The Deep Learning Revolution

Raymond J. Mooney University of Texas at Austin

1

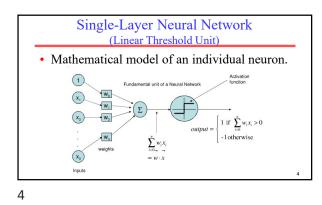
Deep Learning Revolution

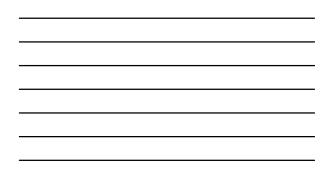
- Recent machine learning methods for training "deep" neural networks (NNs) have demonstrated remarkable progress on many challenging AI problems (e.g. speech recognition, visual object recognition, machine translation, game playing).
- · However, their capabilities are prone to "hype."
- Deep learning has not "solved" AI and current methods have clear limitations.

2

Very Brief History of Machine Learning

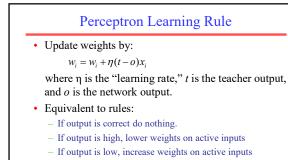
- Single-layer neural networks (1957-1969)
- Symbolic AI & knowledge engineering (1970-1985)
- Multi-layer NNs and symbolic learning (1985-1995)
- Statistical (Bayesian) learning and kernel methods (1995-2010)
- Deep learning (CNNs and RNNs) (2010-?)





Perceptron

- Rosenblatt (1957) developed an iterative, hill-climbing algorithm for learning the weights of single-layer NN to try to fit a set of training examples.
- Unable to learn or represent many classification functions (e.g. XOR), only the "linearly separable" ones are learnable.



Perceptron Learning Algorithm

• Iteratively update weights until convergence.

Initialize weights to random values Until outputs of all training examples are correct For each training pair, *E*, do: Compute current output o for *E* given its inputs Compare current output to target value, *t*, for *E* Update weights using learning rule

7

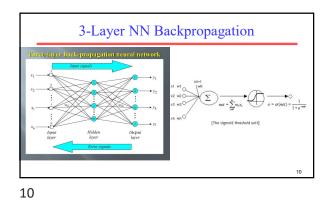
Perceptron Demise

- *Perceptons* (1969) by Minksy and Papert illuminated the limitations of the perceptron.
- Work on neural-networks dissipated during the 70's and early 80's.

8

Neural Net Resurgence (1986)

- Interest in NNs revived in the mid 1980's due to the rise of "connectionism."
- Backpropagation algorithm popularized for training three-layer NN's.
- Generalized the iterative "hill climbing" method to approximate fitting two layers of synaptic connections, but no convergence guarantees.



Second NN Demise (1995-2010)

- Generic backpropagation did not generalize that well to training deeper networks.
- Little theoretical justification for underlying methods.

11

12

• Machine learning research moved to graphical models and kernel methods.

11

Deep Learning Revolution (2010...)

- Improved methods developed for training deep neural works.
- Particular successes with:
 - Convolutional neural nets (CNNs) for vision.
 - Recurrent neural nets (RNNs) for machine translation and speech recognition.
 - Deep reinforcement learning for game playing.

Massive Data and Specialized Hardware

- Large collections of supervised (crowdsourced) training data has been critical.
- Efficient processing of this big data using specialized hardware (Graphics Processing Units, GPUs) has been critical.

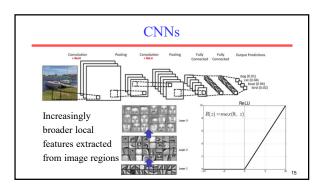
13

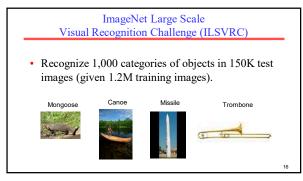
14

13

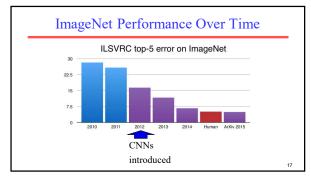
CNNs

- Convolutional layers learn to extract local features from image regions (receptive fields) analogous to human vision (LeCun, et al., 1998).
- Deeper layers extract higher-level features.
- Pool activity of multiple neurons into one at the next layer using max or mean.
- Nonlinear processing with Rectified Linear Units (ReLUs)
- Decision made using final fully connected layers.





16

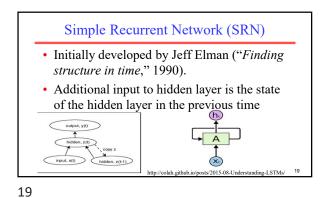


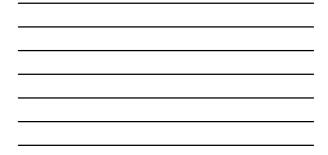
17

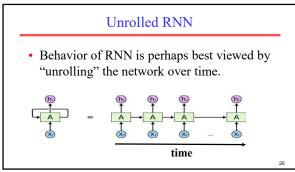
Recurrent Neural Networks (RNNs)

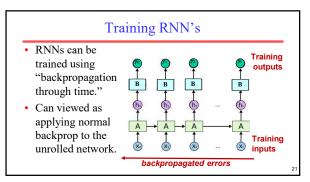
- Add feedback loops where some units' current outputs determine some future network inputs.
- RNNs can model dynamic finite-state machines, beyond the static combinatorial circuits modeled by feed-forward networks.

