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Credits

I Many slides, ideas and tips from Alessandro Lenci and
Stefan Evert

I See also:
http://wordspace.collocations.de/doku.php/
course:esslli2009:start
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I Susan Dumais. 2003. Data-driven approaches to information

access. Cognitive Science 27:491–524
I Dominic Widdows. 2004. Geometry and Meaning. CSLI
I Magnus Sahlgren. 2006 The Word-Space Model. Stockholm

University dissertation
I Alessandro Lenci. 2008. Distributional approaches in linguistic

and cognitive research. Italian Journal of Linguistics 20(1): 1–31
I Marco Baroni and Alessandro Lenci. 2010. Distributional

Memory: A general framework for corpus-based semantics.
Computational Linguistics 36(4): 673–721

I Peter Turney and Patrick Pantel. 2010. From frequency to
meaning: Vector space models of semantics. Journal of Artificial
Intelligence Research 37: 141–188

I Stephen Clark. In press. Vector space models of lexical
meaning. In Handbook of Contemporary Semantics, 2nd edition

I Katrin Erk. In press. Vector space models of word meaning and
phrase meaning: A survey. Language and Linguistics Compass
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The distributional hypothesis

I The meaning of a word is the set of contexts in which it
occurs in texts

I Important aspects of the meaning of a word are a function
of (can be approximated by) the set of contexts in which it
occurs in texts
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The distributional hypothesis in real life
McDonald & Ramscar 2001

He filled the wampimuk, passed it
around and we all drunk some

We found a little, hairy wampimuk
sleeping behind the tree
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Distributional lexical semantics

I Distributional analysis in structuralist linguistics (Zellig
Harris), British corpus linguistics (J.R. Firth), psychology
(Miller & Charles), but not only

I “[T]he semantic properties of a lexical item are fully
reflected in appropriate aspects of the relations it contracts
with actual and potential contexts [...] [T]here are good
reasons for a principled limitation to linguistic contexts”
(Cruse 1986)

I Distributional hypothesis suggests that we can induce
(aspects of the) meaning of words from texts

I This is its biggest selling point in computational linguistics:
it is a “theory of meaning” that can be easily
operationalized into a procedure to extract “meaning” from
text corpora on a large scale
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The distributional hypothesis, weak and strong
Lenci (2008)

I Weak: a quantitative method for semantic analysis and
lexical resource induction

I Strong: A cognitive hypothesis about the form and origin of
semantic representations
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Distributional semantic models (DSMs)
Narrowing the field

I Idea of using corpus-based statistics to extract information
about semantic properties of words and other linguistic
units is extremely common in computational linguistics

I Here, we focus on models that:
I Represent the meaning of words as vectors keeping track

of the words’ distributional history
I Focus on the notion of semantic similarity, measured with

geometrical methods in the space inhabited by the
distributional vectors

I Are intended as general-purpose semantic models that are
estimated once, and then used for various semantic tasks,
and not created ad-hoc for a specific goal

I It follows that model estimation phase is typically
unsupervised

I E.g.: LSA (Landauer & Dumais 1997), HAL (Lund &
Burgess 1996), Schütze (1997), Sahlgren (2006), Padó &
Lapata (2007), Baroni and Lenci (2010)

I Aka: vector/word space models, semantic spaces
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Advantages of distributional semantics

Distributional semantic models are

I model of inductive learning for word meaning
I radically empirical
I rich
I flexible
I cheap, scalable
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Constructing the models

I Pre-process the source corpus
I Collect a co-occurrence matrix (with distributional vectors

representing words as rows, and contextual elements of
some kind as columns/dimensions)

I Transform the matrix: re-weighting raw frequencies,
dimensionality reduction

I Use resulting matrix to compute word-to-word similarity
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Corpus pre-processing

I Minimally, corpus must be tokenized
I POS tagging, lemmatization, dependency parsing. . .
I Trade-off between deeper linguistic analysis and

I need for language-specific resources
I possible errors introduced at each stage of the analysis
I more parameters to tune
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Distributional vectors

I Count how many times each target word occurs in a
certain context

I Build vectors out of (a function of) these context
occurrence counts

I Similar words will have similar vectors
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Collecting context counts for target word dog

The dog barked in the park.
The owner of the dog put him
on the leash since he barked.

bark ++
park +
owner +
leash +
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The co-occurrence matrix

leash walk run owner pet bark
dog 3 5 2 5 3 2
cat 0 3 3 2 3 0
lion 0 3 2 0 1 0
light 0 0 0 0 0 0
bark 1 0 0 2 1 0
car 0 0 1 3 0 0
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What is “context”?

DOC1: The silhouette of the sun beyond a wide-open bay on
the lake; the sun still glitters although evening has arrived in
Kuhmo. It’s midsummer; the living room has its instruments and
other objects in each of its corners.
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What is “context”?
Documents

DOC1: The silhouette of the sun beyond a wide-open bay on
the lake; the sun still glitters although evening has arrived in
Kuhmo. It’s midsummer; the living room has its instruments and
other objects in each of its corners.
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What is “context”?
All words in a wide window

DOC1: The silhouette of the sun beyond a wide-open bay on
the lake; the sun still glitters although evening has arrived in
Kuhmo. It’s midsummer; the living room has its instruments and
other objects in each of its corners.
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What is “context”?
Content words only

DOC1: The silhouette of the sun beyond a wide-open bay on
the lake; the sun still glitters although evening has arrived in
Kuhmo. It’s midsummer; the living room has its instruments and
other objects in each of its corners.

