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Abstract：Given a database, answering a distance-based query means retrieving all the data objects in the database that are in close 
proximity to a query object.  Proximity is defined by any metric distance function.  Close can mean within a certain distance, a 
range query, k-nearest neighbor or the two in combination.  Answering distance-based queries is a fundamental component of many 
biological applications, including sequence homology, protein identification by spectral database look-up and biomedical image 
retrieval.  Most systems for retrieving similar biological data objects are domain-specific.  For each new model of similarity the 
retrieval problem must be revisited. (Metric) distance-based indexing only requires that the data can be abstracted into metric space, 
enabling the reuse of the same software package for many problems.  The Molecular Biological Information System (MoBIoS) is a 
metric-space DBMS targeting bioinformatics applications.  In this paper we describe the programmatic interface for MoBIoS index 
methods.  In addition to built-in metrics, the interfaces enable users to integrate new metrics.  The system supports four different 
retrieval methods.  We characterize these methods and their applicability to different problems. 
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1 Introduction1 
The similarity between two complex data objects may be 

modeled by a domain-specific distance function.  By 
definition, the smaller the distance, the more similar the two 
data objects.  Since an object is most similar to itself, the 
distance from an object to itself is zero.  When using 
distance to define similarity, there are two basic types of 
queries, range and k-nearest neighbor (k-NN): 

Definition 1: Range query R(q,r)[4, 5]: Given a query 
object q, find all data objects x in the database within 
distance r to q, i.e., d(q, x) ≤ r.  r is called the radius of the 
range query. 

Examples of a range queries using Euclidean distance 
and Hamming distance are “find all the restaurants within 3 
miles to my office”, or “given a DNA 18-mer find all the 
18-mers in the mice genome that differ by at most 10 
mutations”. 

Definition 2: k-nearest neighbor query kNN(q) [4, 5]: 
Given a query object q, find the k closest data objects to q in 
the database. 

Examples of a kNN query are “find the 3 closest 
restaurants to my office”, or “find the 100 18-mers in the 
mice genome that are most similar to a particular DNA 
18-mer”.  A kNN query can be systematically implemented 
by using successive range queries[4]. 

In the case that the distance function forms a metric, the 
triangle inequality can be exploited to create data structures 
where large data sets can be organized off-line to speed up 
on-line execution of these queries.  In the case that the data 
structure is stored on disk, we call it an index. 

Definition 3: A metric space [15] is a pair (M, d), 
where M is a nonempty set and d: M!M !  R+U {0}, is 
a real-valued function, called a metric (distance oracle) on 
M, with the following properties: 

(1) For all x, y ∈ M, d(x, y) >= 0 and d(x, y) = 0 if and 
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only if x = y.  (Positivity) 
(2) For all x, y ∈ M, d(x, y) = d(y, x).  (Symmetry) 
(3) For all x, y, z ∈ M, d(x, y) + d(y, z) >= d(x, z).  

(Triangle Inequality) 
The generality of the distance-based abstraction 

promises an opportunity where a single indexing method 
and its interface may support data retrieval for a large 
variety of unorthodox data types.  In other work, this 
method has been applied to document retrieval and pattern 
recognition.   

Similarity query plays a critical role in large biology 
databases where the data is complex and distance 
calculations are expensive.  Many domain Specific 
solutions have been proposed, such as BLAST[1] for 
sequence homology and TurboSEQUEST[22] for protein 
identification using mass spectra data.  However, each 
solution only works for its own domain. 

Distance-based indexing is a general solution that can 
provide a uniform programming model for many types of 
biological data.  It requires neither the domain information 
of the data, nor an interpretation of the data objects into a 
coordinate system.  The primary requirement is a metric 
distance function which abstracts the data into a metric 
space.  Distance-based indexing has been under tense study 
[5, 16]. 

