
1

Query Languages

2

Boolean Queries

• Keywords combined with Boolean operators:
– OR: (e1 OR e2)

– AND: (e1 AND e2)

– BUT: (e1 BUT e2) Satisfy e1 but not e2

• Negation only allowed using BUT to allow
efficient use of inverted index by filtering
another efficiently retrievable set.

• Naïve users have trouble with Boolean logic.

3

Boolean Retrieval with Inverted Indices

• Primitive keyword: Retrieve containing
documents using the inverted index.

• OR: Recursively retrieve e1 and e2 and take
union of results.

• AND: Recursively retrieve e1 and e2 and
take intersection of results.

• BUT: Recursively retrieve e1 and e2 and
take set difference of results.

4

“Natural Language” Queries

• Full text queries as arbitrary strings.

• Typically just treated as a bag-of-words for
a vector-space model.

• Typically processed using standard vector-
space retrieval methods.

5

Phrasal Queries

• Retrieve documents with a specific phrase
(ordered list of contiguous words)
– “information theory”

• May allow intervening stop words and/or
stemming.
– “buy camera” matches:

“buy a camera”
“buying the cameras”
etc.

6

Phrasal Retrieval with Inverted Indices

• Must have an inverted index that also stores
positions of each keyword in a document.

• Retrieve documents and positions for each
individual word, intersect documents, and
then finally check for ordered contiguity of
keyword positions.

• Best to start contiguity check with the least
common word in the phrase.

7

Phrasal Search

Find set of documents D in which all keywords (k1…km) in phrase occur
(using AND query processing).

Intitialize empty set, R, of retrieved documents.

For each document, d, in D:

Get array, Pi ,of positions of occurrences for each ki in d

Find shortest array Ps of the Pi’s

For each position p of keyword ks in Ps

For each keyword ki except ks

Use binary search to find a position (p – s + i) in the array Pi

If correct position for every keyword found, add d to R

Return R

8

Proximity Queries

• List of words with specific maximal
distance constraints between terms.

• Example: “dogs” and “race” within 4 words
match “…dogs will begin the race…”

• May also perform stemming and/or not
count stop words.

9

Proximity Retrieval with Inverted Index

• Use approach similar to phrasal search to
find documents in which all keywords are
found in a context that satisfies the
proximity constraints.

• During binary search for positions of
remaining keywords, find closest position
of ki to p and check that it is within
maximum allowed distance.

10

Pattern Matching

• Allow queries that match strings rather than
word tokens.

• Requires more sophisticated data structures
and algorithms than inverted indices to
retrieve efficiently.

11

Allowing Errors

• What if query or document contains typos
or misspellings?

• Judge similarity of words (or arbitrary
strings) using:
– Edit distance (Levenstein distance)

– Longest Common Subsequence (LCS)

• Allow proximity search with bound on
string similarity.

12

Edit (Levenstein) Distance

• Minimum number of character deletions,
additions, or replacements needed to make
two strings equivalent.
– “misspell” to “mispell” is distance 1
– “misspell” to “mistell” is distance 2
– “misspell” to “misspelling” is distance 3

• Can be computed efficiently using dynamic
programming in O(mn) time where m and n
are the lengths of the two strings being
compared.

13

Longest Common Subsequence (LCS)

• Length of the longest subsequence of
characters shared by two strings.

• A subsequence of a string is obtained by
deleting zero or more characters.

• Examples:
– “misspell” to “mispell” is 7

– “misspelled” to “misinterpretted” is 7
“mis…p…e…ed”

14

Searching for Similar Words

• When spell-correcting a word, it is
inefficient to serially search every word in
the dictionary, compute the edit distance or
LCS for each, and then take the most
similar word.

• Use indexing to find most similar dictionary
word without doing a linear search.

15

k-gram Index

• An inverted index for sequences of k characters
contained in a word.
– 3-grams for “index”: in, ind, nde, dex, ex

(where $ is a special char denoting start or end of a word)

• For each k-gram encountered in the dictionary,
the k-gram index has a pointer to all words that
contain that k-gram.
– dex → {index, dexterity, ambidextrous}

16

Using a k-gram Index

• Given a word, generate its “bag of k-grams” and
use the k-gram index like a normal inverted index
to find a word that contains many of the same k-
grams.

• Like normal document retrieval except:
– words → k-grams
– documents → words

• Example:
– Query: endex →{en, end, nde, dex, ex}
– Retrieval Result: 1) index, 2) ended, 3) endear….
– Compute detailed score just for top retrievals and take

final top-scoring candidate.

17

Regular Expressions

• Language for composing complex patterns from
simpler ones.
– An individual character is a regex.
– Union: If e1 and e2 are regexes, then (e1 | e2) is a regex

that matches whatever either e1 or e2 matches.
– Concatenation: If e1 and e2 are regexes, then e1 e2 is a

regex that matches a string that consists of a substring that
matches e1 immediately followed by a substring that
matches e2

– Repetition (Kleene closure): If e1 is a regex, then e1* is a
regex that matches a sequence of zero or more strings that
match e1

18

Regular Expression Examples

• (u|e)nabl(e|ing) matches
– unable

– unabling

– enable

– enabling

• (un|en)*able matches
– able

– unable

– unenable

– enununenable

19

Enhanced Regex’s (Perl)

• Special terms for common sets of characters, such
as alphabetic or numeric or general “wildcard”.

• Special repetition operator (+) for 1 or more
occurrences.

• Special optional operator (?) for 0 or 1
occurrences.

• Special repetition operator for specific range of
number of occurrences: {min,max}.
– A{1,5} One to five A’s.
– A{5,} Five or more A’s
– A{5} Exactly five A’s

20

Perl Regex’s

• Character classes:
– \w (word char) Any alpha-numeric (not: \W)
– \d (digit char) Any digit (not: \D)
– \s (space char) Any whitespace (not: \S)
– . (wildcard) Anything

• Anchor points:
– \b (boundary) Word boundary
– ^ Beginning of string
– $ End of string

21

Perl Regex Examples

• U.S. phone number with optional area code:
– /\b(\(\d{3}\)\s?)?\d{3}-\d{4}\b/

• Email address:
– /\b\S+@\S+(\.com|\.edu|\.gov|\.org|\.net)\b/

Note: Perl regex’s supported in java.util.regex package

22

Structural Queries

• Assumes documents have structure that can
be exploited in search.

• Structure could be:
– Fixed set of fields, e.g. title, author, abstract, etc.

– Hierarchical (recursive) tree structure:

chapter

title section title section

title subsection

chapter

book

23

Queries with Structure

• Allow queries for text appearing in specific
fields:
– “nuclear fusion” appearing in a chapter title

• SFQL: Relational database query language
SQL enhanced with “full text” search.
– Select abstract from journal.papers where

author contains “Teller” and
title contains “nuclear fusion” and
date < 1/1/1950

