithms may be
prohibitive. The semantic quality of the clustering is of
secondary concern. The primary concern is
discovering spatially distinguishable disjoint data sets
that improve the pruning decisions during search.

Toward this end, given a pivot, we consider a
clustering method to locate partitions rather than
organizing the partitions by balancing their cardinality.
When the data distribution displays structure, a
histogram of the distances from the pivot to each of the
data point will show peaks (dense regions) and valleys
(sparse regions). Assuming query distribution is
similar to the data distribution, we can decrease the
probability that a neighborhood around a query will
intersect with the partition boundary by placing the
partition boundaries in the sparse regions, enabling
successful pruning. Consequently, an index tree
structure consistent with the intrinsic clustering of the
data is apt to outperform an index that is inconsistent
with that structure.

The use of clustering to locate partitions in lieu of
balancing the cardinality of the partitions may lead to

unbalanced trees. Our algorithm ameliorates but does
not solve this. Even so, we show empirically that the
clustering method improves average retrieval times.
Our application domain is not concerned with real-time
transactions, and the concomitant criteria of consistent
response times for concurrent users. These databases
are intended to support large-scale data analysis.
Minimizing the average search time is more important
than minimizing the standard deviation of the response
times.

An outline of the algorithm is as follows. Pivots are
selected by some methods beforehand. For each pivot,
a one-dimensional k-means algorithm is run with
respect to the distance from the pivot to each of the
data points. In an effort to maintain a balanced tree
structure, if there is more than one pivot, the variance
of the size of the clusters for each pivot is computed.
The pivots are sorted by increasing variance in the size
of the clusters, and the MVP partitions situated on
cluster boundaries. In the next step, each sub-dataset
and the remaining pivots are considered similarly. The
algorithm is detailed in Figure 4. One can prove that
the time complexity of this algorithm is O(n), but the
constants are large and one must assume the k-means
clustering converges quickly.

Several research efforts relate to this approach.
Chavez et al. proposed the distance-balanced partition
algorithm [8]. In their approach the range of the

distance function is partitioned into k equal size
intervals, independent of the cardinality of the
partitions. The time to build the tree is very fast, as the
consideration of the actual data is minimal. This
construction also leads to unbalanced trees, but without
the benefits of considering the actual data distribution.
Brin’s GNAT-trees, which build upon the general
hyper-plane methods of building metric-index trees,
use data sampling to instill the structure of real data
into the tree. Furthermore, the trees are kept balanced
in height by varying the fanout of the internal nodes,
e.g., internal nodes receiving larger than average
partitions introduce additional partitions at the next
level. In our own efforts, we developed a bidirectional
bulkload algorithm of M-trees whose primary goal was
to minimize the diameter of partitioning sphere through
a better cluster merging step [24]. To our knowledge,
this is the first effort to introduce an initialization step
into MVP-trees that improves the ability of the MVP-
tree to capture the intrinsic hierarchical clustering of
the data.

5. Empirical results

In this section, we present data to compare the

MVP-tree bulkload heuristics. The hypotheses are that
for the biological workloads, center-pivot heuristic
outperforms corner-pivot, and clustering partition
outperforms the distance-balanced partition. We also
present data to demonstrate scalability.

The important measures are algorithmic measures of

scalability. We use system-independent measures for
performance, such as number of distance calculations
and number of I/O operations. The results of distance
calculations and number of I/O are similar in most of
the cases. Therefore, only the results of distance
calculations are presented.

0

2000

4000

6000

8000

0.1 0.2 0.3 0.4 0.5
radius

N
u

m
. o

f
d

is
t.

 c
al

c.

corner-pivot

center-pivot

Figure 5. Pivot selection of uniform
vectors

ClusteringPartition(D: dataset, pi: a pivot, s: number
of partitions induced from each pivot) {