The generality of distance-based indexing also results in 
its challenge.  In particular, since there are no restrictions 
placed on the distance function, except that it is a metric, the 
distance function may encode a very high dimensional 
problem and the indexing method may suffer from the curse 
of dimensionality[2].  For example, the distance function 
may be the Euclidean distance between vectors in Rn.  
There are well known results that suggest it is not possible 
to create comparison-based index structures to accelerate 
distance-based queries on this data [17, 18]. 

In this paper we describe the structure and application of 
the programmatic interface to the MoBIoS distance-based 
index structure. It is integral to the storage manager for the 
Molecular Biological Information System (MoBIoS) [6, 11, 
12].  Analogous to Geographic Information Systems (GIS) 
which integrate spatial indexes with relational DBMSs and 
extend SQL to support spatial queries, MoBIoS integrates 
the distance-based index with a relational DBMS and 
extends SQL to support similarity queries in general metric 
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Figure 1 (a), General steps of apply the MoBIoS index to 
distance-based queries of user defined data types;  

(b), Example code: distance-based queries of vectors 

Define user data 
type 

Define the metric 
distance function 

Initialize the 
index 

Create similarity 
query 

Search the index 

//Use the pre-defined Euclidean distance 
1. Metric myMetric = 

LMetric.EuclideanDistanceMetric; 
//Initialize a MVP index, data is a list of vectors 
2. Index myIndex = new VPIndex(data, myMetric); 
//create a range, kNN, RkNN, AkNN query 
//respectively. v is a vector, the query object 
3. Query q = new RangeQuery(v, 0.2);  
4. Query q = new KNNQuery(v, 8); 
5. Query q = new KNNQuery(v, 0.2, 8); 
6. Query q = new KNNQuery(v, 0.2, 8, 2);  
//search the index 
7. Cursor c = myIndex.search(q); 
8. while(c.hasNext()) System.out.println( c.next() ); 

spaces.  MoBIoS is built upon Mckoi [9], an open source 
JAVA DBMS.   

This package is available as open source.  It is based on 
multi-vantage point trees (MVPT) [3].  This algorithm was 
chosen as the result of a study where the performance of an 
algorithm from each of the three major classes of 
distance-based index algorithm was compared using a suite 
of biological databases. The original MVPT is a 
main-memory data structure.  We implemented the 
disk-based MVP index by fitting each index node into a disk 
page.  Lastly, we designed new bulkload heuristics to 
improve query performance[7]. 

A special property of our implementation is that once an 
index for a dataset is constructed, a user may employ any of 
four different retrieval methods.  In addition to range and 
k-nn queries, the package support range-limited k-nearest 
neighbor, and approximate range-limited k-nearest neighbor 
queries. If the application proves to be high-dimensional or 
otherwise troublesome, these retrieval methods may prove 
effective. 

Definition 4: Radius-limited k-nearest neighbor query 
RkNN(q, r) [20]: Given a query object q, find the k closest, 
and within distance r, points to q in the database. 

Definition 5: Approximate radius-limited k nearest 
neighbor query AkNN(q,r) [23]: This query is very similar to 
RkNN except that the search process is terminated by some 
greedy heuristics that remarkably accelerates the search and 
still produces exact solution when there are less than k 
results within the limiting radius r.  

Another basic problem in bioinformatics is that the rapid 
growth of the amount of biological data has made 
main-memory solutions obsolete.  To support the data 
intensive applications, disk-based database management 
systems (DBMS) are in great demand. 

On top of the MoBIoS index, MoBIoS SQL (mSQL) is 
defined by extending standard SQL with support for 
similarity queries and biological functionalities[10].  
Furthermore, several practical applications have been 
developed, with attractive empirical results. 

The MoBIoS index package has recently been released.  
In section 2, we demonstrate the steps necessary to use the 
index by example.  The properties of the similarity queries 
supported are discussed in Section 3 in the context of 
MoBIoS applications and empirical results. 