20 / 121



What is “context”?
Content words in a narrower window

DOC1: The silhouette of the sun beyond a wide-open bay on
the lake; the sun still glitters although evening has arrived in
Kuhmo. It’s midsummer; the living room has its instruments and
other objects in each of its corners.
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What is “context”?
POS-coded content lemmas

DOC1: The silhouette-n of the sun beyond a wide-open-a bay-n
on the lake-n; the sun still glitter-v although evening-n has
arrive-v in Kuhmo. It’s midsummer; the living room has its
instruments and other objects in each of its corners.
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What is “context”?
POS-coded content lemmas filtered by syntactic path to the target

DOC1: The silhouette-n of the sun beyond a wide-open bay on
the lake; the sun still glitter-v although evening has arrived in
Kuhmo. It’s midsummer; the living room has its instruments and
other objects in each of its corners.
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What is “context”?
. . . with the syntactic path encoded as part of the context

DOC1: The silhouette-n_ppdep of the sun beyond a wide-open
bay on the lake; the sun still glitter-v_subj although evening has
arrived in Kuhmo. It’s midsummer; the living room has its
instruments and other objects in each of its corners.
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Same corpus (BNC), different contexts (window sizes)
Nearest neighbours of dog

2-word window
I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word window
I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alsatian
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General trends in “context engineering”

I In computational linguistics, tendency towards using more
linguistically aware contexts, but “jury is still out” on their
utility (Sahlgren, 2008)

I This is at least in part task-specific
I In cognitive science trend towards broader

document-/text-based contexts
I Focus on topic detection, gist extraction, text coherence

assessment, library science
I Latent Semantic Analysis (Landauer & Dumais, 1997),

Topic Models (Griffiths et al., 2007)

26 / 121



Contexts and dimensions
Some terminology I will use below

I Dependency-filtered (e.g., Padó & Lapata, 2007)
vs. dependency-linked (e.g., Grefenstette 1994, Lin 1998,
Curran & Moens 2002, Baroni and Lenci 2010)

I Both rely on output of dependency parser to identify
context words that are connected to target words by
interesting relations

I However, only dependency-linked models keep (parts of)
the dependency path connecting target word and context
word in the dimension label
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Contexts and dimensions
Some terminology I will use below

I Given input sentence: The dog bites the postman on the
street

I both approaches might consider only bite as a context
element for both dog and postman (because they might
focus on subj-of and obj-of relations only)

I However, a dependency-filtered model will count bite as
identical context in both cases

I whereas a dependency-linked model will count subj-of-bite
as context of dog and obj-of-bite as context of postman
(so, different contexts for the two words)
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Context beyond corpora and language

I The distributional semantic framework is general enough
that feature vectors can come from other sources as well,
besides from corpora (or from a mixture of sources)

I Obvious alternative/complementary sources are
dictionaries, structured knowledge bases such as WordNet

I I am particularly interested in the possibility of merging
features from text and images (“visual words”: Feng and
Lapata 2010, Bruni et al. 2011, 2012)
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Context weighting

I Raw context counts typically transformed into scores
I In particular, association measures to give more weight to

contexts that are more significantly associated with a target
word

I General idea: the less frequent the target word and (more
importantly) the context element are, the higher the weight
given to their observed co-occurrence count should be
(because their expected chance co-occurrence frequency
is low)

I Co-occurrence with frequent context element time is less
informative than co-occurrence with rarer tail

I Different measures – e.g., Mutual Information, Log
Likelihood Ratio – differ with respect to how they balance
raw and expectation-adjusted co-occurrence frequencies

I Positive Point-wise Mutual Information widely used and
pretty robust
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Context weighting

I Measures from information retrieval that take distribution
over documents into account are also used

I Basic idea is that terms that tend to occur in a few
documents are more interesting than generic terms that
occur all over the place
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Dimensionality reduction

I Reduce the target-word-by-context matrix to a lower
dimensionality matrix (a matrix with less – linearly
independent – columns/dimensions)

I Two main reasons:
I Smoothing: capture “latent dimensions” that generalize

over sparser surface dimensions (Singular Value
Decomposition or SVD)

I Efficiency/space: sometimes the matrix is so large that you
don’t even want to construct it explicitly (Random Indexing)

32 / 121



Singular Value Decomposition

I General technique from linear algebra (essentially, the
same as Principal Component Analysis, PCA)

I Some alternatives: Independent Component Analysis,
Non-negative Matrix Factorization

I Given a matrix (e.g., a word-by-context matrix) of m × n
dimensionality, construct a m × k matrix, where k << n
(and k < m)

I E.g., from a 20,000 words by 10,000 contexts matrix to a
20,000 words by 300 “latent dimensions” matrix

I k is typically an arbitrary choice
I From linear algebra, we know that and how we can find the

reduced m × k matrix with orthogonal dimensions/columns
that preserves most of the variance in the original matrix
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Preserving variance
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Preserving variance
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Preserving variance
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Preserving variance
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Dimensionality reduction as generalization

buy sell dim1
wine 31.2 27.3 41.3
beer 15.4 16.2 22.3
car 40.5 39.3 56.4
cocaine 3.2 22.3 18.3
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The Singular Value Decomposition

