
1

Reasoning Systems

2

Rule-Based Programming Languages

• Both forward and backward chaining with rules form the
basis of programming languages.

• Prolog (PROgramming in LOGic) represents programs as
logical Horn clauses and treats execution as answering
queries with backward chaining.

• Production system languages (OPS5, CLIPS) represent
programs as rules that add and/or delete elements from
working memory and treat execution as forward chaining
inference.

3

Prolog

• Prolog programs are stated as Horn clauses (facts and
rules)

member(X, [X | L]).
member(X, [Y | L]) :- member(X, L).

append([], L, L).
append([X | L1], L2, [X | L3]) :- append(L1, L2, L3).

• Programs are executed by making queries.

? member(a [a,b,c])
 Yes.

? append([a,b], [c,d], X)
X = [a,b,c,d].

• Queries can generate “output” from “input”

? member(X, [a,b,c])
 a;
 b;
 c;
 No.

4

Prolog
(cont)

• More query examples:

? append(X, [c], [a,b,c])
 X=[a,b].

? append(X, Y, [a,b])
 X=[],
 Y=[a,b];

 X=[a],
 Y=[b];

 X=[a,b],
 Y=[];

 No.

? member(a, X)
 [a | Z1];
 [Z2, a | Z3];
 [Z4, Z5, a | Z6];

5

Prolog Search

• Prolog uses depth-first search, pursuing conjuncts in the
body of a clause in left to right order.

• Not guaranteed to terminate:

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).
parent(Tom, John).

? ancestor(X, John)
X=Tom;
....................

• Programs must be written carefully to guarantee efficiency
and termination, as in any other programming language.

6

Negation as Failure

• Since it uses Horn clause inference, Prolog cannot handle
true negation.

• However, it does include negation as failure, not(P),
which is assumed to be true unless P can be proven.

sibling(X,Y) :- parent(P,X), parent(P,Y), not(X=Y).

bachelor(X) :- male(X), adult(X), not(married(X,Y)).
married(X,Y) :- husband(X,Y).
married(X,Y) :- husband(Y,X).
married(X,Y) :- wife(X,Y).
married(X,Y) :- wife(Y,X).

• Unless all relevant knowledge is in the KB (closed world
assumption , CWA), this type of inference is unsound.

Not proving P is not the same as proving ¬P!

?sibling(mark-twain,samuel-clemens)
Yes.

7

Production Systems

• Forward chaining systems used to construct many expert
systems and as a model of human cognition.

• Basis of several rule-based programming languages such
as OPS5 and CLIPS.

• Maintains a working memory of positive ground literals
(facts)

• Maintains a production memory or rule memory of rules
of the form:

p1 ∧ p2 ∧ pn ⇒ act1 ∧ act2 ∧ actm

where pi are positive literals and acti are actions that can
add or delete elements from working memory (and perhaps
perform I/O)

8

Production System Execution

Until no more rules fire do
Match: Find all instantiations (variable bindings) of

 rules whose conditions match working memory
Conflict Resolution: Pick one of these rules to actually fire
Act: Execute the instantiated actions for this rule

WMProductions

Matcher Conflict
Resolution Act

9

Production System Phases

• Match : Repeatedly attempting to match all rules every time
is too inefficient. Better to maintain a list of currently
“active” rules and update it each time working memory is
changed.

- Rete net is a standard approach.

• Conflict Resolution : Pick a rule to fire based on:

- No duplication : Don’t fire the same rule instantiation
twice.

- Recency : Prefer rules whose conditions rely on recently
created elements of working memory.

- Specificity : Prefer rules with more specific conditions

 sneezing ⇒ cold
 sneezing ∧ itching ⇒ allergies

10

Semantic Networks

• Use graphs to represent concepts and the relations between
them.

• Simplest networks are ISA heirarchies

• Must be careful to make a type/token distinction

Bevo isa Cattle Cattle(Bevo)
Cattle isa Ungulate ∀x (Cattle(x) ⇒ Ungulate(x))

• Restricted shorthand for a logical representation.

animal
vertebrate invertebrate

fish reptile mammal

ungulate primate

human apecattle deer

11

Semantic Nets / Frames

• Labelled links can represent arbitrary relations between
objects and/or concepts.

• Nodes with links can also be viewed as frames with slots
that point to other objects and/or concepts.

