
1

1

CS 391L: Machine Learning
Neural Networks

Raymond J. Mooney
University of Texas at Austin

2

Neural Networks

• Analogy to biological neural systems, the most
robust learning systems we know.

• Attempt to understand natural biological systems
through computational modeling.

• Massive parallelism allows for computational
efficiency.

• Help understand “distributed” nature of neural
representations (rather than “localist”
representation) that allow robustness and graceful
degradation.

• Intelligent behavior as an “emergent” property of
large number of simple units rather than from
explicitly encoded symbolic rules and algorithms.

3

Neural Speed Constraints

• Neurons have a “switching time” on the order of a
few milliseconds, compared to nanoseconds for
current computing hardware.

• However, neural systems can perform complex
cognitive tasks (vision, speech understanding) in
tenths of a second.

• Only time for performing 100 serial steps in this
time frame, compared to orders of magnitude
more for current computers.

• Must be exploiting “massive parallelism.”
• Human brain has about 1011 neurons with an

average of 104 connections each.

4

Neural Network Learning

• Learning approach based on modeling
adaptation in biological neural systems.

• Perceptron: Initial algorithm for learning
simple neural networks (single layer)
developed in the 1950’s.

• Backpropagation: More complex algorithm
for learning multi-layer neural networks
developed in the 1980’s.

5

Real Neurons

• Cell structures
– Cell body

– Dendrites

– Axon

– Synaptic terminals

6

Neural Communication

• Electrical potential across cell membrane exhibits spikes
called action potentials.

• Spike originates in cell body, travels down
axon, and causes synaptic terminals to
release neurotransmitters.

• Chemical diffuses across synapse to
dendrites of other neurons.

• Neurotransmitters can be excititory or
inhibitory.

• If net input of neurotransmitters to a neuron from other
neurons is excititory and exceeds some threshold, it fires an
action potential.

2

7

Real Neural Learning

• Synapses change size and strength with
experience.

• Hebbian learning: When two connected
neurons are firing at the same time, the
strength of the synapse between them
increases.

• “Neurons that fire together, wire together.”

8

Artificial Neuron Model

• Model network as a graph with cells as nodes and synaptic
connections as weighted edges from node i to node j, wji

• Model net input to cell as

• Cell output is:

1

32 54 6

w12

w13
w14

w15
w16

i
i

jij ownet ∑=

(Tj is threshold for unit j)

ji

jj

j Tnet

Tnet
o

≥
<

=
 if 1

 if 0

netj

oj

Tj

0

1

9

Neural Computation

• McCollough and Pitts (1943) showed how such model
neurons could compute logical functions and be used to
construct finite-state machines.

• Can be used to simulate logic gates:
– AND: Let all wji be Tj/n, where n is the number of inputs.

– OR: Let all wji be Tj

– NOT: Let threshold be 0, single input with a negative weight.

• Can build arbitrary logic circuits, sequential machines, and
computers with such gates.

• Given negated inputs, two layer network can compute any
boolean function using a two level AND-OR network.

10

Perceptron Training

• Assume supervised training examples
giving the desired output for a unit given a
set of known input activations.

• Learn synaptic weights so that unit
produces the correct output for each
example.

• Perceptron uses iterative update algorithm
to learn a correct set of weights.

11

Perceptron Learning Rule

• Update weights by:

where η is the “learning rate”

tj is the teacher specified output for unit j.

• Equivalent to rules:
– If output is correct do nothing.

– If output is high, lower weights on active inputs

– If output is low, increase weights on active inputs

• Also adjust threshold to compensate:

ijjjiji ootww)(−+= η

)(jjjj otTT −−= η
12

Perceptron Learning Algorithm

• Iteratively update weights until convergence.

• Each execution of the outer loop is typically
called an epoch.

Initialize weights to random values
Until outputs of all training examples are correct

For each training pair, E, do:
Compute current output oj for E given its inputs
Compare current output to target value, tj , for E
Update synaptic weights and threshold using learning rule

3

13

Perceptron as a Linear Separator

• Since perceptron uses linear threshold function, it is
searching for a linear separator that discriminates the
classes.