2 Using the MoBIoS index 
In this section, we show how to use the MoBIoS index 

for a similarity query of user defined data types.  Only 
general steps are discussed here. Further details are available 
in the MoBIoS documentation.  Some common data types, 
such as vector, DNA sequence, protein sequence and mass 
spectra, are already defined in MoBIoS.  For these data 
types, there are command line tools to build the index and 
run the queries.  See the MoBIoS website [12] for details. 

Answering similarity queries in a divide-and-conquer 
distance-based indexing algorithm consists of an off-line 
phase and an on-line phase.  First, the index is initialized 
off-line by materializing a hierarchical clustering of the data 
as a tree-based data structure.  Associated with the root of 
every sub-tree is the bounding predicate satisfied by every 
data point in the cluster.  Then, on-line data retrieval can 
exploit the triangle inequality to expedite the search 
procedure, amortizing the off-line construction cost and 

promising scalable performance.  Given a query, if there is 
no data point that satisfies both the predicates of the index 
node and the query, that index node can be pruned to save 
distance calculations. 

Generally, there are five steps to apply the MoBIoS 
index to user defined data types (Figure 1 (a) ).  An 
example application to vector data is given in Figure 1 (b). 
1) Define the user type 

The user data type must implement the JAVA 
Serializable interface for disk I/O purpose.  In the 
example shown in Figure 1(b), the data type is 
mobios.type.DoubleVector, pre-defined in MoBIoS. 
2) Define the metric distance 

The user defined metric distance should implement 
mobios.dist.Metric.  There is only one method to be 
implemented by the user distance function: 

double getDistance(Object first, Object second) 
This method takes two data object and returns the 

distance between them.  In Figure 1 (b), line 1 shows that 
the distance for vectors. 
3) Initialize the index 

To build an index, the user just needs to create an 
instance of VPIndex with the metric distance and a list of 
data.  The instance can be searched immediately or 
serialized to disk for future use.  The following is the 
constructor and comment of VPIndex. 

public VPIndex(List data,Metric metric) 
Parameters:  

data - the List of data to build the index 
metric – An instance of Metric class that specifies the 

Metric distance function to use when building the index. 
4) Create a similarity query. 

Both range query and kNN query are defined in MoBIoS.  
They can be easily instantiated by providing the query 
object and corresponding value of the radius or k.  In 
Figure 1 (b), line 3 creates a range query looking for all 
points within Euclidean distance 0.2 to the query object, 
while line 4 creates a kNN query looking for the 8 closest 
points.  Line 5 creates an RkNN query returning the 8 
closest points within distance 0.2.  Line 6 defines an AkNN 
query.  As an approximate query, it aims at the 8 closest 
points within distance 0.2, but only the 2 closest points are 
guaranteed to be returned. 
5) Search the index 

To search an index built before, just invoke the search() 
method of it with the proper query.  This method returns a 
Cursor, which is a subclass of JAVA Iterator.  In Figure 1 
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(b) lines 7 and 8 show how to search the index and retrieve 
the search results. 

The above are general steps for any data type.  
However, because of the inherent differences between data 
types, it is recommended that the user tunes the index on his 
data.  The initial construction of the index is the most 
complex step and is critical to the query performance.  
There are many factors affecting the construction, and it is 
an open research topic to determine the best combination of 
the factors.  To allow the user to tune the index for 
particular data, we have made a constructor of VPIndex 
with a few more parameters for adjustment: 

public VPIndex(List data,Metric metric, int numPivot, 
PivotSelectionMethod psm, int singlePivotFanout, 
PartitionMethod pm, int maxLeafSize) 
Parameters (only those not discussed before):  

numPivot - the number of pivots per node (default 2). 
psm - the pivot selection method to use when building 

the index.  There is one pivot selection methods 
pre-defined: PivotSelectionMethods.FFT, which applies 
the farthest-first-traversal algorithm [7, 8].  The user can 
define his own pivot selection method as long as it 
implements the PivotSelectionMethod interface.  

singlePivotFanout - the number of partitions generated 
based on each pivot (default 3). 

pm - the data partition method to use when building the 
index. Two partition methods are pre-defined, i.e. 
BALANCED and ClusteringPartition, implemented as 
enums in PartitionMethods.  User can define his own 
data partition method as long as it implements the 
PartitionMethod interface. 

maxLeafSize - the maximum number of data points in 
a leaf index node, normally 100, depending on the size of 
the user defined data type. 