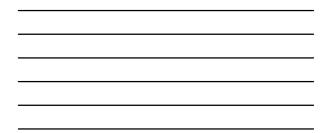
18











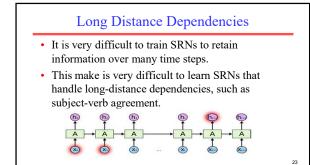
Vanishing/Exploding Gradient Problem

- Backpropagated errors multiply at each layer, resulting in exponential decay (if derivative is small) or growth (if derivative is large).
- Makes it very difficult train deep networks, or simple recurrent networks over many time steps.

22

24

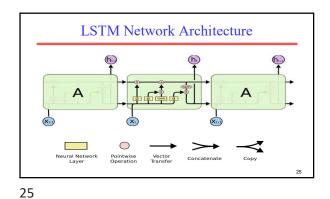
22

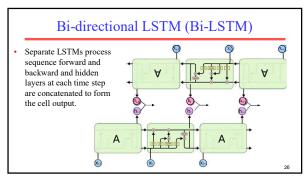


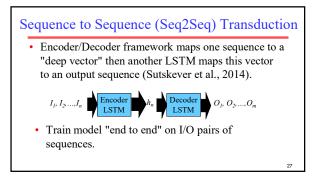
23

Long Short Term Memory (LSTM)

- LSTM networks, add additional gating units in each memory cell (Hochreiter & Schmidhuber, 1997).
 - Forget gate
 - Input gate
 - Output gate
- Prevents vanishing/exploding gradient problem and allows network to retain state information over longer periods of time.







Neural Machine Translation (NMT)

• LSTM Seq2Seq has lead to a new approach to translating human language.

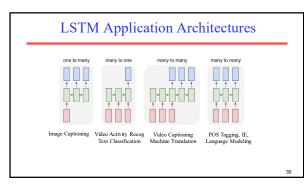
28

29

• NMT modestly outperforms previous statistical learning approaches to MT (SMT).

28

NMT Results (Wu et al., 2016)							
 Experimental results using automated (BLEU) and human evaluation for English→ French translation. 							
Method	BLEU	Human Rating					
SMT	37.0	3.87					
NMT	40.35	4.46					
Human		4.82					



Independent Word Vectors

- Represent word meanings as vectors based on words with which they co-occur.
- Neural approaches based on predicting a word's context (skip-grams) from its vector (Word2Vec, Mikolov et al., 2013).
- Fails to account for lexical ambiguity or dependence of word meaning on context.

31

33

31

Bidirectional Language Model

• A standard statistical language model predicts the probability of the next word based on the previous context.

Your program for Project 4 does not _____

• A bidirectional language model (BiLM) predicts the word at each position based on both prior and posterior context encoded using an RNN (e.g. LSTM).

32

Contextualized Word Embeddings

- Produce a vector representation for a specific occurrence of a word, by using textual context to compute its meaning.
- ELMo (Embeddings from Language Models, Peters et al., 2018) uses the hidden state of a BiLM to compute contextualized word embeddings.

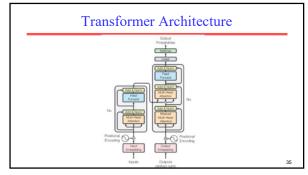
Transformer Networks

- An alternate Seq2Seq neural architecture based on attention rather than recurrence (Vaswani et al., 2017).
- Attention mechanisms compute the output at each position in the sequence by varying "attention" across different positions in the input sequence.

34

36

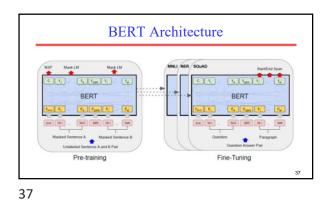
34

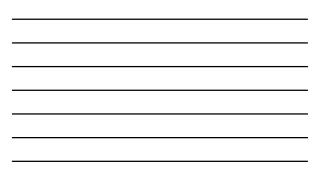


35

BERT Contextualized Embeddings

- Bidirectional Encoder Representations from Transformers (BERT, Devlin et al., 2018)
- Trains a transformer network to predict a fraction of "masked" tokens in an input sentence, or predict the next sentence.





Neural Information Retrieval

- Word embeddings have been used to improve IR by allowing matching words based on semantic similarity.
- Most recent results (Dai & Callan, SIGIR-2019) show improvements to ad-hoc document retrieval using BERT transformer approach.

38

38

able 2: Search accuracy on Robust04 and ClueWeb05 b, † indicates statistically significant improvements over foor-Ascent by permutation test with p< 0.05.				
Model	R	nDCG@20 Robust04 ClueWeb09-B		
	Title	Description	Title	Descriptio
BOW	0.417	0.409	0.268	0.234
SDM	0.427	0.427	0.279	0.235
RankSVM	0.420	0.435	0.289	0.245
Coor-Ascent	0.427	0.441	0.295	0.251
DRMM	0.422	0.412	0.275	0.245
Conv-KNRM	0.416	0.406	0.270	0.242

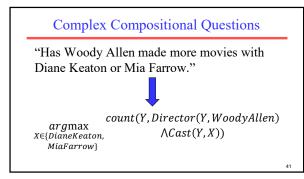
"Cramming" Meaning into Vectors

- DNNs force semantics to be encoded into real-valued vectors.
- Structured meaning representations that exploit trees, graphs, and logical representations are only imperfectly encoded as vectors.

40

42

40



41

Conclusions

- Machine learning, and specifically neural nets, has a a long, rich, varied history.
- Deep learning has made significant recent progress.
- Progress is continuing and holds promise of enabling revolutionary technology.
- However, progress has been exaggerated and core AI problems are a long way from completely solved.