I Any m × n real-valued matrix A can be factorized into 3
matrices UΣV T

I U is a m ×m orthogonal matrix (UUT = I)
I Σ is a m × n diagonal matrix, with diagonal values ordered

from largest to smallest (σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, where
r = min(m,n))

I V is a n × n orthogonal matrix (VV T = I)
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The Singular Value Decomposition


u11 u12 · · · u1m
u21 u22 · · · u2m
· · · · · · · · · · · ·
um1 um2 · · · umm

×

σ1 0 0 · · ·
0 σ2 0 · · ·
0 0 σ3 · · ·
· · · · · · · · · · · ·

×


v11 v21 · · · vn1
v12 v22 · · · vn2
· · · · · · · · · · · ·
v1n v2n · · · vnn


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The Singular Value Decomposition
Projecting the A row vectors onto the new coordinate system

Am×n = Um×mΣm×nV T
n×n

I The columns of the orthogonal Vn×n matrix constitute a
basis (coordinate system, set of axes or dimensions) for
the n-dimensional row vectors of A

I The projection of a row vector aj onto axis column vi (i.e.,
the vi coordinate of aj ) is given by aj · vi

I The coordinates of aj in the full V coordinate system are
thus given by ajV , and generalizing the coordinates of all
vectors projected onto the new system are given by AV

I AV = UΣV T V = UΣ
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Reducing dimensionality
I Projecting A onto the new V coordinate system:

AV = UΣ

I It can be shown that, when the A row vectors are
represented in this new set of coordinates, variance on
each vi -axis is proportional to σ2

i (the square of the i-th
value on the diagonal of Σ)

I Intuitively: U and V are orthogonal, all the “stretching”
when multiplying the matrices is done by Σ

I Given that σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, if we take the
coordinates on the first k axes, we obtain lower
dimensionality vectors that account for the maximum
proportion of the original variance that we can account for
with k dimensions

I I.e., we compute the “truncated” projection:

Am×nVn×k = Um×k Σk×k
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The Singular Value Decomposition
Finding the component matrices

I Don’t try this at home!
I SVD draw on non-efficient operations
I Fortunately, there are out-of-the-box packages to compute

SVD, a popular one being SVDPACK, that I use via
SVDLIBC (http://tedlab.mit.edu/~dr/svdlibc/)

I Recently, various mathematical developments and
packages to compute SVD incrementally, scaling up to
very very large matrices, see e.g.:
http://radimrehurek.com/gensim/

I See:
http://wordspace.collocations.de/doku.php/
course:esslli2009:start

I Very clear introduction to SVD (and PCA), with all the
mathematical details I skipped here
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SVD: Pros and cons

I Pros:
I Good performance (in most cases)
I At least some indication of robustness against data

sparseness
I Smoothing as generalization
I Smoothing also useful to generalize features to words that

do not co-occur with them in the corpus (e.g., spreading
visually-derived features to all words)

I Words and contexts in the same space (contexts not
trivially orthogonal to each other)

I Cons:
I Non-incremental (even incremental implementations allow

you to add new rows, not new columns)
I Of course, you can use Vn×k to project new vectors onto the

same reduced space!
I Latent dimensions are difficult to interpret
I Does not scale up well (but see recent developments. . . )
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Contexts as vectors

runs legs
dog 1 4
cat 1 5
car 4 0
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Semantic space
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Semantic similarity as angle between vectors
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Measuring angles by computing cosines

I Cosine is most common similarity measure in distributional
semantics, and the most sensible one from a geometrical
point of view

I Ranges from 1 for parallel vectors (perfectly correlated
words) to 0 for orthogonal (perpendicular) words/vectors

I It goes to -1 for parallel vectors pointing in opposite
directions (perfectly inversely correlated words), as long as
weighted co-occurrence matrix has negative values

I (Angle is obtained from cosine by applying the arc-cosine
function, but it is rarely used in computational linguistics)
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Trigonometry review

I Build a right triangle by connecting the two vectors
I Cosine is ratio of length of side adjacent to measured

angle to length of hypotenuse side
I If we build triangle so that hypotenuse has length 1, cosine

will equal length of adjacent side (because we divide by 1)
I I.e., in this case cosine is length of projection of

hypotenuse on the adjacent side
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Computing the cosines: preliminaries
Length and dot products
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I Length of a vector v with n dimensions v1, v2, ..., vn
(Pythagoras’ theorem!):

||v|| =

√√√√ i=n∑
i=1

v2
i

I Dot product of two vectors:

v ·w =
i=n∑
i=1

viwi
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Computing the cosines: preliminaries
Orthogonal vectors

I The dot product of two orthogonal (perpendicular) vectors
is 0

I To see this, note that given two vectors v and w forming a
right angle, Pythagoras’ theorem says that
||v||2 + ||w||2 = ||v−w||2

