• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
        • Repeat
        • Index-of
        • All-equalp
        • Sublistp
        • Std/lists/nthcdr
        • Listpos
        • List-equiv
          • Basic-list-equiv-congruences
            • List-equiv-reductions
          • Final-cdr
          • Std/lists/append
          • Std/lists/remove
          • Subseq-list
          • Rcons
          • Std/lists/revappend
          • Std/lists/remove-duplicates-equal
          • Std/lists/reverse
          • Std/lists/last
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/butlast
          • Std/lists/set-difference
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • List-equiv

    Basic-list-equiv-congruences

    Basic list-equiv congruence theorems for built-in functions.

    Definitions and Theorems

    Theorem: list-equiv-implies-equal-list-fix-1

    (defthm list-equiv-implies-equal-list-fix-1
      (implies (list-equiv x x-equiv)
               (equal (list-fix x) (list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-car-1

    (defthm list-equiv-implies-equal-car-1
      (implies (list-equiv x x-equiv)
               (equal (car x) (car x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-cdr-1

    (defthm list-equiv-implies-list-equiv-cdr-1
      (implies (list-equiv x x-equiv)
               (list-equiv (cdr x) (cdr x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-cons-2

    (defthm list-equiv-implies-list-equiv-cons-2
      (implies (list-equiv y y-equiv)
               (list-equiv (cons x y)
                           (cons x y-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-nth-2

    (defthm list-equiv-implies-equal-nth-2
      (implies (list-equiv x x-equiv)
               (equal (nth n x) (nth n x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-nthcdr-2

    (defthm list-equiv-implies-list-equiv-nthcdr-2
      (implies (list-equiv x x-equiv)
               (list-equiv (nthcdr n x)
                           (nthcdr n x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-update-nth-3

    (defthm list-equiv-implies-list-equiv-update-nth-3
      (implies (list-equiv x x-equiv)
               (list-equiv (update-nth n v x)
                           (update-nth n v x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-consp-1

    (defthm list-equiv-implies-equal-consp-1
      (implies (list-equiv x x-equiv)
               (equal (consp x) (consp x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-len-1

    (defthm list-equiv-implies-equal-len-1
      (implies (list-equiv x x-equiv)
               (equal (len x) (len x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-append-1

    (defthm list-equiv-implies-equal-append-1
      (implies (list-equiv x x-equiv)
               (equal (append x y) (append x-equiv y)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-append-2

    (defthm list-equiv-implies-list-equiv-append-2
      (implies (list-equiv y y-equiv)
               (list-equiv (append x y)
                           (append x y-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-member-2

    (defthm list-equiv-implies-list-equiv-member-2
      (implies (list-equiv x x-equiv)
               (list-equiv (member k x)
                           (member k x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-iff-member-2

    (defthm list-equiv-implies-iff-member-2
      (implies (list-equiv x x-equiv)
               (iff (member k x) (member k x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-subsetp-1

    (defthm list-equiv-implies-equal-subsetp-1
      (implies (list-equiv x x-equiv)
               (equal (subsetp x y)
                      (subsetp x-equiv y)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-subsetp-2

    (defthm list-equiv-implies-equal-subsetp-2
      (implies (list-equiv y y-equiv)
               (equal (subsetp x y)
                      (subsetp x y-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-remove-2

    (defthm list-equiv-implies-equal-remove-2
      (implies (list-equiv x x-equiv)
               (equal (remove a x) (remove a x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-resize-list-1

    (defthm list-equiv-implies-equal-resize-list-1
      (implies (list-equiv lst lst-equiv)
               (equal (resize-list lst n default)
                      (resize-list lst-equiv n default)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-revappend-1

    (defthm list-equiv-implies-equal-revappend-1
      (implies (list-equiv x x-equiv)
               (equal (revappend x y)
                      (revappend x-equiv y)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-revappend-2

    (defthm list-equiv-implies-list-equiv-revappend-2
      (implies (list-equiv y y-equiv)
               (list-equiv (revappend x y)
                           (revappend x y-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-last-1

    (defthm list-equiv-implies-list-equiv-last-1
      (implies (list-equiv x x-equiv)
               (list-equiv (last x) (last x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-make-list-ac-3

    (defthm list-equiv-implies-list-equiv-make-list-ac-3
      (implies (list-equiv ac ac-equiv)
               (list-equiv (make-list-ac n val ac)
                           (make-list-ac n val ac-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-no-duplicatesp-equal-1

    (defthm list-equiv-implies-equal-no-duplicatesp-equal-1
      (implies (list-equiv x x-equiv)
               (equal (no-duplicatesp-equal x)
                      (no-duplicatesp-equal x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-string-append-lst-1

    (defthm list-equiv-implies-equal-string-append-lst-1
      (implies (list-equiv x x-equiv)
               (equal (string-append-lst x)
                      (string-append-lst x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-assoc-equal-2

    (defthm list-equiv-implies-equal-assoc-equal-2
      (implies (list-equiv l l-equiv)
               (equal (assoc-equal x l)
                      (assoc-equal x l-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-strip-cars-1

    (defthm list-equiv-implies-equal-strip-cars-1
      (implies (list-equiv x x-equiv)
               (equal (strip-cars x)
                      (strip-cars x-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-remove-assoc-equal-2

    (defthm list-equiv-implies-equal-remove-assoc-equal-2
      (implies (list-equiv l l-equiv)
               (equal (remove-assoc-equal x l)
                      (remove-assoc-equal x l-equiv)))
      :rule-classes (:congruence))

    Theorem: list-equiv-implies-list-equiv-put-assoc-equal-3

    (defthm list-equiv-implies-list-equiv-put-assoc-equal-3
      (implies (list-equiv alist alist-equiv)
               (list-equiv (put-assoc-equal name val alist)
                           (put-assoc-equal name val alist-equiv)))
      :rule-classes (:congruence))