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Learning Ensembles

• Learn multiple alternative definitions of a concept using 
different training data or different learning algorithms.

• Combine decisions of multiple definitions, e.g. using 
weighted voting.

Training Data

Data1 Data mData2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Learner1 Learner2 Learner m⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model1 Model2 Model m⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model Combiner Final Model
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Value of Ensembles

• When combing multiple independent and
diverse decisions each of which is at least 
more accurate than random guessing, 
random errors cancel each other out, correct 
decisions are reinforced.

• Human ensembles are demonstrably better
– How many jelly beans in the jar?: Individual 

estimates vs. group average.

– Who Wants to be a Millionaire: Expert friend 
vs. audience vote.
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Homogenous Ensembles

• Use a single, arbitrary learning algorithm but 
manipulate training data to make it learn multiple 
models.
– Data1 ≠ Data2 ≠ … ≠ Data m
– Learner1 = Learner2 = … = Learner m

• Different methods for changing training data:
– Bagging: Resample training data
– Boosting: Reweight training data
– DECORATE: Add additional artificial training data

• In WEKA, these are called meta-learners, they 
take a learning algorithm as an argument (base 
learner) and create a new learning algorithm.
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Bagging

• Create ensembles by repeatedly randomly resampling the 
training data (Brieman, 1996).

• Given a training set of size n, create m samples of size n by 
drawing n examples from the original data, with 
replacement.
– Each bootstrap sample will on average contain 63.2% of the 

unique training examples, the rest are replicates.

• Combine the m resulting models using simple majority 
vote. 

• Decreases error by decreasing the variance in the results 
due to unstable learners, algorithms (like decision trees) 
whose output can change dramatically when the training 
data is slightly changed.
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Boosting

• Originally developed by computational learning theorists 
to guarantee performance improvements on fitting training 
data for a weak learner that only needs to generate a 
hypothesis with a training accuracy greater than 0.5 
(Schapire, 1990).

• Revised to be a practical algorithm, AdaBoost, for building 
ensembles that empirically improves generalization 
performance (Freund & Shapire, 1996).

• Examples are given weights. At each iteration, a new 
hypothesis is learned and the examples are reweighted to 
focus the system on examples that the most recently 
learned classifier got wrong.
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Boosting: Basic Algorithm

• General Loop:
Set all examples to have equal uniform weights.
For t from 1 to T do:

Learn a hypothesis, ht, from the weighted examples
Decrease the weights of examples ht classifies correctly

• Base (weak) learner must focus on correctly 
classifying the most highly weighted examples 
while strongly avoiding over-fitting.

• During testing, each of the T hypotheses get a 
weighted vote proportional to their accuracy on 
the training data.
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AdaBoost Pseudocode

TrainAdaBoost(D, BaseLearn)
For each example di in D let its weight wi=1/|D|
Let H be an empty set of hypotheses
For t from 1 to T do:

Learn a hypothesis, ht, from the weighted examples: ht=BaseLearn(D)
Add ht to H
Calculate the error, εt, of the hypothesis ht as the total sum weight of the

examples that it classifies incorrectly.
If εt > 0.5 then exit loop, else continue.
Let βt = εt / (1 –εt )
Multiply the weights of the examples that  ht classifies correctly by βt

Rescale the weights of all of the examples so the total sum weight remains 1.
Return H

TestAdaBoost(ex, H)
Let each hypothesis, ht, in H vote for ex’s classification with weight log(1/ βt )
Return the class with the highest weighted vote total.
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Learning with Weighted Examples

• Generic approach is to replicate examples in the 
training set proportional to their weights (e.g. 10 
replicates of an example with a weight of 0.01 and 
100 for one with weight 0.1).

• Most algorithms can be enhanced to efficiently 
incorporate weights directly in the learning 
algorithm so that the effect is the same (e.g. 
implement the WeightedInstancesHandler
interface in WEKA).

• For decision trees, for calculating information 
gain, when counting example i, simply increment 
the corresponding count by wi rather than by 1.

10

Experimental Results on Ensembles
(Freund & Schapire, 1996; Quinlan, 1996)

• Ensembles have been used to improve 
generalization accuracy on a wide variety of 
problems.

• On average, Boosting provides a larger increase in 
accuracy than Bagging.

• Boosting on rare occasions can degrade accuracy.
• Bagging more consistently provides a modest 

improvement.
• Boosting is particularly subject to over-fitting 

when there is significant noise in the training data.
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DECORATE
(Melville & Mooney, 2003)

• Change training data by adding new 
artificial training examples that encourage 
diversity in the resulting ensemble.

• Improves accuracy when the training set is 
small, and therefore resampling and 
reweighting the training set has limited 
ability to generate diverse alternative 
hypotheses.
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Ensembles and Active Learning

• Ensembles can be used to actively select 
good new training examples.

• Select the unlabeled example that causes the 
most disagreement amongst the members of 
the ensemble.

• Applicable to any ensemble method:
– QueryByBagging
– QueryByBoosting
– ActiveDECORATE
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Issues in Ensembles

• Parallelism in Ensembles: Bagging is easily 
parallelized, Boosting is not.

• Variants of Boosting to handle noisy data.
• How “weak” should a base-learner for Boosting 

be?
• What is the theoretical explanation of boosting’s

ability to improve generalization?
• Exactly how does the diversity of ensembles affect 

their generalization performance.
• Combining Boosting and Bagging. 