I But:

||v−w||2 =
i=n∑
i=1

(vi − wi)
2 =

i=n∑
i=1

(v2
i − 2viwi + w2

i ) =

i=n∑
i=1

v2
i −

i=n∑
i=1

2viwi +
i=n∑
i=1

w2
i = ||v||2 − 2v ·w + ||w||2

I So, for the Pythagoras’ theorem equality to hold, v ·w = 0
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Computing the cosine
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I ||a|| = ||b|| = 1
I c = p b
I e = c− a; e · b = 0
I (c− a) · b = c · b− a · b = 0
I c · b = p b · b = p = a · b
I ||c|| = ||p b|| =

√
p2 b · b = p = a · b
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Computing the cosine

I For two vectors of length 1, the cosine is given by:
||c|| = a · b

I If the two vectors are not of length 1 (as it will be typically
the case in DSMs), we obtain vectors of length 1 pointing
in the same directions by dividing the original vectors by
their lengths, obtaining:

||c|| =
a · b
||a||||b|| =

∑i=n
i=1 ai × bi√∑i=n

i=1 a2 ×
√∑i=n

i=1 b2
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Computing the cosine
Example ∑i=n

i=1 ai × bi√∑i=n
i=1 a2 ×

√∑i=n
i=1 b2

runs legs
dog 1 4
cat 1 5
car 4 0

cosine(dog,cat) = (1×1)+(4×5)√
12+42×

√
12+52

= 0.9988681

arc-cosine(0.9988681) = 2.72 degrees

cosine(dog,car) = (1×4)+(4×0)√
12+42×

√
42+02

= 0.2425356

arc-cosine(0.2425356) = 75.85 degrees
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Computing the cosine
Example
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Cosine intuition

I When computing the cosine, the values that two vectors
have for the same dimensions (coordinates) are multiplied

I Two vectors/words will have a high cosine if they tend to
have high same-sign values for the same
dimensions/contexts

I If we center the vectors so that their mean value is 0, the
cosine of the centered vectors is the same as the Pearson
correlation coefficient

I If, as it is often the case in computational linguistics, we
have only nonnegative scores, and we do not center the
vectors, then the cosine can only take nonnegative values,
and there is no “canceling out” effect

I As a consequence, cosines tend to be higher than the
corresponding correlation coefficients
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Other measures

I Cosines are well-defined, well understood way to measure
similarity in a vector space

I Euclidean distance (length of segment connecting
end-points of vectors) is equally principled, but
length-sensitive (two vectors pointing in the same direction
will be very distant if one is very long, the other very short)

I Other measures based on other, often non-geometric
principles (Lin’s information theoretic measure,
Kullback/Leibler divergence. . . ) bring us outside the scope
of vector spaces, and their application to semantic vectors
can be iffy and ad-hoc
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Recap: Constructing the models

I Pre-process the source corpus
I Collect a co-occurrence matrix (with distributional vectors

representing words as rows, and contextual elements of
some kind as columns/dimensions)

I Transform the matrix: re-weighting raw frequencies,
dimensionality reduction

I Use resulting matrix to compute word-to-word similarity
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Distributional similarity as semantic similarity

I Developers of DSMs typically want them to be
“general-purpose” models of semantic similarity

I These models emphasize paradigmatic similarity, i.e.,
words that tend to occur in the same contexts

I Words that share many contexts will correspond to
concepts that share many attributes (attributional
similarity), i.e., concepts that are taxonomically similar:

I Synonyms (rhino/rhinoceros), antonyms and values on a
scale (good/bad), co-hyponyms (rock/jazz), hyper- and
hyponyms (rock/basalt)

I Taxonomic similarity is seen as the fundamental semantic
relation, allowing categorization, generalization,
inheritance

I Evaluation focuses on tasks that measure taxonomic
similarity
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Distributional semantics as models of word meaning
Landauer and Dumais 1997, Turney and Pantel 2010, Baroni and Lenci 2010

Distributional semantics can model
I human similarity judgments (cord-string vs. cord-smile)
I lexical priming (hospital primes doctor )
I synonymy (zenith-pinnacle)
I analogy (mason is to stone like carpenter is to wood)
I relation classification (exam-anxiety: CAUSE-EFFECT)
I text coherence
I . . .
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The main problem with evaluation: Parameter Hell!

I So many parameters in tuning the models:
I input corpus, context, counting, weighting, matrix

manipulation, similarity measure
I With interactions (Erk & Padó, 2009, and others)
I And best parameters in a task might not be the best for

another
I No way we can experimentally explore the parameter

space
I But see work by Bullinaria and colleagues for some

systematic attempt
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Nearest neighbour examples
BNC, 2-content-word-window context

rhino fall rock
woodpecker rise lava
rhinoceros increase sand
swan fluctuation boulder
whale drop ice
ivory decrease jazz
plover reduction slab
elephant logarithm cliff
bear decline pop
satin cut basalt
sweatshirt hike crevice
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Nearest neighbour examples
BNC, 2-content-word-window context

green good sing
blue bad dance
yellow excellent whistle
brown superb mime
bright poor shout
emerald improved sound
grey perfect listen
speckled clever recite
greenish terrific play
purple lucky hear
gleaming smashing hiss
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Some classic semantic similarity tasks

I Taking the TOEFL: synonym identification
I The Rubenstein/Goodenough norms: modeling semantic

similarity judgments
I The Hodgson semantic priming data
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The TOEFL synonym match task