// each cluster is associated with a set of pivots,
initially one cluser D is associated with all the
pivots

while(there exists a cluster C whose pivots set P is not
empty) {

for (each pi in P) {
compute the distances to pi;
find s-1 split values by calling k-means();
compute the sizes of sub-clusters based on

the split values;
compute the variance of the sizes of sub-

clusters;
}
find p-mv, resulting in the smallest variance;
split C into s sub-clusters based on the split

values from p-mv;
remove p-mv from P;
copy P as the pivot set for each of the s sub-

clusters;
remove C;
}

return all the clusters;
}
Figure 4. Algorithm of Clustering Partition

5.1 Corner vs. center pivot selection

We first compare the pivot-selection heuristics of
uniform Euclidean space. A number of vectors are
randomly selected as queries from synthetic uniform
vector datasets of size 10k in 5-d hyper-cube and
hyper-ball. The average number of distance
calculations of range queries with various radii is
shown in Figure 5. Clearly, corner-pivot outperforms
center-pivot, and Yianilos’ argument is supported.

We now consider the biological workloads with
respect to various combinations of heuristics and
database sizes. For mass-spectra, the queries were
experimental peptide fragmentation spectra drawn from
the Open Proteomics Database [30]. For DNA, the
query set consists of 18-mers randomly selected from
rice genome. For protein, data points are randomly
selected as queries. Figure 6 shows the average
number of distance calculations vs. database size with
various combinations of pivot selection and data
partition heuristics for fixed range query radius of each
workload.

Figure 6 (a) and (b) show that for peptide 5-mers

and DNA 18-mers, center-pivot outperforms corner-
pivot. From Figure 6 (c), we can see that center-pivot is
outperformed by corner-pivot in 2 cases, but the
margins are tiny. Therefore, in comparing the data
partition heuristics next, we only present data with
center-pivot to select pivots.

0

100000

200000

300000

400000

500000

5000000 15000000 25000000 35000000
Database size

N
u

m
. o

f
d

is
t.

 c
al

c.

Figure 7. scalability on biological
workloads

(a) Peptide 5-mers, EDKNN, k = 300, d = 3

(c) Mass-spectra, KBFRS, k = 100, radius = 3

100

1000

10000

100000

0 50 100 150 200
Database size(million amino acids)

N
u

m
. o

f
d

is
t.

 c
al

c.
 (

lo
g

 s
ca

le
)

(b) DNA 18-mer, DKNN, k = 300, d = 3

0

200

400

600

800

1000

0 200000 400000 600000
Database size

N
u

m
. o

f
d

is
t.

 c
al

c.

100000.00

200000.00

300000.00

400000.00

500000.00

600000.00

700000.00

800000.00

2000000 4000000 6000000 8000000 1E+07 1.2E+07
Database size

N
u

m
. o

f
d

is
t.

 c
al

c.

Figure 6. Pivot selection and data
partition of biological workloads

(c) Mass-spectra, radius = 0.5

(a) Peptide 5-mer, radius = 3

3500

3700

3900

4100

4300

4500

4700

4900

5100

130000 140000 150000 160000 170000 180000
Database size

N
u

m
. o

f
d

is
t.

 c
al

c.

30000

40000

50000

60000

70000

5000000 10000000 15000000 20000000
Database size

N
u

m
. o

f
d

is
t.

 c
al

c.

(b) DNA 18-mer, radius = 3

 Center-pivot, clustering partition

 Center-pivot, cardinality-balanced partition

 Corner-pivot, cardinality-balanced partition

5.2 Data partition

The long dash diamond line in Figure 6 represents
the data of center-pivot and clustering partition. In all
three applications the clustering partition outperforms
cardinality-balanced partition. For the 19M peptide
database, the number of distance calculations required
for the center-pivot and clustering partition heuristics,
is about half of that of the traditionally used corner-
pivot and cardinality-balanced methods. The
superlinear speed-up for the peptide results is a real
phenomenon and is explained in next sub-section, for
Figure 7 (a).

5.3 Scalability

Distance restricted k-nearest neighbor (DKNN)
search is of key interest in many biological applications
[35, 37]. The distance restriction stipulates a maximum
distance in a search result, even if that means returning
fewer than k-nearest neighbors. The algorithm utilizes
a priority queue to store all of the index nodes to be
searched, and another priority queue to rank the search
results.

