• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/io
      • Std/osets
      • Std/system
      • Std/basic
      • Std/typed-lists
        • Std/typed-lists/character-listp
        • Std/typed-lists/symbol-listp
        • Std/typed-lists/boolean-listp
        • Std/typed-lists/string-listp
        • Std/typed-lists/eqlable-listp
        • Theorems-about-true-list-lists
        • Std/typed-lists/atom-listp
        • Unsigned-byte-listp
        • Cons-listp
        • Cons-list-listp
          • Cons-list-listp-basics
          • Signed-byte-listp
          • String-or-symbol-listp
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Cons-list-listp

    Cons-list-listp-basics

    Basic theorems about cons-list-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: cons-list-listp-of-cons

    (defthm cons-list-listp-of-cons
            (equal (cons-list-listp (cons a x))
                   (and (cons-listp a)
                        (cons-list-listp x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-cdr-when-cons-list-listp

    (defthm cons-list-listp-of-cdr-when-cons-list-listp
            (implies (cons-list-listp (double-rewrite x))
                     (cons-list-listp (cdr x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-when-not-consp

    (defthm cons-list-listp-when-not-consp
            (implies (not (consp x))
                     (cons-list-listp x))
            :rule-classes ((:rewrite)))

    Theorem: cons-listp-of-car-when-cons-list-listp

    (defthm cons-listp-of-car-when-cons-list-listp
            (implies (cons-list-listp x)
                     (cons-listp (car x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-append

    (defthm cons-list-listp-of-append
            (equal (cons-list-listp (append a b))
                   (and (cons-list-listp a)
                        (cons-list-listp b)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-list-fix

    (defthm cons-list-listp-of-list-fix
            (equal (cons-list-listp (list-fix x))
                   (cons-list-listp x))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-sfix

    (defthm cons-list-listp-of-sfix
            (iff (cons-list-listp (set::sfix x))
                 (or (cons-list-listp x)
                     (not (set::setp x))))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-insert

    (defthm cons-list-listp-of-insert
            (iff (cons-list-listp (set::insert a x))
                 (and (cons-list-listp (set::sfix x))
                      (cons-listp a)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-delete

    (defthm cons-list-listp-of-delete
            (implies (cons-list-listp x)
                     (cons-list-listp (set::delete k x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-mergesort

    (defthm cons-list-listp-of-mergesort
            (iff (cons-list-listp (set::mergesort x))
                 (cons-list-listp (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-union

    (defthm cons-list-listp-of-union
            (iff (cons-list-listp (set::union x y))
                 (and (cons-list-listp (set::sfix x))
                      (cons-list-listp (set::sfix y))))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-intersect-1

    (defthm cons-list-listp-of-intersect-1
            (implies (cons-list-listp x)
                     (cons-list-listp (set::intersect x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-intersect-2

    (defthm cons-list-listp-of-intersect-2
            (implies (cons-list-listp y)
                     (cons-list-listp (set::intersect x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-difference

    (defthm cons-list-listp-of-difference
            (implies (cons-list-listp x)
                     (cons-list-listp (set::difference x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-duplicated-members

    (defthm cons-list-listp-of-duplicated-members
            (implies (cons-list-listp x)
                     (cons-list-listp (duplicated-members x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-rev

    (defthm cons-list-listp-of-rev
            (equal (cons-list-listp (rev x))
                   (cons-list-listp (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-rcons

    (defthm cons-list-listp-of-rcons
            (iff (cons-list-listp (rcons a x))
                 (and (cons-listp a)
                      (cons-list-listp (list-fix x))))
            :rule-classes ((:rewrite)))

    Theorem: cons-listp-when-member-equal-of-cons-list-listp

    (defthm cons-listp-when-member-equal-of-cons-list-listp
            (and (implies (and (member-equal a x)
                               (cons-list-listp x))
                          (cons-listp a))
                 (implies (and (cons-list-listp x)
                               (member-equal a x))
                          (cons-listp a)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-when-subsetp-equal

    (defthm cons-list-listp-when-subsetp-equal
            (and (implies (and (subsetp-equal x y)
                               (cons-list-listp y))
                          (cons-list-listp x))
                 (implies (and (cons-list-listp y)
                               (subsetp-equal x y))
                          (cons-list-listp x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-set-equiv-congruence

    (defthm cons-list-listp-set-equiv-congruence
            (implies (set-equiv x y)
                     (equal (cons-list-listp x)
                            (cons-list-listp y)))
            :rule-classes :congruence)

    Theorem: cons-list-listp-of-set-difference-equal

    (defthm cons-list-listp-of-set-difference-equal
            (implies (cons-list-listp x)
                     (cons-list-listp (set-difference-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-intersection-equal-1

    (defthm cons-list-listp-of-intersection-equal-1
            (implies (cons-list-listp (double-rewrite x))
                     (cons-list-listp (intersection-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-intersection-equal-2

    (defthm cons-list-listp-of-intersection-equal-2
            (implies (cons-list-listp (double-rewrite y))
                     (cons-list-listp (intersection-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-union-equal

    (defthm cons-list-listp-of-union-equal
            (equal (cons-list-listp (union-equal x y))
                   (and (cons-list-listp (list-fix x))
                        (cons-list-listp (double-rewrite y))))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-take

    (defthm cons-list-listp-of-take
            (implies (cons-list-listp (double-rewrite x))
                     (iff (cons-list-listp (take n x))
                          (or (cons-listp nil)
                              (<= (nfix n) (len x)))))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-repeat

    (defthm cons-list-listp-of-repeat
            (iff (cons-list-listp (repeat n x))
                 (or (cons-listp x) (zp n)))
            :rule-classes ((:rewrite)))

    Theorem: cons-listp-of-nth-when-cons-list-listp

    (defthm cons-listp-of-nth-when-cons-list-listp
            (implies (cons-list-listp x)
                     (cons-listp (nth n x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-update-nth

    (defthm cons-list-listp-of-update-nth
            (implies (cons-list-listp (double-rewrite x))
                     (iff (cons-list-listp (update-nth n y x))
                          (and (cons-listp y)
                               (or (<= (nfix n) (len x))
                                   (cons-listp nil)))))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-butlast

    (defthm cons-list-listp-of-butlast
            (implies (cons-list-listp (double-rewrite x))
                     (cons-list-listp (butlast x n)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-nthcdr

    (defthm cons-list-listp-of-nthcdr
            (implies (cons-list-listp (double-rewrite x))
                     (cons-list-listp (nthcdr n x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-last

    (defthm cons-list-listp-of-last
            (implies (cons-list-listp (double-rewrite x))
                     (cons-list-listp (last x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-remove

    (defthm cons-list-listp-of-remove
            (implies (cons-list-listp x)
                     (cons-list-listp (remove a x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-list-listp-of-revappend

    (defthm cons-list-listp-of-revappend
            (equal (cons-list-listp (revappend x y))
                   (and (cons-list-listp (list-fix x))
                        (cons-list-listp y)))
            :rule-classes ((:rewrite)))