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1 INTRODUCTION 21 Introdu
tion\Learning" des
ribes many di�erent a
tivities ranging from CONCEPT LEARNING (q.v.) toREINFORCEMENT LEARNING (q.v.). The best-understood form of statisti
al learning is knownas supervised learning (see LEARNING AND STATISTICAL INFERENCE). In this setting, ea
hdata point 
onsists of a ve
tor of features (denoted x) and a 
lass label y, and it is assumed thatthere is some underlying fun
tion f su
h that y = f(x) for ea
h training data point (x; y). Thegoal of the learning algorithm is to �nd a good approximation h to f that 
an be applied to assignlabels to new x values. The fun
tion h is 
alled a 
lassi�er, be
ause it assigns 
lass labels y toinput data points x. Supervised learning 
an be applied to many problems in
luding handwritingre
ognition, medi
al diagnosis, and part-of-spee
h tagging in language pro
essing.Ordinary ma
hine learning algorithms work by sear
hing through a spa
e of possible fun
tions,
alled hypotheses, to �nd the one fun
tion, h, that is the best approximation to the unknownfun
tion f . To determine whi
h hypothesis h is best, a learning algorithm 
an measure how well hmat
hes f on the training data points, and it 
an also assess how 
onsistent h is with any availableprior knowledge about the problem.As an example, 
onsider the problem of learning to pronoun
e the letter \K" in English. Con-sider the words \desk", \think", and \hook" where the \K" is pronoun
ed, and the words \ba
k",\qua
k", and \knave" where the \K" is silent (in \ba
k" and \qua
k", we will suppose that the\C" is responsible for the \k" sound). Suppose we de�ne a ve
tor of features that 
onsists of thetwo letters prior to the \K" and the two letters that follow the \K". Then ea
h of these words 
anbe represented by the following data points:x1 x2 x3 x4 ye s +1i n +1o o +1a 
 �1a 
 �1n a �1where y = +1 if the \K" is pronoun
ed and �1 if the \K" is silent, and where \ " denotes positionsbeyond the ends of the word.One of the most eÆ
ient and widely-applied learning algorithms sear
hes the hypothesis spa
e
onsisting of de
ision trees. Figure 1 shows a de
ision tree that explains the data points givenabove. This tree 
an be used to 
lassify a new data point as follows. Starting at the so-
alled\root" (i.e., the top) of the tree, we �rst 
he
k whether x2 = "
". If so, then we follow the left(\yes") bran
h to the y = �1 \leaf", whi
h predi
ts that the \K" will be silent. If not, we followthe right (\no") bran
h to another test: Is x3 = \n". If so, then we follow the left bran
h to anothery = �1 leaf. If not, then we follow the right bran
h to the y = +1 leaf, where the tree indi
atesthat the \K" should be pronoun
ed.A de
ision tree learning algorithm sear
hes the spa
e of su
h trees by �rst 
onsidering trees thattest only one feature (in this 
ase x2 was 
hosen) and making an immediate 
lassi�
ation. Thenthey 
onsider expanding the tree by repla
ing one of the leaves by a test of a se
ond feature (inthis 
ase, the right leaf was repla
ed with a test of x3). Various heuristi
s are applied to 
hoosewhi
h test to in
lude in ea
h iteration and when to stop growing the tree. For a good dis
ussion ofde
ision trees, see the books by Quinlan (1993) and by Breiman, et al. (1984).
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Figure 1: A de
ision tree for pronoun
ing the letter \K". First, feature x2 is tested to see if it isthe letter \
". If not, the feature x3 is tested to see if it is the letter \n". \K" is pronoun
ed onlyif x2 is not \
" and x3 is not \n".In addition to de
ision trees, there are many other representations for hypotheses that havebeen studied in
luding PERCEPTRONS, ADALINES, and BACKPROPAGATION (q.v.), RA-DIAL BASIS FUNCTION NETWORKS (q.v.), GAUSSIAN PROCESSES (q.v.), GRAPHICALMODELS (q.v.), HELMHOLTZ MACHINES (q.v.), and SUPPORT VECTOR MACHINES (q.v.).In all 
ases, these algorithms �nd one best hypothesis h and output it as the \solution" to the learn-ing problem.Ensemble learning algorithms take a di�erent approa
h. Rather than �nding one best hypoth-esis to explain the data, they 
onstru
t a set of hypotheses (sometimes 
alled a \
ommittee" or\ensemble") and then have those hypotheses \vote" in some fashion to predi
t the label of new datapoints. More pre
isely, an ensemble method 
onstru
ts a set of hypotheses fh1; : : : ; hKg, 
hooses aset of weights fw1; : : : ; wKg and 
onstru
ts the \voted" 
lassi�er H(x) = w1h1(x)+ : : :+wKhK(x).The 
lassi�
ation de
ision of the 
ombined 
lassi�er H is +1 if H(x) � 0 and �1 otherwise.Experimental eviden
e has shown that ensemble methods are often mu
h more a