In addition, we also defined two more aggressive
algorithms based on the same best-first search strategy:
extended distance restricted k-nearest neighbor
(EDKNN) and k best first range search (KBFRS).
Both aggressive algorithms traverse the index structure
in the same order as DKNN. However, they may
terminate earlier than normal DKNN algorithm. The
KBFRS will terminate once k qualified results are
found. The EDKNN will terminate after both the
nearest neighbor and total k qualified results are found.
If there are no more than k qualified results within the
distance restriction, all three algorithms will generate
same results set. If there are far more than k qualified
results within the distance restriction, the aggressive
algorithms will run much faster with the potential loss
of accuracy. In practice, we use EDKNN in k-mer
matching for homology search problem and KBFRS in
a coarse filter of similar mass-spectra data retrieval.

Figure7 (a) shows the average number of distance
calculations of EDKNN queries, with k equals 300 and
distance restriction d equals 3, of peptide 5-mers with
various database sizes.

We see in a number of cases that the number of
distance calculations decreases as the database size
increases. This is a real phenomena connected to the
search properties of k-nearest neighbor. For peptide 5-
mers, the search space is about 30 million, (205).

Although amino acids are not uniformly distributed, the
search space is gradually covered as the amount of data
increases. During the nearest neighbor search, the
algorithm prioritizes the nodes based on distance from
the query point to the partition. The highest priority is
given to nodes that may contain exact matches. As the
database increases in size, the probability that a
partition that may contain an exact, or near exact match
actually contains matching data increases. The
probability of search backtracking decreases, indicating
super-linear speedups.

Figure7 (b) shows the average number of distance
calculations of DKNN queries, with k equals 300 and
distance restriction d equals 3, of DNA 18-mers with
various database sizes. Clearly, the search scales well.

Figure 7 (c) shows average number of distance
calculations of KBFRS queries, with k equals 100 and
distance restriction d equals 3, of mass-spectra with
various database sizes. Obviously, the number
increases slowly as database size increases. Note that
like the depth of a B+ tree in a relational database
system, the MVP index tree has discontinuous
increases in height as the database grows. Thus, the
search cost increases very slowly, subject to sudden
increments when the index increases in height (from
300,000 to 400,000).

6. Conclusions and future work

In this paper, we show that some traditional results
on optimizing MVP-trees, instigated by multimedia
applications, should not be applied to biological
workloads. The reason is that biological workloads
usually have low intrinsic dimensionality and the data
is highly structured. The distance functions used for
biological database are not Euclidean norms.

Initial construction of MVP-indexes is critical to
their search performance. Because of the difference
between Euclidean space vectors and biological
workloads, the canonical heuristic to select corners as
pivots does not work well in biological applications.
As mentioned in [39], “The discrete metric is thus
excluded along with many other cases”.

Further investigation of methods whose goals are to
better capture the intrinsic hierarchical clustering of the
data is in order. Our departure from balanced tree-
structures, justified by the fact that the workloads
comprise large-scale data analysis rather than on-line
transaction processing, offers flexibility not normally
considered in database research.

Another characteristic of biological databases, not
explored in this paper, is that biological databases are
usually written-once. That is, the databases grow, but

direct updates are not allowed. If records must be
updated, this is usually accomplished by adding a new
version. The implication is that for some databases, the
frequency of queries compared to material changes in
the database may justify extraordinary off-line
computation time to optimize the initialization of the
index structure. Consider the following scenario.
Suppose BLAST searches against Genbank could be
done in half the time, but only if the sequence contents
of Genbank were preprocessed using a month of time
on a supercomputer. It would only be weeks before
there would be a net gain in CPU cycles. The
productivity of scientists searching Genbank would be
immediately improved. We have shown that in some
cases, our heuristics and preprocesing methods for
MVP-trees may double their performance. It would
benefit biology if this magnitude of improvement could
be gained consistently. The write-once nature of
biological databases enables many different avenues.
For important problems, even methods that may appear
to be prohibitively expensive may be worth pursuing.

Acknowledgement

We thank Jacob Neal Sarvela for discussions
concerning assessing the intrinsic dimension by
regression on the range query radius and number of
results.

