• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
        • Repeat
        • Index-of
        • All-equalp
        • Sublistp
        • Std/lists/nthcdr
        • Std/lists/append
        • Listpos
        • List-equiv
        • Final-cdr
        • Std/lists/remove
        • Subseq-list
        • Rcons
        • Std/lists/revappend
        • Std/lists/remove-duplicates-equal
        • Std/lists/last
        • Std/lists/reverse
        • Std/lists/resize-list
        • Flatten
        • Suffixp
        • Std/lists/set-difference
        • Std/lists/butlast
        • Std/lists/len
        • Std/lists/intersectp
        • Std/lists/true-listp
        • Intersectp-witness
        • Subsetp-witness
        • Std/lists/remove1-equal
        • Rest-n
        • First-n
        • Std/lists/union
        • Append-without-guard
        • Std/lists/subsetp
          • Basic-subsetp-lemmas
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/lists/subsetp

    Basic-subsetp-lemmas

    Very basic lemmas about subsetp.

    Definitions and Theorems

    Theorem: subsetp-when-atom-left

    (defthm subsetp-when-atom-left
            (implies (atom x) (subsetp x y)))

    Theorem: subsetp-when-atom-right

    (defthm subsetp-when-atom-right
            (implies (atom y)
                     (equal (subsetp x y) (atom x))))

    Theorem: subsetp-nil

    (defthm subsetp-nil (subsetp nil x))

    Theorem: subsetp-of-cons

    (defthm subsetp-of-cons
            (equal (subsetp (cons a x) y)
                   (if (member a y) (subsetp x y) nil)))

    Theorem: subsetp-member

    (defthm
        subsetp-member
        (implies (and (member a x) (subsetp x y))
                 (member a y))
        :rule-classes
        ((:rewrite)
         (:rewrite :corollary (implies (and (subsetp x y) (member a x))
                                       (member a y)))
         (:rewrite
              :corollary (implies (and (not (member a y)) (subsetp x y))
                                  (not (member a x))))
         (:rewrite
              :corollary (implies (and (subsetp x y) (not (member a y)))
                                  (not (member a x))))))

    Theorem: element-list-p-when-subsetp-equal-true-list

    (defthm element-list-p-when-subsetp-equal-true-list
            (implies (and (subsetp-equal x y)
                          (element-list-p y)
                          (not (element-list-final-cdr-p t)))
                     (equal (element-list-p x)
                            (true-listp x)))
            :rule-classes :rewrite)

    Theorem: element-list-p-when-subsetp-equal-non-true-list

    (defthm element-list-p-when-subsetp-equal-non-true-list
            (implies (and (subsetp-equal x y)
                          (element-list-p y)
                          (element-list-final-cdr-p t))
                     (element-list-p x))
            :rule-classes :rewrite)

    Theorem: subsetp-of-elementlist-projection-when-subsetp

    (defthm subsetp-of-elementlist-projection-when-subsetp
            (implies (subsetp x y)
                     (subsetp (elementlist-projection x)
                              (elementlist-projection y)))
            :rule-classes :rewrite)

    Theorem: subsetp-refl

    (defthm subsetp-refl (subsetp x x))

    Theorem: subsetp-trans

    (defthm subsetp-trans
            (implies (and (subsetp x y) (subsetp y z))
                     (subsetp x z)))

    Theorem: subsetp-trans2

    (defthm subsetp-trans2
            (implies (and (subsetp y z) (subsetp x y))
                     (subsetp x z)))

    Theorem: subsetp-implies-subsetp-cdr

    (defthm subsetp-implies-subsetp-cdr
            (implies (subsetp x y)
                     (subsetp (cdr x) y)))

    Theorem: subsetp-of-cdr

    (defthm subsetp-of-cdr (subsetp (cdr x) x))

    Theorem: subsetp-cons-same

    (defthm subsetp-cons-same
            (implies (subsetp a b)
                     (subsetp (cons x a) (cons x b))))

    Theorem: subsetp-cons-2

    (defthm subsetp-cons-2
            (implies (subsetp a b)
                     (subsetp a (cons x b))))

    Theorem: subsetp-append1

    (defthm subsetp-append1
            (equal (subsetp (append a b) c)
                   (and (subsetp a c) (subsetp b c))))

    Theorem: subsetp-append2

    (defthm subsetp-append2
            (subsetp a (append a b)))

    Theorem: subsetp-append3

    (defthm subsetp-append3
            (subsetp b (append a b)))

    Theorem: subsetp-of-append-when-subset-of-either

    (defthm subsetp-of-append-when-subset-of-either
            (implies (or (subsetp a b) (subsetp a c))
                     (subsetp a (append b c))))

    Theorem: subsetp-car-member

    (defthm subsetp-car-member
            (implies (and (subsetp x y) (consp x))
                     (member (car x) y)))

    Theorem: subsetp-intersection-equal

    (defthm subsetp-intersection-equal
            (iff (subsetp a (intersection-equal b c))
                 (and (subsetp a b) (subsetp a c))))

    Theorem: subsetp-of-elementlist-mapappend-when-subsetp

    (defthm subsetp-of-elementlist-mapappend-when-subsetp
            (implies (subsetp x y)
                     (subsetp (elementlist-mapappend x)
                              (elementlist-mapappend y)))
            :rule-classes :rewrite)

    Theorem: set-equiv-congruence-over-elementlist-mapappend

    (defthm set-equiv-congruence-over-elementlist-mapappend
            (implies (set-equiv x y)
                     (set-equiv (elementlist-mapappend x)
                                (elementlist-mapappend y)))
            :rule-classes :congruence)