urate thanany single hypothesis. Freund and S
hapire (1996) showed improved performan
e in 22 ben
hmarkproblems, equal performan
e in one problem, and worse performan
e in four problems. These andother studies are summarized in Dietteri
h (1997).2 Why Ensemble Methods WorkLearning algorithms that output only a single hypothesis su�er from three problems that 
an bepartly over
ome by ensemble methods: the statisti
al problem, the 
omputational problem, andthe representation problem.The statisti
al problem arises when the learning algorithm is sear
hing a spa
e of hypothesesthat is too large for the amount of available training data. In su
h 
ases, there may be severaldi�erent hypotheses that all give the same a

ura
y on the training data, and the learning algorithmmust 
hoose one of these to output. There is a risk that the 
hosen hypothesis will not predi
tfuture data points well. A simple vote of all of these equally-good 
lassi�ers 
an redu
e this risk.The 
omputational problem arises when the learning algorithm 
annot guarantee to �nd thebest hypothesis within the hypothesis spa
e. In neural network and de
ision tree algorithms, for



3 REVIEW OF ENSEMBLE ALGORITHMS 4example, the task of �nding the hypothesis that best �ts the training data is 
omputationallyintra
table, so heuristi
 methods must be employed. These heuristi
s (su
h as gradient des
ent)
an get stu
k in lo
al minima and hen
e fail to �nd the best hypothesis. As with the statisti
alproblem, a weighted 
ombination of several di�erent lo
al minima 
an redu
e the risk of 
hoosingthe wrong lo
al minimum to output.Finally, the representational problem arises when the hypothesis spa
e does not 
ontain anyhypotheses that are good approximations to the true fun
tion f . In some 
ases, a weighted sum ofhypotheses expands the spa
e of fun
tions that 
an be represented. Hen
e, by taking a weightedvote of hypotheses, the learning algorithm may be able to form a more a

urate approximation tof . A learning algorithm that su�ers from the statisti
al problem is said to have high \varian
e".An algorithm that exhibits the 
omputational problem is sometimes des
ribed has having \
om-putational varian
e". And a learning algorithm that su�ers from the representational problem issaid to have high \bias". Hen
e, ensemble methods 
an redu
e both the bias and the varian
e oflearning algorithms. Experimental measurements of bias and varian
e have 
on�rmed this.3 Review of Ensemble AlgorithmsEnsemble learning algorithms work by running a \base learning algorithm" multiple times, andforming a vote out of the resulting hypotheses. There are two main approa
hes to designingensemble learning algorithms.The �rst approa
h is to 
onstru
t ea
h hypothesis independently in su
h a way that the resultingset of hypotheses is a

urate and diverse|that is, ea
h individual hypothesis has a reasonably lowerror rate for making new predi
tions and yet the hypotheses disagree with ea
h other in many oftheir predi
tions. If su
h an ensemble of hypotheses 
an be 
onstru
ted, it is easy to see that it willbe more a