1313212 Towow >+o3

o2

13

1
2

13

12
3 w

T
o

w

w
o +−>

??

Or hyperplane in
n-dimensional space

14

Concept Perceptron Cannot Learn

• Cannot learn exclusive-or, or parity
function in general.

o3

o2

??+1

0
1

–

+–

15

Perceptron Limits

• System obviously cannot learn concepts it
cannot represent.

• Minksy and Papert (1969) wrote a book
analyzing the perceptron and demonstrating
many functions it could not learn.

• These results discouraged further research
on neural nets; and symbolic AI became the
dominate paradigm.

16

Perceptron Convergence
and Cycling Theorems

• Perceptron convergence theorem: If the data is
linearly separable and therefore a set of weights
exist that are consistent with the data, then the
Perceptron algorithm will eventually converge to a
consistent set of weights.

• Perceptron cycling theorem: If the data is not
linearly separable, the Perceptron algorithm will
eventually repeat a set of weights and threshold at
the end of some epoch and therefore enter an
infinite loop.
– By checking for repeated weights+threshold, one can

guarantee termination with either a positive or negative
result.

17

Perceptron as Hill Climbing

• The hypothesis space being search is a set of weights and a
threshold.

• Objective is to minimize classification error on the training set.

• Perceptron effectively does hill-climbing (gradient descent) in
this space, changing the weights a small amount at each point
to decrease training set error.

• For a single model neuron, the space is well behaved with a
single minima.

weights0

training
error

18

Perceptron Performance

• Linear threshold functions are restrictive (high bias) but
still reasonably expressive; more general than:
– Pure conjunctive
– Pure disjunctive
– M-of-N (at least M of a specified set of N features must be

present)

• In practice, converges fairly quickly for linearly separable
data.

• Can effectively use even incompletely converged results
when only a few outliers are misclassified.

• Experimentally, Perceptron does quite well on many
benchmark data sets.

4

19

Multi-Layer Networks

• Multi-layer networks can represent arbitrary functions, but
an effective learning algorithm for such networks was
thought to be difficult.

• A typical multi-layer network consists of an input, hidden
and output layer, each fully connected to the next, with
activation feeding forward.

• The weights determine the function computed. Given an
arbitrary number of hidden units, any boolean function can
be computed with a single hidden layer.

output

hidden

input

activation

20

Hill-Climbing in Multi-Layer Nets

• Since “greed is good” perhaps hill-climbing can be used to
learn multi-layer networks in practice although its
theoretical limits are clear.

• However, to do gradient descent, we need the output of a
unit to be a differentiable function of its input and weights.

• Standard linear threshold function is not differentiable at
the threshold.

netj

oi

Tj

0

1

21

Differentiable Output Function

• Need non-linear output function to move beyond linear
functions.
– A multi-layer linear network is still linear.

• Standard solution is to use the non-linear, differentiable
sigmoidal “logistic” function:

netjTj

0

1
)(1

1
jj Tnetj

e
o −−+

=

Can also use tanh or Gaussian output function
22

Gradient Descent

• Define objective to minimize error:

where D is the set of training examples, K is the set of
output units, tkd and okd are, respectively, the teacher and
current output for unit k for example d.

• The derivative of a sigmoid unit with respect to net input is:

• Learning rule to change weights to minimize error is:

2)()(kd
Dd Kk

kd otWE −=∑∑
∈ ∈

)1(jj

j

j oo
net

o
−=

∂
∂

ji
ji w

E
w

∂
∂−=∆ η

23

Backpropagation Learning Rule

• Each weight changed by:

where η is a constant called the learning rate

tj is the correct teacher output for unit jδj is the error measure for unit j

ijji ow ηδ=∆

unitoutput an is if))(1(jotoo jjjjj −−=δ
unithidden a is if)1(jwoo

k
kjkjjj ∑−= δδ

24

Error Backpropagation

• First calculate error of output units and use this to
change the top layer of weights.

output

hidden

input

Current output: oj=0.2
Correct output: tj=1.0
Error δj = oj(1–oj)(tj–oj)
0.2(1–0.2)(1–0.2)=0.128

