• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
        • Alist-keys
          • Remove-assocs
          • Alist-vals
          • Alist-map-vals
          • Std/alists/strip-cdrs
          • Hons-rassoc-equal
          • Alist-map-keys
          • Std/alists/hons-assoc-equal
          • Fal-extract
          • Std/alists/strip-cars
          • Fal-find-any
          • Fal-extract-vals
          • Std/alists/abstract
          • Fal-all-boundp
          • Std/alists/alistp
          • Append-alist-vals
          • Append-alist-keys
          • Alist-equiv
          • Hons-remove-assoc
          • Std/alists/pairlis$
          • Alists-agree
          • Worth-hashing
          • Sub-alistp
          • Alist-fix
          • Std/alists/remove-assoc-equal
          • Std/alists/assoc-equal
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/alists
    • Strip-cars

    Alist-keys

    (alist-keys x) collects all keys bound in an alist.

    This is a "modern" equivalent of strip-cars, which properly respects the non-alist convention; see std/alists for discussion of this convention.

    Note that the list of keys returned by alist-keys may contain duplicates. This happens whenever the input alist contains "shadowed" bindings, as in ((a . 1) (a . 2)).

    Note about Normal Forms

    A key is a among the alist-keys of an alist exactly when hons-assoc-equal is non-nil. We generally prefer hons-assoc-equal as the normal form, so the following rule is enabled by default::

    Theorem: alist-keys-member-hons-assoc-equal

    (defthm alist-keys-member-hons-assoc-equal
            (iff (member-equal x (alist-keys a))
                 (hons-assoc-equal x a)))

    However, sometimes the member-based normal form works better when you want to tie into powerful set-reasoning strategies. To support this, the following rule is available but is disabled by default:

    Theorem: hons-assoc-equal-iff-member-alist-keys

    (defthm hons-assoc-equal-iff-member-alist-keys
            (iff (hons-assoc-equal x a)
                 (member-equal x (alist-keys a))))

    Obviously these two rules loop, so a theory-invariant insists that you choose one or the other. For greater compatibility between books, please do not non-locally switch the normal form.

    Definitions and Theorems

    Function: alist-keys

    (defun alist-keys (x)
           (declare (xargs :guard t))
           (cond ((atom x) nil)
                 ((atom (car x)) (alist-keys (cdr x)))
                 (t (cons (caar x) (alist-keys (cdr x))))))

    Theorem: alist-keys-when-atom

    (defthm alist-keys-when-atom
            (implies (atom x)
                     (equal (alist-keys x) nil)))

    Theorem: alist-keys-of-cons

    (defthm alist-keys-of-cons
            (equal (alist-keys (cons a x))
                   (if (atom a)
                       (alist-keys x)
                       (cons (car a) (alist-keys x)))))

    Theorem: list-equiv-implies-equal-alist-keys-1

    (defthm list-equiv-implies-equal-alist-keys-1
            (implies (list-equiv x x-equiv)
                     (equal (alist-keys x)
                            (alist-keys x-equiv)))
            :rule-classes (:congruence))

    Theorem: true-listp-of-alist-keys

    (defthm true-listp-of-alist-keys
            (true-listp (alist-keys x))
            :rule-classes :type-prescription)

    Theorem: alist-keys-of-hons-acons

    (defthm alist-keys-of-hons-acons
            (equal (alist-keys (hons-acons key val x))
                   (cons key (alist-keys x))))

    Theorem: alist-keys-of-pairlis$

    (defthm alist-keys-of-pairlis$
            (equal (alist-keys (pairlis$ keys vals))
                   (list-fix keys)))

    Theorem: alist-keys-member-hons-assoc-equal

    (defthm alist-keys-member-hons-assoc-equal
            (iff (member-equal x (alist-keys a))
                 (hons-assoc-equal x a)))

    Theorem: hons-assoc-equal-iff-member-alist-keys

    (defthm hons-assoc-equal-iff-member-alist-keys
            (iff (hons-assoc-equal x a)
                 (member-equal x (alist-keys a))))

    Theorem: hons-assoc-equal-when-not-member-alist-keys

    (defthm hons-assoc-equal-when-not-member-alist-keys
            (implies (not (member-equal x (alist-keys a)))
                     (equal (hons-assoc-equal x a) nil)))

    Theorem: alist-keys-of-append

    (defthm alist-keys-of-append
            (equal (alist-keys (append x y))
                   (append (alist-keys x) (alist-keys y))))

    Theorem: alist-keys-of-rev

    (defthm alist-keys-of-rev
            (equal (alist-keys (rev x))
                   (rev (alist-keys x))))

    Theorem: alist-keys-of-revappend

    (defthm alist-keys-of-revappend
            (equal (alist-keys (revappend x y))
                   (revappend (alist-keys x)
                              (alist-keys y))))