• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
        • Aig-constructors
        • Aig-vars
        • Aig-sat
        • Bddify
        • Aig-substitution
        • Aig-other
        • Aig-semantics
          • Aig-eval
          • Aig-alist-equiv
            • Aig-env-equiv
            • Aig-equiv
            • Aig-eval-alist
            • Aig-eval-list
            • Aig-eval-alists
          • Aig-and-count
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Aig-semantics

    Aig-alist-equiv

    We say the AIG Alists X and Y are equivalent when they bind the same keys to equivalent AIGs, in the sense of aig-equiv.

    This is a universal equivalence, introduced using def-universal-equiv.

    Function: aig-alist-equiv

    (defun
         aig-alist-equiv (x y)
         (declare (xargs :non-executable t))
         (declare (xargs :guard t))
         (prog2$ (throw-nonexec-error 'aig-alist-equiv
                                      (list x y))
                 (let ((k (aig-alist-equiv-witness x y)))
                      (and (iff (hons-assoc-equal k x)
                                (hons-assoc-equal k y))
                           (aig-equiv (cdr (hons-assoc-equal k x))
                                      (cdr (hons-assoc-equal k y)))))))

    Definitions and Theorems

    Theorem: aig-alist-equiv-necc

    (defthm
         aig-alist-equiv-necc
         (implies (not (and (iff (hons-assoc-equal k x)
                                 (hons-assoc-equal k y))
                            (aig-equiv (cdr (hons-assoc-equal k x))
                                       (cdr (hons-assoc-equal k y)))))
                  (not (aig-alist-equiv x y))))

    Theorem: aig-alist-equiv-witnessing-witness-rule-correct

    (defthm
     aig-alist-equiv-witnessing-witness-rule-correct
     (implies
         (not ((lambda (k y x)
                       (not (if (iff (hons-assoc-equal k x)
                                     (hons-assoc-equal k y))
                                (aig-equiv (cdr (hons-assoc-equal k x))
                                           (cdr (hons-assoc-equal k y)))
                                'nil)))
               (aig-alist-equiv-witness x y)
               y x))
         (aig-alist-equiv x y))
     :rule-classes nil)

    Theorem: aig-alist-equiv-instancing-instance-rule-correct

    (defthm aig-alist-equiv-instancing-instance-rule-correct
            (implies (not (if (iff (hons-assoc-equal k x)
                                   (hons-assoc-equal k y))
                              (aig-equiv (cdr (hons-assoc-equal k x))
                                         (cdr (hons-assoc-equal k y)))
                              'nil))
                     (not (aig-alist-equiv x y)))
            :rule-classes nil)

    Theorem: aig-alist-equiv-is-an-equivalence

    (defthm aig-alist-equiv-is-an-equivalence
            (and (booleanp (aig-alist-equiv x y))
                 (aig-alist-equiv x x)
                 (implies (aig-alist-equiv x y)
                          (aig-alist-equiv y x))
                 (implies (and (aig-alist-equiv x y)
                               (aig-alist-equiv y z))
                          (aig-alist-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: alist-equiv-refines-aig-alist-equiv

    (defthm alist-equiv-refines-aig-alist-equiv
            (implies (alist-equiv x y)
                     (aig-alist-equiv x y))
            :rule-classes (:refinement))