I 80 items
I Target: levied

Candidates: imposed, believed, requested, correlated
I In semantic space, measure angles between target and

candidate context vectors, pick candidate that forms most
narrow angle with target

65 / 121



The TOEFL synonym match task

I 80 items
I Target: levied

Candidates: imposed, believed, requested, correlated
I In semantic space, measure angles between target and

candidate context vectors, pick candidate that forms most
narrow angle with target

65 / 121



The TOEFL synonym match task
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narrow angle with target
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Human performance on the synonym match task

I Average foreign test taker: 64.5%
I Macquarie University staff (Rapp 2004):

I Average of 5 non-natives: 86.75%
I Average of 5 natives: 97.75%
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Distributional Semantics takes the TOEFL

I Humans:
I Foreign test takers: 64.5%
I Macquarie non-natives: 86.75%
I Macquarie natives: 97.75%

I Machines:
I Classic LSA: 64.4%
I Padó and Lapata’s dependency-filtered model: 73%
I Rapp’s 2003 SVD-based model trained on lemmatized

BNC: 92.5%
I Direct comparison in Baroni and Lenci 2010

(ukWaC+Wikipedia+BNC as training data, local MI
weighting):

I Dependency-filtered: 76.9%
I Dependency-linked: 75.0%
I Co-occurrence window: 69.4%

67 / 121



Rubenstein & Goodenough (1965)

I (Approximately) continuous similarity judgments
I 65 noun pairs rated by 51 subjects on a 0-4 similarity scale

and averaged
I E.g.: car-automobile 3.9; food-fruit 2.7; cord-smile 0.0

I (Pearson) correlation between cosine of angle between
pair context vectors and the judgment averages

I State-of-the-art results:
I Herdaǧdelen et al. (2009) using SVD-ed

dependency-filtered model estimated on ukWaC: 80%
I Direct comparison in Baroni et al.’s experiments:

I Co-occurrence window: 65%
I Dependency-filtered: 57%
I Dependency-linked: 57%
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Semantic priming

I Hearing/reading a “related” prime facilitates access to a
target in various lexical tasks (naming, lexical decision,
reading. . . )

I You recognize/access the word pear faster if you just
heard/read apple

I Hodgson (1991) single word lexical decision task, 136
prime-target pairs

I (I have no access to original article, rely on McDonald &
Brew 2004 and Padó & Lapata 2007)
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Semantic priming

I Hodgson found similar amounts of priming for different
semantic relations between primes and targets (approx. 23
pairs per relation):

I synonyms (synonym): to dread/to fear
I antonyms (antonym): short/tall
I coordinates (coord): train/truck
I super- and subordinate pairs (supersub): container/bottle
I free association pairs (freeass): dove/peace
I phrasal associates (phrasacc): vacant/building
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Simulating semantic priming
Methodology from McDonald & Brew, Padó & Lapata

I For each related prime-target pair:
I measure cosine-based similarity between pair elements

(e.g., to dread/to fear)
I take average of cosine-based similarity of target with other

primes from same relation data-set (e.g., to value/to fear)
as measure of similarity of target with unrelated items

I Similarity between related items should be significantly
higher than average similarity between unrelated items
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Semantic priming results

I T-normalized differences between related and unrelated
conditions (* <0.05, ** <0.01, according to paired t-tests)

I Results from Herdaǧdelen et al. (2009) based on SVD-ed
dependency-filtered corpus, but similar patterns reported
by McDonald & Brew and Padó & Lapata

relation pairs t-score sig
synonym 23 10.015 **
antonym 24 7.724 **
coord 23 11.157 **
supersub 21 10.422 **
freeass 23 9.299 **
phrasacc 22 3.532 *
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Distributional semantics in complex NLP systems and
applications

I Document-by-word models have been used in Information
Retrieval for decades

I DSMs might be pursued in IR within the broad topic of
“semantic search”

I Commercial use for automatic essay scoring and other
language evaluation related tasks

I http://lsa.colorado.edu
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Distributional semantics in complex NLP systems and
applications

I Elsewhere, general-purpose DSMs not too common, nor
too effective:

I Lack of reliable, well-known out-of-the-box resources
comparable to WordNet

I “Similarity” is too vague a notion for well-defined semantic
needs (cf. nearest neighbour lists above)

I However, there are more-or-less successful attempts to
use general-purpose distributional semantic information at
least as supplementary resource in various domains, e.g.,:

I Question answering (Tómas & Vicedo, 2007)
I Bridging coreference resolution (Poesio et al., 1998,

Versley, 2007)
I Language modeling for speech recognition (Bellegarda,

1997)
I Textual entailment (Zhitomirsky-Geffet and Dagan, 2009)

74 / 121



Distributional semantics in the humanities,
social sciences, cultural studies

I Great potential, only partially explored
I E.g., Sagi et al. (2009a,b) use distributional semantics to

study
I semantic broadening (dog from specific breed to “generic

canine”) and narrowing (deer from “animal” to “deer”) in the
history of English

I phonastemes (glance and gleam, growl and howl)
I the parallel evolution of British and American literature over

two centuries
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“Culture” in distributional space
Nearest neighbours in BNC-estimated model

woman
I gay
I homosexual
I lesbian
I bearded
I burly
I macho
I sexually
I man
I stocky
I to castrate

man
I policeman
I girl
I promiscuous
I woman
I compositor
I domesticity
I pregnant
I chastity
I ordination
I warrior
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Distributional semantics
Distributional meaning as co-occurrence vector

planet night full shadow shine crescent

moon 10 22 43 16 29 12

sun 14 10 4 15 45 0

dog 0 4 2 10 0 0
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Distributional semantics
Distributional meaning as co-occurrence vector

