Query Languages

Boolean Queries

» Keywords combined with Boolean operators:
— OR: (e; OR e),)
— AND: (e; AND e,)
— BUT: (e; BUT e,) Satisty e, but not e,

* Negation only allowed using BUT to allow

efficient use of inverted index by filtering
another efficiently retrievable set.

* Naive users have trouble with Boolean logic.

Boolean Retrieval with Inverted Indices

* Primitive keyword: Retrieve containing
documents using the inverted index.

* OR: Recursively retrieve e, and e, and take
union of results.

* AND: Recursively retrieve e, and e, and
take intersection of results.

« BUT: Recursively retrieve e; and e, and
take set difference of results.

“Natural Language” Queries

 Full text queries as arbitrary strings.

» Typically just treated as a bag-of-words for
a vector-space model.

* Typically processed using standard vector-
space retrieval methods.

Phrasal Queries

* Retrieve documents with a specific phrase
(ordered list of contiguous words)

— “information theory”

* May allow intervening stop words and/or
stemming.

— “buy camera” matches:
“buy a camera”
“buying the cameras”
etc.

Phrasal Retrieval with Inverted Indices

 Must have an inverted index that also stores
positions of each keyword 1n a document.

* Retrieve documents and positions for each
individual word, intersect documents, and
then finally check for ordered contiguity of
keyword positions.

 Best to start contiguity check with the least
common word 1n the phrase.

Phrasal Search

Find set of documents D in which all keywords (%;...k,) in phrase occur
(using AND query processing).

Intitialize empty set, R, of retrieved documents.
For each document, d, in D:
Get array, P, ,of positions of occurrences for each £; in d
Find shortest array P, of the P,’s
For each position p of keyword &, 1n P,
For each keyword k; except k,
Use binary search to find a position (p — s + i) in the array P,
If correct position for every keyword found, add d to R
Return R

Proximity Queries

* List of words with specific maximal
distance constraints between terms.

« Example: “dogs” and “race” within 4 words
match “...dogs will begin the race...”

* May also perform stemming and/or not
count stop words.

Proximity Retrieval with Inverted Index

» Use approach similar to phrasal search to
find documents 1n which all keywords are
found 1n a context that satisfies the
proximity constraints.

* During binary search for positions of
remaining keywords, find closest position
of k; to p and check that 1t 1s within
maximum allowed distance.

Pattern Matching

* Allow queries that match strings rather than
word tokens.

* Requires more sophisticated data structures
and algorithms than inverted indices to
retrieve efficiently.

10

Allowing Errors

* What if query or document contains typos
or misspellings?

 Judge similarity of words (or arbitrary
strings) using:
— Edit distance (Levenstein distance)

— Longest Common Subsequence (LCS)

* Allow proximity search with bound on
string similarity.

11

Edit (Levenstein) Distance

 Minimum number of character deletions,
additions, or replacements needed to make
two strings equivalent.

— “miss
— “miss
— IIllSS

pell”
pell”
vell”

to “muspell” 1s distance 1
to “mustell” 1s distance 2
to “misspelling” is distance 3

* Can be computed efficiently using dynamic
programming 1n O(mn) time where m and n
are the lengths of the two strings being

compared.

12

Longest Common Subsequence (LCS)

* Length of the longest subsequence of
characters shared by two strings.

* A subsequence of a string 1s obtained by
deleting zero or more characters.

* Examples:
— “misspell” to “mispell” 1s 7

— “misspelled” to “misinterpretted™ 1s 7
“mis...p...e...ed”

13

Searching for Similar Words

* When spell-correcting a word, 1t 1s
inefficient to serially search every word 1n
the dictionary, compute the edit distance or
LCS for each, and then take the most
similar word.

* Use indexing to find most similar dictionary
word without doing a linear search.

14

k-gram Index

* An inverted index for sequences of k characters
contained 1n a word.

— 3-grams for “index’’: in, ind, nde, dex, ex
(where $ is a special char denoting start or end of a word)

* For each k-gram encountered in the dictionary,
the k-gram index has a pointer to all words that
contain that k-gram.

— dex — {index, dexterity, ambidextrous}

15

Using a k-gram Index

* (Given a word, generate its “bag of k-grams” and
use the k-gram index like a normal inverted index
to find a word that contains many of the same -
grams.

 Like normal document retrieval except:
— words — k-grams
— documents — words
« Example:
— Query: endex —{en, end, nde, dex, ex}
— Retrieval Result: 1) index, 2) ended, 3) endear....

— Compute detailed score just for top retrievals and take
final top-scoring candidate.

16

Regular Expressions

« Language for composing complex patterns from
simpler ones.

— An individual character 1s a regex.

— Union: If e, and e, are regexes, then (e, | e,) 1s a regex
that matches whatever either e, or e, matches.

— Concatenation: If e; and e, are regexes, then e, e, 1s a
regex that matches a string that consists of a substring that
matches e, immediately followed by a substring that
matches e,

— Repetition (Kleene closure): If e; 1s a regex, then e,* 1s a
regex that matches a sequence of zero or more strings that
match e,

17

Regular Expression Examples

* (ule)nabl(e[ing) matches
— unable
— unabling
— enable
— enabling

* (unlen)*able matches
— able
— unable
— unenable

— enununenable

18

Enhanced Regex’s (Perl)

* Special terms for common sets of characters, such
as alphabetic or numeric or general “wildcard”.

* Special repetition operator (+) for 1 or more
occurrences.

* Special optional operator (?) for O or 1
occurrences.

* Special repetition operator for specific range of
number of occurrences: {min,max}.
— A{1,5} One to five A’s.
— A{5,} Five or more A’s
— A{5} Exactly five A’s

19

Perl Regex’s

* Character classes:
— \w (word char) Any alpha-numeric (not: \W)
—\d (digit char) Any digit (not: \D)
—\s (space char) Any whitespace (not: \S)
— . (wildcard) Anything
* Anchor points:
—\b (boundary) Word boundary
— Beginning of string
—$ End of string

20

Perl Regex Examples

* U.S. phone number with optional area code:
~ AbO(d{3W)\s?)N\d {3 \d {41\

* Email address:
— \b\S+@\S+(\.com|\.edu\.gov|\.org|\.net)\b/

Note: Perl regex’s supported 1n java.util.regex package

21

Structural Queries

 Assumes documents have structure that can
be exploited in search.

e Structure could be:

— Fixed set of fields, e.g. title, author, abstract, etc.

— Hierarchical (recursive) tree structure:

22

Queries with Structure

* Allow queries for text appearing in specific
fields:

— “nuclear fusion” appearing in a chapter title

* SFQL: Relational database query language
SQL enhanced with “full text” search.
— Select abstract from journal.papers where

author contains “Teller” and

title contains “nuclear fusion’ and
date < 1/1/1950

23

