• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
        • Aig-constructors
        • Aig-vars
        • Aig-sat
        • Bddify
        • Aig-substitution
          • Aig-partial-eval
          • Aig-restrict
          • Aig-compose
          • Aig-restrict-alist
            • Aig-restrict-alist-thms
          • Aig-partial-eval-alist
          • Aig-compose-alist
          • Aig-restrict-alists
          • Aig-compose-alists
          • Aig-restrict-list
          • Aig-partial-eval-list
          • Aig-compose-list
        • Aig-other
        • Aig-semantics
        • Aig-and-count
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
  • Aig-substitution

Aig-restrict-alist

(aig-restrict-alist x sigma) substitutes into an AIG Alist (an alist binding keys to AIGs).

Signature
(aig-restrict-alist x sigma) → aig-alist
Arguments
x — Alist binding names to AIGs. This doesn't need to be a fast alist.
sigma — Fast alist binding variables to replacement AIGs, as in aig-restrict.
Returns
aig-alist — Ordinary (slow) alist with the same keys as x, and values formed by restricting each aig with aig-restrict.

Definitions and Theorems

Function: aig-restrict-alist

(defun aig-restrict-alist (x sigma)
       (declare (xargs :guard t))
       (let ((__function__ 'aig-restrict-alist))
            (declare (ignorable __function__))
            (cond ((atom x) nil)
                  ((atom (car x))
                   (aig-restrict-alist (cdr x) sigma))
                  (t (cons (cons (caar x)
                                 (aig-restrict (cdar x) sigma))
                           (aig-restrict-alist (cdr x) sigma))))))

Theorem: alistp-of-aig-restrict-alist

(defthm alistp-of-aig-restrict-alist
        (alistp (aig-restrict-alist x sigma)))

Subtopics

Aig-restrict-alist-thms
Basic theorems about aig-restrict-alist.