• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
        • Aig-constructors
        • Aig-vars
        • Aig-sat
        • Bddify
        • Aig-substitution
        • Aig-other
        • Aig-semantics
          • Aig-eval
          • Aig-alist-equiv
          • Aig-env-equiv
            • Aig-equiv
            • Aig-eval-alist
            • Aig-eval-list
            • Aig-eval-alists
          • Aig-and-count
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Aig-semantics

    Aig-env-equiv

    We say the environments X and Y are equivalent when they give equivalent values to variables looked up with aig-env-lookup.

    This is a universal equivalence, introduced using def-universal-equiv.

    Function: aig-env-equiv

    (defun aig-env-equiv (x y)
           (declare (xargs :non-executable t))
           (declare (xargs :guard t))
           (prog2$ (throw-nonexec-error 'aig-env-equiv
                                        (list x y))
                   (let ((key (aig-env-equiv-witness x y)))
                        (and (iff (aig-env-lookup key x)
                                  (aig-env-lookup key y))))))

    Definitions and Theorems

    Theorem: aig-env-equiv-necc

    (defthm aig-env-equiv-necc
            (implies (not (and (iff (aig-env-lookup key x)
                                    (aig-env-lookup key y))))
                     (not (aig-env-equiv x y))))

    Theorem: aig-env-equiv-witnessing-witness-rule-correct

    (defthm aig-env-equiv-witnessing-witness-rule-correct
            (implies (not ((lambda (key y x)
                                   (not (iff (aig-env-lookup key x)
                                             (aig-env-lookup key y))))
                           (aig-env-equiv-witness x y)
                           y x))
                     (aig-env-equiv x y))
            :rule-classes nil)

    Theorem: aig-env-equiv-instancing-instance-rule-correct

    (defthm aig-env-equiv-instancing-instance-rule-correct
            (implies (not (iff (aig-env-lookup key x)
                               (aig-env-lookup key y)))
                     (not (aig-env-equiv x y)))
            :rule-classes nil)

    Theorem: aig-env-equiv-is-an-equivalence

    (defthm aig-env-equiv-is-an-equivalence
            (and (booleanp (aig-env-equiv x y))
                 (aig-env-equiv x x)
                 (implies (aig-env-equiv x y)
                          (aig-env-equiv y x))
                 (implies (and (aig-env-equiv x y)
                               (aig-env-equiv y z))
                          (aig-env-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: aig-env-equiv-implies-equal-aig-env-lookup-2

    (defthm aig-env-equiv-implies-equal-aig-env-lookup-2
            (implies (aig-env-equiv x x-equiv)
                     (equal (aig-env-lookup key x)
                            (aig-env-lookup key x-equiv)))
            :rule-classes (:congruence))

    Theorem: alist-equiv-refines-aig-env-equiv

    (defthm alist-equiv-refines-aig-env-equiv
            (implies (alist-equiv x y)
                     (aig-env-equiv x y))
            :rule-classes (:refinement))