• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
        • 4v-sexprs
          • 4v-sexpr-vars
          • 4v-sexpr-eval
          • 4v-sexpr-to-faig
          • 4v-sexpr-restrict-with-rw
          • 4vs-constructors
          • 4v-sexpr-compose-with-rw
          • 4v-sexpr-restrict
          • 4v-sexpr-alist-extract
          • 4v-sexpr-compose
          • 4v-nsexpr-p
          • 4v-sexpr-purebool-p
            • 4v-sexpr-purebool-check
            • 4v-sexpr-purebool-list-check
            • 4v-sexpr-purebool-list-p
            • 4v-sexpr-purebool-list-p-to-faig-purebool-list-p
            • 4v-sexpr-<=
            • Sfaig
            • Sexpr-equivs
            • 3v-syntax-sexprp
            • Sexpr-rewriting
            • 4v-sexpr-ind
            • 4v-alist-extract
          • 4v-monotonicity
          • 4v-operations
          • Why-4v-logic
          • 4v-<=
          • 4vp
          • 4vcases
          • 4v-fix
          • 4v-lookup
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • 4v-sexpr-purebool-p

    4v-sexpr-purebool-list-p-to-faig-purebool-list-p

    Main theorem showing that 4v-sexpr-purebool-list-p is equivalent to faig-purebool-list-p.

    This is the main result that lets us develop an efficient, SAT-based way to check, all at once, the Boolean-ness of a list of 4v-sexprs.

    Definitions and Theorems

    Theorem: 4v-sexpr-purebool-list-p-to-faig-purebool-list-p

    (defthm 4v-sexpr-purebool-list-p-to-faig-purebool-list-p
      (equal (4v-sexpr-purebool-list-p sexprs)
             (faig-purebool-list-p (sfaiglist sexprs))))