For example, the following: 
Index myIndex = new VPIndex(data, myMetric, 3, 

PivotSelectionMethods.FFT, 3, 
PartitionMethods.BALANCED, 100); 

creates an instance of VPIndex with FFT as the pivot 
selection method and BALANCED as the data partition 
method using 3 pivots, 3 partitions each pivot and at most 
100 data objects each leaf node. 

3 Property and performance of similarity 
queries using MoBIoS index 

To help the user decide which type of query fits his 
application best, we discuss the properties and performance 
of similarity queries in this section.  Several applications of 
the MoBIoS index will be introduced to explain the context 
of which the performance of the queries will be illustrated. 

3.1 Scalability of similarity query 
In the study of scalability, a common methodology is to 

repeat the experiments on a suite of related datasets of 
different sizes.  It is assumed that those datasets have 
identical data distribution.  The performance measure, e.g. 
running time, is compared with the dataset size.  If the 
performance measure increases at most sub-linearly as the 
dataset size increases, it is concluded that the 
system/algorithm scales well. 

Typically the distance calculation of complex data type 
in applications is very costly.  Therefore, in our study, the 
performance is measured by implementation-independent 

measures, i.e. the number of distance calculations and the 
number of I/O operations.  Since both numbers lead to 
similar conclusions, we focus on the number of distance 
calculations. 

The most important property of range query is that the 
number of query results increases linearly as the database 
size increases, owing to the identical data distribution of the 
databases.  The only exception is when the query radius is 
0 and there are no duplications in the database.  Since the 
distances between the query object and each query result 
need to be calculated, the number of distance calculations 
increases at least linearly as the database size increases.  In 
other words, it is impossible that a range query scales well 
using the common meaning. 

To evaluate the scalability of range query, we consider 
the average number of distance calculations per query result.  
We expect this value to increase sub-linearly as database 
size increases. 

However, since the running time is dominated by the 
number of distance calculations, it will not scale well for 
range queries.  If an application needs strictly the range 
query, there is no way to make its running time scale well.  
Considering the speed difference between sequential disk 
access and random disk access, if on average more than 15% 
of the database is returned as query results, we recommend 
sequential scan of the database instead of using the index. 

KNN query has the opposite property.  That is, the 
number of query results is fixed.   Further, duplicates are 
common in large databases. We witness scalable 
performance using radius-limited kNN query. 

However, the query results of a kNN query from a small 
database are closer to the query object than those from a 
large database.  In other words, the “covering radius” of the 
query results of a kNN query from a small database is larger 
than that from a large database.  This issue is not 
acceptable for some applications. 

For many practical applications, similarity query is just 
one step, and the distance measure cannot exactly reflect the 
need of the applications.  That is, not all the results of 
similarity query are desirable, and instead, some data not 
returned by similarity query are desirable.  This 
observation justifies the approximate similarity queries, i.e. 
approximation is allowed in answering the similarity queries.  
Approximate kNN queries are implemented in MoBIoS 
index [7].  Empirical results show that approximate queries 
give good performance while maintaining acceptable 
accuracy. 

3.2 Empirical results from MoBIoS applications 
In this section, we demonstrate the properties of 

similarity queries and study their scalability on empirical 
results with MoBIoS applications.  Due to the space limit, 
only the number of distance calculations is considered.  
The running time and the trade-off between performance 
and accuracy are discussed in detail in corresponding 
publications. 