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and

D. J. Lipman, “Basic local alignment search tool”, J.
Mol. Biol, 1990, 215: 403-410

[2] J. L. Bentley, “Multidimensional binary search trees
used for associative searching”, Communications of the
ACM, September 1975, 18(9):509—517.

[3] S. Berchtold and D.A. Keim, “High-dimensional Index
Structure”, In Proc. ACM SIGMOD International
Conference on Management of Data, 1998, page 501.

[4] T. Bozkaya, and M. Ozsoyoglu, “Distance-based
indexing for high-dimensional metric spaces”, In Proc.
ACM SIGMOD International Conference on
Management of Data, 1997, pp. 357-368.

[5] T. Bozkaya, and M. Ozsoyoglu, “Indexing Large Metric
Spaces for Similarity Search Queries”, Association for
Computing Machinery Transactions on Database
System, 1999, pp. 11-34.

[6] S. Brin, “Near Neighbor Search in Large Metric
Spaces”, In Proc. 21st. Int. Conf. Very Large Data
Bases (VLDB), 1995, pp. 574-584.

[7] M. Charikar and R. Panigrahy, “Clustering to minimize
the sum of cluster diameters”, Proceedings of the thirty-
third annual ACM symposium on Theory of computing,
July 2001.

[8] E. Chavez and G. Navarro, “Unbalancing: The key to
index high dimensional metric spaces”, Technical
report, Universidad Michoacana, 1999.

[9] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L.
Marroquin, “Searching in metric spaces”, ACM
Computing Surveys, 2001, Vol. 33(3), pp. 273-321.

[10] P. Ciaccia, M. Patella and P. Zezula, “M-tree: an
efficient access method for similarity search in metric
spaces”. Proc. 23rd Int. Conf. Very Large Databases
(VLDB), 1997.

[11] M.O. Dayhoff, R. Schwartz, and B.C. Orcutt, Atlas of
Protein Sequence and Structure, 1978, Vol. 5. Suppl.
3: 345-358.

[12] C. Faloutsos and D. Oard, “A survey of information
retrieval and filtering methods”, Technical report,
University of Maryland, College Park, MD, 1996.

[13] A. A. Gooley and N. H. Packer, Proteome Research:
New Frontiers in Functional Genomics, chapter of The
importance of co- and posttranslational modifications
in proteome projects. Springer-Verlag, pages 65–91,
1997.

[14] L. Gravano, P.G. Panagiotis Ipeirotis, H.V. Jagadish,
N. Koudas, S. Muthukrishnan, L. Pouri, and D.
Srivastava, “Using q-grams in a DBMS for
Approximate String Processing”, IEEE Data
Engineering Bulletin, 2001, 24(4): 28-34.

[15] D. Gusfield, Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology, Cambridge Univ Press, Jan 15, 1997.

[16] J.M. Hellerstein, J.F. Naughton, and A. Pfeffer,
“Generalized Search Trees for Database Systems”,
Proc. 21st Int'l Conf. on Very Large Data Bases,
Zürich, September 1995, pp. 562-573.

[17] G. R. Hjaltason and H. Samet, “Index-driven similarity
search in metric spaces”, ACM Transactions on
Database Systems (TODS) , December 2003, Volume
28 Issue 4.

[18] D.S. Hochbaum, and D.B. Shmoys, “A best possible
heuristic for the k-center problem”, Mathematics of
Operational Research, 1985, Vol. 10(2), pp.180-184.

[19] Q. Iqbal, and J.K. Aggarwal, “Perceptual Grouping for
Image Retrieval and Classification”, 3rd IEEE
Computer Society Workshop on Perceptual
Organization in Computer Vision, Vancouver Canada,
July 8, 2001, pp. 19.1-19.4.

[20] K. Jain and V.V. Vazirani, “Primal-dual approximation
algorithms for metric facility location and k-median
problems”, In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science,
October 1999.

[21] E. Karakoc, Z. M. Ozsoyoglu, S. C. Sahinalp, M.
Tasan, and X. Zhang, “Novel Approaches to
Biomolecular Sequence Indexing”. In the Bulletin of
the IEEE Technical Committee on Data Engineering,
September 2004, Vol. 27 No. 3, pp. 40-47.