Update weights into j

ijji ow ηδ=∆

5

25

Error Backpropagation

• Next calculate error for hidden units based on
errors on the output units it feeds into.

output

hidden

input

∑−=
k

kjkjjj woo δδ)1(

26

Error Backpropagation

• Finally update bottom layer of weights based on
errors calculated for hidden units.

output

hidden

input

∑−=
k

kjkjjj woo δδ)1(

Update weights into j

ijji ow ηδ=∆

27

Backpropagation Training Algorithm

Create the 3-layer network with H hidden units with full connectivity
between layers. Set weights to small random real values.
Until all training examples produce the correct value (within ε), or
mean squared error ceases to decrease, or other termination criteria:

Begin epoch
For each training example, d, do:

Calculate network output for d’s input values
Compute error between current output and correct output for d
Update weights by backpropagating error and using learning rule

End epoch

28

Comments on Training Algorithm

• Not guaranteed to converge to zero training error,
may converge to local optima or oscillate
indefinitely.

• However, in practice, does converge to low error
for many large networks on real data.

• Many epochs (thousands) may be required, hours
or days of training for large networks.

• To avoid local-minima problems, run several trials
starting with different random weights (random
restarts).
– Take results of trial with lowest training set error.
– Build a committee of results from multiple trials

(possibly weighting votes by training set accuracy).

29

Representational Power

• Boolean functions: Any boolean function can be
represented by a two-layer network with sufficient
hidden units.

• Continuous functions: Any bounded continuous
function can be approximated with arbitrarily
small error by a two-layer network.
– Sigmoid functions can act as a set of basis functions for

composing more complex functions, like sine waves in
Fourier analysis.

• Arbitrary function : Any function can be
approximated to arbitrary accuracy by a three-
layer network.

30

Sample Learned XOR Network

3.11

−7.386.96

−5.24

−3.6

−3.58

−5.57
−5.74

−2.03A

X Y

B

Hidden Unit A represents: ¬(X ∧ Y)
Hidden Unit B represents: ¬(X ∨ Y)
Output O represents: A ∧ ¬B = ¬(X ∧ Y) ∧ (X ∨ Y)

= X ⊕ Y

O

6

31

Hidden Unit Representations

• Trained hidden units can be seen as newly
constructed features that make the target concept
linearly separable in the transformed space.

• On many real domains, hidden units can be
interpreted as representing meaningful features
such as vowel detectors or edge detectors, etc..

• However, the hidden layer can also become a
distributed representation of the input in which
each individual unit is not easily interpretable as a
meaningful feature.

32

Over-Training Prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it after
every epoch. Stop training when additional epochs actually
increase validation error.

• To avoid losing training data for validation:
– Use internal 10-fold CV on the training set to compute the average

number of epochs that maximizes generalization accuracy.
– Train final network on complete training set for this many epochs.

e
rr

or

on training data

on test data

0 # training epochs

33

Determining the Best
Number of Hidden Units

• Too few hidden units prevents the network from
adequately fitting the data.

• Too many hidden units can result in over-fitting.

• Use internal cross-validation to empirically determine an
optimal number of hidden units.

e
rr

or

on training data

on test data

0 # hidden units

34

Successful Applications

• Text to Speech (NetTalk)
• Fraud detection
• Financial Applications

– HNC (eventually bought by Fair Isaac)

• Chemical Plant Control
– Pavillion Technologies

• Automated Vehicles
• Game Playing

– Neurogammon

• Handwriting recognition

35

Issues in Neural Nets

• More efficient training methods:
– Quickprop
– Conjugate gradient (exploits 2nd derivative)

• Learning the proper network architecture:
– Grow network until able to fit data

• Cascade Correlation
• Upstart

– Shrink large network until unable to fit data
• Optimal Brain Damage

• Recurrent networks that use feedback and can
learn finite state machines with “backpropagation
through time.”

36

Issues in Neural Nets (cont.)

• More biologically plausible learning
algorithms based on Hebbian learning.

• Unsupervised Learning
– Self-Organizing Feature Maps (SOMs)

• Reinforcement Learning
– Frequently used as function approximators for

learning value functions.

• Neuroevolution