X729 X145 X684 X776 X998 X238

moon 10 22 43 16 29 12

sun 14 10 4 15 45 0

dog 0 4 2 10 0 0
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The symbol grounding problem
Interpretation vs. translation
Searle 1980, Harnad 1990

google.com, “define” functionality
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Cognitive Science: Word meaning is grounded
Barsalou 2008, Kiefer and Pulvermüller 2011 (overviews)
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Interpretation as translation

google.com, “define” functionality
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Interpretation with perception

images.google.com
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Classical distributional models are not grounded

Image credit: Jiming Li
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Classical distributional models are not grounded

Describing tigers. . .

humans (McRae et al.,
2005):

I have stripes
I have teeth
I are black
I . . .

state-of-the art distributional
model (Baroni et al., 2010):

I live in jungle
I can kill
I risk extinction
I . . .
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The distributional hypothesis

The meaning of a word is (can be approximated
via) the set of contexts in which it occurs
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Grounding distributional semantics
Multimodal models using textual and visual collocates
Bruni et al. JAIR 2014, Leong and Mihalchea IJCNLP 2011, Silberer et al. ACL 2013

  

planet night

moon 10 22 22 0

sun 14 10 15 0

dog 0 4 0 20
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Multimodal models vith images
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Multimodal models

I other modalities: feature norms (Andrews et al. 2010,
Roller and Schulte im Walde EMNLP 2013)

I feature norms: tiger - has stripes. . .
I manually collected. . .
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Bags of visual words
Motivation

! " " #
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Detection and description

I Detection: Identify
the interest points,
e.g. with Harris
corner detectors
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I Description:
Extract feature
vector describing
area surrounding
each interest
point, e.g. SIFT
descriptor
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[Fei-Fei Li]
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Visual codeword dictionary formation by clustering

Lecture 15 -Fei-Fei Li
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Vector mapping

Lecture 15 -Fei-Fei Li
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Counting

Lecture 15 -Fei-Fei Li
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Spatial pyramid representation
Lazebnik, Schmid, and Ponce, 2006, 2009

Lecture 15 -Fei-Fei Li
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Empirical assessment
Feng and Lapata 2010

Michelle Obama fever hits the UK

In the UK on her first
visit as first lady, Michelle
Obama seems to be mak-
ing just as big an im-
pact. She has attracted as
much interest and column
inches as her husband on
this London trip; creating
a buzz with her dazzling outfits, her own schedule
of events and her own fanbase. Outside Bucking-
ham Palace, as crowds gathered in anticipation of
the Obamas’ arrival, Mrs Obama’s star appeal was
apparent.

Table 1: Each article in the document collection contains
a document (the title is shown in boldface), and image
with related content.

and conversely, that linguistic information can be
useful in isolating salient visual features. Our model
extracts a semantic representation from large docu-
ment collections and their associated images without
any human involvement. Contrary to Andrews et al.
(2009) we use visual features directly without rely-
ing on speaker generated norms. Furthermore, un-
like most work in image annotation, we do not em-
ploy any goldstandard data where images have been
manually labeled with their description keywords.

3 Semantic Representation Model

Much like LSA and the related topic models our
model creates semantic representations from large
document collections. Importantly, we assume that
the documents are paired with images which in turn
describe some of the document’s content. Our ex-
periments make use of news articles which are of-
ten accompanied with images illustrating events, ob-
jects or people mentioned in the text. Other datasets
with similar properties include Wikipedia entries
and their accompanying pictures, illustrated stories,
and consumer photo collections. An example news
article and its associated image is shown in Table 1
(we provide more detail on the database we used in
our experiments in Section 4).

Our model exploits the redundancy inherent in
this multimodal collection. Specifically, we assume
that the images and their surrounding text have been
generated by a shared set of topics. A potential

stumbling block here is the fact that images and
documents represent distinct modalities: images are
commonly described by a continuous feature space
(e.g., color, shape, texture; Barnard et al. 2002; Blei
and Jordan 2003), whereas words are discrete. For-
tunately, we can convert the visual features from a
continuous onto a discrete space, thereby rendering
image features more like word units. In the follow-
ing we describe how we do this and then move on to
present an extension of Latent Dirichlet Allocation
(LDA, Blei and Jordan 2003), a topic model that can
be used to represent meaning as a probability distri-
bution over a set of multimodal topics. Finally, we
discuss how word similarity can be measured under
this model.

3.1 Image Processing
A large number of image processing techniques have
been developed in computer vision for extracting
meaningful features which are subsequently used
in a modeling task. For example, a common first
step to all automatic image annotation methods is
partitioning the image into regions, using either an
image segmentation algorithm (such as normalized
cuts; Shi and Malik 2000) or a fixed-grid layout
(Feng et al., 2004). In the first case the image is
represented by irregular regions (see Figure 1(a)),
whereas in the second case the image is partitioned
into smaller scale regions which are uniformly ex-
tracted from a fixed grid (see Figure 1(b)). The ob-
tained regions are further represented by a standard
set of features including color, shape, and texture.
These can be treated as continuous vectors (Blei and
Jordan, 2003) or in quantized form (Barnard et al.,
2002).