(b) Translation into first−order logic

S
ub

se
t

S
ub

se
t Subset

Sub
se

t

Name(Opus,"Opus")
Name(Bill,"Bill")
Friend(Opus,Bill)
Friend(Bill,Opus)

Animals

Birds Mammals

Penguins Cats Bats

Rel(Alive,Animals,T)

Rel(Flies,Birds,T)
Rel(Legs,Birds,2)
Rel(Legs,Mammals,4)

Rel(Flies,Penguins,F)
Rel(Legs,Bats,2)
Rel(Flies,Bats,T)

Rel(Flies,Animals,F)

M
em

be
r

M
em

be
r

M
em

be
r

Opus Penguins
Bill Cats
Pat Bats

Name(Pat,"Pat")

Flies: F

Legs: 2

Flies: T
Legs: 4

Flies: F Legs: 2

Flies: T

Opus Bill

Friend: Friend:

Pat

Name: PatName: BillName: Opus

Alive: T

Subset

(a) A frame−based knowledge base

Birds Animals
Mammals Animals

Penguins Birds
Cats Mammals
Bats Mammals

12

Inheritance

• Inheritance is a specific type of inference that allows
properties of objects to be inferred from properties of
categories to which the object belongs.

Is Bill alive?

Yes, since Bill is a cat, cats are mammals, mammals are
animals, and animals are alive.

• Such inference can be performed by a simple graph
traversal algorithm and implemented very efficiently.

• However, it is basically a form of logical inference

∀x (Cat(x) ⇒ Mammal(x))
∀x (Mammal(x) ⇒ Animal(x))
∀x (Animal(x) ⇒ Alive(x))
Cat(Bill)

|− Alive(Bill)

13

Backward or Forward?

• Backward reasoning is more goal directed and can therefore be
more efficient at answering specific queries.

• However, it can be very inefficient for some inferences like
inheritance.

?Alive(Bill)
Animal(Bill)? Bird(Bill)? Penguin(Bill)? Robin(Bill)?
Grackle(Bill),...Mammal(Bill)?, Ungulate(Bill)?.....

• In this case, forward reasoning is more efficient but still not
directed towards a particular goal.

Cat(Bill) ⇒ Mammal(Bill) ⇒ Animal(Bill) ⇒ Alive(Bill)

• Which is more efficient depends on whether the forward or
backward branching factor is worse.

• Inheritance methods allow goal-directed efficient reasoning for a
specific, restricted type of inference.

14

Semantics of Links

• Must be careful to distinguish different types of links.

• Links between tokens and tokens are different than links
between types and types and links between tokens and types.

Link Type Semantics Example

A Subset�! B A � B Cats � Mammals
A Member�! B A2B Bill2Cats
A R�! B R(A,B) Bill Age�! 12

A R�! B 8 x x2A) R(x,B) Birds Legs�! 2

A R�! B 8 x 9 y x2A) y2B ^ R(x,y) Birds Parent�! Birds

15

Inheritance with Exceptions
and Multiple Inheritance

• Information specified for a type gives the default value for
a relation, but this may be over-ridden by a more specific
type.

• Tweety is a bird. Does Tweety fly?
Birds fly. Yes.

Opus is a penguin. Does Opus fly?
Penguin’s don’t fly. No.

• If hierarchy is not a tree but a directed acyclic graph (DAG)
then different inheritance paths may result in different
defaults being inherited.

Nixon

Quaker Republican

Person

pacifist: Nopacifist: Yes

membermember

subsetsubset

16

Nonmonotonicity

• In normal monotonic logic, adding more sentences to a KB
only entails more conclusions.

if KB |− P then KB ∪ {S} |− P

• Inheritance with exceptions is not monotonic (it is
nonmonotonic)

Bird(Opus)
Fly(Opus)? yes

Penguin(Opus)
Fly(Opus)? no

• Nonmonotonic logics attempt to formalize such reasoning
by allow default rules of the form:

If P and concluding Q is consistent, then conclude Q.

If Bird(X) then if consistent Fly(x)

17

Defaults with Negation as Failure

• Prolog negation as failure can be used to implement default
inference.

• fly(X) :- bird(X), not(ab(X)).
ab(X) :- penguin(X).
ab(X) :- ostrich(X).

bird(opus).
? fly(opus)
Yes.

penguin(opus)
? fly(opus)
No.