urate than any of its 
omponent 
lassi�ers, be
ause the disagreements will \
an
el out."Su
h ensembles 
an over
ome both the statisti
al and 
omputational problems dis
ussed above.The se
ond approa
h to designing ensembles is to 
onstru
t the hypotheses in a 
oupled fashionso that the weighted vote of the hypotheses gives a good �t to the data. This approa
h dire
tlyaddresses the representational problem dis
ussed above.We will dis
uss ea
h of these two approa
hes in turn.3.1 Methods for Independently Constru
ting EnsemblesOne way to for
e a learning algorithm to 
onstru
t multiple hypotheses is to run the algorithmseveral times and provide it with somewhat di�erent training data in ea
h run. For example,Breiman (1996) introdu
ed the Bagging (\Bootstrap Aggregating") method whi
h works as follows.Given a set of m training data points, Bagging 
hooses in ea
h iteration a set of data points of sizem by sampling uniformly with repla
ement from the original data points. This 
reates a resampleddata set in whi
h some data points appear multiple times and other data points do not appear atall. If the learning algorithm is unstable|that is, if small 
hanges in the training data lead to large
hanges in the resulting hypothesis|then Bagging will produ
e a diverse ensemble of hypotheses.A se
ond way to for
e diversity is to provide a di�erent subset of the input features in ea
h
all to the learning algorithm. For example, in a proje
t to identify vol
anoes on Venus, Cherkauer(1996) trained an ensemble of 32 neural networks. The 32 networks were based on 8 di�erent



3 REVIEW OF ENSEMBLE ALGORITHMS 5subsets of the 119 available input features and 4 di�erent network sizes. The input feature subsetswere sele
ted (by hand) to group together features that were based on di�erent image pro
essingoperations (su
h as prin
ipal 
omponent analysis and the fast fourier transform). The resultingensemble 
lassi�er was signi�
antly more a

urate than any of the individual neural networks.A third way to for
e diversity is to manipulate the output labels of the training data. Dietteri
hand Bakiri (1995) des
ribe a te
hnique 
alled error-
orre
ting output 
oding. Suppose that thenumber of 
lasses, C, is large. Then new learning problems 
an be 
onstru
ted by randomlypartioning the C 
lasses into two subsets Ak and Bk. The input data 
an then be re-labeled sothat any of the original 
lasses in set Ak are given the derived label �1 and the original 
lasses inset Bk are given the derived label 1. This relabeled data is then given to the learning algorithm,whi
h 
onstru
ts a 
lassi�er hk. By repeating this pro
ess K times (generating di�erent subsetsAk and Bk), an ensemble of K 
lassi�ers h1; : : : ; hK is obtained.Now given a new data point x, how should it be 
lassi�ed? The answer is to have ea
h hk
lassify x. If hk(x) = �1, then ea
h 
lass in Ak re
eives a vote. If hk(x) = 1, then ea
h 
lass inBk re
eives a vote. After ea
h of the K 
lassi�ers has voted, the 
lass with the highest number ofvotes is sele
ted as the predi
tion of the ensemble.An equivalent way of thinking about this method is that ea
h 
lass j is en
oded as an K-bit
odeword Cj , where bit k is 1 if j 2 Bk and 0 otherwise. The k-th learned 
lassi�er attemptsto predi
t bit k of these 
odewords (a predi
tion of �1 is treated as a binary value of 0). Whenthe L 
lassi�ers are applied to 
lassify a new point x, their predi
tions are 
ombined into a K-bitbinary string. The ensemble's predi
tion is the 
lass j whose 
odeword Cj is 
losest (measuredby the number of bits that agree) to the K-bit output string. Methods for designing good error-
orre
ting 
odes 
an be applied to 
hoose the 
odewords Cj (or equivalently, subsets Ak and Bk).Dietteri
h and Bakiri report that this te
hnique improves the performan
e of both de
ision-treeand ba
kpropagation learning algorithms on a variety of diÆ
ult 
lassi�
ation problems.A fourth way of generating a

