• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
        • 4v-sexprs
        • 4v-monotonicity
        • 4v-operations
          • 4v-ite
          • 4v-res
          • 4v-not-list
          • 4v-unfloat
          • 4v-wand
          • 4v-wor
          • 4v-zif
            • 4v-tristate
            • 4v-xdet
            • 4v-xor
            • 4v-iff
            • 4v-and
            • 4v-or
            • 4v-not
            • 4v-pullup
            • 4v-and-list
            • 4v-ite*
          • Why-4v-logic
          • 4v-<=
          • 4vp
          • 4vcases
          • 4v-fix
          • 4v-lookup
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • 4v-operations

    4v-zif

    Unusual semantics for a multiplexor, used mainly to implement composition features in esim

    A ZIF module is in some ways similar to a pass-gate based multiplexor, but is probably not the sort of thing you would actually want to use to model a mux. It is very similar to an 4v-ite* but does not 4v-unfloat its inputs. We include this mainly as a way to implement experimental composition features in esim.

    Definitions and Theorems

    Function: 4v-zif

    (defun 4v-zif (c a b)
           (declare (xargs :guard t))
           (mbe :logic (4vcases c (t (4v-fix a))
                                (f (4v-fix b))
                                (& (4vx)))
                :exec (cond ((eq c (4vt)) (4v-fix a))
                            ((eq c (4vf)) (4v-fix b))
                            (t (4vx)))))

    Theorem: 4v-equiv-implies-equal-4v-zif-3

    (defthm 4v-equiv-implies-equal-4v-zif-3
            (implies (4v-equiv b b-equiv)
                     (equal (4v-zif c a b)
                            (4v-zif c a b-equiv)))
            :rule-classes (:congruence))

    Theorem: 4v-equiv-implies-equal-4v-zif-2

    (defthm 4v-equiv-implies-equal-4v-zif-2
            (implies (4v-equiv a a-equiv)
                     (equal (4v-zif c a b)
                            (4v-zif c a-equiv b)))
            :rule-classes (:congruence))

    Theorem: 4v-equiv-implies-equal-4v-zif-1

    (defthm 4v-equiv-implies-equal-4v-zif-1
            (implies (4v-equiv c c-equiv)
                     (equal (4v-zif c a b)
                            (4v-zif c-equiv a b)))
            :rule-classes (:congruence))