[22] L. Kaufman and J.R. Peter, Finding groups in data: An
introduction to cluster analysis, John Wiley & Sons,
1990

[23] U. Manber and G. Myers. “Suffix arrays: A new
method for on-line string searchs”, In 1st ACM-SIAM

Symposium Discrete Algorithms, San Francisco, 1990,
pages 319--327.

[24] R. Mao, W. Xu, N. Singh, and D.P. Miranker, “An
Assessment of a Metric Space Database Index to
Support Sequence Homology”, In the proceeding of the
3rd IEEE Symposium on Bioinformatics and
Bioengineering, 2003, Washington D.C, March 10-12.

[25] D. P. Miranker, W. J. Briggs, R. Mao, S. Ni, and W.
Xu, “Biosequence Use Cases in MoBIoS SQL”. In the
Bulletin of the IEEE Technical Committee on Data
Engineering, September 2004,Vol. 27 No. 3, pp. 3-11.

[26] D.P. Miranker, W. Xu, and R. Mao, “Architecture and
Application of MoBIoS, a Metric-Space DBMS to
Support Biological Discovery”, 15th International
Conference on Scientific and Statistical Database
Management. (SSDBM03), 2003, pp. 241-244.

[27] E.W. Myers, “A sublinear algorithm for approximate
keyword searching”, Algorithmica, 1994, 12(4/5): pp.
345-374.

[28] NCBI Mass Spectra data website:
ftp://ftp.ncbi.nih.gov/blast/db/FASTA/swissprot.gz

[29] NCBI protein data website:
ftp://ftp.ncbi.nih.gov/genbank/genpept.fsa.z

[30] Open proteomics
database.http://bioinformatics.icmb.utexas.edu/OPD/.

[31] W. R. Pearson, and D. J. Lipman, “Improved tools for
biological sequence comparison”, Proc. Natl Acad.
Sci./ USA, 1988, 85:2444-2448.

[32] J.T. Prince, M.W. Carlson, R. Wang, P. Lu, and E. M.
Marcotte, “The need for a public proteomics
repository”, Nature, 2004, 22(4):471–472.

[33] S. C. Sahinalp, M. Tasan, J. Macker, and Z. M.
Ozsoyoglu, “Distance-Based Indexing for String
Proximity Search”, In IEEE Data Engineering
Conference, 2003.

[34] P.H Sellers, “On the theory and computation of
evolutionary distances’, J. Appl. Math. (SIAM), 1974,
26: 787-793.

[35] R. R. Smriti, R. Mao, A. A. Nakorchevskiy, J. T.
Prince, W. S. Willard, W. Xu, Edward M. Marcotte,
and Daniel P. Miranker, "A fast coarse filtering method
for protein identification by mass spectrometry", The
University of Texas at Austin, Department of Computer
Sciences, Technical Report TR-05-06. March 9, 2005.

[36] J.K. Uhlmann, “Satisfying General Proximity/Similarity
Queries with Metric Trees”, Information Processing
Letter, November 25, 1991, Vol. 40(4), pp.175-179.

[37] W. Xu, W.J. Briggs, J. Padolina, W. Liu, C.R. Linder,
and D.P. Miranker, “Using MoBIoS' Scalable Genome
Joins to Find Conserved Primer Pair Candidates
Between Two Genomes”, in proceedings of 12th
International Conference on Intelligent system for
Molecular Biology, Galsgow, UK, July31-Aug05,
2004.

[38] W. Xu, and D.P. Miranker, “A metric model for amino
acid substitution”, Bioinformatics, 2004, 20(8):1214-
21.

[39] P. Yianilos, “Data structures and algorithms for nearest
neighbor search in general metric spaces”, In Proc. 4th
ACM-SIAM. Symposium on Discrete Algorithms
(SODA'93), 1993, pp. 311-321.

[40] P. Yianilos, “Excluded middle vantage point forests for
nearest neighbor search”, In DIMACS Implementation
Challenge, ALENEX’99, Baltimore, MD, 1999.

[41] W. Zhang and B. T. Chait, “Profound - an expert
system for protein identification using mass
pectrometric peptide mapping information”, Anal.
Chem., 2000, 72(11):2482–2489.

