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What is Learning?

• Herbert Simon: “Learning is any process by 
which a system improves performance from 
experience.”

• What is the task?
– Classification

– Problem solving / planning / control
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Classification

• Assign object/event to one of a given finite set of 
categories.
– Medical diagnosis
– Credit card applications or transactions
– Fraud detection in e-commerce
– Worm detection in network packets
– Spam filtering in email
– Recommended articles in a newspaper
– Recommended books, movies, music, or jokes
– Financial investments
– DNA sequences
– Spoken words
– Handwritten letters
– Astronomical images
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Problem Solving / Planning / Control

• Performing actions in an environment in order to 
achieve a goal.
– Solving calculus problems

– Playing checkers, chess, or backgammon

– Balancing a pole

– Driving a car or a jeep

– Flying a plane, helicopter, or rocket

– Controlling an elevator

– Controlling a character in a video game

– Controlling a mobile robot
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Sample Category Learning Problem

• Instance language: <size, color, shape>
– size ∈ {small, medium, large}

– color ∈ {red, blue, green}

– shape ∈ {square, circle, triangle}

• C = {positive, negative}

• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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Hypothesis Selection

• Many hypotheses are usually consistent with the 
training data.
– red & circle

– (small & circle) or (large & red) 

– (small & red & circle) or (large & red & circle)

– not [ ( red & triangle) or (blue & circle) ]

– not [ ( small & red & triangle) or (large & blue & circle) ]

• Bias
– Any criteria other than consistency with the training data 

that is used to select a hypothesis.
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Generalization

• Hypotheses must generalize to correctly 
classify instances not in the training data.

• Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize.

• Occam’s razor:
– Finding a simple hypothesis helps ensure 

generalization.
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Hypothesis Space

• Restrict learned functions a priori to a given hypothesis 
space, H, of functions h(x) that can be considered as 
definitions of c(x).

• For learning concepts on instances described by n discrete-
valued features, consider the space of conjunctive 
hypotheses represented by a vector of n constraints
<c1, c2, … cn> where each ci is either:

– ?, a wild card indicating no constraint on the ith feature
– A specific value from the domain of the ith feature
– Ø indicating no value is acceptable

• Sample conjunctive hypotheses are
– <big, red, ?>
– <?, ?, ?> (most general hypothesis)
– < Ø, Ø, Ø> (most specific hypothesis)
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Inductive Learning Hypothesis

• Any function that is found to approximate the target 
concept well on a sufficiently large set of training 
examples will also approximate the target function well on 
unobserved examples.

• Assumes that the training and test examples are drawn 
independently from the same underlying distribution.

• This is a fundamentally unprovable hypothesis unless 
additional assumptions are made about the target concept 
and the notion of “approximating the target function well 
on unobserved examples” is defined appropriately (cf. 
computational learning theory).
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Evaluation of Classification Learning

• Classification accuracy (% of instances 
classified correctly).
– Measured on an independent test data.

• Training time (efficiency of training 
algorithm).

• Testing time (efficiency of subsequent 
classification).
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Category Learning as Search

• Category learning can be viewed as searching the 
hypothesis space for one (or more) hypotheses that are 
consistent with the training data.

• Consider an instance space consisting of n binary features 
which therefore has 2n instances.

• For conjunctive hypotheses, there are 4 choices for each 
feature: Ø, T, F, ?, so there are 4n syntactically distinct 
hypotheses.

• However, all hypotheses with 1 or more Øs are equivalent, 
so there are 3n+1 semantically distinct hypotheses.

• The target binary categorization function in principle could 
be any of the possible 22^n functions on n input bits.

• Therefore, conjunctive hypotheses are a small subset of the 
space of possible functions, but both are intractably large.

• All reasonable hypothesis spaces are intractably large or 
even infinite.
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Learning by Enumeration

• For any finite or countably infinite hypothesis 
space, one can simply enumerate and test 
hypotheses one at a time until a consistent one is 
found.

For each h in H do:  

If h is consistent with the training data D,

then terminate and return h.

• This algorithm is guaranteed to terminate with a 
consistent hypothesis if one exists; however, it is 
obviously computationally intractable for almost 
any practical problem.
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Efficient Learning

• Is there a way to learn conjunctive concepts 
without enumerating them?

• How do human subjects learn conjunctive 
concepts?

• Is there a way to efficiently find an 
unconstrained boolean function consistent 
with a set of discrete-valued training 
instances?

• If so, is it a useful/practical algorithm?
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Conjunctive Rule Learning

• Conjunctive descriptions are easily learned by finding 
all commonalities shared by all positive examples.

• Must check consistency with negative examples. If 
inconsistent, no conjunctive rule exists. 

Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
Learned rule: red & circle → positive
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Limitations of Conjunctive Rules

• If a concept does not have a single set of necessary 
and sufficient conditions, conjunctive learning 
fails.
Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

5 medium red circle negative

Learned rule: red & circle → positive

Inconsistent with negative example #5!
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Decision Trees

• Tree-based classifiers for instances represented as feature-vectors.  
Nodes test features, there is one branch for each value of the feature, 
and leaves specify the category.

• Can represent arbitrary conjunction and disjunction. Can represent any 
classification function over discrete feature vectors.

• Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF).
– red ∧ circle → pos
– red ∧ circle → A

blue → B;  red ∧ square → B
green → C;   red ∧ triangle → C

color

red blue green

shape

circle square triangle
neg pos

pos neg neg

color

red blue green

shape

circle square triangle
B C

A B C
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Properties of Decision Tree Learning

• Continuous (real-valued) features can be handled by 
allowing nodes to split a real valued feature into two 
ranges based on a threshold (e.g. length < 3 and length ≥3)

• Classification trees have discrete class labels at the leaves, 
regression trees allow real-valued outputs at the leaves.

• Algorithms for finding consistent trees are efficient for 
processing large amounts of training data for data mining 
tasks.

• Methods developed for handling noisy training data (both 
class and feature noise).

• Methods developed for handling missing feature values.
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Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +
<small, red, square>: − <big, blue, circle>: −

color

red blue green

<big, red, circle>: +       
<small, red, circle>: +
<small, red, square>: −
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shape

circle square triangle

Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +
<small, red, square>: − <big, blue, circle>: −

<big, red, circle>: +       
<small, red, circle>: +
<small, red, square>: −

color

red blue green

<big, red, circle>: +       
<small, red, circle>: +

pos
<small, red, square>: −
neg pos

<big, blue, circle>: −
neg neg
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Decision Tree Induction Pseudocode

DTree(examples, features) returns a tree
If all examplesare in one category, return a leaf node with that category label.
Else if the set of featuresis empty, return a leaf node with the category label that

is the most common in examples.
Else pick a feature F and create a node R for it

For each possible value vi of F:
Let examplesi be the subset of examples that have value vi for F
Add an out-going edge E to node R labeled with the value vi.

If examplesi is empty
then attach a leaf node to edge E labeled with the category that

is the most common in examples.
else call DTree(examplesi , features– {F}) and attach the resulting

tree as the subtree under edge E.
Return the subtree rooted at R.

21

Picking a Good Split Feature

• Goal is to have the resulting tree be as small as possible, 
per Occam’s razor.

• Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem.

• Top-down divide-and-conquer method does a greedy 
search for a simple tree but does not guarantee to find the 
smallest.
– General lesson in ML:  “Greed is good.”

• Want to pick a feature that creates subsets of examples that 
are relatively “pure” in a single class so they are “closer” 
to being leaf nodes.

• There are a variety of heuristics for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979).
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Entropy

• Entropy (disorder, impurity) of a set of examples, S, relative to a binary 
classification is:

where p1 is the fraction of positive examples in S and p0 is the fraction 
of negatives.

• If all examples are in one category, entropy is zero (we define 
0⋅log(0)=0)

• If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.

• Entropy can be viewed as the number of bits required on average to 
encode the class of an example in Swhere data compression (e.g. 
Huffman coding) is used to give shorter codes to more likely cases.

• For multi-class problems with c categories, entropy generalizes to:
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Entropy Plot for Binary Classification
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Information Gain

• The information gain of a feature F is the expected reduction in 
entropy resulting from splitting on this feature.

where Sv is the subset of Shaving value v for feature F.

• Entropy of each resulting subset weighted by its relative size.

• Example:
– <big, red, circle>: +          <small, red, circle>: +

– <small, red, square>: − <big, blue, circle>: −

)()(),(
)(

v
FValuesv

v SEntropy
S

S
SEntropyFSGain ∑

∈
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2+, 2 −: E=1
size

big          small
1+,1− 1+,1−
E=1        E=1

Gain=1−(0.5⋅1 + 0.5⋅1) = 0

2+, 2 − : E=1
color

red          blue
2+,1− 0+,1−
E=0.918   E=0

Gain=1−(0.75⋅0.918 +
0.25⋅0) = 0.311

2+, 2 − : E=1
shape

circle      square
2+,1− 0+,1−
E=0.918   E=0

Gain=1−(0.75⋅0.918 +
0.25⋅0) = 0.311
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Hypothesis Space Search

• Performs batch learning that processes all training 
instances at once rather than incremental learning
that updates a hypothesis after each example.

• Performs hill-climbing (greedy search) that may 
only find a locally-optimal solution. Guaranteed to 
find a tree consistent with any conflict-free 
training set (i.e. identical feature vectors always 
assigned the same class), but not necessarily the 
simplest tree.

• Finds a single discrete hypothesis, so there is no 
way to provide confidences or create useful 
queries.