Three applications are considered, i.e. homologous 
retrieval of peptide sequences [20], protein identification 
based on protein tandem mass spectra [14], and finding 
conserved primer pairs between rice and Arabidopsis 
genomes [19] 

Peptide homologous retrieval follows a general 
framework first proposed and analyzed by Myers [13].  
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The database sequences are divided into overlapping 6-mers, 
on which the index is built.  The distance between 6-mers 
is weighted Hamming distance parameterized by mPAM 
[20].  The query is also divided into overlapping 6-mers.  
Each query 6-mer is used as an approximate kNN query 
object to search the index.  Finally, all the query results are 
chained together to generate the solutions to the full query 
[20]. 

The proteomics application of MoBIoS indexes protein 
tandem mass spectra.  Existing mass spectrometry based 
protein identification tools first run a sequential scan of the 
database to identify candidates that are “similar” to a query 
spectrum.  These candidate spectra are then input to a 
complex scoring/ranking scheme.  We mapped tandem 
mass spectra to a high dimensional vector space model, and 
derived a semi-metric distance based on cosine distance [14].  
Using a modified semi-metric search algorithm on the 
MoBIoS index, we mapped the spectra search problem to 
range and approximate kNN queries.  The index acts as a 
fast scalable coarse filter, reducing both the number of 
distance calculations and the number of returned candidates 
when compared to linear scans [14]. 

Finding conserved primer pairs aims at identifying 
evolutionary reticulation events in flowering plants.  A 

large number of paired, conserved DNA oligomers that may 
be used as primers to amplify orthologous DNA regions 
using the polymerase-chain reaction (PCR) are identified 
[19].  This first step is to develop an initial candidate set by 
comparing the Arabidopsis and Rice genomes, which is 
implemented by indexed nest-loop join using MoBIoS index 
[19].  The two genomes are divided into overlapping 
18-mers.  This similarity query is range query with radius 0, 
and the distance function is edit distance[21]. 

We first show the scalability of range query with radius 
0.  In finding primer pairs, the similarity query is range 
query with radius 0.  Figure 2 shows the number of 
distance calculations scales well as database size increases 
[19]. 

Then, we show the scalability of range query with 
non-zero radius for protein identification in Figure 3.  We 
can see that, with a large radius, 1.48, the number of 
distance calculations increases almost linearly as database 
size increases.  However, the average number of distance 
calculations per query result does scale well. 

Next, we show the scalability of approximate kNN 
query.  Figure 4 [7] shows the scalability of approximate 
kNN query of peptide homologous retrieval (left) and 
protein identification (right).  Obviously, approximate kNN 
query scales well in both cases.  Note that in peptide 
homologous retrieval, the number of distance calculations 
decreases as the database size increases.  This is due to the 
large amount of duplicates in the data. 

4 Conclusions and future work 
In this paper, we demonstrate the usage of the MoBIoS 

index and the properties of similarity queries. 
MoBIoS is a next generation DBMS for bioinformatics.  

Similarity query plays critical roles in many bioinformatics 
applications.  The MoBIoS index, evolved from the 
multiple vantage point tree, provides a uniform 
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Figure 3. Protein identification: range query with 
radius 1.48.  Up: #dist. calc. vs. db size, does 

not scale;  Bottom: #dist. calc. per query result 
vs. db size, scales well. 

Figure 2 [19]. Finding conserved primer pairs: #dist. 
calc. vs. db size, range query scales well with radius 0 
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programming model for similarity queries of any biological 
data, as long as a metric distance function can be defined.  
We showed that there are five essential steps to apply the 
MoBIoS index to any metric space biological data type. 

We further investigate the properties and performance of 
similarity queries through real applications of MoBIoS.  It 
is impossible for range query with non-zero radius to scale 
well because the number of range query results increases 
linearly, in which cases the average number of distance 
calculations per query result does scale well.  Although 
kNN query does scale well, as the database size increases, 
the query results become closer and closer to the query 
object. 

In summation, the scalability of similarity query is 
affected by the number of query results. 

Approximate kNN query provides a trade-off between 
speed and accuracy.  Empirical results show that 
approximate query scales well for real applications. 
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