Despite much progress in image segmentation,
there is currently no automatic algorithm that can
reliably divide an image into meaningful parts. Ex-
tracting features from small local regions is thus
preferable, especially for image collections that are
diverse and have low resolution (this is often the case
for news images). In our work we identify local re-
gions using a difference-of-Gaussians point detector
(see Figure 1(c)). This representation is based on de-
scriptors computed over automatically detected im-
age regions. It provides a much richer (and hopefully
more informative) feature space compared to the
alternative image representations discussed above.
For example, an image segmentation algorithm,
would extract at most 20 regions from the image
in Figure 1; uniform grid segmentation yields 143
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I Feng and Lapata 2010: Model learns from mixed-media
documents a joint word+visual-word Topic Model

Figure 3: Performance of multimodal topic model on pre-
dicting word similarity under varying topics and visual
terms (development set).

to three similarity measures: KL divergence, JS di-
vergence, and P(w2|w1), the probability of word w2
given w1 (see Section 3.3). Figure 3 shows results on
the development set for the word similarity task. As
far as word association is concerned, we obtain best
results with P(w2|w1), 750 visual terms and 750 top-
ics (r = 0.188). On word similarity, JS performs best
with 500 visual terms and 25 topics (r = 0.374). It is
not surprising that P(w2|w1) works best for word as-
sociation. The measure expresses the associative re-
lations between words as a conditional distribution
over potential response words w2 for cue word w1.
A symmetric function is more appropriate for word
similarity as the task involves measuring the degree
to which to words share some meaning (expressed
as topics in our model) rather than whether a word is
likely to be generated as a response to another word.
These differences also lead to different parametriza-
tions of the semantic space. A rich visual term vo-
cabulary (750 terms) is needed for modeling associ-
ation as broader aspects of word meaning are taken
into account, whereas a sparser more focused repre-
sentation (with 500 visual terms and 25 overall top-
ics) is better at isolating the common semantic con-
tent between two words. We explored the parame-
ter space for the text-based topic model in a sim-
ilar fashion. On the word association task the best
correlation coefficient was achieved with 750 top-
ics and P(w2|w1) (r = 0.139). On word similarity,
the best results were obtained with 75 topics and the
JS divergence (r = 0.309).

Model Word Association Word Similarity
UpperBnd 0.400 0.545
MixLDA 0.123 0.318
TxtLDA 0.077 0.247

Table 2: Model performance on word association and
similarity (test set).

Model Comparison Table 2 summarizes our re-
sults on the test set using the optimal set of pa-
rameters as established on the development set. The
first row shows how well humans agree with each
other on the two tasks (UpperBnd). We estimated
the intersubject correlation using leave-one-out re-
sampling4 (Weiss and Kulikowski, 1991). As can
be seen, in all cases the topic model based on tex-
tual and visual modalities (MixLDA) outperforms
the model relying solely on textual information
(TxtLDA). The differences in performance are sta-
tistically significant (p < 0.05) using a t-test (Cohen
and Cohen, 1983).

Steyvers and Griffiths (2007) also predict word
association using Nelson’s norms and a state-of-the-
art LDA model. Although they do not report correla-
tions, they compute how many times the word with
the highest probability P(w2|w1) under the model
was the first associate in the human norms. Using
a considerably larger corpus (37,651 documents),
they reach an accuracy of 16.15%. Our corpus con-
tains 3,361 documents, the MixLDA model per-
forms at 14.15% and the LDA model at 13.16%. Us-
ing a vector-based model trained on the BNC corpus
(100M words), Washtell and Markert (2009) report a
correlation of 0.167 on the same association data set,
whereas our model achieves a correlation of 0.123.
With respect to word similarity, Marton et al. (2009)
report correlations within the range of 0.31–0.54 us-
ing different instantiations of a vector-based model
trained on the BNC with a vocabulary of 33,000
words. Our MixLDA model obtains a correlation
of 0.318 with a vocabulary five times smaller (6,253
words). Although these results are not strictly com-
parable due to the different nature and size of the
training data, they give some indication of the qual-
ity of our model in the context of other approaches
that exploit only the textual modality. Besides, our
intent is not to report the best performance possible,

4We correlated the data obtained from each participant with
the ratings obtained from all other participants and report the
average.
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Empirical assessment
Bruni et al. ACL 2012, also see Bruni et al. JAIR 2014

I Bruni et al. ACL 2012: textual and visual vectors
concatenated

I multimodal better at general word similarity – 0.66 vs. 0.69
(MEN dataset)

I multimodal better at modeling the meaning of color terms
I a banana is yellow: multimodal gets 27/52 right, text only 13
I literal vs. non-literal uses of color terms:

I a blue uniform is blue, a blue note is not
I text .53, multimodal .73 (complicated metric)