Another Red-Circle Data Set
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Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red square negative

4 large blue circle negative
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Weka J48 Trace 1

data> java weka.classifiers.trees.J48 -t figure.arff -T figure.arff -U -M 1
Options: -U -M 1 
J48 unpruned tree
------------------
color = blue: negative (1.0)
color = red
|   shape = circle: positive (2.0)
|   shape = square: negative (1.0)
|   shape = triangle: positive (0.0)
color = green: positive (0.0)

Number of Leaves  :     5
Size of the tree :      7

Time taken to build model: 0.03 seconds
Time taken to test model on training data: 0 seconds

A Data Set Requiring Disjunction
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Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

5 small green circle positive
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Weka J48 Trace 2

data> java weka.classifiers.trees.J48 -t figure3.arff -T figure3.arff -U -M 1
Options: -U -M 1 
J48 unpruned tree
------------------
shape = circle
|   color = blue: negative (1.0)
|   color = red: positive (2.0)
|   color = green: positive (1.0)
shape = square: positive (0.0)
shape = triangle: negative (1.0)

Number of Leaves  :     5
Size of the tree :      7

Time taken to build model: 0.02 seconds
Time taken to test model on training data: 0 seconds
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Weka J48 Trace 3

data> java weka.classifiers.trees.J48 -t contact-lenses.arff 
J48 pruned tree
------------------
tear-prod-rate = reduced: none (12.0)
tear-prod-rate = normal
|   astigmatism = no: soft (6.0/1.0)
|   astigmatism = yes
|   |   spectacle-prescrip = myope: hard (3.0)
|   |   spectacle-prescrip = hypermetrope: none (3.0/1.0)

Number of Leaves  :     4
Size of the tree :      7

Time taken to build model: 0.03 seconds
Time taken to test model on training data: 0 seconds

=== Error on training data ===

Correctly Classified Instances          22               91.6667 %
Incorrectly Classified Instances         2                8.3333 %
Kappa statistic                          0.8447
Mean absolute error                      0.0833
Root mean squared error                  0.2041
Relative absolute error                 22.6257 %
Root relative squared error             48.1223 %
Total Number of Instances               24     

=== Confusion Matrix ===

a  b  c   <-- classified as
5  0  0 |  a = soft
0  3  1 |  b = hard
1  0 14 |  c = none

=== Stratified cross-validation ===

Correctly Classified Instances          20               83.3333 %
Incorrectly Classified Instances         4               16.6667 %
Kappa statistic                          0.71  
Mean absolute error                      0.15  
Root mean squared error                  0.3249
Relative absolute error                 39.7059 %
Root relative squared error             74.3898 %
Total Number of Instances               24     

=== Confusion Matrix ===

a  b  c   <-- classified as
5  0  0 |  a = soft
0  3  1 |  b = hard
1  2 12 |  c = none



6

31

Evaluating Inductive Hypotheses

• Accuracy of hypotheses on training data is 
obviously biased since the hypothesis was 
constructed to fit this data.

• Accuracy must be evaluated on an independent 
(usually disjoint) test set.

• Average over multiple train/test splits to get 
accurate measure of accuracy.

• K-fold cross validation averages over K trials 
using each example exactly once as a test case.
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K-Fold Cross Validation

Randomly partition data D into k disjoint equal-sized 
subsets P1…Pk

For i from 1 to k do:
Use Pi for the test set and remaining data for training

Si = (D – Pi)
hA = LA(Si)
hB = LB(Si)
δi = errorPi(hA) – errorPi(hB) 

Return the average difference in error:
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K-Fold Cross Validation Comments

• Every example gets used as a test example once 
and as a training example k–1 times.

• All test sets are independent; however, training 
sets overlap significantly.

• Measures accuracy of hypothesis generated for 
[(k–1)/k]⋅|D| training examples.

• Standard method is 10-fold.
• If k is low, not sufficient number of train/test 

trials; if k is high, test set is small and test variance 
is high and run time is increased.

• If k=|D|, method is called leave-one-out cross 
validation.
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Learning Curves

• Plots accuracy vs. size of training set.

• Has maximum accuracy (Bayes optimal) nearly been 
reached or will more examples help?

• Is one system better when training data is limited?

• Most learners eventually converge to Bayes optimal given 
sufficient training examples.
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# Training examples

100%
Bayes optimal

Random guessing
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Cross Validation Learning Curves

Split data into k equal partitions
For trial i = 1 to k do:

Use partition i for testing and the union of all other partitions for training.
For each desired point p on the learning curve do:

For each learning system L
Train L on the first p examples of the training set and record

training time, training accuracy, and learned concept complexity.
Test L on the test set, recording testing time and test accuracy.

Compute average for each performance statistic across k trials.
Plot curves for any desired performance statistic versus training set size.


