• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
      • Arithmetic
        • Lispfloat
        • Arithmetic-1
          • Inequalities-of-products
          • Basic-product-normalization
          • Inequalities-of-reciprocals
          • Arithmetic/natp-posp
          • Basic-expt-normalization
          • More-rational-identities
          • Inequalities-of-exponents
          • Basic-sum-normalization
            • Basic-rational-identities
            • Basic-expt-type-rules
            • Inequalities-of-sums
            • Basic-products-with-negations
            • Fc
          • Number-theory
          • Proof-by-arith
          • Arith-equivs
          • Number-theory
          • Arithmetic-3
          • Arithmetic-2
          • Arithmetic-light
          • Arithmetic-5
        • Bit-vectors
        • Algebra
    • Arithmetic-1

    Basic-sum-normalization

    Trivial normalization and cancellation rules for sums.

    Definitions and Theorems

    Theorem: functional-self-inversion-of-minus

    (defthm functional-self-inversion-of-minus
            (equal (- (- x)) (fix x)))

    Theorem: minus-cancellation-on-right

    (defthm minus-cancellation-on-right
            (equal (+ x y (- x)) (fix y)))

    Theorem: minus-cancellation-on-left

    (defthm minus-cancellation-on-left
            (equal (+ x (- x) y) (fix y)))

    Theorem: right-cancellation-for-+

    (defthm right-cancellation-for-+
            (equal (equal (+ x z) (+ y z))
                   (equal (fix x) (fix y))))

    Theorem: left-cancellation-for-+

    (defthm left-cancellation-for-+
            (equal (equal (+ x y) (+ x z))
                   (equal (fix y) (fix z))))

    Theorem: equal-minus-0

    (defthm equal-minus-0
            (equal (equal 0 (- x))
                   (equal 0 (fix x))))

    Theorem: inverse-of-+-as=0

    (defthm inverse-of-+-as=0
            (equal (equal (- a b) 0)
                   (equal (fix a) (fix b))))

    Theorem: equal-minus-minus

    (defthm equal-minus-minus
            (equal (equal (- a) (- b))
                   (equal (fix a) (fix b))))