urate and diverse ensembles is to inje
t randomness into thelearning algorithm. For example, the ba
kpropagation algorithm 
an be run many times, startingea
h time from a di�erent random setting of the weights. De
ision tree algorithms 
an be ran-domized by adding randomness to the pro
ess of 
hoosing whi
h feature and threshold to split on.Dietteri
h (2000) showed that randomized trees gave signi�
antly improved performan
e in 14 outof 33 ben
hmark tasks (and no 
hange in the remaining 19 tasks).Ho (1998) introdu
ed the \random subspa
e method" for growing 
olle
tions of de
ision trees(\de
ision forests"). This method 
hooses a random subset of the features at ea
h node of the tree,and 
onstrains the tree-growing algorithm to 
hoose its splitting rule from among this subset. Shereports improved performan
e in 16 ben
hmark datasets. Breiman (2001) 
ombines Bagging withthe random subspa
e method to grow random de
ision forests that give ex
ellent performan
e.3.2 Methods for Coordinated Constru
tion of EnsemblesIn all of the methods des
ribed above, ea
h hypothesis hk in the ensemble is 
onstru
ted inde-pendently of the others by manipulating the inputs, the outputs, the features, or by inje
tingrandomness. Then an unweighted vote of the hypotheses determines the �nal 
lassi�
ation of adata point.A 
ontrasting view of an ensemble is that it is an additive model|that is, it predi
ts the 
lassof a new data point by taking an weighted sum of a set of 
omponent models. This view suggests



3 REVIEW OF ENSEMBLE ALGORITHMS 6developing algorithms that 
hoose the 
omponent models and the weights so that the weighted sum�ts the data well. In this approa
h, the 
hoi
e of one 
omponent hypothesis in
uen
es the 
hoi
eof other hypotheses and of the weights assigned to them. In statisti
s, su
h ensembles are knownas generalized additive models (Hastie & Tibshirani, 1990).The Adaboost algorithm introdu
ed by Freund and S
hapire (1996, 1997) is an extremely e�e
-tive method for 
onstru
ting an additive model. It works by in
rementally adding one hypothesisat a time to an ensemble. Ea
h new hypothesis is 
onstru
ted by a learning algorithm that seeksto minimize the 
lassi�
ation error on a weighted training data set. The goal is to 
onstru
t aweighted sum of hypotheses su
h that H(xi) = Pk wkhk(xi) has the same sign as yi, the 
orre
tlabel of xi.The algorithm operates as follows. Let dk(xi) be the weight on data point xi during iterationk of the algorithm. Initially, all training data points i are given a weight d1(xi) = 1=m, where m isthe number of data points. In iteration k, the underlying learning algorithm 
onstru
ts hypothesishk to minimize the weighted training error. The resulting weighted error is r = Pi d(xi)yihk(xi),where hk(xi) is the label predi
ted by hypothesis hk. The weight assigned to this hypothesis is
omputed by wk = 12 ln�1 + r1� r� :To 
ompute the weights for the next iteration, the weight of training data point i is set todk+1(xi) = dk(xi)exp(�wkyihk(xi))Zk ;where Zk is 
hosen to make dk+1 sum to 1.Breiman (1997) showed that this algorithm is a form of gradient optimization in fun
tion spa
ewith the goal of minimizing the obje
tive fun
tionJ(H) =Xi exp(�yiH(xi)):The quantity yiH(xi) is 
alled the margin, be
ause it is the amount by whi
h xi is 
orre
tly
lassi�ed. If the margin is positive, then the sign of H(xi) agrees with the sign of yi. Minimizing J
auses the margin to be maximized. Friedman, Hastie, and Tibshirani (2000) expand on Breiman'sanalysis from a satisti
al perspe
tive.In most experimental studies (Freund & S
hapire, 1996; Bauer & Kohavi, 1999; Dietteri
h,2000), Adaboost (and algorithms based on it) gives the best performan
e on the vast majority ofdata sets. The primary ex
eption are data sets in whi
h there is a high level of mislabeled trainingdata points. In su
h 
ases, Adaboost will put very high weights on the noisy data points and learnvery poor 
lassi�ers. Current resear
h is fo
using on methods for extending Adaboost to work inhigh noise settings.The exa
t reasons for Adaboost's su

ess are not fully understood. One line of explanationis based on the margin analysis developed by Vapnik (1995) and extended by S
hapire, Freund,Barlett, and Lee (1998). This work shows that the error of an ensemble on new data points isbounded by the fra
tion of training data points for whi
h the margin is less than some quantity� > 0 plus a term that grows as s dm log(m=d)� ;



