• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
        • Aig-constructors
        • Aig-vars
        • Aig-sat
        • Bddify
        • Aig-substitution
          • Aig-partial-eval
          • Aig-restrict
          • Aig-compose
          • Aig-restrict-alist
            • Aig-restrict-alist-thms
            • Aig-partial-eval-alist
            • Aig-compose-alist
            • Aig-restrict-alists
            • Aig-compose-alists
            • Aig-restrict-list
            • Aig-partial-eval-list
            • Aig-compose-list
          • Aig-other
          • Aig-semantics
          • Aig-and-count
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Aig-restrict-alist

    Aig-restrict-alist-thms

    Basic theorems about aig-restrict-alist.

    Definitions and Theorems

    Theorem: lookup-in-aig-restrict-alist

    (defthm lookup-in-aig-restrict-alist
      (equal (hons-assoc-equal k (aig-restrict-alist x env))
             (and (hons-assoc-equal k x)
                  (cons k
                        (aig-restrict (cdr (hons-assoc-equal k x))
                                      env)))))

    Theorem: aig-alist-equiv-implies-aig-alist-equiv-aig-restrict-alist-1

    (defthm aig-alist-equiv-implies-aig-alist-equiv-aig-restrict-alist-1
      (implies (aig-alist-equiv x x-equiv)
               (aig-alist-equiv (aig-restrict-alist x al)
                                (aig-restrict-alist x-equiv al)))
      :rule-classes (:congruence))

    Theorem: aig-alist-equiv-implies-aig-alist-equiv-aig-restrict-alist-2

    (defthm aig-alist-equiv-implies-aig-alist-equiv-aig-restrict-alist-2
      (implies (aig-alist-equiv al al-equiv)
               (aig-alist-equiv (aig-restrict-alist x al)
                                (aig-restrict-alist x al-equiv)))
      :rule-classes (:congruence))

    Theorem: aig-eval-alist-of-aig-restrict-alist

    (defthm aig-eval-alist-of-aig-restrict-alist
      (equal (aig-eval-alist (aig-restrict-alist x al1)
                             al2)
             (aig-eval-alist x
                             (append (aig-eval-alist al1 al2) al2))))

    Theorem: aig-restrict-alist-aig-restrict-alist

    (defthm aig-restrict-alist-aig-restrict-alist
      (aig-alist-equiv
           (aig-restrict-alist (aig-restrict-alist x al1)
                               al2)
           (aig-restrict-alist x
                               (append (aig-restrict-alist al1 al2)
                                       al2))))