I more sophisticated combination of textual and visual
information yields further improvements (Bruni et al. JAIR
2014)
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The infinity of sentence meaning
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Compositionality
The meaning of an utterance is a function of the meaning of its parts
and their composition rules (Frege 1892)
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A compositional distributional semantics for phrases
and sentences?
Mitchell and Lapata 2008, 2009, 2010, Grefenstette and Sadrzadeh 2011,
Baroni and Zamparelli 2010, . . .

planet night full blood shine

moon 10 22 43 3 29

red moon 12 21 40 20 28

the red moon shines 11 23 21 15 45
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The unavoidability of distributional representations
of phrases
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What can you do with distributional representations
of phrases and sentences?
Paraphrasing

0 10 20 30 40 50

0
10

20
30

40
50

dim 1

di
m

 2

"cookie dwarfs hop
under the crimson planet" "gingerbread gnomes

 dance under
the red moon"

"red gnomes love
 gingerbread cookies"

"students eat
cup noodles"

Mitchell and Lapata 2010
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What can you do with distributional representations
of phrases and sentences?
Disambiguation

!"#$%&%&'(#)$*+$),!!#-
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What can you do with distributional representations
of phrases and sentences?
Semantic acceptability

colorless green ideas sleep furiously

great ideas will last

driving was a bad idea

some ideas are dangerous

sleep on this idea

hopes die last

Vecchi, Baroni and Zamparelli 2011
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Compositional distributional semantics

I Mitchell, J. & Lapata, M. (2010). Composition in
distributional models of semantics. Cognitive Science
34(8): 1388–1429

I Baroni, M. & Zamparelli, R. (2010). Nouns are vectors,
adjectives are matrices: Representing adjective-noun
constructions in semantic space. Proceedings of EMNLP

I Grefenstette, E., Dinu, G., Zhang, Y., Sadrzadeh, M. &
Baroni, M. (Submitted). Multi-step regression learning for
compositional distributional semantics.

I B. Coecke, M. Sadrzadeh and S. Clark. 2010.
Mathematical foundations for a compositional distributed
model of meaning. Lambek Festschrift (Linguistic Analysis
36)
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Additive model
Mitchell and Lapata 2010, . . .

planet night blood brown

red 15 3 19 20

moon 24 15 1 0

red+moon 39 18 20 20

0.4×red + 0.6×moon 20.4 10.2 8.2 8

weighted additive model: ~p = α~a + β~n
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Composition as (distributional) function application
Grefenstette, Sadrzadeh et al., Baroni and Zamparelli, Socher et al.?
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Baroni and Zamparelli’s 2010 proposal

Implementing the idea of function application in a vector space
I Functions as linear maps between vector spaces
I Functions are matrices, function application is

function-by-vector multiplication

lexical function model: ~p = A~n
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Learning distributional composition functions

n and the moon shining i
with the moon shining s
rainbowed moon . And the
crescent moon , thrille
in a blue moon only , wi
now , the moon has risen
d now the moon rises , f
y at full moon , get up
crescent moon . Mr Angu

f a large red moon , Campana
, a blood red moon hung over
glorious red moon turning t
The round red moon , she ’s
l a blood red moon emerged f
n rains , red moon blows , w
monstrous red moon had climb
. A very red moon rising is
under the red moon a vampire

shine blood

moon 301 93

red moon 11 90

~moon → ~red moon

~light → ~red light

~dress → ~red dress

~alert → ~red alert

. . .
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Addition and lexical function
as models of adjective meaning
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Addition and lexical function
as models of adjective meaning
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Socher et al.

R. Socher, E. Huang, J. Pennington, A. Ng and
Ch. Manning. 2011. Dynamic pooling and
unfolding recursive autoencoders for
paraphrase detection. Proceedings of NIPS.

More recently R. Socher, B. Huval, Ch. Manning and A. Ng.
2012. Semantic compositionality through recursive
matrix-vector spaces, Proceedings of EMNLP. . .

I makes more explicit link with compositionality literature
I similarities with function-based approaches above
I supervised approach in which composition solution

depends on annotated data from task at hand
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Socher et al.
Main points (for our purposes)

I Measure similarity of sentences taking into account not
only sentence vector, but also vectors representing all
constituent phrases and words

I Map these representations to similarity matrix of fixed size,
even for sentences with different lengths and structures

I Neural-network-based learning of composition function
(autoencoders)
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Results

I for some tasks, more sophisticated methods outperform
the additive model

I but the additive model is surprisingly good
I one of the problems: lack of adequate testbeds

I see this year’s SemEval Task 1
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Some hot topics

I Compositionality in distributional semantics
I Semantic representations in context (polysemy resolution,

co-composition. . . )
I Multimodal DSMs
I Very large DSMs
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Not solved

I Parameter Hell
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Build your own distributional semantic model

I corpus (several out there for several languages, see
archives of the Corpora Mailing List)

I Standard linguistic pre-processing and indexing tools
(TreeTagger, MaltParser, IMS CWB. . . )

I easy to write scripts for co-occurrence counts
I not trivial with very large corpora. Hadoop (MapReduce

algorithm) ideal for this, but often a pain in practice.
I COMPOSES webpage with link to toolkit in progress:
http://clic.cimec.unitn.it/composes

I See the Links page for other toolkits!
I if you build your own matrix: Dimensionality reduction with

SVDLIBC (http://tedlab.mit.edu/~dr/svdlibc/)
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