4 DISCUSSION 7ignoring 
onstant fa
tors and some log terms. In this formula, m is the number of training datapoints, and d is a measure of the expressive power of the hypothesis spa
e from whi
h the individual
lassi�ers are drawn, known as the VC-dimension. The value of � 
an be 
hosen to minimize thevalue of this expression.Intuitively, this formula says that if the ensemble learning algorithm 
an a
hieve a large \marginof safety" on ea
h training data point while using only a weighted sum of simple 
lassi�ers, then theresulting voted 
lassi�er is likely to be very a

urate. Experimentally, Adaboost has been shownto be very e�e
tive at in
reasing the margins on the training data points, and hen
e, this resultsuggests that Adaboost will make few errors on new data points.There are three ways in whi
h this analysis has been 
riti
ized. First, the bound is not tight,so it may be hiding the real explanation for Adaboost's su

ess. Se
ond, even when Adaboost isapplied to large de
ision trees and neural networks, it is observed to work very well even thoughthese representations have high VC-dimension. Third, it is possible to design algorithms that aremore e�e
tive than Adaboost at in
reasing the margin on the training data, but these algorithmsexhibit worse performan
e than Adaboost when applied to 
lassify new data points.3.3 Related Non-Ensemble Learning MethodsIn addition to the ensemble methods des
ribed here, there are other non-ensemble learning algo-rithms that similar. For example, any method for 
onstru
ting a 
lassi�er as a weighted sum ofbasis fun
tions (e.g., see RADIAL BASIS FUNCTION NETWORKS) 
an be viewed as an additiveensemble where ea
h individual basis fun
tion forms one of the hypotheses.Another 
lose-related learning algorithm is the Hierar
hi
al Mixture of Experts method (seeMODULAR AND HIERARCHICAL LEARNING SYSTEMS). In a hierar
hi
al mixture, individualhypotheses are 
ombined by a gating network whi
h de
ides|based on the features of the datapoint|what weights should be employed. This di�ers from Adaboost and other additive ensembleswhere the weights are determined on
e during training and then held 
onstant thereafter.4 Dis
ussionThe majority of resear
h into ensemble methods has fo
used on 
onstru
ting ensembles of de
isiontrees. De
ision tree learning algorithms are known to su�er from high varian
e, be
ause they makea 
as
ade of 
hoi
es (of whi
h variable and value to test at ea
h internal node in the de
ision tree)su
h that one in
orre
t 
hoi
e has an impa
t on all subsequent de
isions. In addition, be
ause theinternal nodes of the tree test only a single variable, this 
reates axis-parallel re
tangular de
isionregions whi
h 
an have high bias. Consequently, ensembles of de
ision tree 
lassi�ers perform mu
hbetter than individual de
ision trees. Re
ent experiments suggest that Breiman's 
ombination ofbagging and the random subspa
e method is the method of 
hoi
e for de
ision trees | it givesex
ellent a

ura
y and works well even when there is substantial noise in the training data.If the base learning algorithm produ
es less expressive hypotheses than de
ision trees, then theAdaboost method is re
ommended. Many experiments have employed so-
alled \de
ision stumps",whi
h are de
ision trees with only one internal node. In order to learn 
omplex fun
tions withde
ision stumps, it is important to exploit Adaboost's ability to dire
tly 
onstru
t an additivemodel. This usually gives better results than Bagging and other a

ura
y/diversity methods.Similar re
ommendations apply to ensembles 
onstru
ted using the Naive Bayes and Fisher's linear
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riminant algorithms. Both of these learn a single linear dis
rimination rule. The algorithmsare very stable, whi
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